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Abstract: The further development of electric mobility requires major scientific efforts to obtain
reliable data for vehicle and drive development. Practical experience has repeatedly shown that
vehicle data sheets do not contain realistic consumption and range figures. Since the fear of low
range is a significant obstacle to the acceptance of electric mobility, a reliable database can provide
developers with additional insights and create confidence among vehicle users. This study presents
a detailed, yet easy-to-implement and modular physical model for both passenger and commercial
battery electric vehicles. The model takes consumption-relevant parameters, such as seasonal
influences, terrain character, and driving behavior, into account. Without any a posteriori parameter
adjustments, an excellent agreement with known field data and other experimental observations is
achieved. This validation conveys much credibility to model predictions regarding the real-world
impact on energy consumption and cruising range in standardized driving cycles. Some of the
conclusions, almost impossible to obtain experimentally, are that winter conditions and a hilly
terrain each reduce the range by 7–9%, and aggressive driving reduces the range by up to 20%. The
quantitative results also reveal the important contributions of recuperation and rolling resistance
towards the overall energy budget.

Keywords: battery electric vehicle; BEV; electric truck; cruising range; real-world conditions; physical
model; range prediction; consumption shares; recuperation; rolling resistance

1. Introduction

Type approvals of technical devices are usually based on standardized test procedures
to ensure that the results are repeatable and that the performance of different devices can
be compared on the basis of the test results. A conformity test evaluates if a device meets
stipulated requirements under test conditions. This does not necessarily allow conclusions
about the device behavior in the real world.

A case in point is the type approval of vehicles. Standard test cycles serve to determine
the energy consumption and emission levels of vehicles. For example, the New European
Driving Cycle (NEDC) was devised to characterize internal combustion engine vehicles
(ICEVs)—but only passenger cars, no light trucks or commercial vehicles—and was later
also used to characterize the energy consumption and driving range of battery electric
vehicles (BEVs) [1]. The test is performed with an idealized driving speed pattern on
a roller test bench. Aerodynamic drag and inertial forces, which would slow down the
vehicle on the road, are emulated by an electrical machine, and a fan provides the airflow
the vehicle air intakes would see at a given speed [1].

Numerous factors that increase the energy consumption are ignored on the test
bench. The vehicle is tested with minimum payload; ancillary loads, such as lights, air-
conditioning, or window heating, are turned off; weather conditions, such as wind, rain,
and high or low temperatures, are ignored; tires are inflated to pressures above recom-
mended values; the test can be conducted at 2 km/h below the required speed; the final
test results can be arbitrarily reduced by 4%; road inclination and curves are not emulated;
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etc. For this reason, and also because the gentle test speed pattern does not reflect actual
driving habits, the energy consumption and—for ICEVs—the emissions of a vehicle on the
road exceed NEDC-based manufacturer specifications [2].

The difference can be significant. Hao et al. find that the actual electricity consumption
of BEVs exceeds NEDC test values by 7–10% [3]. For ICEVs, Ma et al. report a real-world
energy consumption up to 37.5% higher than NEDC test values [4]. The difference has
increased with time and, in some cases, now exceeds 50%. This explains why the overall gas
and diesel consumption of a country such as Germany is significantly above the quantities
one would expect with car manufacturer specifications [5].

In Europe, the NEDC was replaced in 2018 by the more severe and realistic Worldwide
Harmonized Light Vehicles Test Procedure (WLTP) cycle [6]. More realistic operational
conditions are also offered by the Artemis cycle [7]. Laurikko et al. measured a grid energy
uptake (in kWh/km) of a BEV running through the Artemis Motorway cycle at an ambient
temperature of −20 ◦C, which was 133% above the value of the vehicle running through
the NEDC at +23 ◦C [8].

In order to be able to fully control the test conditions and to allow a later comparison
with model calculations, we performed our own road tests with three up-to-date BEV
models. The trips took place in the hilly region of Northern Bavaria in Germany in late
autumn or early winter. The driver was always the same, and he drove as he was used to
with an ICEV. The courses included approximately equal proportions of urban traffic, rural
roads, and motorways. The results are documented in detail in Appendix A Table A1. They
fully confirm the expectations and the results of the cited literature (see Table 1) [3–5,8].
These data do not represent statistical deviations. Cruising ranges in the field are always
significantly lower than the manufacturers’ data-sheet values.

Table 1. Results of own BEV consumption tests under real-world conditions with predicted range
(for details, see Table A1).

Vehicle
Range/km

Deviation/%
Test Result Data Sheet

Renault ZOE 233 291 −19.9
VW ID 3 220 400 −45.0

Tesla Model 3 310 580 −46.6

As useful as standard test procedures may be in terms of repeatability and compara-
bility, they obviously are no reliable basis for predicting the energy consumption on the
road or the vehicle range.

It was the aim of this study to find a method to predict the real-world electricity
consumption of BEVs, both cars and trucks, that meets the following requirements:

1. Capability to judge how close standardized test procedures are to reality.
2. Suitability for sensitivity analyses with respect to the following:

(a) Technology details (battery weight, battery efficiency, tire rolling resistance, etc.);
(b) Temperature (weather, self-heating);
(c) Terrain characteristics (road inclination);
(d) Driving attitudes (passive, standard, or aggressive).

3. Only a priori simulations with physically or technically determined parameters, no a
posteriori parameter adjustments to make results better, agree with independent data.

The underlying motivation for this work is the desire to evaluate current and future
mobility and sector coupling concepts. Any such concept is based on technical and eco-
nomic assumptions and has ecological consequences, and we would like to shed more light
on the dependencies involved.

The desired consumption prediction is best achieved with a model-based strategy.
This is justified in Section 2. In Section 3, we describe our model and its salient features.
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Section 4 presents sample results meant to validate the model and application results,
together with conclusions.

2. Methodology of Real-World Energy Consumption Predictions

The dynamic estimation of the remaining range of a given BEV on the road must take
into account the current state of the vehicle (speed, acceleration, tire pressure, state of charge
(SoC), and state of health (SoH) of the battery, energy consumption of ancillary loads, etc.)
and its environment (road type, road inclination, traffic conditions, headwind or tailwind,
temperature, etc.). A driver on the road is interested in this individual range estimation and
cannot do anything with the average range of the average car under average conditions.

