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NO2 is a traffic-related air pollutant. Ground NO2 monitoring stations measure NO2 con-
centrations at certain locations and statistical predictive methods have been developed
to predict NO2 as a continuous surface. Among them, ensemble tree-based methods have
shown to be powerful in capturing nonlinear relationships between NO2 measurements and
geospatial predictors but it is unclear if the spatial structure of NO2 is also captured in the
response-covariates relationships. We dive into the comparison between spatial and nonspa-
tial data models accounting for prediction accuracy, model interpretation and uncertainty
quantification. Moreover, we implement two new spatial and a nonspatial methods that have
not been applied to air pollution mapping. We implemented our study using national ground
station measurements of NO2 in Germany and the Netherlands of 2017. Our results indicate
heterogeneous levels of importance of modeling the spatial process in different areas. The
prediction intervals predicted with ensemble tree-based methods are more satisfactory than
the geostatistical methods. The two new methods implemented each obtained better pre-
diction accuracy compared to the original ensemble tree-based and stacking methods. The
probabilistic distribution of the spatial random field estimated by the geostatistical methods
could provide useful information for analyzing emission sources and the spatial process of
observations.

Introduction

NO2 is a traffic-related air pollutant highly dynamic over space. Detailed spatial mapping of
NO2 is needed in health cohort studies to understand the long-term health effects of NO2 on
individuals. Statistical methods for NO2 mapping have attracted a lot of attention with the
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Geographical Analysis

burgeoning Machine Learning (ML)1 methods and availability of ground monitoring station
networks, atmospheric satellite products, and spatial data of our environment and atmosphere.
Geospatial predictors of NO2 factors relevant to this study and considered as covariates in
air pollution models include the following. First, emission-related variables, like road net-
works, describe where and how NO2 is generated. Second, dispersion-related variables represent
where NO2 goes after being generated, like wind speed and direction, tell us how the emit-
ted NO2 will drift once emitted. In addition to these process-based measures, outputs from
physics-based numerical models and satellite measurements of atmospheric conditions have
been shown to be useful in statistical modeling of NO2. Numerical models are generally
very different from statistical models as they are mechanism-based simulators of a physi-
cal system. Satellite measurements do not directly reflect surface NO2 concentrations, but
could provide important spatial information of NO2. For example, since August 2019, the
“Tropomi” instrument onboard the Sentinel 5p mission satellite provides the highest-resolution
of NO2 column density yet available, with 3.5 km by 5.5 km pixels across the satellite
track.

Statistical methods for spatial air pollution prediction can be broadly classified depending
on whether the spatial dependency is explicitly modeled. If not modeled, we refer to the methods
“non-spatial” and otherwise “spatial.” Most of the spatial air pollution models were developed
to predict at coarser resolutions, commonly one kilometer or coarser (Young et al. 2016;
Shaddick et al. 2018; Beloconi and Vounatsou 2020). Nonspatial methods are more dominant
in air pollution mapping, particularly in high-resolution (100 m resolution or higher) mapping.
Among them, LUR (Land Use Regression) models which assume linear relationships between
air pollution observations and geospatial predictors are the most studied (Briggs et al. 2000;
Hoek et al. 2008). Most recently, statistical learning2, including regularized linear regression
such as Lasso and Ridge regression (James et al. 2013), support vector machine (Suykens and
Vandewalle 1999), ensemble tree-based methods such as Random Forest (RF, Breiman 2001)
and XGBoost (XGB, Chen and Guestrin 2016), have been applied for feature selection and to
capture the nonlinear response–covariate relationships (Chen et al. 2019a; Lu et al. 2020a). In air
pollution mapping, several studies compared statistical learning and conventional LUR methods
(Rybarczyk and Zalakeviciute 2018; Kerckhoffs et al. 2019; Chen et al. 2019a; Ren, Mi, and
Georgopoulos 2020; Lu et al. 2020a).

Geostatistical models and Geographically Weighted Regression (GWR) are the most used
spatial methods for air pollution prediction (Vicedo-Cabrera et al. 2013; Li et al. 2014; Zou
et al. 2016; Wang et al. 2021) and these methods have been combined with dimension reduction
(Zhai et al. 2018) and RF (Zhan et al. 2018; Liu, Cao, and Zhao 2020) to improve NO2 prediction
accuracy. A Bayesian geostatistical model is developed in Beloconi and Vounatsou (2020) to
predict NO2 by integrating Tropomi satellite instrument measurements and chemical transport

1List of abbreviations: CRPS: Continuous Ranked Probability Score; CV: Cross Validation; DF: Distributional
Forest; GRF: Gaussian Random Field; GMRF: Gaussian Markov Random Field; GAMLSS: Generalized Additive
Models for Location Scale and Shape; INLA: Integrated Nested Laplace Approximation; IQR: Interquartile range; GWR:
Geographic Weighted Regression; KED: Kriging with external drift; LUR: Land Use Regression; MAE: Mean Absolute
Error; ML: Machine Learning; RF: Random Forest; OMI: Ozone Monitoring Instrument; Quantile Random Forest;
RMSE: Root Mean Squared Error; SE: stacked ensemble; SPDE: Stochastic Partial Differential Equations; Tropomi:
Tropospheric monitoring instrument; UK: Universal Kriging (UK); OMI (Ozone Monitoring Instrument) VIIRS: Visible
Infrared Imaging Radiometer Suite; XGB: XGBoost

2In this study, “statistical learning” is used interchangeably with “machine learning” methods (Hastie, Tibshirani,
and Friedman 2009).
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LU et al. spatial and non-spatial statistical methods

models. A GWR model naturally models spatial varying coefficients by fitting multiple local
regressions depending on the homogeneity in response–covariate relationships when a number
of observations are involved. A typical geostatistical model can be viewed as consisting of
two components: a mean function, commonly a linear model, capturing the response–covariate
relationships and a covariance function modeling dependency of residuals from the mean (Bhatt
et al. 2017). Conventional Kriging methods suffer from the “big n problem,” that is, it may
become computationally intractable with a large number of observations. To deal with this
problem, Lindgren, Rue, and Lindström (2011) propose to use Stochastic Partial Differential
Equations (SPDE) to approximate the Gaussian Random Field (GRF) by a Gaussian Markov
random field (GMRF, Rue and Held (2005)). The main advantage of this approach is that the
GMRF has a sparse structure of the precision matrix which is the inverse of the covariance
matrix of a GRF. The SPDE approach can be used in combination with the Integrated Nested
Laplace Approximation (INLA, Rue, Martino, and Chopin 2009) in a Bayesian framework
to achieve computational scalability of a geostatistical model by using approximations for all
the estimations. This is especially advantageous when modeling NO2 over a larger scale, for
example, continental or global-scale modeling when a large amount of observations are modeled,
and in spatiotemporal settings.

