Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Modeling cheatgrass distribution, abundance, and response to climate change as a function of soil microclimate

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008298
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8298-2

Titelangaben

Terry, Tyson J. ; Hardegree, Stuart P. ; Adler, Peter B.:
Modeling cheatgrass distribution, abundance, and response to climate change as a function of soil microclimate.
In: Ecological Applications. Bd. 34 (2024) Heft 8 . - e3028.
ISSN 1939-5582
DOI der Verlagsversion: https://doi.org/10.1002/eap.3028

Volltext

[thumbnail of Ecological Applications - 2024 - Terry - Modeling cheatgrass distribution abundance and response to climate change as a.pdf]
Format: PDF
Name: Ecological Applications - 2024 - Terry - Modeling cheatgrass distribution abundance and response to climate change as a.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (1MB)

Abstract

Abstract Exotic annual grass invasions in water-limited systems cause degradation of native plant and animal communities and increased fire risk. The life history of invasive annual grasses allows for high sensitivity to interannual variability in weather. Current distribution and abundance models derived from remote sensing, however, provide only a coarse understanding of how species respond to weather, making it difficult to anticipate how climate change will affect vulnerability to invasion. Here, we derived germination covariates (rate sums) from mechanistic germination and soil microclimate models to quantify the favorability of soil microclimate for cheatgrass (Bromus tectorum L.) establishment and growth across 30 years at 2662 sites across the sagebrush steppe system in the western United States. Our approach, using four bioclimatic covariates alone, predicted cheatgrass distribution with accuracy comparable to previous models fit using many years of remotely-sensed imagery. Accuracy metrics from our out-of-sample testing dataset indicate that our model predicted distribution well (72% overall accuracy) but explained patterns of abundance poorly (R² = 0.22). Climatic suitability for cheatgrass presence depended on both spatial (mean) and temporal (annual anomaly) variation of fall and spring rate sums. Sites that on average have warm and wet fall soils and warm and wet spring soils (high rate sums during these periods) were predicted to have a high abundance of cheatgrass. Interannual variation in fall soil conditions had a greater impact on cheatgrass presence and abundance than spring conditions. Our model predicts that climate change has already affected cheatgrass distribution with suitable microclimatic conditions expanding 10%–17% from 1989 to 2019 across all aspects at low- to mid-elevation sites, while high- elevation sites (>2100 m) remain unfavorable for cheatgrass due to cold spring and fall soils.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: annual grass; biological invasion; Bromus tectorum; germination; rate sum; resistance and resilience; SHAW model
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Störungsökologie
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-8298-2
Eingestellt am: 13 Mrz 2025 09:22
Letzte Änderung: 13 Mrz 2025 09:22
URI: https://epub.uni-bayreuth.de/id/eprint/8298

Downloads

Downloads pro Monat im letzten Jahr