The average range, however, is of substantial interest for society as a whole. Head-
wind and tailwind will occur equally often in reality, so the wind influence need not be
considered when one is interested in the electricity consumption of large vehicle fleets. On
the other hand, ancillary loads will not all be turned off in reality, so their influence on
electricity consumption must be taken into account when one is interested in the electric-
ity consumption of large vehicle fleets. The same holds true for the influence of engine
efficiency, battery weight, road type, temperature, etc.

In our work, we are concerned with average or typical vehicles and driving conditions
in Germany and similar regions. An outside temperature of 25 ◦C and straight flat roads
are not typical then. An electrical machine peak efficiency of 90% may be typical today
(exceeded by some motors, not reached by others) and rare (exceeded by most motors)
in 30 years.

The comparison of mobility and sector coupling concepts obviously allows complexity-
reduction strategies. Everything that has an impact on the current or future average energy
consumption must be considered. All specifics buried in the statistical noise of large vehicle
fleets can be disregarded.

The desired method for predicting the real-world energy consumption of vehicles can
be developed by experimental or by model-based strategies.

2.1. Experimental Approaches

The energy consumption of a vehicle is observable experimentally on a test bench
or on the road. In both cases, one can construct statistical models. Test cycles, of course,
yield unrealistic results when the test conditions are unrealistic [2]. A model-free, purely
statistical evaluation of real-world measurements can be useful for range calculations
when road type and average energy consumption can be linked to one another [9]. The
calculation is improved by taking into account at least some external parameters, e.g., the
road inclination, and some details of the vehicle dynamics [10]. The better the vehicle state
and the driving situation are taken into account, the better the prediction quality [11]. Such
experimental approaches have been used successfully to quantify the difference between
type approval characteristics and road characteristics of vehicles [3–5]. They have also
been used together with statistical models to draw conclusions on failure probabilities as a
function of driving range [12].

However, such statistical models suffer from two drawbacks. First, they only describe
the tested vehicles under test conditions. The transferability of the results to other vehicle
types or conditions is unclear. Secondly, there is no invertible link between a statistical
detail and the underlying physics. Statistics cannot answer questions such as the following:
“What would be the consequences if the electrical machine efficiency increased from
85 to 92%?”

2.2. Model-Based Approaches

Nowadays, powerful tools for the simulation of vehicle drivelines are available. May
it suffice to mention Matlab with Simscape Driveline or Powertrain Blockset by Math-
works, which offers pre-built, but customizable vehicle models [13]; Cruise by AVL List,
a vehicle driveline simulation solution that enables the analysis of electrified powertrain
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concepts [14,15]; and GT-Suite by Gamma Technologies, a CAE platform for multi-physics
system simulations [16]. These tools are indispensable if a specific vehicle is to be designed.
They contain numerous physical details which are important for the vehicle dynamics [17].
On a continuous scale from physics-free statistics at the left end to full consideration of
all physical details at the right end, purely statistical–experimental methods are too far
left for our purposes, and the tools just discussed are too close to the right. The center
of the scale is just about right, allowing conclusions about the impact of energy-relevant
design parameters and not requiring too many design details. This can only be achieved
by model-based concepts similar to functional diagrams known from control theory. The
functional blocks in the diagram describe the functional relationship between input and
output variables without having to unnecessarily include many details. In the following,
we describe such a model. Although simple enough, all of its parameters can be traced
back to physical origins.

3. Model Description

When evaluating the impact of transportation solutions on the level of whole societies,
one must take all relevant vehicle classes into account. Data on trucks are rare in the
literature, although this vehicle class contributes considerably to greenhouse gas emissions.
Our objective therefore was to develop a modular simulation model that can be applied
to different vehicle classes. To avoid manufacturer and type dependencies, four generic
vehicle classes were defined (Table 2).

Table 2. Definition of vehicle classes. For further parameters, see Appendix B.

Vehicle Class Rated Motor Power/kW Total Weight/t Battery Capacity/kWh

Small car 80 1.6 60
Big car 120 2.0 90

Small truck 160 14.7 120
Big truck 500 24.0 500

The suitability of electric drives for small passenger vehicles in urban traffic is undis-
puted. However, emerging drive technologies must also be able to provide answers for
other areas of road transport. While battery-powered electric drive technology is already
on its way to drive small trucks used in regional logistics, it is by no means clear whether
the battery will be suitable as an energy storage device for transporting large loads over
long distances. On the other hand, there is much to suggest that the electric motor in
combination with the H2 fuel-cell and an appropriate tank could become more relevant for
heavy trucks [18,19]. We therefore considered three generic drive technologies in our model
platform (Table 3). The CNG engine is commonly regarded as a bridging technology with
no long-term perspective because of its comparatively low combustion efficiency and its
high CO2 emissions [19,20]. We included it as a quickly available benchmark for big trucks.

Table 3. Major drive and energy storage technologies used in the simulation model.

Drive Energy Storage

Electric motor Battery
Electric motor H2 fuel-cell with tank and battery

ICEV running on compressed natural gas (CNG) CNG tank

In the following, we limit ourselves to small cars and small trucks, as sufficient
empirical data are already available for these vehicle classes [21–23] which allow us to
independently validate the model predictions. This validation of consumption and range
predictions is all the more important because they provide confidence in the reliability
of other predictions that cannot be tested experimentally. Such a lack of experimental
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testability occurs in particular when statements are to be made about larger vehicle fleets
or about future developments.

A schematic block diagram of the modular vehicle model is shown in Figure 1. The
basic building blocks describe the physics, the drive technology, and the chemistry of the
battery either by exact analytical equations or by functional approximations. In order to
represent the main temperature influences, suitable temperature models were provided for
the rolling resistance of the tires, the battery, and the accessories. The following subsections
describe the equations behind the functional elements of the block diagram. The entire
model was implemented in Microsoft Excel to exploit the easy availability and intuitive
user interface of this software.
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3.1. Acting Forces
3.1.1. Air Resistance

The air resistance opposing the motion of the vehicle is described by the drag equation:

Fw =
1
2

cw Aρv2 (1)

where cw is the dimensionless drag coefficient, A the effective cross-section of the vehicle, ρ
the mass density of air, and v the velocity of the vehicle. Moreover, ρ depends on humidity,
temperature, and altitude. The latter parameter is important for the terrain influence on
energy consumption. We model it by the international altitude formula for air pressure,
which gives a better approximation to real-world experimental data near the surface of the
earth than the barometric altitude formula [24], where h is the altitude over normal zero
and h0 is the normal zero (in our case the referential altitude in Germany):

ρ(h) = ρ(h0)·
(

1 − 2.256 × 10−5m−1·(h − h0)
)5.255

. (2)

We considered both flat and hilly terrains in our simulations and could see that
differences in altitude and their effect on ρ played a non-negligible role. In contrast, the
temperature influence on ρ was not taken into account, as it only has a small indirect effect
on the results.