As spatial models are typically more complex compared to their nonspatial counterparts,
several studies compared spatial and nonspatial models to understand if the spatial effects could
be simply modeled by including certain covariates in LUR models. Young et al. (2016) studied
the use of universal Kriging (UK), OMI (Ozone Monitoring Instrument) satellite instrument
(Earthdata) and LUR models for NO2 prediction at 2.5 km resolution. Young et al. (2016)
indicated that either using UK or adding OMI in the LUR model improves a LUR model but
adding OMI in a UK model only trivially improves the performance. Bertazzon et al. (2015)
show that the inclusion of the meteorological variables accounts for spatial effects similarly
to the use of spatial autoregressive models (Anselin et al. 2001). However, even if the spatial
dependency can be captured by involving certain covariates in a LUR model, we may still need
geostatistical methods to understand the spatial structure present in the data. Linear models have
been used for the mean function but the relationships between NO2 and predictors have been
shown to be better modeled with nonlinear ML methods (Lu et al. 2020a). Most recent studies
attempt to replace the linear mean function with ML models. Liu, Cao, and Zhao (2020) applied
a spatial model to the residuals from an RF model for the spatial prediction of PM2.5. Bhatt
et al. (2017) propose to stack ML models to replace the mean function in a spatial model and
applied the method to disease mapping.

Few studies have compared geostatistical and ML models, possibly because the ML models
are still relatively less studied in air pollution mapping and in the field of geostatistics. It might be
more interesting to compare geostatistical and ML models than geostatistical models and LUR,
because ML models may be more capable of capturing the spatial dependency by integrating
covariates, though implicitly, when the number of observations is sufficient. Moreover, most
comparison studies only compare the Cross-Validation (CV) accuracy of the prediction mean,
ignoring the confidence and prediction intervals, or the probability distributions of the parameters
and predictions. If correctly derived, narrower intervals would be preferred. Also not discussed
is the cause of the prediction errors, are they caused by missing covariates, violation of the model
assumptions (e.g. data distribution, nonlinearity), or inconsistent distributions between training
and validation sets. Also, different CV strategies, for example, how do we split the train-test sets,
may lead to different model validation results. Current studies commonly ignore this problem
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Geographical Analysis

and did not discuss the consequence of applying k-fold splitting (Larkin et al. 2017; Kerckhoffs
et al. 2019; Ren, Mi, and Georgopoulos 2020) or bootstrapping (Lu et al. 2020a). These train-test
splitting methods also do not provide an indication of accuracy in spatial blocks but only at the
locations of observations.

In this study, we focus on ensemble tree-based algorithms (e.g. RF and boosting) in the
nonspatial modeling category and a hierarchical spatial model (Blangiardo and Cameletti 2015;
Lindgren, Rue, et al. 2015; Moraga 2019) called latent Gaussian model in the spatial modeling
category. Additionally, we invest in stacked models for integrating ML and geostatistical models.
This model is treated as a spatial model and is to explore if, with ML methods to estimate the
mean of a geostatistical model, it could obtain both the merits of spatial and nonspatial models.
Lastly, we also develop a LUR model using Lasso as a base model for comparison.

Uncertainty is commonly quantified by confidence intervals, or credible intervals in Bayesian
inference, for the estimated parameters and by prediction intervals for the predictions from the
model. If the credible intervals could be estimated, we could estimate the prediction intervals. For
the methods that are used in a nonparametric setting, only the prediction intervals are quantified.
For parametric models, we quantified both the prediction intervals and the confidence interval.

Ensemble trees are nonparametric models, deriving prediction intervals is therefore less
straightforward than a parametric model (e.g., a linear regression model) but has been studied and
shown satisfactory results with simulated data. Prediction intervals have been most well studied
for RF (Meinshausen 2006; Stasinopoulos, Rigby, et al. 2007; Wager, Hastie, and Efron 2014;
Alakus, Larocque, and Labbe 2021) and more recently for boosting (Duan et al. 2020; Velthoen
et al. 2021). Comparing probabilistic methods (i.e., prediction interval calculation) of RF and
boosting is beyond the scope of this study and we focus on prediction intervals derived for RF
to compare with geostatistical methods. Possibly, one of the most widely recognizable methods
to derive RF prediction intervals is Quantile Random Forest (QRF) (Meinshausen 2006). QRF
has been shown to estimate middle quantiles well but may fall short at the extremes due to the
limited number of observations in the tail regions (Velthoen et al. 2021). Velthoen et al. (2021)
proposed to use extreme quantile regression to estimate for data outside the range of observations.
Another well-recognized method is distributional regression forests (DF) (Schlosser et al. 2019),
which embeds the GAMLSS (Generalized Additive Models for Location Scale and Shape)
(Stasinopoulos, Rigby, et al. 2007) into RF.

Fouedjio and Klump (2019) compared prediction accuracy and uncertainty quantification
between KED (Kriging with external drift) and QRF by simulating data with various levels of
spatial dependency. It concluded that an optimal model choice depends on the level of spatial
dependency and response–covariate relationships. However, it does not account for the fact that
in practice, as an ensemble tree-based method can make use of a large number of (possibly
correlated) predictors without being constrained to certain (e.g., linear) relationships, the spatial
dependency may be explained by the covariates despite not being explicitly modeled.

The objective of our study is to compare geostatistical and nonspatial ensemble tree-based
models for NO2 mapping, in terms of their prediction accuracy, uncertainty quantification, and
model interpretation and to understand effect of modeling spatial structures. From here we
will refer a geostatistical model simply as a “spatial model.” More specifically, the following
subobjectives are reached:

1. Optimizing a set of spatial hierarchical and ML models for NO2 prediction in Germany and
the Netherlands.
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LU et al. spatial and non-spatial statistical methods

2. Developing a nonspatial and a spatial stacked ensemble model, that is, a stack of various
ML learners.

3. Model comparison regarding the predicted mean, prediction interval, and model
interpretation.

The spatial hierarchical model incorporates the spatial random effect along with other
covariates and the estimation is performed using the R package INLA (Rue, Martino, and
Chopin 2009; Martins et al. 2013). XGB, RF and Lasso are chosen for the comparison with the
spatial model and they also form the base learners in the spatial and nonspatial stacked learning
models. Base learners are individual learners or algorithms of the ensemble. The ML methods
are chosen for their dissimilarity. Specifically, Lasso represents regularized linear regression
models. RF and XGB represents nonlinear ensemble models, in our study the regression trees are
the base learners. XGB is a highly scalable boosting method that builds tree models subsequently
over the residuals of previous trees and has multiple routines to penalize model over-fitting
(Chen et al. 2019b), which has been reported in various studies to obtain the highest prediction
accuracy (Lu et al. 2020a).

