Titelangaben
Kiermaier, Michael ; Wassermann, Alfred:
Double and bordered alpha-circulant self-dual codes over finite commutative chain rings.
2008
Veranstaltung: Eleventh International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-2008)
.
(Veranstaltungsbeitrag: Workshop
,
Paper
)
Volltext
|
|||||||||
|
Download (165kB)
|
Abstract
In this paper we investigate codes over finite commutative rings R, whose generator matrices are built from alpha-circulant matrices. For a non-trivial ideal I < R we give a method to lift such codes over R/I to codes over R, such that some isomorphic copies are avoided. For the case where I is the minimal ideal of a finite chain ring we refine this lifting method: We impose the additional restriction that lifting preserves self-duality. It will be shown that this can be achieved by solving a linear system of equations over a finite field. Finally we apply this technique to Z_4-linear double nega-circulant and bordered circulant self-dual codes. We determine the best minimum Lee distance of these codes up to length 64.
Weitere Angaben
| Publikationsform: | Veranstaltungsbeitrag (Paper) |
|---|---|
| Zusätzliche Informationen (öffentlich sichtbar): | msc: 11T71; Source: Proceedings of the Eleventh International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-2008) |
| Keywords: | Codierungstheorie; self-dual code; circulant matrix; linear code over rings; Lee metric; finite chain ring |
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik |
| Sprache: | Englisch |
| Titel an der UBT entstanden: | Ja |
| URN: | urn:nbn:de:bvb:703-opus-4501 |
| Eingestellt am: | 25 Apr 2014 10:50 |
| Letzte Änderung: | 02 Mai 2014 10:35 |
| URI: | https://epub.uni-bayreuth.de/id/eprint/604 |

im Publikationsserver
bei Google Scholar
Download-Statistik