For the numerical values of the various parameters, see Table A2 in Appendix B. It
is emphasized that all parameter values have been chosen based on physical reasoning
and before simulation runs. No attempt has been made to improve the agreement between
model predictions and other data by adjusting parameter values after a simulation.
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3.1.2. Rolling Resistance

Rolling resistance is caused by the rolling of the tires on the road surface and is
described by the following:

Fr = Cr·m·g· cos α (3)

where Cr is the dimensionless rolling resistance coefficient, m the vehicle mass, g the
gravitational acceleration (9.81 m/s2), and α the terrain inclination angle with respect to
the horizontal. In the following, we always assumed asphalt with known friction values
as the road surface (see Table A2 in Appendix B for numbers). The coefficient Cr is not a
constant, but increases with speed and decreases with tire load, inflation pressure, and
temperature [25]. The steering angle may also influence the rolling resistance, e.g., when
cornering. The dependencies are quite involved and can only be described by functional
approximations of empirical observations. As we are concerned with large vehicle fleets
and typical vehicle characteristics rather than individual sample characteristics, there
is no need to model Cr in too much detail. We only considered the influence of the
temperature, as it cannot be controlled by the individual driver. This influence is described
by the following:

Cr(T) =
(

Ccold
r − Cwarm

r

)
·e−(T−Tr)/Tr + Cwarm

r (4)

where Ccold
r and Cwarm

r respectively denote the rolling resistance coefficient for the cold
and the fully warmed-up tire, T is the instantaneous temperature, and Tr is the reference
temperature for Cwarm

r . The consequences observed during a trip are described in more
detail in Appendix C.1. The temperature of the cold tire is determined individually
for each drive simulation depending on the season and the start time of the journey.
Driving tests with relevant vehicles revealed that a value of 60 ◦C for Tr describes the
conditions well [26].

Figure 2 shows a typical example of the resulting change of the rolling resistance force
Fr during a trip. This change clearly cannot be neglected.
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Figure 2. Rolling-resistance force and rope temperature in the course of a trip (vehicle class = small
truck; season = winter; driving cycle = 6 × NEDC, see Table A3 in Appendix E).

3.1.3. Gravity

The gravity influence on the energy consumption during a trip results from elevation
changes according to the known gravitational formula.

FR = m·g· sin α (5)

To generate generic data, we do not specify landscape shapes, but random elevation
profiles with an average gradient of 3% for a hilly terrain (see Figure 3 for a typical example).
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3.1.4. Mass Inertia

The force caused by mass inertia depends on the vehicle mass and on the acceleration:

Fa = m·a = m
dv
dt

(6)

As described in Appendix E, the simulations were carried out by use of generic drive
cycles (Table A5). These drive cycles stipulate the vehicle velocity as a function of time. This
also determines the vehicle acceleration—see Figure 4, for an example—and, consequently,
the inertial force.
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3.2. Power Train and Transmission

The powertrain of a BEV has a simpler structure than that of an ICEV. Not only the
motor, but also the gearboxes usually contain fewer components and are less complex in de-
sign. This is because the electric motor develops constant and full torque, starting from zero
speed. The full torque is available up to the so-called corner speed. Above this threshold,
in the field-weakening range, the motor torque decreases with 1/n (n = motor speed; see
Figure 5) [27]. In the field-weakening range, the turning rotor with its permanent magnets—
a permanent-magnet (PM) motor is assumed for reasons explained in Section 3.3—induces
a voltage that counteracts the primary field of the stator and can no longer be fully com-
pensated by the voltage supply of the frequency inverter. The torque acting on the rotor
decreases with the speed. The almost ideal control condition up to the corner speed and the
wide speed range of the field weakening enable a conceivably simple transmission design.
Similar to what is realized in practice in most BEVs, we have chosen a two-component
system with one reduction stage each for the simulation (Figure 6).
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The differential gearbox consists of a double bevel gear stage, which, on the one hand,
compensates for the slightly different speeds of the left and right drive wheels. On the
other hand, it diverts the power flow by 90◦ from the engine/main gearbox axle, which is
in the direction of travel, to the transverse drive wheel axle with high efficiency. The power
flow is divided in the differential gearbox according to the respective traction requirements
of the two driven wheels.

The main gearbox, located between the electric motor and the differential gear, is
usually directly adapted to the motor output shaft and consists of a highly efficient helical
gear or planetary gear stage. For the purposes of our simulation, the main gearbox was
assumed to have a helical gear stage with a reduction ratio of iMG = 2.5 (small car) or
iMG = 3.0 (small truck). In the main gearbox, the speed is reduced by the factor iMG, and
the torque is increased by the same factor. An efficiency of 95% was assumed for the main
gearbox. In the differential gear, we used a reduction of iDG = 2.0 for both vehicle types
with an efficiency of 92%. Adding the wheel bearings, to which we attributed an efficiency
of 98%, results in a transmission efficiency of 85.7% for the entire driveline, calculated from
the engine output shaft to the wheels.

3.3. Electric Motor

The key element of the power train is the electric motor. The torque/speed charac-
teristics were already described in Section 3.2. A PM motor with rare-earth magnets is
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assumed because it is characterized by high magnetization, very low temperature depen-
dence, excellent controllability, and, most important, high efficiencies of up to 90% for
small machines and up to 95% for larger ones. The motor efficiency is significant in view of
the valuable and limited battery storage capacity. Although an induction machine would
be less expensive to manufacture, its lower efficiency of 75–85% would result in higher
operating and lifecycle costs compared to the PM motor [28].