Data

NO2 concentration measurements of 2017 from national ground stations of Germany (416
stations) and the Netherlands (66 stations) are used (in total: 482). The original hourly data is
downloaded from the EEA (European Environment Agency, Nelson 1999; EEA 2021). Negative
values are considered as missing. The stations consisting of more than 25% of missing data
according to the original hourly measurements are shown in Appendix S1. The data is aggregated
to annual concentrations by taking the mean and omitting missing values. The spatial distribution
of NO2 stations and the station types, histogram and Q-Q plot for normality are shown in Fig. 1.
We conducted a Shapiro test for normality, with the result implying the distribution of data being
significantly different from normal distribution (P-value= 8.605e-12, “normal distribution” and
“Gaussian distribution” are used interchangeably in this study). A Gamma distribution test
was conducted using the method proposed in Villaseñor and González-Estrada (2015) and
implemented in Gonzalez-Estrada and Villasenor-Alva (2020). The test result (P-value = 0.32)
indicates that the data distribution is not significantly different from Gamma distribution.

Figure 1. The geographical distribution of ground stations, histogram and Q-Q plot of the NO2

measurements used in this study.
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Geographical Analysis

Table 1. Geospatial Predictors Considered in This Study. “_mon” Indicates Months (mon = 1,
2, … , 12). “_buf” Indicates Buffer Radius in Meters. The Road Length and Industrial Areas are
Calculated with Buffer Radii of 100, 300, 500, 800, 1000, 3000, and 5000 m. The Night Lights
Digital Numbers are Calculated with Buffer Radii of 450, 900, 3150, and 4950 m. The Original
Resolution is Provided for Gridded Variables and Data Types for Vector Variables

Predictor Variable name Unit Resolution/data type

Monthly wind speed at 10 m
altitude.

Wind_speed_10m_mon km/hr 10 km

Monthly temperature at 2 m
altitude.

temperature_2m_mon Celsius 10 km

TROPOMI 2018 mean
vertical column density.

trop_mean_filt; Tropomi mol∕cm2 0.01 arc degrees

Population in 5 km grid population_5000 count 5 km
Population in 3 km grid population_3000 count 3 km
Population in 1 km grid population_1000 count 1 km
Nightlight nightlight_bufnl Wcm−2sr−1 500 m
Total length of highway road_1_buf m polygon, lineString
Total length of primary

roads
road_2_buf m polygon, lineString

Total length of local roads road_M345_buf m polygon, lineString
Area of industry I_1_buf m2 polygon, lineString

The geospatial predictor grids (Table 1) are calculated or resampled at 100 m resolution.
They are either spatial attributes aggregated in a circular ring centered at each sensor or
prediction location, called buffered predictors, or values of the spatial attribute at the observation
or prediction location, called gridded variables. The buffered predictors include total road length,
total industry areas, VIIRS (Visible Infrared Imaging Radiometer Suite) nighttime day/night
band radiance values (nightlight, NOAA 2021) and population. Variables that are originally grids
include wind speed and temperature (Dee et al. 2011), elevation (2021), annual mean Tropomi
level 3 product of NO2 column density (Copernicus 2021) from 2019 (due to the increased
resolution compared to 2018). The buffered predictors of road and industry are obtained from
OpenStreetMap (OpenStreetMap contributors 2019). For a detailed description of the processing
of the geospatial predictors please refer to Lu et al. (2020a).

Methods

The methods considered in this study are classified as spatial and nonspatial and are given the
names below in this study.

Spatial models:

1. INLA: A spatial hierarchical model fit using INLA with a Gaussian likelihood.
2. INLA-G: A spatial hierarchical model fit using INLA with a Gamma likelihood.
3. SE-INLA: using a spatial hierarchical model to stacked ensemble learning with Lasso, RF

and XGB models as base learners;
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LU et al. spatial and non-spatial statistical methods

Nonspatial models:

1. LA: A Lasso regression model;
2. RF: A RF model;
3. XGB: An XGB model assuming a Gaussian objective function;
4. XGB-G: An XGB model assuming a Gamma objective function;
5. QRFLA: using Lasso to aggregate QRF trees (Hastie, Tibshirani, and Friedman 2009);
6. SE: stacked ensemble learning with Lasso, RF and XGB models as base learners;
7. QRF: quantile regression forest (Meinshausen 2006);
8. DF: distributional regression forest (Schlosser et al. 2019).

To deepen our understanding of the effects of modeling the spatial process in our INLA
model, we implemented an INLA model without modeling the spatial random effect (called
nonspatial INLA).

Spatial model
We assume yi (here: NO2 observations at ground stations), measured at locations si, i = 1, … , n,
follow a Gaussian distribution with mean 𝜇i and variance 𝜎2. The mean 𝜇i is expressed as a
sum of covariates plus a spatial random effect, which is assumed as a Gaussian random field
(Cressie 2015). We can describe a spatial statistical model:

yi ∼ N(𝜇i, 𝜎
2), i = 1, 2, … , n (1)

𝜇i = di𝜷 + x(si), (2)

where, di = (di1, … , dip) is the vector of covariates at location si, 𝜷 = (𝛽1, … , 𝛽p)′ is the
coefficient vector, and x(si) denotes a Gaussian random field. The Gaussian random field
can be expressed as {x(s1), … , x(sn)} ∼ (0,𝚺), where  denotes a multivari-
ate normal distribution with a zero-mean vector 0 and a covariance matrix 𝚺. Furthermore,
the Gaussian random field is specified completely by its mean E(x(s)) and covariance func-
tion C(s1, s2) = Cov(x(s1), x(s2)). The Gaussian random field can be stationary and isotropic,
where the covariance function depends only on the distance and not direction between points,
that is C(s1, s2) = Cov(||s1 − s2||) and its dependence is commonly modeled using a Matérn
function (Stein 1999; Yuan 2011; Diggle et al. 2013). Incorporating the spatial depen-
dence by a Gaussian random field with a large number of observations “n” makes the
estimation process computationally expensive due to the dense covariance matrix. Specif-
ically, computing the Gaussian likelihood has the memory cost (n2) and the arithmetic
cost (n3) (Chen and Stein 2021). To address this limitation, Rue and Held (2005) pro-
posed the approximation of a Gaussian random field by a Gaussian Markov random field
for a more efficient computational process of estimation. The main property of the Gaussian
Markov random field is that it uses a conditional dependency structure through the precision
matrix Q.

