Titelangaben
Kurz, Sascha:
Convex hulls of polyominoes.
Bayreuth
,
2007
Volltext
|
|||||||||
Download (179kB)
|
Abstract
In this article we prove a conjecture of Bezdek, Brass, and Harborth concerning the maximum volume of the convex hull of any facet-to-facet connected system of $n$ unit hypercubes in $mathbb{R}^d$. For $d=2$ we enumerate the extremal polyominoes and determine the set of possible areas of the convex hull for each $n$.
Abstract in weiterer Sprache
Wir beweisen eine Vermutung von Bezdek, Brass und Harborth über das maximale Volumen der konvexen Hülle von Seite-an-Seite gelagerten d-dimensionalen Einheitshyperwürfeln. Für d=2 enumerieren wir die extremalen Konfigurationen und bestimmen die möglichen Flächeninhalte der konvexen Hülle aus n Einheitsquadraten.