URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-6761-8
Titelangaben
    
  Grüne, Lars ; Sperl, Mario:
Examples for separable control Lyapunov functions and their neural network approximation.
  
    
    
    
    
    
    
    
     Bayreuth
    
    
    
    , 
    2022
    . - 6 S.
    
    
    
     
    
    
    
     
     
  
  
Dies ist die aktuelle Version des Eintrags.
Volltext
| ![[thumbnail of Gruene_Sperl_SepCLF_22_finalSubmission.pdf]](https://epub.uni-bayreuth.de/style/images/fileicons/application_pdf.png) | 
 | ||||||||
| Download (445kB) | 
Angaben zu Projekten
| Projekttitel: | Offizieller Projekttitel Projekt-ID Curse-of-dimensionality-free nonlinear optimal feedback control with deep neural networks. A compositionality-based approach via Hamilton-Jacobi-Bellman PDEs GR 1569/23-1 | 
|---|---|
| Projektfinanzierung: | Deutsche Forschungsgemeinschaft Deutsche Forschungsgemeinschaft | 
Abstract
In this paper, we consider nonlinear control systems and discuss the existence of a separable control Lyapunov function. To this end, we assume that the system can be decomposed into subsystems and formulate conditions such that a weighted sum of Lyapunov functions of the subsystems yields a control Lyapunov function of the overall system. Since deep neural networks are capable of approximating separable functions without suffering from the curse of dimensionality, we can thus identify systems where an efficient approximation of a control Lyapunov function via a deep neural network is possible. A corresponding network architecture and training algorithm are proposed. Further, numerical examples illustrate the behavior of the algorithm.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
- 
Examples for existence and non-existence of separable control Lyapunov functions. (deposited 27 Sep 2022 07:08)
- Examples for separable control Lyapunov functions and their neural network approximation. (deposited 16 Nov 2022 11:09) [Aktuelle Anzeige]
 
 
        
 im Publikationsserver
 im Publikationsserver bei Google Scholar
 bei Google Scholar Download-Statistik
 Download-Statistik