Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Improving Room-Temperature Li-Metal Battery Performance by In Situ Creation of Fast Li⁺ Transport Pathways in a Polymer-Ceramic Electrolyte

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00007238
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7238-9

Titelangaben

Yu, Jing ; Zhou, Guodong ; Li, Yueqing ; Wang, Yuhao ; Chen, Dengjie ; Ciucci, Francesco:
Improving Room-Temperature Li-Metal Battery Performance by In Situ Creation of Fast Li⁺ Transport Pathways in a Polymer-Ceramic Electrolyte.
In: Small. Bd. 19 (2023) Heft 39 . - 2302691.
ISSN 1613-6829
DOI der Verlagsversion: https://doi.org/10.1002/smll.202302691

Volltext

[thumbnail of Small - 2023 - Yu - Improving Room‐Temperature Li‐Metal Battery Performance by In Situ Creation of Fast Li Transport.pdf]
Format: PDF
Name: Small - 2023 - Yu - Improving Room‐Temperature Li‐Metal Battery Performance by In Situ Creation of Fast Li Transport.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (4MB)

Abstract

Abstract Composite polymer-ceramic electrolytes have shown considerable potential for high-energy-density Li-metal batteries as they combine the benefits of both polymers and ceramics. However, low ionic conductivity and poor contact with electrodes limit their practical usage. In this study, a highly conductive and stable composite electrolyte with a high ceramic loading is developed for high-energy-density Li-metal batteries. The electrolyte, produced through in situ polymerization and composed of a polymer called poly-1,3-dioxolane in a poly(vinylidene fluoride)/ceramic matrix, exhibits excellent room-temperature ionic conductivity of 1.2 mS cm⁻¹ and high stability with Li metal over 1500 h. When tested in a Li|electrolyte|LiFePO₄ battery, the electrolyte delivers excellent cycling performance and rate capability at room temperature, with a discharge capacity of 137 mAh g⁻¹ over 500 cycles at 1 C. Furthermore, the electrolyte not only exhibits a high Li⁺ transference number of 0.76 but also significantly lowers contact resistance (from 157.8 to 2.1 Ω) relative to electrodes. When used in a battery with a high-voltage LiNi0.8Mn0.1Co0.1O₂ cathode, a discharge capacity of 140 mAh g−1 is achieved. These results show the potential of composite polymer-ceramic electrolytes in room-temperature solid-state Li-metal batteries and provide a strategy for designing highly conductive polymer-in-ceramic electrolytes with electrode-compatible interfaces.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: in situ formations; Li-metal batteries; low interfacial resistivities; polymer-in-ceramic; solid-state batteries
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Professur Elektrodendesign elektrochemischer Energiespeicher > Professur Elektrodendesign elektrochemischer Energiespeicher - Univ.-Prof. Dr. Francesco Ciucci
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Professur Elektrodendesign elektrochemischer Energiespeicher
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-7238-9
Eingestellt am: 16 Okt 2023 06:12
Letzte Änderung: 16 Okt 2023 06:12
URI: https://epub.uni-bayreuth.de/id/eprint/7238

Downloads

Downloads pro Monat im letzten Jahr