URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-6055-8
Titelangaben
Bauer, Maximilian ; Bebendorf, Mario ; Feist, Bernd:
Kernel-independent adaptive construction of H²-matrix approximations.
In: Numerische Mathematik.
Bd. 150
(2022)
Heft 1
.
- S. 1-32.
ISSN 0029-599X
DOI der Verlagsversion: https://doi.org/10.1007/s00211-021-01255-y
Volltext
|
|||||||||
Download (2MB)
|
Abstract
A method for the kernel-independent construction of H²-matrix approximations to non-local operators is proposed. Special attention is paid to the adaptive construction of nested bases. As a side result, new error estimates for adaptive cross approximation~(ACA) are presented which have implications on the pivoting strategy of ACA.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Keywords: | non-local operators; adaptive cross approximation; H²-matrices; interpolation |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen > Lehrstuhl Wissenschaftliches Rechnen - Univ.-Prof. Dr. Mario Bebendorf Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-6055-8 |
Eingestellt am: | 17 Mrz 2022 09:30 |
Letzte Änderung: | 17 Mrz 2022 09:30 |
URI: | https://epub.uni-bayreuth.de/id/eprint/6055 |