Titelangaben
    
  Olsen, Martin ; Kurz, Sascha ; Molinero, Xavier:
On the Construction of High Dimensional Simple Games.
  
    
    
    
    
    
    
    
     Bayreuth
    
    
    
    , 
    2016
    . - 13 S.
    
    
    
     
    
    
    
     
     
  
  
Dies ist die aktuelle Version des Eintrags.
Volltext
| ![[thumbnail of high_dimension4_arxiv.pdf]](https://epub.uni-bayreuth.de/style/images/fileicons/application_pdf.png) | 
 | ||||||||
| Download (293kB) | 
Abstract
Voting is a commonly applied method for the aggregation of the preferences of multiple agents into a joint decision. If preferences are binary, i.e., "yes" and "no", every voting system can be described by a (monotone) Boolean function $\chi\colon\{0,1\}^n\rightarrow \{0,1\}$. However, its naive encoding needs $2^n$ bits. The subclass of threshold functions, which is sufficient for homogeneous agents, allows a more succinct representation using $n$ weights and one threshold. For heterogeneous agents one can represent $\chi$ as an intersection of $k$ threshold functions. Taylor and Zwicker have constructed a sequence of examples requiring $k\ge 2^{\frac{n}{2}-1}$ and provided a construction guaranteeing $k\le {n\choose {\lfloor n/2\rfloor}}\in 2^{n-o(n)}$. The magnitude of the worst case situation was thought to be determined by Elkind et al. in 2008, but the analysis unfortunately turned out to be wrong. Here we uncover a relation to coding theory that allows the determination of the minimum number for $k$ for a subclass of voting systems. As an application, we give a construction for $k\ge 2^{n-o(n)}$, i.e., there is no gain from a representation complexity point of view.
Weitere Angaben
| Publikationsform: | Preprint, Postprint | 
|---|---|
| Zusätzliche Informationen (öffentlich sichtbar): | erschienen in: In: Kaminka, Gal A. ; Fox, Maria ; Bouquet, Paolo ; Hüllermeier, Eyke ; Dignum, Virginia ; Dignum, Frank ; van Harmelen, Frank (Hrsg.): ECAI 2016 : 22nd European Conference on Artificial Intelligence ; proceedings. - New York : IOS Press , 2016 . - S. 880-885 . - (Frontiers in Artificial Intelligence and Applications ; 285 ) ISBN 978-1-61499-671-2 | 
| Keywords: | simple games; weighted games; dimension; coding theory; Hamming distance | 
| Fachklassifikationen: | Mathematics Subject Classification Code: 91B12 (91A12 68P30) | 
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 300 Sozialwissenschaften > 320 Politikwissenschaft 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Profilfelder > Emerging Fields > Governance and Responsibility Fakultäten Profilfelder Profilfelder > Emerging Fields | 
| Sprache: | Englisch | 
| Titel an der UBT entstanden: | Ja | 
| Eingestellt am: | 18 Jul 2016 07:30 | 
| Letzte Änderung: | 06 Okt 2025 12:47 | 
| URI: | https://epub.uni-bayreuth.de/id/eprint/2935 | 
Zu diesem Eintrag verfügbare Versionen
- 
On the Construction of High Dimensional Simple Games. (deposited 04 Feb 2016 11:19)
- 
On the Construction of High Dimensional Simple Games. (deposited 19 Apr 2016 06:35)
- On the Construction of High Dimensional Simple Games. (deposited 18 Jul 2016 07:30) [Aktuelle Anzeige]
 
 
- 
On the Construction of High Dimensional Simple Games. (deposited 19 Apr 2016 06:35)
 
        
 im Publikationsserver
 im Publikationsserver bei Google Scholar
 bei Google Scholar Download-Statistik
 Download-Statistik