Publications by the same author
plus in the repository
plus in Google Scholar

Bibliografische Daten exportieren
 

A Comparison of Spatial and Nonspatial Methods in Statistical Modeling of NO₂ : Prediction Accuracy, Uncertainty Quantification, and Model Interpretation

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00007291
URN to cite this document: urn:nbn:de:bvb:703-epub-7291-8

Title data

Lu, Meng ; Cavieres, Joaquin ; Moraga, Paula:
A Comparison of Spatial and Nonspatial Methods in Statistical Modeling of NO₂ : Prediction Accuracy, Uncertainty Quantification, and Model Interpretation.
In: Geographical Analysis. Vol. 55 (2023) Issue 4 . - pp. 703-727.
ISSN 1538-4632
DOI der Verlagsversion: https://doi.org/10.1111/gean.12356

[thumbnail of Geographical Analysis - 2023 - Lu - A Comparison of Spatial and Nonspatial Methods in Statistical Modeling of NO2 .pdf]
Format: PDF
Name: Geographical Analysis - 2023 - Lu - A Comparison of Spatial and Nonspatial Methods in Statistical Modeling of NO2 .pdf
Version: Published Version
Available under License Creative Commons BY 4.0: Attribution
Download (4MB)

Further data

Item Type: Article in a journal
DDC Subjects: 500 Science > 550 Earth sciences, geology
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Juniorprofessur Geoinformatik - Spatial Big Data > Juniorprofessur Geoinformatik - Spatial Big Data - Juniorprof. Dr. Meng Lu
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Juniorprofessur Geoinformatik - Spatial Big Data
Language: English
Originates at UBT: Yes
URN: urn:nbn:de:bvb:703-epub-7291-8
Date Deposited: 08 Nov 2023 10:20
Last Modified: 08 Nov 2023 10:21
URI: https://epub.uni-bayreuth.de/id/eprint/7291

Downloads

Downloads per month over past year