The basic efficiency behavior of the PM machine is well-known [29–31]. It depends on
a multitude of design features of the motor: number of pole pairs, air gap size, slot filling
factors, laminated stack design, arrangement of magnets, and many more. As already
mentioned, we do not aim at statements about individual vehicles, but about vehicle
classes, large fleets, technological influences, and societal impacts. Then it is not necessary
to model the detailed characteristics of a particular motor. It rather suffices to describe the
typical state-of-the-art at a given time. We used a mathematical model for the efficiency
field of a generic PM machine which takes these requirements into account and can be
applied to motors of different power classes (Figure 7). The model engine allows high
speeds at limited torque (as in passenger vehicles) and lower speeds at high torque (as in
trucks). Each combination of speed and torque is assigned a unique efficiency value.
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The temperature dependence of the PM machine was neglected, because, in contrast
to the induction machine, it has only a minor effect. A full thermodynamic model of the
PM machine would have to include stator slot cross-sections, wire diameters, winding
head dimensions, slot filling factors, and many more, thus leading to a design-dependent
and complex description with little additional benefit. The parameters of the motor model
are listed in Table A2 of Appendix B.

3.4. Inverter

The voltage supply and the speed control of the motor are provided by the inverter.
Switching and non-harmonic losses, which account for the majority of the total inverter
losses, have become quite small in recent years. By use of silicon carbide technology
efficiencies of up to 99% are announced for future generations of inverter [32,33]. For the
purpose of the present simulations, a constant inverter efficiency of 96% was assumed as
described in the related literature [34].
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3.5. Battery

The further development of battery technology is crucial for the speed of the spread of
electrical mobility. To achieve acceptable ranges with BEVs, an energy storage capacity of
about 100 kWh is required in passenger vehicles and up to 1500 kWh in commercial vehicles.
If at all, only the most powerful lithium-ion batteries are capable of this. We assume the
state-of-the-art given by a LiFePO4 battery in our model (Table 4). It uses graphite as
the cathode material and LiFePO4 as the anode material and offers several important
advantages. The anode no longer contains the metals cobalt, nickel, or manganese, the
mining of which is ecologically and socially problematic. In addition, the short-circuit
resistance of this battery is higher than that of the lithium-ion batteries used to date. This
reduces the risk of fires that are difficult to extinguish. Finally, LiFePO4 batteries have high
cycle stabilities and long lifetimes, and this favors recycling and secondary use. Tesla, the
leading BEV manufacturer, has recently announced that it will also use LiFePO4 batteries
in its next generation of vehicles [35].

Table 4. Technical data of a LiFePO4 battery [36].

Item Value

Number of cycles (90% DoD) 5000
Life cycle range/km 1.5 × 106

Energy density by mass/(Wh/kg) 200
Energy density by volume/(Wh/L) 500

Efficiency of discharge/% 95
Efficiency of charge/% 95

Lower SoC limit/% 5
Upper SoC limit/% 95

The battery performance depends on the temperature and the terminal current. The
output power (e.g., in kW) is usually referred to the rated battery capacity (e.g., in kWh).
This normalized power, or “C factor”, when expressed in 1/h, describes which part of the
capacity can be charged or discharged in one hour. The discharge rate has a significant
effect on the voltage and capacity of the battery for C > 1.5 (Figure 8). When dimensioning
the vehicle components in our study, we ensured that C always stayed below 1.5.
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It is known from practical experience that cold starts and cyclical braking/acceleration
(e.g., in winter, with urban cycle) affect the efficiency, capacity, and lifetime of the battery
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in a negative way [38,39]. The temperature behavior of the battery, as shown in Figure 9,
is well modeled by a functional approximation which is described in Appendix C.2,
Figure A1.
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with permission).

The battery model used was confirmed by the good agreement of the determined
battery efficiency values with the cited literature values. The simulations presented in
Section 4 resulted in efficiency values between 93% and 96% and 94.2% on average. This
value was calculated as the ratio of the electrical energy supplied to the inverter to the
battery charge consumed at nominal voltage.

3.6. Recuperation

In contrast to the ICEV powertrain, an electric powertrain allows the recuperation
of excess kinetic energy because the electric engine can be operated both as motor and
as generator. The control program, which regulates the driving speed based on the driv-
ing profiles, always tries to prioritize recuperation before braking. In our simulations,
recuperation factors between 65% and 69% were achieved.

The regenerative braking effect of the electric engine was large enough in all simula-
tions, as presented in Section 4; below that, no kinetic energy had to be dissipated by the
brakes. This surprising result is due to the use of well-defined driving profiles that do not
include unplanned situations with full braking.

3.7. Vehicle Accessories

The simulation model considers the following vehicle accessories: air conditioner,
instruments, seat-heating, lighting, and servo-steering. The nominal consumption values
of these components were taken from the technical literature [40,41]. Depending on time of
day, season, and geographic location, the ambient temperature and the lighting conditions
are determined, and the consumption data of the vehicle accessories are derived from them.
Table A4 in Appendix D provides a calculation example.

4. Results
4.1. Scenario Description

In Section 1, the literature and own tests were shown to provide evidence of sig-
nificant differences between the actual maximum range of a BEV and the manufacturer
specifications. The results obtained with our simulation platform and about to be pre-
sented in this section serve to shed light on the details of BEV energy consumption in
the real world (rather than on test benches). Table 5 lists the scenario parameters used
for the simulations of this work. The drive type chosen was always the electric motor
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described in Section 3.3 within the drive train described in Section 3.2. Likewise, the
battery described in Section 3.5 was used as the energy storage device in all simulation
runs. The performance characteristics of the selected drive elements correspond to the
current state-of-the-art (2020). The rapid development advances in battery technology,
semiconductor, and magnet technology will likely lead to better performance in the future.
The potential effects of assumed advances can then be studied by varying the performance
characteristics in the simulation.

Table 5. Scenario parameters for BEV range and consumption simulations.

Item Values Used in Current Simulations

Vehicle class Small car | small truck
Drive system Electric motor (PM)

Energy storage LiFePO4 battery
Technology status 2020

Driver attitude Passive (NEDC) | standard (WLTP) | aggressive (Artemis)
Season Summer | spring/autumn| winter
Terrain Flat | hilly

In this work, we present the results of investigations involving all combinations of
two vehicle classes, three driver attitudes, three seasons, and two terrain characteristics (36
combinations in total; see Table 5).