In this study, we compare two spatial hierarchical models with geospatial predictors as
covariates, one uses a Gaussian likelihood and the other a Gamma likelihood. The Gamma model
has the same hierarchical structure as the Gaussian model: the response variable in (equation 1)
can be represented by yi ∼ Gamma(𝛼, 𝛽)where 𝛼 is the shape parameter and 𝛽 the rate parameter.
The SE-INLA model uses a Gaussian likelihood.
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Geographical Analysis

SPDE and INLA
To fit the spatial models, we use the R package INLA. Following the expression proposed in
(equation 1), the structure for the hierarchical model is:

y|x, 𝜃1 ∼ N(D𝜷 + Ax, 𝜃1), (3)

x|𝜃2 ∼ GRF(0,Q(𝜽2)−1), (4)

𝜽 = {𝜃1, 𝜃2}, (5)

where 𝜽 is the vector of hyperparameters with 𝜃1 = 𝜎2, 𝜃2 = {log(𝜏), log(𝜅)}, where 𝜏 denotes
the precision and 𝜅 the range. x is the Gaussian random field (commonly known as a spatial
latent field), Q is the precision matrix, A is the projector matrix and y is the vector of the response
variable f (⋅|x,𝜽), commonly from the exponential family of distributions. D is the design matrix
and 𝜷 a vector of coefficients associated with the covariates in the design matrix.

To model data indexed in space, Lindgren, Rue, and Lindström (2011) proposed a new
methodology based mainly on the approximation of the Gaussian random field with the Matérn
function using Stochastic Partial Differential Equations (SPDE method) as follows:

(𝜅2 − Δ)𝛼∕2(𝜏(s)x(s)) =(s), (6)

where 𝜅 is a scale parameter, x(s) is a spatial random field, Δ is the Laplacian, 𝛼 is the parameter
that controls the smoothness of the realizations, 𝜏 controls the variance and(s) is a Gaussian
spatial white noise process (Lindgren, Rue, et al. (2015)). For the above, we can use a Gaussian
Markov random field that approximates a Gaussian random field using a triangulation of the
region of study without specifying an explicit covariance structure through the SPDE method.
This approximation leads to a decrease in computational burden from (n3) to (n3∕2).

The R package INLA is used to perform direct numerical calculation of the posterior
distribution for a Bayesian hierarchical model (Rue, Martino, and Chopin (2009), Rue, Martino,
and Chopin (2009)). If we use x to indicate a a Gaussian Markov random field (a latent Gaussian
field), 𝜽 a vector of hyperparameters and y a vector of observations, assuming independent
observations given the vector of the spatial latent field (x) and the hyperparameters (𝜽), the
likelihood can be expressed as:

p(y|x,𝜽) =
∏

i∈
p(yi|𝜂i,𝜽), (7)

where 𝜂i is the linear predictor and  contains the indices of the observed values y.
The main aim is to approximate the posterior distribution of the spatial random effects and

the hyperparameters. The marginal densities can be obtained:

p(xi|y) =
∫

p(xi|𝜽, y)p(𝜽|y)d𝜽, (8)

and
p(𝜽j|y) =

∫
p(𝜽|y)d𝜽−j, (9)

respectively (Lindgren, Rue, et al. 2015; Krainski et al. 2018).
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Table 2. Frequency (number of times) of Variables Selected by Lasso in 20 Times Bootstrapping
and Variables that are Selected more than 90% Times (i.e., 18) are Listed Below. These Variables
are Considered in INLA Except the road_class_3_3000

Variables Frequency

1 nightlight_450 20
2 population_1000 20
3 population_3000 20
4 road_class_1_5000 20
5 road_class_2_100 20
6 road_class_3_300 20
7 trop_mean_filt 20
8 road_class_3_3000 19
9 road_class_1_100 18

Geospatial predictor selection for the INLA model
As involving too many covariates (e.g., more than 12) in the INLA model brings problems
in model multicollinearity, we used Lasso to reduce the number of variables. The Lasso was
used instead of ensemble tree-based methods for feature selection because it is also a linear
model (same as the INLA and INLA-G models in our study). Variables are selected with the
L1 norm penalty that returns a model with errors that are within one SE of the minimum mean
cross-validated error. Lasso is applied to 80% data randomly sampled from all the observations
and this process is repeated 20 times. Variables that are selected more than 90% of the times (i.e.
18) will be considered as covariates in INLA. The times that the Lasso selected certain variables
is shown in Table 2. The INLA modeling process applies the same bootstrapped samples for
training and validation. In addition, the AIC step-wise model selection is applied to the entire
dataset to suggest a model as a further reference. The variables selected by AIC are almost the
same as the Lasso selected variables, only that it does not choose the road_class_3_3000, which
is highly correlated with road_class_1_5000. Based on this, the road_class_3_3000 is not used
as a covariate in INLA.

INLA model parameterization
The triangulated mesh constructed in the SPDE approach is shown in Fig. S1. The mesh has an
inner area with small triangles where precision is needed, and an outer extension with bigger
triangles to avoid boundary effects (Moraga et al. 2021). Specifically, the size of the inner and
outer extensions around the data locations (offsets) is set to 1/8 of the maximum distance among
all the observations for both the inner and outer extensions. The maximum allowed triangle edge
lengths in the region and in the extension (max.edge) are set to respectively 1/30 and 1/5 times
maximum distance among all the observations. The Matérn SPDE model is constructed with
𝛼 = 2. The SE-INLA model has the same specification (i.e. mesh structure, likelihood, objective
function, priors, Optimization process) as the INLA model parameterization described above.

Nonspatial methods
Lasso is a linear regression algorithm with the L1 regularization to shrink variable coefficients
to zero, which enables “feature selection.” In the cost function, the absolute value of coefficient
is added to the original least squares as a penalty term. RF and XGB in this study use trees as
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Geographical Analysis

base learners and ensemble them to reduce variability of single trees (Friedman 2001). RF firstly
randomly draws a subset of features, and then chooses features from this subset to build the tree.
RF (Breiman 2001) grows trees independently and then takes the mean of the predictions of each
tree.

QRF is a nonparametric prediction interval estimation method which keeps all the obser-
vations in the terminal node for estimating the conditional probability function. Specifical ly, it
samples from all the response values in each terminal node and use the ratio between the number
of samples that is taken from each terminal node and the number of total observations in the
terminal node as weights to aggregate the samples. The weights of all the trees are summed.
The summed weights computed for each observation are then used to construct the empirical
conditional cumulative distribution function (Meinshausen 2006).

QRFLA uses Lasso as a postprocessing of QRF (Hastie, Tibshirani, and Friedman 2017,
page 617). This method preserves all the trees instead of aggregating them (e.g., taking the
mean of all the predictions) and then apply Lasso regression to all the trees for aggregation.
This leads to a shrinkage of the tree space and theoretically reduces model variance. DF
(Schlosser et al. 2019) firstly divides data into regions as homogeneous as possible with respect
to a parametric distribution, thus capturing changes in location, scale, and shapes. For each
tree, maximum likelihood is used to fit distributions and recursively select and split covariates
according to the instability of the gradient of the likelihood at each observation along each
covariate. Then, the distributional trees are ensembled for DF.

