Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

4D Biofabrication of T‐Shaped Vascular Bifurcation

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00007132
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7132-1

Titelangaben

Kitana, Waseem ; Apsite, Indra ; Hazur, Jonas ; Boccaccini, Aldo R. ; Ionov, Leonid:
4D Biofabrication of T‐Shaped Vascular Bifurcation.
In: Advanced Materials Technologies. Bd. 8 (2023) Heft 1 . - No. 2200429.
ISSN 2365-709X
DOI der Verlagsversion: https://doi.org/10.1002/admt.202200429

Volltext

[thumbnail of Adv Materials Technologies - 2022 - Kitana - 4D Biofabrication of T‐Shaped Vascular Bifurcation.pdf]
Format: PDF
Name: Adv Materials Technologies - 2022 - Kitana - 4D Biofabrication of T‐Shaped Vascular Bifurcation.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (4MB)

Angaben zu Projekten

Projektfinanzierung: Deutsche Forschungsgemeinschaft
IO 68/17-1
TRR 225 subproject A08
TRR 225 subproject A01
Volkswagen foundation “VolkswagenStiftung

Abstract

4D Biofabrication – a pioneering biofabrication technique – involves the automated fabrication of 3D constructs that are dynamic and show shape-transformation capability. Although current 4D biofabrication methods are highly promising for the fabrication of vascular elements such as tubes, the fabrication of tubular junctions is still highly challenging. Here, for the first time, a 4D biofabrication-based concept for the fabrication of a T-shaped vascular bifurcation using 3D printed shape-changing layers based on a mathematical model is reported. The formation of tubular structures with various diameters is achieved by precisely controlling the parameters (e.g. crosslinking time). Consequently, the 3D printed films show self-transformation into a T-junction upon immersion in water with a diameter of a few millimeters. Perfusion of the tubular T-junction with an aqueous medium simulating blood flow through vessels shows minimal leakages with a maximum flow velocity of 0.11 m s–1. Furthermore, human umbilical vein endothelial cells seeded on the inner surface of the plain T-junction show outstanding growth properties and excellent cell viability. The achieved diameters are comparable to the native blood vessels, which is still a challenge in 3D biofabrication. This approach paves the way for the fabrication of fully automatic self-actuated vascular bifurcations as vascular grafts.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: 3D printing; 4D biofabrication; ADA-Gel; blood vasculature; vascular bifurcation
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Professur Biofabrikation > Professur Biofabrikation - Univ.-Prof. Dr. Leonid Ionov
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Professur Biofabrikation
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-7132-1
Eingestellt am: 20 Jul 2023 07:14
Letzte Änderung: 20 Jul 2023 07:15
URI: https://epub.uni-bayreuth.de/id/eprint/7132

Downloads

Downloads pro Monat im letzten Jahr