Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Model-based Range Prediction for Electric Cars and Trucks under Real-World Conditions

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00006541
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-6541-7

Titelangaben

Dollinger, Manfred ; Fischerauer, Gerhard:
Model-based Range Prediction for Electric Cars and Trucks under Real-World Conditions.
In: Energies. Bd. 14 (September 2021) Heft 18 . - No. 5804.
ISSN 1996-1073
DOI der Verlagsversion: https://doi.org/10.3390/en14185804

Volltext

[thumbnail of energies-14-05804-v3.pdf]
Format: PDF
Name: energies-14-05804-v3.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (10MB)

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Open Access Publizieren
Ohne Angabe

Abstract

The further development of electric mobility requires major scientific efforts to obtain reliable data for vehicle and drive development. Practical experience has repeatedly shown that vehicle data sheets do not contain realistic consumption and range figures. Since the fear of low range is a significant obstacle to the acceptance of electric mobility, a reliable database can provide developers with additional insights and create confidence among vehicle users. This study presents a detailed, yet easy-to-implement and modular physical model for both passenger and commercial battery electric vehicles. The model takes consumption-relevant parameters, such as seasonal influences, terrain character, and driving behavior, into account. Without any a posteriori parameter adjustments, an excellent agreement with known field data and other experimental observations is achieved. This validation conveys much credibility to model predictions regarding the real-world impact on energy consumption and cruising range in standardized driving cycles. Some of the conclusions, almost impossible to obtain experimentally, are that winter conditions and a hilly terrain each reduce the range by 7–9%, and aggressive driving reduces the range by up to 20%. The quantitative results also reveal the important contributions of recuperation and rolling resistance towards the overall energy budget.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Battery electric vehicle; BEV; electric truck; cruising range; real-world conditions; physical model; range prediction; consumption shares; recuperation; rolling resistance
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik
Profilfelder > Emerging Fields > Energieforschung und Energietechnologie
Forschungseinrichtungen > Forschungsstellen > Zentrum für Energietechnik - ZET
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Profilfelder
Profilfelder > Emerging Fields
Forschungseinrichtungen
Forschungseinrichtungen > Forschungsstellen
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-6541-7
Eingestellt am: 25 Jul 2022 09:00
Letzte Änderung: 25 Jul 2022 09:00
URI: https://epub.uni-bayreuth.de/id/eprint/6541

Downloads

Downloads pro Monat im letzten Jahr