The reason for including not only passenger vehicles but also commercial vehicles
is that the latter are responsible for a large proportion of pollutant emissions [42]. If one
wants to make statements about the entire transport sector, they cannot be ignored. The
characteristics of the two vehicle classes are listed in Table A2 of Appendix B. Furthermore,
it is known from the literature that the individual behavior of the driver has a considerable
influence on the consumption and range of a BEV [22,43]. We therefore looked for ways
to include different, yet standardized and reproducible driving behaviors. In the end,
we defined three types of drivers: passive, standard, and aggressive. Each driver type is
assigned a generic driving cycle, as described in Appendix E. The cycles model 1.5-to-2-h
trips with representative mixes of urban, rural, and motorway driving.

In order to account for the temperature influence, the BEV subsystems that show an
appreciable temperature dependence are represented by suitable temperature models, as
described in Sections 3.1.2 and 3.5 and Appendix C. Furthermore, the seasonal and intraday
temperature variations typical of Germany were taken into account (see Appendix C.3,
Figure A2). This and the duration of daylight distinguish the different seasons.

As already mentioned, the influence of the terrain character on consumption and
range is appreciable [44,45]. This is especially true for vehicles with large battery capacity
and correspondingly heavy mass. For the purpose of our studies, we did not use real
landscape profiles, but randomly generated artificial elevation profiles with a preset mean
inclination of 3%. All profiles would be selected such that the starting and ending points
had the same elevation. Thus, the net overall height difference was zero for each simulation
and all selected profiles.

4.2. Range of Small Passenger BEVs and Small BEV Trucks

The scenario leading to the greatest range is a summer trip on flat terrain with a passive
driving attitude, both for passenger and commercial vehicles (see Table 6 for numbers). All
other scenarios were referred to the respective best case for each of the two vehicle classes
considered. This representation offers the advantage that it is independent of the battery
capacity of the vehicle. Figure 10 (for passenger BEVs) and Figure 11 (for BEV trucks) show
the relative numbers in dependence of the season, the driving behavior, and the terrain
type. The numerical cruising-range difference between best-case and worst-case scenarios
of roughly 30% reminds one of the numbers discussed in Section 1.
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Table 6. BEV consumption and range values (passive driving behavior, summer season, flat terrain).

Vehicle Class Specific Consumption/kWh/(100 km) Effective Battery Capacity/kWh Range/km

Small car 16.6 54 326
Small truck 42.3 108 255

Energies 2021, 14, x FOR PEER REVIEW 14 of 28 
 

 

  

(a) (b) 

Figure 10. Relative range of small passenger BEVs as a function of season and driving behavior. (a) Flat terrain. (b) Hilly 

terrain. 

  

(a) (b) 

Figure 11. Relative range of small BEV trucks as a function of season and driving behavior. (a) Flat terrain. (b) Hilly terrain. 

Table 6. BEV consumption and range values (passive driving behavior, summer season, flat terrain). 

Vehicle Class Specific Consumption/kWh/(100 km) Effective Battery Capacity/kWh Range/km 

Small car 16.6 54 326 

Small truck 42.3 108 255 

We repeat that these results were obtained with preset parameter values and that no 

parameter was varied to improve the agreement between model prediction and independ-

ent observations. It is all the more impressive how well the simulations agree with inde-

pendent data from the literature [3,21] and real consumption measurements [46]. This 

agreement, visualized in Figure 12, serves as validation of the model. As of now, a large 

number of independent data are available for state-of-the-art passenger BEVs, but it must 

be noted that no sufficient database for trucks exists. We believe that our results can con-

tribute to close this data gap. 

Figure 10. Relative range of small passenger BEVs as a function of season and driving behavior. (a) Flat terrain.
(b) Hilly terrain.

Energies 2021, 14, x FOR PEER REVIEW 14 of 28 
 

 

  

(a) (b) 

Figure 10. Relative range of small passenger BEVs as a function of season and driving behavior. (a) Flat terrain. (b) Hilly 

terrain. 

  

(a) (b) 

Figure 11. Relative range of small BEV trucks as a function of season and driving behavior. (a) Flat terrain. (b) Hilly terrain. 

Table 6. BEV consumption and range values (passive driving behavior, summer season, flat terrain). 

Vehicle Class Specific Consumption/kWh/(100 km) Effective Battery Capacity/kWh Range/km 

Small car 16.6 54 326 

Small truck 42.3 108 255 

We repeat that these results were obtained with preset parameter values and that no 

parameter was varied to improve the agreement between model prediction and independ-

ent observations. It is all the more impressive how well the simulations agree with inde-

pendent data from the literature [3,21] and real consumption measurements [46]. This 

agreement, visualized in Figure 12, serves as validation of the model. As of now, a large 

number of independent data are available for state-of-the-art passenger BEVs, but it must 

be noted that no sufficient database for trucks exists. We believe that our results can con-

tribute to close this data gap. 

Figure 11. Relative range of small BEV trucks as a function of season and driving behavior. (a) Flat terrain. (b) Hilly terrain.

We repeat that these results were obtained with preset parameter values and that
no parameter was varied to improve the agreement between model prediction and in-
dependent observations. It is all the more impressive how well the simulations agree
with independent data from the literature [3,21] and real consumption measurements [46].
This agreement, visualized in Figure 12, serves as validation of the model. As of now, a
large number of independent data are available for state-of-the-art passenger BEVs, but it
must be noted that no sufficient database for trucks exists. We believe that our results can
contribute to close this data gap.
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One strength of our approach is that it allows us to quantify the various real-world
influences on energy consumption. Figures 10 and 11 lead to the following statements:

• Winter conditions reduce the BEV range by 8% (small car) and 9% (small truck), respectively.
• A hilly terrain reduces the BEV range by 7% and 9%, respectively.
• The strongest influence on consumption and range comes from the individual driving

behavior. An aggressive driving style reduces the BEV range by 20% (small car) and
17% (small truck), respectively.

Addition to Figure 12: ADAC is the General German Automobile Club, Europe’s
largest motoring association.

