Titelangaben
    
  Kiermaier, Michael ; Wassermann, Alfred:
Double and bordered alpha-circulant self-dual codes over finite commutative chain rings.
  
    2008
    
    Veranstaltung: Eleventh International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-2008)
     
     .
    
    (Veranstaltungsbeitrag: Workshop
     , 
      Paper
      )
     
     
  
  
Volltext
              
  
  | 
          |||||||||
| 
              Download (165kB)
               | 
          
Abstract
In this paper we investigate codes over finite commutative rings R, whose generator matrices are built from alpha-circulant matrices. For a non-trivial ideal I < R we give a method to lift such codes over R/I to codes over R, such that some isomorphic copies are avoided. For the case where I is the minimal ideal of a finite chain ring we refine this lifting method: We impose the additional restriction that lifting preserves self-duality. It will be shown that this can be achieved by solving a linear system of equations over a finite field. Finally we apply this technique to Z_4-linear double nega-circulant and bordered circulant self-dual codes. We determine the best minimum Lee distance of these codes up to length 64.
Weitere Angaben
| Publikationsform: | Veranstaltungsbeitrag (Paper) | 
|---|---|
| Zusätzliche Informationen (öffentlich sichtbar): | msc: 11T71; Source: Proceedings of the Eleventh International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-2008) | 
        
| Keywords: | Codierungstheorie; self-dual code; circulant matrix; linear code over rings; Lee metric; finite chain ring | 
        
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik  | 
        
| Sprache: | Englisch | 
| Titel an der UBT entstanden: | Ja | 
| URN: | urn:nbn:de:bvb:703-opus-4501 | 
| Eingestellt am: | 25 Apr 2014 10:50 | 
| Letzte Änderung: | 02 Mai 2014 10:35 | 
| URI: | https://epub.uni-bayreuth.de/id/eprint/604 | 
        
 im Publikationsserver
 bei Google Scholar
 Download-Statistik