XGB is a variation of gradient boosting, which grows trees subsequently by fitting to model
residuals of the previous step. XGB is scalable to multiple threads. It enables multiple penalization
paths to control model complexity to prevent model over-fitting, including regularization (e.g.,
L1 regularization) on tree width and terminal node values, as well as drop-out (dropping trees),
sampling observations (take a subset of observations in each run), and early stopping (stop
iterating when after a few rounds the loss does not decrease or the node does not meet the
splitting rule). The default objective function for regression assumes normal distribution of target
variables (and the prediction is the mean of the distribution). This assumption has been used in all
the air pollution mapping studies. Here, we additionally fit a model with the objective function
assuming the target variable follows a Gamma distribution (XGB-G) as the distribution of NO2

measurements is closer to Gamma than normal distribution.
Different from the ensembling in RF or XGB, SE (Stacked Ensemble) refers to a class of

algorithms that trains a second-level “meta learner” to optimize the combination of a collection
of base learners. The base learners are preferably diverse to capture different relationships or
patterns. In this study, Lasso, RF, and XGB are the base learners. Cross-validated predicted
values (commonly known as “level-1” data) are used to train the meta learner.

Hyperparameter setting for XGB and RF
To optimize the hyperparameters of XGB, we used the grid search to optimize hyperparameters
in a fivefold CV based on the minimum RMSE (Root Mean Squared Error) and additionally
manual adjustment of the hyperparameters to look at the prediction patterns. The grid search is
used instead of more computationally efficient methods (e.g., Bayesian or random search) as the
optimal hyperparameter range is largely known from our previous experiences (Lu et al. 2020a;
Lu et al. 2021). The search grid for the number of iterations (nrounds) was from 200 to 3000,
with a step of 200; maximum tree depth (max-depth) from three to six with a step of one, learning
rate (eta) from 0.001 to 0.1 with a step of 0.05, the penalty term Gamma (Chen et al. 2019b)
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LU et al. spatial and non-spatial statistical methods

from one to five with a step of one, the subsample is set to 0.7, L1 norm penalization (lambda)
is set to two and L2 norm penalization (alpha) is set to 0. For RF, we used the default setting of
number of variables that are randomly drawn for each tree (Breiman 2001), which is the integer
part of the total number of variables divided by three. The number of trees is set to 2000 for a safe
choice as the high number of trees will not negatively affect model performance. The minimum
size of terminal node was optimized between 5 and 10, and was set to five.

Model evaluation

Cross validation
We use RMSE, MAE (Mean Absolute Error), IQR (InterQuartile Range) and Nash-Sutcliffe
model Efficiency coefficient (NSE) to assess and compare model performance. RMSE is
calculated as the square root of the differences between predictions and observations; MAE
is calculated as the absolute differences between predictions and observations; IQR is the
differences between the third and first quartiles of the prediction. NSE is calculated as NSE =
1 −MSE∕var(y), where MSE indicates mean squared error, var(.) indicates variance, and y
indicates observed response values. When different data is used in CV (e.g., separating between
close and far-away from roads), we additionally calculated the RRMSE (relative RMSE), RMAE
(relative MAE), RIQR (relative IQR) to account for the differences in the magnitudes of response
values. The RRMSE and RMAE are calculated by dividing the RMSE and MAE, respectively,
by the mean of observations. The RIQR was calculated by dividing the IQR by the median of
observations. The three CV methods we designed and used to assess our model performance are:

1. Bootstrapped CV. 20-times randomly bootstrapped splitting of training and test sets (Lu
et al. 2020a).

2. Spatial-blocked CV. Dividing data into spatial blocks, each time use one block for test and
other blocks for training. In this study, the spatial grids are divided with the cell size two
degree (around 222 km), which leads to 20 spatial blocks.

3. Customized CV. Splitting train-test based on values of certain covariates which definition
is presented in Table 1. In this study, three subareas are defined (1) close to traffic and with
high population (“tr-hp”), (2) close to traffic and with middle low population (“tr-lmp”),
(3) far away from traffic (“far”). High population is defined as the variable population of
1000 m buffer is in the last quartile. Low population is defined as the variable population
of 1000 m buffer is below the median. Close to traffic is defined as: the road_class_2_100
is larger than 0, or the road_class_1_100 is larger than 0, or the road_class_3_100 is within
its 75th percentile. Far away from traffic is defined as: the road_class_2_100 is 0, and the
road_class_1_100 is 0, and the the road_class_3_100 is below its median.

This yields 85, 65, and 177 samples in each category. This ensures a balanced number of samples
between close to traffic and far-away from traffic. Each time, 30 samples (7% of the entire
dataset) are drawn from the corresponding category to form a test sets for CV. To illustrate, each
time, 30 samples are drawn from the 85 samples as the test set to obtain the prediction accuracy
CV for the situation “tr-hp” and the rest is used for training.

Prediction intervals
CRPS (Continuous Ranked Probability Score) and coverage probabilities are used as quality
indicators of prediction intervals. CRPS is an uncertainty measure that assesses the similarity
between two distributions. We use it to indicate how the predicted distribution matches the
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Geographical Analysis

observed distribution. The CRPS implemented in the R package ScoringRules (Jordan,
Krüger, and Lerch 2017) is used. CRPS is calculated for the INLA and QRF models. For
the INLA model, the prediction intervals are calculated by simulating from the response Y
∼ N(𝜃, 𝜎2) where 𝜃 and 𝜎2 are the fitted mean and variance. The mean of CRPS for all the points
within each test block is calculated in spatial-blocked CV. Coverage probabilities are calculated
as the ratio between the number of predictions within the upper and lower quantiles and the total
number of predictions (in the test set). The prediction intervals are mainly compared between
INLA, INLA-G, QRF, and DF. The prediction interval for QRFLA is compared with QRF to
investigate the effects of Lasso tree-aggregation strategy on the prediction intervals.

Model interpretation
We inspect fixed and spatial random effects modeled by INLA and compare the spatial random
field with modeled prediction intervals and model residuals to understand the contribution of
spatial random effects. Different from linear regression methods, which themselves are the best
models for interpretation, interpreting ensembling tree-based methods requires external models
(Lundberg and Lee 2017). We use SHAP (SHapley Additive exPlanations, Lundberg et al. 2018),
a unified method based on additive feature attribution, to estimate variable influence in RF and
XGB models.