4.3. Consumption Shares in Small Passenger BEVs and Small BEV Trucks

A further use of our simulation platform, which cannot be substituted by practical
tests, is to make detailed statements about the consumption shares in BEVs. Only in
this way will it be possible to further develop the entire BEV powertrain in a targeted
manner. The results provide information about the main consumption shares caused by
various physical forces and about peripheral consumers, such as accessories and preheating.
Preheating of the battery is a BEV-specific concept intended to bring the battery into the
optimum operating temperature range during the cold season, with the aim of minimizing
overall power consumption and optimizing battery life. Further research will be required
on this detailed topic in order to be able to make accurate statements about the effectiveness
of preheating in terms of consumption and service life.

Figures 13–16 summarize our findings about the consumption shares. Each fig-
ure presents the influence of the mentioned variable parameter by keeping the other
parameters constant.
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Unlike an ICEV, the BEV can convert kinetic energy back into battery charge via the
regenerative effect of the electric motor. This recuperation leads to a significant reduction
in energy consumption, as shown in Table 7 by way of an example. In this example, the
saving due to recuperation is approximately 15% in relation to the theoretically extrapolated
consumption without recuperation. Recuperation only results from kinetic energy or from
potential energy in the gravitational field of the earth. In acceleration-free driving without
altitude differences, there can be no recuperation. When looking at the consumption
shares, it is therefore physically correct to credit the recuperated energy to the inertial mass
and gravitational components in proportion to their accumulated force components. We
followed this line of reasoning for Figures 13–16 and for Table 8.

Table 7. Reduction of BEV consumption by recuperation (small passenger BEV, standard driving
behavior, transition season, and hilly terrain).

Item Value

Recuperation factor/% 64.9
Recuperated energy/kWh −2.37

Total energy consumption/kWh 13.99
Theoretical energy consumption without recuperation/kWh 16.36

Table 8. BEV consumption shares with and without recuperation.

Quantity Consumption Share/%

With Recuperation Without Recuperation

Car/battery heat-up 0.8 0.7
Air resistance 14.0 8.5

Rolling resistance 32.0 19.6
Gravitation 25.7 29.8
Mass inertia 20.4 35.5
Accessories 7.0 6.0

Table 8 clearly shows that recuperation reduces the relative consumption shares of
inertial mass and gravity. As a result, the other consumption shares from air resistance and
rolling friction are much more significant than for combustion vehicles. This finding must
direct the focus of BEV development besides vehicle weight also on reducing rolling and
air resistance. On the other hand, it can be seen that aggressive driving or driving in a hilly
environment has a less serious effect on consumption.
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Altogether, based on Figures 10 and 11, we make the following statements on con-
sumption shares:

• For BEV trucks, the single most important contributor to energy consumption is
gravity with a share of about 30%. This is a consequence of the weight of the payload
and means that accurate range predictions for commercial vehicles are only possible
with knowledge of the specific altitude profile.

• Increasing safety requirements and growing comfort desires cause non-negligible
consumption in the accessories of BEVs (power steering, air-conditioning, communi-
cation, display, etc.). This reduces the cruising range by 7%, which is completely in
line with field data [41].

• Preheating the battery accounts for 4% of consumption in winter. Further studies
must show to what extent this consumption share can be reduced with new battery
technologies and improved control strategies.

• Recuperation converts about 65% of the available kinetic energy into battery charge.
This reduces BEV consumption by about 15%. Recuperation reduces the additional
consumption caused by aggressive driving or driving in hilly terrain.

5. Conclusions and Outlook

Our studies have shown that, despite the complexity of BEV consumption data
determination, a remarkable agreement with empirical data is possible with a model that
only works with parameter values known a priori and that can be implemented with
common desktop computer software. We were able to provide further evidence as to
why manufacturer specifications systematically and significantly deviate from real-world
consumption values (see Section 4). One reason for the model success may be that the
action of an electric powertrain can be described more easily by physical models than is
the case with internal combustion engines. The range of our results is in agreement with
more than 90% of the relevant literature values or practical test results (see Figure 12).

Only a rather incomplete database exists for electrically driven commercial vehicles.
It has been shown that the BEV passenger vehicle models, confirmed by a sound database,
can be transferred very well to commercial vehicles. Despite the strong dependence on the
payload and the altitude profile during a trip, a convincing agreement with the available
literature values has been achieved ([47], Table 1; [48], Table 6). This opens the door for
future studies on commercial vehicles to create a reliable database for assessments of
consumption and greenhouse gas emissions.

In contrast to practical tests, the physical simulation model allows statements to be
made about consumption shares that can be assigned to various physical origins. This, in
turn, allows important findings to be derived for the further development of BEVs. Simple
parameter variations can be used to make predictions about future vehicle variants.

The recuperation of kinetic energy in the electric powertrain significantly changes the
consumption structure well-known from the ICEV. This allows us to increase the range
of BEVs by about 15%. The simulation results show that additional influencing variables
must be considered for the development of future BEVs. For example, rolling resistance
must be given greater consideration again.

Finally, with the help of the available individual simulation results, the consumption
and emission data of entire vehicle fleets can be predicted sufficiently well. Important
findings can be derived for essential areas of energy research on the basis of the results
presented. The sector of renewable energy generation and distribution is significantly
influenced by the transformation of the mobility sector. If only the manufacturers’ data on
vehicle consumption were used for energy provision, a serious supply gap of almost 30%
would result—with very bad consequences for the entire economy.

Other sectors within future mobility, such as charging technology, charging infrastruc-
ture, energy storage with decentralized battery networks, and power2gas-generation-issues,
can benefit significantly from the specification of the actual consumption values of BEVs.
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Important statements can thus also be made for the mobility/electricity sector coupling
and the supply of raw materials in the production of the necessary vehicle components.

