Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

3D-Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008422
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8422-6

Titelangaben

Koeck, Kim Sarah ; Trossmann, Vanessa T. ; Scheibel, Thomas:
3D-Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering.
In: Advanced Functional Materials. Bd. 35 (2025) Heft 15 . - 2407760.
ISSN 1616-3028
DOI der Verlagsversion: https://doi.org/10.1002/adfm.202407760

Volltext

[thumbnail of Adv Funct Materials - 2024 - Koeck - 3D‐Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite.pdf]
Format: PDF
Name: Adv Funct Materials - 2024 - Koeck - 3D‐Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY-NC 4.0: Namensnennung, nicht kommerziell
Download (5MB)

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
TRR 225 Biofabrication
326998133

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Collagen is one main component of the extracellular matrix (ECM) in natural tissues and is, therefore, well suited as a biomaterial for tissue engineering. In this study, a method is presented to 3D-bioprint collagen into a precipitation bath comprising recombinantly produced spider silk protein eADF4(C16) yielding a composite with excellent mechanical properties. The spider silk precipitation bath induced assembly of the collagen into fibrils, and subsequent addition of potassium phosphate buffer lead to the formation of silk particles and stabilization of the collagen fibrils. The produced collagen-silk composite scaffolds show an internal structure of homogeneously distributed and interacting collagen fibrils and spider silk particles with significantly better mechanical properties compared to plain collagen scaffolds. Further, enzymatic degradation assays of the scaffolds over a 7-day period show higher stability of the collagen-silk scaffolds compared to plain collagen scaffolds in the presence of wound proteases. Using the spider silk variant eADF4(C16-RGD) further increases compressive stress and elastic modulus compared to that of the unmodified variant. Finally, it is shown that the unique collagen-spider silk composite scaffolds comprising the cell-binding domains of collagen and the RGD sequence in the spider silk variant represent a promising material for soft tissue regeneration.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: collagen-silk-composites; nanofibrils; protein–protein-interactions; self-assembly
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-8422-6
Eingestellt am: 22 Apr 2025 07:03
Letzte Änderung: 22 Apr 2025 07:03
URI: https://epub.uni-bayreuth.de/id/eprint/8422

Downloads

Downloads pro Monat im letzten Jahr