Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

A note on Erdös-Diophantine graphs and Diophantine carpets

URN to cite this document: urn:nbn:de:bvb:703-opus-1928

Title data

Kohnert, Axel ; Kurz, Sascha:
A note on Erdös-Diophantine graphs and Diophantine carpets.
Bayreuth , 2005

[img] PDF
erdoes_diophantine_graphs.pdf - Published Version
Available under License Creative Commons BY 3.0: Attribution .

Download (62kB)

Abstract

A Diophantine figure is a set of points on the integer grid $\mathbb{Z}^{2}$ where all mutual Euclidean distances are integers. We also speak of Diophantine graphs. The vertices are points in $\mathbb{Z}^{2}$ (the coordinates)and the edges are labeled with the distance between the two adjacent vertices, which is integral. In this language a Diophantine figure is a complete Diophantine graph. Two Diophantine graphs are equivalent if they only differ by translation or rotation of vertices. Due to a famous theorem of Erdös and Anning there are complete Diophantine graphs which are not contained in larger ones. We call them Erdös-Diophantine graphs. A special class of Diophantine graphs are Diophantine carpets. These are planar triangulations of a subset of the integer grid. We give an effective construction for Erdös-Diophantine graphs and characterize the chromatic number of Diophantine carpets.

Abstract in another language

Eine Diophantsche Figur ist eine Menge von Punkten auf dem ganzzahligen Gitter $\mathbb{Z}^{2}$ mit paarweise ganzzahligen Abständen. Wir sprechen auch von Diophantschen Graphen. Die Knoten sind hierbei die Punkte aus $\mathbb{Z}^{2}$ und die Kanten sind mit den (ganzzahligen) euklidischen Abständen beschriftet. In dieser Sprache ist eine Diophantsche Figur ein vollständiger Diophantscher Graph. Aufgrund eines berühmten Satzes von Erdös und Anning gibt es vollständige Diophantsche Graphen, die nicht in größeren enthalten sind. Diese nennen wir Erdös-Diophantsche Graphen. Eine spezielle Klasse Diophantscher Graphen sind Diophantsche Teppiche. Dies sind planare Triangulierungen einer Teilmenge des ganzzahligen Gitters $\mathbb{Z}^{2}$. Wir beschreiben einen eefektiven Konstruktionsalgorithmus für Erdös-Diophantsche Graphen und klassifizieren die Diophantschen Teppiche nach ihrer chromatischen Zahl.

Further data

Item Type: Preprint, postprint
Keywords: Geometrische Kombinatorik; Kombinatorik; ganzzahlige Punktmengen; Graphen; chromatische Zahl; integral point sets; graphs; chromatic number
DDC Subjects: 500 Science > 510 Mathematics
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics in Economy
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics in Economy > Chair Mathematics in Economy - Univ.-Prof. Dr. Jörg Rambau
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Language: English
Originates at UBT: Yes
URN: urn:nbn:de:bvb:703-opus-1928
Date Deposited: 25 Apr 2014 16:11
Last Modified: 27 Mar 2019 12:52
URI: https://epub.uni-bayreuth.de/id/eprint/840

Downloads

Downloads per month over past year