The present study represents an important milestone for us on the further path of this
development. In future projects, we want to broaden the perspective from the previously
considered vehicle types passenger cars and light commercial vehicles to include also
heavy commercial vehicles, as their contribution to GHG emissions is significant. In order
to do this, it will be necessary to expand the technology horizon because of the large range
requirements of heavy trucks. Not only the combination of electric motor and battery
should be considered. The use of hydrogen-based fuel cell drives and combustion drives
that work with renewable methane will also be analyzed and compared with the BEV.
While so far only consumption and range have been determined in this study, in the future
the GHG emissions of the different drive types will also be considered. As a matter of
fact, the GHG emissions are the essential parameter in the Kyoto and Paris Protocols,
which the target reductions until 2050 are derived from. This is intended to make a further
contribution to better assessing the extent to which the goals set there will be realistic.
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Abbreviations

ADAC Allgemeiner Deutscher Automobil Club (General German Automobile Club)
BEV Battery Electric Vehicle
CNG Compressed Natural Gas
GHG Green House Gas
ICEV Internal Combustion Engine Vehicle
NEDC New European Drive Cycle
PM Permanent Magnet (Motor)
WLTP Worldwide Harmonized Light-Duty Vehicles Test Procedure

Appendix A. Field Measurements of BEV Energy Consumption

Table A1 lists the details and the results of three roundtrips made to determine differ-
ences between data-sheet values and real-world performance of three current BEV models.



Energies 2021, 14, 5804 19 of 27

Table A1. Details of roundtrips with three BEVs.

Item
Road Test No.

1 2 3

BEV type Renault Zoe Volkswagen ID3 Tesla Model 3
Battery capacity/kWh 50 58 75

Trip details
Start and end point Bayreuth, Germany Hof, Germany Nürnberg, Germany

Date 24 November 2020 29 October 2020 3 November 2020
Starting time 9:15 a.m. 8:45 a.m. 10:15 a.m.

Duration/min 60 56 82
Temperature at start/◦C 1 8 11

Length of trip/km 55.9 49.1 80.5
Average speed/km/h 55.9 52.6 58.9

Altitude above normal zero/m 340 510 309
Travel section

in urban area/km 13.8 (24.6%) 9.6 (19.6%) 16.4 (20.4%)
in rural area/km 24.4 (43.7%) 29.8 (60.7%) 45.3 (56.3%)

on motorway/km 17.7 (31.7%) 9.7 (19.8%) 18.8 (23.4%)

Results–specific consumption
Test result/(kWh/km) 0.215 0.263 0.242

Data sheet value/(kWh/km) 0.172 0.138 0.129
Vehicle range

Test result/km * 233 220 310
Data sheet value/km 291 400 580

* The range is calculated from the nominal capacity (kWh) of the car battery divided by the determined specific consumption (kWh/km).

Appendix B. Vehicle Parameters

Table A2 lists the numerical values of all parameters pertaining to BEVs in our simula-
tions of state-of-the-art vehicle behavior [50,51]. All parameters can be varied to study the
effects of expected improvements in the future (such predictions are the subject of future
work). An example of this is given in Table A3 for the vehicle weight.

Table A2. Vehicle parameters used for state-of-the-art BEVs.

Parameter
Vehicle Class

Small Car Small Truck

Weight/kg
Empty vehicle 1183 2247

Battery 300 600
Driver + Co 112.5 75

Payload 25 1750
Total 1610 4672

Air resistance
Drag coefficient cw 0.2 0.325

Effective cross-section A/m2 2.2 4.5

Rolling resistance
Number of wheels 4 4

Rolling resistance coefficient
Cr/10−2

on asphalt 1.2 1.0
on concrete 1.3 1.1

on cobblestone 1.7 1.5
on unpaved road 4.0 4.0
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Table A2. Cont.

Parameter
Vehicle Class

Small Car Small Truck

Transmission
Transmission ratio

Differential gearbox 2 2
Main gearbox 2.5 3

Total reduction 5 6
Transmission efficiency/%

Wheel bearings 98
Differential gearbox 92

Main gearbox 95
Total efficiency 85.7

Electric motor
Rated power/kW 80 160
Peak power/kW 108 160

Nominal speed/min−1 4000 4000
Speed at corner point/min−1 4000 4000

Maximum speed/min−1 9000 9000
Rated torque/Nm 191 382
Peak torque/Nm 258 516

Maximum efficiency/% 93.5 93.5
Maximum-efficiency point

Speed/min−1 5300 5000
Torque/Nm 144.1 305.6

Base efficiency/% 58 58

Inverter
Rated power/kW 85 165
Peak power/kW 106 206

Efficiency/%
Motor mode 96 96

Generator mode 96 96

Battery
Rated capacity/kWh 60 120

Minimum SoC/% 5 95
Maximum SoC/% 5 95

Usable capacity/kWh 54 108

Table A3. Past and expected progress of the vehicle base weight in kg (unloaded, without tank filling
or battery, including tool box, spare wheel, and first-aid box).

Year
Vehicle Class

Small Car Small Truck

1990 1185 2270
2020 1173 2247
2030 1149 2201
2050 1125 2155

Appendix C. Temperature Models

Appendix C.1. Rolling Resistance of Tires

The temperature dependence of the rolling resistance coefficient, Cr, is given by
Equation (4). Here, the tire temperature is a function of both the ambient temperature and
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the heating due to the continuous rolling of the tire. The tire heat-up on a trip starting at
time t = 0 is well described by the step response of a first-order lag element:

T(t) = (Tend − T(0))·
(

1 − e−t/t0
)
+ T(0) (A1)

with the time-dependent tire temperature, T; the stationary temperature, Tend, after all
transient processes have died out; and t0 as an effective time constant, which depends on
the tire design, material, and size. For example, the temperature-versus-distance curve
shown in Reference [26] (p. 29) for a 200 km long motorway trip with a small truck (at an
almost constant speed of 90 km/h) is well described by the temperature-versus-time curve
(A1) with the parameter values T(0) = 10 ◦C, Tend = 60 ◦C, and t0 = 800 s. The rolling
resistance coefficient, Cr, in this experiment decreased rapidly at the beginning, from about
6.5 × 10−2 to 4.5 × 10−2, and then continued to slowly decrease to about 3.5 × 10−2 at
the end of the trip [26] (p. 29). The total change by about −45% emphasizes the need of
including temperature effects in consumption and range simulations.