Results

Accuracy assessment and uncertainty quantification
Spatial-blocked CV
Spatial-blocked CV provides information about prediction accuracy in spatial blocks. We compare
the spatial patterns of NSE as an indicator of model prediction accuracy and spatial patterns of
CRPS as an indicator of the quality of the prediction intervals, of INLA, representing spatial
method, and RF, representing nonspatial models. As the XGB outperforms RF in nonspatial CV,
we also compares the spatial-blocked NSE for XGB.

The NSE map (Fig. 2) shows that the XGB, RF, and INLA predict relatively well in
most parts of Germany besides blocks at the boundaries. The NSE for the block western the
Netherlands is also relatively low with all the three methods and especially for XGB (NSE: 0.2).
RF obtained the best result for the block of western the Netherlands (NSE: 0.5). The INLA model

Figure 2. The NSE of each block, using the rest of the blocks for training. The models are
(a) XGB, (b) QRF, (c) INLA.
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LU et al. spatial and non-spatial statistical methods

Figure 3. The CRPS (Continuous Ranked Probability Score) of each block, using the rest of the
blocks for training. (a) RF, (b) INLA.

outperformed RF and XGB in the blocks at south-east and north. The NSE between blocks are
the most heterogeneous with XGB, which is consistent to the result of bootstrapped CV that the
XGB falls short at predicting extremes.

The spatial-blocked CRPS (Fig. 3) is computed for QRF and INLA. We did not show the
results using DF as it will be seen that the QRF and DF performed similarly in predicting the
intervals (section 5.2). The INLA predicted prediction distribution deviates considerably from
observed distribution for the block of western the Netherlands, as reflected by the high value of
mean CRPS. This is consistent to the relatively low NSE observed for the same block. However,
some blocks with relatively high NSE (in the north and south) have high CRPS. This indicates
that the prediction means are well-predicted but not the prediction interval (too narrow).

Nonspatial CV
Both ensemble tree-based methods with a Gaussian objective function and INLA with a Gaussian
likelihood function obtained higher prediction accuracy than Lasso (Table 3), indicating the
necessity of using a more flexible model and modeling the spatial random fields. Among
individual methods, in terms of NSE and RMSE, INLA with Gaussian likelihood obtained the
highest prediction accuracy, followed by XGB and QRFLA. QRFLA greatly improves from the
original RF. Despite the distribution of response being closer to Gamma distribution compared
to Gaussian distribution, using Gamma regression in XGB and specifying Gamma likelihood in
INLA both decrease the prediction accuracy considerably. Compared to INLA, XGB obtained
lower RMSE and NSE despite it obtained lower MAE and IQR, indicating that the XGB model
predicts less well at more extreme ranges. The QRF and DF results are not shown in Table 3 as
the results are very similar to RF. Their prediction intervals are compared.

SE-INLA obtained a higher prediction accuracy compared to SE and INLA. It obtained the
best results in terms of root mean squared error (6.83, 24.5% of the mean of observations) and
NSE (0.71). This indicates the explicit modeling of spatial structures could further improve the
prediction accuracy despite flexible relationships captured from ML models.
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Geographical Analysis

Table 3. Prediction Accuracy Matrix for Different Models Using 20 Times Bootstrapped
Cross-Validation. Nonspatial Models: LA: Lasso; RF: Random Forest, XGB: XGBoost Using
the Default Gaussian Loss; XGB-G: XGBoost Using a Gamma Loss; QRFLA: Quantile Random
Forest with Lasso for Shrinkage Aggregation of Regression Trees; SE: Stacked Ensembling.
Spatial models: INLA: a Latent Gaussian Model Implemented Using INLA Assuming a Gaussian
Likelihood. INLA-G: a Latent Gaussian Model Implemented Using INLA Assuming a Gamma
Likelihood. SE-INLA, Geostatistical Stacked Ensembling

LA RF XGB XGB-G QRFLA SE INLA INLA-G SE-INLA

RMSE 7.54 7.45 7.14 8.91 7.23 7.18 7.06 9.21 6.83
IQR 8.47 7.39 6.54 9.21 7.27 7.30 7.1 7.4 6.8
MAE 5.69 5.51 5.05 6.27 5.28 5.31 5.3 6.2 5.0
NSE 0.65 0.65 0.68 0.51 0.67 0.69 0.69 0.45 0.71

Compared to the INLA model, the nonspatial INLA model obtained lower DIC (Deviance
Information Criterion, 3286.66 versus 3251.97 with spatial effects) and WAIC (Watanabe-Akaike
information criterion, 3291.75 versus 3253.93 with spatial effects). These suggest the advantage
of modeling the spatial effects. We normalized covariates before inputting into the spatial and
nonspatial INLA models and compared the differences between the fixed-effects obtained by
the original and nonspatial INLA model (Figs. S3 and S4) and found the most notable change
being the increased effect of the population_1000 for the nonspatial INLA model. This can be
explained by that part of the effects of population_1000 is modeled in the spatial random field.
The second most notable change is on the decreased effect of nightlight_450 for the nonspatial
INLA model. After the spatial process is modeled, the nightlight_450 has a higher contribution
to the model. Together with the decreased effects of road_class_2_100 and road_class_3_300
for the nonspatial INLA model, these may indicate that the spatial model could better account
for traffic-related variables (i.e., road and nightlight in smaller buffers).

Customized CV
There is a distinctive difference between model performance in areas close to traffic (i.e., tr-hp
and tr-lmp) and far away from traffic (i.e., far). The INLA model outperformed other nonspatial
methods in both tr-hp and tr-lmp, especially for the latter while the XGB model outperformed the
INLA model (and all the other models) in far. This indicates the importance of modeling spatial
dependency in areas close to traffic and possibly nonlinear relationships far-away from roads.
All the ensemble tree-based methods obtained much worse results compared to linear regression
methods in tr-lmp. A linear regression model typically outperforms ensemble tree-based methods
when there are relatively few observations for a flexible relationship to be justified. As the
number of observations that are close to traffic and far away from traffic is balanced, the results
indicate that the population density alters relationships between NO2 and road density (i.e., the
relationships between NO2 and road density is different with different population density) in
areas close to traffic (Table 4).

