URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-6541-7
Titelangaben
Dollinger, Manfred ; Fischerauer, Gerhard:
Model-based Range Prediction for Electric Cars and Trucks under Real-World Conditions.
In: Energies.
Bd. 14
(September 2021)
Heft 18
.
- No. 5804.
ISSN 1996-1073
DOI der Verlagsversion: https://doi.org/10.3390/en14185804
Volltext
|
|||||||||
Download (10MB)
|
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Open Access Publizieren Ohne Angabe |
---|
Abstract
The further development of electric mobility requires major scientific efforts to obtain reliable data for vehicle and drive development. Practical experience has repeatedly shown that vehicle data sheets do not contain realistic consumption and range figures. Since the fear of low range is a significant obstacle to the acceptance of electric mobility, a reliable database can provide developers with additional insights and create confidence among vehicle users. This study presents a detailed, yet easy-to-implement and modular physical model for both passenger and commercial battery electric vehicles. The model takes consumption-relevant parameters, such as seasonal influences, terrain character, and driving behavior, into account. Without any a posteriori parameter adjustments, an excellent agreement with known field data and other experimental observations is achieved. This validation conveys much credibility to model predictions regarding the real-world impact on energy consumption and cruising range in standardized driving cycles. Some of the conclusions, almost impossible to obtain experimentally, are that winter conditions and a hilly terrain each reduce the range by 7–9%, and aggressive driving reduces the range by up to 20%. The quantitative results also reveal the important contributions of recuperation and rolling resistance towards the overall energy budget.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Keywords: | Battery electric vehicle; BEV; electric truck; cruising range; real-world conditions; physical model; range prediction; consumption shares; recuperation; rolling resistance |
Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
Institutionen der Universität: | Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik Profilfelder > Emerging Fields > Energieforschung und Energietechnologie Forschungseinrichtungen > Forschungsstellen > Zentrum für Energietechnik - ZET Fakultäten Fakultäten > Fakultät für Ingenieurwissenschaften Profilfelder Profilfelder > Emerging Fields Forschungseinrichtungen Forschungseinrichtungen > Forschungsstellen |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-6541-7 |
Eingestellt am: | 25 Jul 2022 09:00 |
Letzte Änderung: | 25 Jul 2022 09:00 |
URI: | https://epub.uni-bayreuth.de/id/eprint/6541 |