Appendix C.2. Battery Temperature Model

As shown by Figure 9, the output voltage of a LiFePO4 battery depends in a com-
plicated manner on the battery capacity and on temperature. For the purpose of our
simulation, we described the behavior by the parametrized functional approximation.

v(c; T) = f1(T)·e
−(

c+p5
p6 · f2(T)

−1)
p7

+
p10

(c + p5 + p8· f2(T))
p9

(A2)

Here, v denotes the cell voltage normalized to the rated voltage; c is the SoC (i.e., the
capacity normalized to the rated capacity); and f1(T) and f2(T) are linear functions of the
temperature, T, with saturation:

f1(T) = p1·
{

1 + p2
T−T0

T0
for T < T0

1 else
, f2(T) = p3·

{
1 + p4

T−T0
T0

for T < T0

1 else
, (A3)

where T0 is the reference temperature (in our case 20 ◦C), and the pi (i = 1, . . . , 10) is the
fit-parameters. The numerical values of the pi were chosen for best fit with experimental
data. Figure A1 visualizes the results and emphasizes the fact that the battery works better
at higher ambient temperatures.
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Model parameter values: T0 = 20 ◦C; p1 = 0.9; p2 = 0.056; p3 = 1.13; p4 = 0.0805; p5 = 0.05; p6 = 0.5;
p7 = 15; p8 = 1.5; p9 = 1.5; p10 = 0.2.

The temperature of a battery is a simple function of the starting temperature and the
power loss. As the specific heat capacity of a battery is about cp = 400Ws/(kg·K) and its
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weight m ranges from 300 to 600 kg depending on the vehicle type, it takes a power loss on
the order of 1 kW to heat the battery by 10 ◦C within half an hour. At an efficiency of 95%,
this loss power corresponds to a terminal power of 20 kW. Our simulations for trips longer
than half an hour in the winter revealed that a preheating of the battery by up to 15 ◦C
provides a higher overall efficiency than en-route heating. The model was made to choose
either preheating or en-route heating, whichever is more efficient in a given situation.

Appendix C.3. Ambient Temperature Variations

The ambient temperature, which influences the energy efficiency of a BEV via the
temperature sensitivity of the tires and the battery, can be taken into account for a specific
vehicle in a specific situation by simply measuring the temperature. For large-fleet and
average considerations, one needs to work with expected values. Seasonal and intraday
temperature variations are therefore included in our model as expected values according to
German weather data (Figure A2). For a summer trip, we assumed a departure at 2:30 p.m.
in July; for a winter trip, we assumed a departure at 7 a.m. in January; and for a trip in one
of the transitional seasons, at 10:30 a.m. in October.
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Appendix D. Losses Due to Accessories

The power requirements of the accessories depend on the environmental conditions.
Driving in winter represents the worst-case scenario, as it may be dark (requiring the head-
lights to be turned on) and cold (requiring the heating, ventilation, and air-conditioning
(HVAC) system to be turned up). Our model takes this into account. By way of an example,
Table A4 lists the details for a winter trip with a small truck.
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Table A4. Model parameters for a trip with a small truck in Northern Bavaria, Germany, in January.
A generic driving cycle with passive driver behavior was assumed (repeated NEDC with a duration
of 6540 s or 1.82 h; see Table A5).

Item Value

Trip details
Average temperature during drive cycle/◦C −1.29

Daylight time 8:00 a.m. to 16:30 p.m.
Start time 7:00 a.m.

Duration of trip/h 1.82
Travel time by day/h 0.82

Travel time by night/h 1.00
Air conditioning
Rated power/kW 0.9 [41]

Scaling factor at 20 ◦C . . . 35 ◦C/% 25 . . . 100
Scaling factor valid for trip/% 25

Total energy consumption on trip/kWh 0.409
Seat heating

Rated power/kW 0.25
Scaling factor at 0 ◦C . . . 25 ◦C/% 100 . . . 0

Scaling factor valid for trip/% 100
Total energy consumption on trip/kWh 0.454

Instruments
Rated power/kW 0.15

Scaling factor by day and by night/% 50/100
Scaling factor valid for trip/% 77.52

Total energy consumption on trip/kWh 0.211
Lighting

Rated power/kW 0.30
Scaling factor by day and by night/% 50/100

Scaling factor valid for trip/% 77.52
Total energy consumption on trip/kWh 0.423

Servo steering
Rated power/kW 0.75 [40]

Total energy consumption on trip/kWh 1.363
All accessories together

Total energy consumption on trip/kWh 2.859

Appendix E. Generic Driving Cycles

We have defined generic driving cycles by combining and/or repeating standardized
cycles to obtain sufficiently long trips that will reflect the effects of warm-up effects under
real-world conditions (Table A5). The resulting speed patterns are shown in Figure A3.
Here, the speed serves as a reference variable to the vehicle control loop, which acceler-
ates/decelerates the motor or applies the brakes in order to follow the given speed pattern
despite external influences (air resistance, road inclination, etc.).
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Table A5. Composition of generic driving cycles.

Driving Pattern Description Duration/s Length/km Maximum
Speed/(km/h)

Maximum
Acceleration/(m/s2)

Passive 6 × NEDC 6540 64.9 119.8 0.92
Subcycle 1 NEDC 1090 10.8 119.8 0.92
Subcycle 2 — “ — — “ — — “ — — “ — — “ —
Subcycle 3 — “ — — “ — — “ — — “ — — “ —
Subcycle 4 — “ — — “ — — “ — — “ — — “ —
Subcycle 5 — “ — — “ — — “ — — “ — — “ —
Subcycle 6 — “ — — “ — — “ — — “ — — “ —
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Table A5. Cont.

Driving Pattern Description Duration/s Length/km Maximum
Speed/(km/h)

Maximum
Acceleration/(m/s2)

Standard 3 × WLTP 5400 50 91.9 1.23
Subcycle 1 Low–medium 1022 5.9 57.5 1.21
Subcycle 2 High–extra-high 778 10.8 91.9 1.23
Subcycle 3 Low–medium 1022 5.9 57.5 1.21
Subcycle 4 High–extra-high 778 10.8 91.9 1.23
Subcycle 5 Low–medium 1022 5.9 57.5 1.21
Subcycle 6 High–extra-high 778 10.8 91.9 1.23

Aggressive 2 × Artemis mix 6310 103.4 150.4 2.86
Subcycle 1 Urban 990 4.9 57.7 2.86
Subcycle 2 Rural 1090 17.3 111.5 2.36
Subcycle 3 Motorway 150 1075 29.6 150.4 1.92
Subcycle 4 Urban 990 4.9 57.7 2.86
Subcycle 5 Rural 1090 17.3 111.5 2.36
Subcycle 6 Motorway 150 1075 29.6 150.4 1.92
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