Prediction interval
After examining the quality of the prediction intervals. We compare prediction intervals estimated
from the spatial models with different likelihood functions (Fig. 4), the RF-based methods with
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LU et al. spatial and non-spatial statistical methods

Table 4. Results with Customized CV. tr-hp: Close to Traffic and High Population, tr-lmp:
Close to Traffic and Middle and Low Population, far: Far Away from Traffic. RRMSE (relative
RMSE), RMAE (relative MAE), RIQR (relative IQR)

RMSE RRMSE IQR RIQR MAE RMAE NSE

LA_tr-hp 12.4 0.3 17.3 0.4 10.2 0.3 0.11
RF_tr-hp 11.9 0.3 17.8 0.5 9.8 0.3 0.18
XGB_tr-hp 11.6 0.3 15.3 0.4 9.3 0.2 0.21
INLA_tr-hp 11.3 0.3 16.6 0.4 9.5 0.3 0.26
LA_tr-lmp 7.5 0.3 10.4 0.5 6.1 0.3 0.21
RF_tr-lmp 8.2 0.4 10.9 0.5 6.4 0.3 0.05
XGB_tr-lmp 8.2 0.4 10.5 0.5 6.4 0.3 0.04
INLA_tr-lmp 6.7 0.3 8.7 0.4 5.3 0.2 0.36
LA_far 5.0 0.4 4.9 0.4 4.2 0.3 0.47
RF_far 4.9 0.3 4.0 0.3 3.6 0.3 0.47
XGB_far 3.4 0.2 3.6 0.3 2.5 0.2 0.74
INLA_far 4.0 0.3 4.3 0.3 3.2 0.2 0.65

Figure 4. The 90% prediction intervals predicted by INLA and INLA-G.

prediction intervals estimated in two different methods, QRF and DF (Fig. 5), and the RF-based
method with and without Lasso postprocessing, QRF and QRFLA (Fig. 6).

The RF-based methods, namely DF, QRF, and QRFLA reach the coverage probability
higher than 0.9, but the DF predicts a more realistic prediction quantile, notably, it covers four
observations that are not covered by the same prediction quantiles predicted by the QRF. The
INLA 90% prediction interval is too narrow. The coverage probability is 0.41 for INLA and 0.36
for INLA-G. The predicted 90th quantile of the INLA-G turned out to better capture extreme high
values but miss more at the lower values. The QRFLA predicted a slightly narrower prediction
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Geographical Analysis

Figure 5. The 90% prediction intervals predicted by DF and QRF.

Figure 6. The 90% prediction intervals predicted by QRF and QRFLA.

interval compared to QRF. This indicates that the Lasso-based postprocessing could reduce the
variance of a QRF model.

Model interpretation
SHAP values are calculated for RF and XGB methods using all the data. The variables are
ranked by their variable importance, which is calculated as the sum of SHAP magnitudes over
all the samples. It can be observed from Fig. 7 that the variable rankings and the pattern of
variable impacts on model output are similar. Both methods ranked road_class_2_100 at the top.
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LU et al. spatial and non-spatial statistical methods

Figure 7. Variable impact calculated by SHAP (SHapley Additive exPlanations), (a) the RF
model, (b) The XGB model. The covariate ranking is based on the sum of SHAP magnitudes
over all the samples. The horizontal axis shows how the effect of a feature changes with the
SHAP value of the feature (indicated by the brown to green color bar). The SHAP value is
calculated as the conditional mean (conditional to the features that are not used for making the
prediction) of the prediction. For example, the low values of the feature “road_class_2_100,”
shown in dark brown, correspond mostly with low SHAP values (points to the left). This can
be explained that usually the less local road, the less pollution, considering other effects. High
values in “road_class_2_100” also contribute greatly to the predictions.

The variable importance calculated by the SHAP indicates a pattern that matches well with our
expectation in the emission sources (e.g., high pollution close to primary roads). To illustrate,
we observe a positive trend of SHAP values along with road_class_2_100 values, this matches
with the explanation that areas with higher primary road density generally experience higher
NO2 concentrations.

To analyze the effect of each covariate in the INLA model, we firstly normalized all
the covariates (by subtracting the mean and dividing the centered columns by their standard
deviations) and used all the data to fit the INLA model. road_class_2_100 has the highest effect
(mean = 4.37), follows by the population_3000 (3.08), these are consistent to the XGB variable
importance (Fig. 7b). Then, the road_class_3_300 (3.00) has a notably higher effect (besides
the top 2) than other covariates, which has coefficients from 0.72 to 1.88. This differs from the
XGB and RF variable importance which ranked the population_1000 higher above, while in
the INLA model the population_1000 has the lowest effect (0.72). This may be because of the
high correlation between population_1000 and population_3000, as SHAP is a permutation test,
it ignores the dependency between covariates. In general, both geostatistical and ML methods
estimated covariate effects match their physical explanations. The statistics (mean, standard
deviation, mode) and predicted quantiles of each coefficient are shown in Fig. S3.

The differences between the predicted NO2 and the mean of the spatial random field (Fig. 8)
indicates the effects of covariates. The highest values of the mean of the spatial random field
are shown in the south-west (48.7758∘ N, 9.1829∘ E, in and around the German city Stuttgart).
Relatively high values can be observed in northern, southern and western Germany. Compared
to Fig. 9, the areas close to the Stuttgart (Germany) region where the mean values of the
spatial random field are high corresponds to the high magnitudes of NO2 concentrations. Also,
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Geographical Analysis

Figure 8. Mean of the spatial random field fitted by the INLA model. The polygons indicate
Dutch and German boundaries.

the differences between the observations and predictions are relatively large in magnitudes in
this region. To facilitate visualization, we also calculated the differences between INLA model
predictions and the observations (Fig. S2).

Discussion

In this study, we compared spatial and nonspatial models for spatial NO2 prediction in Germany
and the Netherlands. The comparison consists of the predicted mean, prediction intervals, and
model interpretation. Spatial and nonspatial CV strategies are used to reveal prediction accuracy
in different aspects. We also implemented the Lasso postprocessed RF and spatial stacked
learning for NO2 mapping (which to our knowledge have not been applied in air pollution
mapping before) and these two methods considerably improve from the original RF and stacked
learning models, respectively.

Several venues were attempted to further improve the spatial model fitted with INLA.
Firstly, as we observed in general worse results at the geographical boundaries (Figs. 2 and 3),
we inspected if different meshes with edge-effects fully accounted (e.g., the mesh is sufficiently
large for observations at the edge) could improve the prediction accuracy. It turned out that the
same performance is obtained. Secondly, we suspected that deviating from the assumed Gaussian
distribution causes narrow prediction intervals of the INLA model. However, assuming a Gamma
likelihood did not improve the model performance in terms of the accuracy matrix, CRPS and
coverage probability. We also experienced the square transformation of the observations and
the use of the log-normal likelihood but that also decreases the model performance. Thirdly, we
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LU et al. spatial and non-spatial statistical methods

Figure 9. INLA predicted NO2 at the ground stations with mean (prediction_mean), high
(prediction_high, 0.975) and low (prediction_low, 0.925) quantiles and the observed NO2

(observation). The polygons indicate Dutch and German boundaries.

additionally added two factor variables, namely “country code”3 and “urban types”4. However,
that also does not improve the model performance. In future works, using a different spatial
model (e.g., by specifying different hyperparameters), including the country code and urban types
as factor variables for random effects, and modeling spatial varying coefficients may improve
the modeling results. Major improvement may also be achieved by integrating mobile sensing
measurements and other geospatial predictors (e.g., traffic count, urban morphological matrix)
(Moraga et al. 2017).

