Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Tungsten isotope evolution during Earth's formation and new constraints on the viability of accretion simulations

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008243
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8243-2

Titelangaben

Rubie, David C. ; Dale, K.I. ; Nathan, G. ; Nakajima, M. ; Jennings, E.S. ; Golabek, Gregor J. ; Jacobson, S.A. ; Morbidelli, A.:
Tungsten isotope evolution during Earth's formation and new constraints on the viability of accretion simulations.
In: Earth and Planetary Science Letters. Bd. 651 (2025) . - 119139.
ISSN 0012-821X
DOI der Verlagsversion: https://doi.org/10.1016/j.epsl.2024.119139

Volltext

[thumbnail of 1-s2.0-S0012821X24005715-main.pdf]
Format: PDF
Name: 1-s2.0-S0012821X24005715-main.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (7MB)

Abstract

The Hf-W isotopic system is the reference chronometer for determining the chronology of Earth's accretion and differentiation. However, its results depend strongly on uncertain parameters, including the extent of metal-silicate equilibration and the siderophility of tungsten. Here we show that a multistage core-formation model based on N-body accretion simulations, element mass balance and metal-silicate partitioning, largely eliminates these uncertainties. We modified the original model of Rubie et al. (2015) by including (1) smoothed particle hydrodynamics estimates of the depth of melting caused by giant impacts and (2) the isotopic evolution of ¹⁸²W. We applied two metal-silicate fractionation mechanisms: one when the metal delivered by the cores of large impactors equilibrates with only a small fraction of the impact-induced magma pond and the other when metal delivered by small impactors emulsifies in global magma oceans before undergoing progressive segregation. The latter is crucial for fitting the W abundance and ¹⁸²W anomaly of Earth's mantle. In addition, we show, for the first time, that the duration of magma ocean solidification has a major effect on Earth's tungsten isotope anomaly. We re-evaluate the six Grand Tack N-body simulations of Rubie et al. (2015). Only one reproduces ε¹⁸²W=1.9 ± 0.1 of Earth's mantle, otherwise accretion is either too fast or too slow. Depending on the characteristics of the giant impacts, results predict that the Moon formed either 143–183 Myr or 53–62 Myr after the start of the solar system. Thus, independent evaluations of the Moon's age provide an additional constraint on the validity of accretion simulations.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Earth's accretion; Magma oceans; Tungsten isotope anomaly; Timing of the Moon-forming giant impact
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Institutionen der Universität: Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Forschungsinstitut für Experimentelle Geochemie und Geophysik - BGI
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-8243-2
Eingestellt am: 20 Feb 2025 06:22
Letzte Änderung: 20 Feb 2025 06:23
URI: https://epub.uni-bayreuth.de/id/eprint/8243

Downloads

Downloads pro Monat im letzten Jahr