3DE for Germany and NL for the Netherlands
4Rural, urban, city center according to Dijkstra and Poelman (2014)
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In our study, we designed our spatial-blocked CV to disaggregate the model accuracy
metrics from global to spatial-block-wise error. This method has the benefit that we know exactly
which data is used for training and which for testing, however, as Wadoux et al. (2021) pointed
out, this type of method may experience the extrapolation problem. We reduce this problem
by selecting a relatively small block size. Specifically, we chose the two-degree cell size as
with it we have a relatively balanced number of stations and stations of different urban types
and can better visualize the geographical pattern. With a smaller cell size, the information in
each grid cell is closer to a single or a small combination of ground stations and gives less
information about the areas surrounding each ground station. Applying the typical random k-fold
or leave-one-out-cross-validation and then calculating the accuracy in each block could avoid
the extrapolation problem. In Fig. S7, we show the NSE of the XGB in each spatial block after
applying the random 10-fold CV and compared it with the spatial-blocked CV.

There has been a debate in how to faithfully assess the model accuracy with spatially
correlated data. Several studies believe the typical k-fold CV causes overly optimistic accuracy
assessment and developed “spatial CV” methods (Brenning 2012; Meyer et al. 2018) and they
have been advocated in environmental mapping (Ploton et al. 2020). However, the spatial CV
does not seem to solve the overly optimistic accuracy assessment problem as the problem is
caused by insufficient samples in the feature space. The spatial CV causes extra extrapolation
problem (Wadoux et al. 2021) without solving the real problem.

A sensible accuracy assessment approach is to look into the differences between the
distribution of the feature values of the population and the samples. A progress is made by Meyer
and Pebesma (2021), who proposes the area of applicability, which quantifies the differences
between feature values used in training and for prediction and used the magnitude of it as
an indicator for applicability. The method adds a useful diagnostic tool for applying machine
learning models to spatial prediction. However, as is discussed in Meyer and Pebesma (2021),
there are several limitations. One important limitation is that there is no quantitative associations
between how “applicable” an area is and the prediction errors or uncertainty.

The model performance differs greatly between the three road and population situations.
The “far” situation obtained the best modeling accuracy while the “tr-hp” the worst. This is
likely due to the fact that the urban NO2 process is more complex due to urban forms and traffic
conditions. This may also indicate that more detailed traffic counts and meteorological data are
needed for modeling the NO2 emission sources.

Different from nonparametric models such as ensemble trees, a parametric spatial model
fitted with INLA as the one developed in our study requires feature selection and the assumption
of the distribution of the response. Several studies used the whole dataset for variable selection
and then use selected variables for CV (Larkin et al. 2017; Lu et al. 2020b). This may, however,
lead to an information leak as the validation data is also used in CV. To avoid this problem,
one can include the variable selection process in each CV, that is, use the same training data for
variable selection and test. However, variable selection in each run could introduce additional
error and uncertainty, therefore, a determined set of covariates may be preferred. We obtain
a fixed set of selected variables while reducing information leakage to a negligible level by
choosing only the variables that are selected 90%–100% times of all the bootstraps of Lasso.

Using the geostatistical method to stack learners obtained higher prediction accuracy
in terms of the mean prediction compared to the nonspatial stacking. This suggests the
complex response–covariate relationships modeled by the ML learners do not fully capture
the spatial process. The spatial stacked models obtained the highest prediction accuracy and
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with high-performance computation, it is possible to apply them to a large-scale and at a high
resolution. The limitation of such stacked methods is that they cannot be used to analyze the
effects of covariates and therefore NO2 emission sources. But these models could be a reference
to the level of accuracy a statistical predictive model could reach with the data available and the
base learners.

As ground stations of NO2 are predominately close to traffic, the prediction might be
biased, for example, toward higher NO2 concentrations. This problem is referred to preferential
sampling, which occurs when the sampling design process is dependent on the spatial process.
A few methods have been developed to address this problem, using Monte Carlo estimates
for the likelihood function (Diggle, Menezes, and Su 2010) or numerical methods (Dinsdale
and Salibian-Barrera 2019). A much less technical approach to reduce the bias might be to
include sufficient traffic-related covariates and a model capable of capturing the traffic-NO2

relationships. In this sense, NO2 mapping may experience a promising improvement when more
traffic counts and emission data become available in future.

An advantage of the spatial model is that it could quantify the uncertainty of the spatial
covariance matrix in terms of the hyperparameters of the covariance function, as well as block
averages or block totals, at any aggregation level. Examples are block or point-to-area Kriging.
In practice, the block averages are often more of interest than values at points, and we commonly
would like to aggregate data at different spatial and spatiotemporal scales. For example, with
mobile sensor measurements. Even though we could derive a prediction interval from the
nonspatial method, the prediction interval is derived at the point level. At a block level, the
uncertainty can only be formally quantified while accounting for the spatial dependency between
points within a block. This is a distinction between nonspatial and spatial models, for example,
blocked Kriging, whose Kriging variance is very sensitive to the behavior of the variogram at
within-block distances.

Conclusion

We proposed a model comparison process to comprehensively compare between models
considering not only the predicted mean but also prediction intervals and model interpretation.
We also showed that the information provided by commonly single-used nonspatial CV may miss
reflecting model behaviors. With the model comparison process, we compared the use of spatial
models and ML models for the spatial prediction of NO2 in Germany and the Netherlands and
found noticeable differences in their limitations and strength. The spatial models are preferred
especially for urban area prediction and provide the spatial process of observations and indicate
the insufficient modeling of the fixed-effects. But the uncertainty assessment of spatial models,
which is commonly known as a strength, fails to provide a prediction interval that meets
the expectation when INLA is used to fit the models. The QRF and DF obtained satisfying
prediction intervals, with the DF slightly more capable of predicting the extremes. Using Lasso
to postprocess random forest increases model performance and reduces model variance. Using
a spatial model to stack learners obtained the highest accuracy in terms of the mean prediction.
Despite the NO2 observations follow closer to a Gamma distribution than a Gaussian, the use of
a Gamma likelihood in the spatial model and Gamma objective in the XGBoost obtained much
worse results than using a Gaussian likelihood or objective. By comparing with the nonspatial
stacked ensemble learning, spatial stacked ensemble learning suggests the necessity of modeling
the spatial process.
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