URN to cite this document: urn:nbn:de:bvb:703-epub-5706-8
Title data
Steinlein, Christoph:
Self-assembly, dimensional control and application of supramolecular 1D- and 2D- materials.
Bayreuth
,
2021
. - IX, 218 P.
(
Doctoral thesis,
2021
, University of Bayreuth, Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften - BayNAT)
|
|||||||||
Download (11MB)
|
Project information
Project financing: |
Deutsche Forschungsgemeinschaft |
---|
Abstract
Supramolecular chemistry is supposed to become one of the significant research fields in material science of the 21st century. This is attributed to the manifold self-assembly processes resulting in distinct supramolecular architectures with specific functionalities. However, several issues are still not easy to solve. For example, tailoring supramolecular architectures with precise dimensions via bottom-up approaches remains challenging. Therefore, this work is dedicated to self-assembly, dimensional control and application of supramolecular 1D- and 2D- nanomaterials based on 1,4-bisamides and 1,3,5-trisamides. The first part addresses the self-assembly of 1,4-benzene- or 1,4-cyclohexanebisamides into 2D-nanoobjects. These novel 1,4-bisamides are designed with different fluorocarbon or tertbutyl substituents resulting in symmetrical or asymmetrical substitution patterns. Within each substitution pattern, the length of the fluorocarbons was varied from C3F7 over C5F11 to C7F15. A symmetric 1,4-bisamide with tert-butyl groups was used as reference. All bisamides proved to feature sufficient thermal stability allowing self-assembly experiments at elevated temperatures. In this context, an important aspect was the structural elucidation by X-ray diffraction, solid-state NMR and IR spectroscopy, as these methods reveal the H-bonding pattern, which typically reflects the shape of nano-objects on the mesoscale. In cooperation with the department of Inorganic Chemistry III at the University of Bayreuth, it was shown that bisamides without tert-butyl substituents form rows of molecules connected by H-bonds. These rows align into layers, which stack to form platelets. By contrast, bisamides comprising at least one tert-butyl substituent connect to four neighbors to form layers, which also stack into platelets. Based on this finding, a reference bisamide was used to evaluate different self-assembly processes and to tune self-assembly conditions to obtain thinner nano-platelets. Transferring and further optimizing these results to the symmetric and asymmetric 1,4-bisamides with fluorocarbon substituents it was found that an asymmetric bisamide formed the thinnest platelets, featuring an average thickness of around 32 nm, which equals 15 layers. In addition, a reduction of platelet thickness with longer fluorocarbon chains was revealed. Moreover, contact angle measurements of two fluorocarbon substituted bisamides revealed that the surfaces of their 2D-objects are highly hydrophobic. The second part focuses on dimensional control of supramolecular fibers of 1,3,5-benzene-trisamides via a top-down approach. In particular, length control of such fibers was addressed via ultrasound. For this, supramolecular submicron fibers of 1,3,5-benzene-trisamide were produced in large amounts by self-assembly upon cooling of solutions in high-boiling hydrocarbons. For later systematic sonication experiments, several dispersion media for supramolecular submicron fibers such as n-hexane, methyl cyclohexane and anisole were explored. A systematic screening of sonication parameters such as sonication time, ultrasonic power amplitude, medium, cooling bath temperature and concentration of BTA fibers revealed their influence on the final fiber dimensions. For instance, the applied ultrasonic energy is the major factor for the length of the obtained fibers. By contrast, raising the concentration or lowering the temperature gave only slightly shorter submicron fibers. Remarkably, the used medium during sonication altered fibers’ length as well as their aspect ratio. This way, it was possible to vary the aspect ratio from 3.7 to 6.8 and the fiber length from 0.66 to 0.98 μm. In this context, the fiber lengths were successfully correlated with the viscosity of the media revealing shorter fibers in more viscous media even after a long sonication time demonstrating the control over the fibers’ dimensions. In the third part, supramolecular nanofibers were applied to improve the foam morphology and mechanical properties of extruded polypropylene foams. This work was realized in cooperation with the department of Polymer Engineering at the University of Bayreuth. Conceptually, the homogeneously dissolved BTAs self-assemble during cooling in the extrusion process into solid nanofibers, which act as finely dispersed nucleation sites for the foam cells and consequently control the foam morphology. To realize this, three different BTAs at different concentrations were compounded into an isotactic polypropylene (i-PP) grade and injection molded. The specimens were thoroughly investigated and, based on these results, compounds comprising different concentrations of the three BTAs were chosen for foam extrusion. Talc at different concentrations was used as reference. Foam extrusion was realized in a tandem extrusion line using CO2 as physical blowing agent. It was found that the density and the morphology of extruded foams can be significantly altered by the presence of BTAs. With BTAs, the foam density is strongly reduced by more than 40% to 0.09 g/cm3 compared to neat i-PP. Also, the average foam cell diameter was reduced by more than 40%, reaching an optimum diameter of 27 μm. Such homogenous foams with small cell sizes could not be achieved with the talc reference foams. Moreover, it was demonstrated that the specific compression moduli of foams with BTA could lead to an improvement of more than 100% compared to neat i-PP and more than 65% compared to the talc reference foam. This finding is attributed to a reinforcing effect of BTA fibers.
Abstract in another language
Die Supramolekulare Chemie wird voraussichtlich zu einem der bedeutenden Forschungsfelder der Materialwissenschaften des 21. Jahrhunderts werden. Dies ist den vielfältigen Selbstassemblierungsprozessen, die zu unterschiedlichen supramolekularen Architekturen mit spezifischen Funktionalitäten führen, geschuldet. Dabei verbleiben jedoch bisher einige ungelöste Aufgaben. Beispielsweise stellt die Schaffung supramolekularer Strukturen mit maßgeschneiderten Dimensionen durch bottom-up-Ansätze weiter eine Herausforderung dar. Deshalb befasst sich diese Arbeit mit Selbstassemblierung, Dimensionskontrolle und Anwendung supramolekularer 1D- und 2D-Nanomaterialien auf Basis von 1,4-Bisamiden und 1,3,5-Trisamiden. Der erste Abschnitt behandelt die Selbstassemblierung von 1,4-Bisamiden auf Basis von Benzol oder Cyclohexan zu 2D-Nanoobjekten. Diese neuartigen 1,4-Bisamide tragen Perfluorcarbon- oder tert-Butylsubstituenten, was eine symmetrische oder asymmetrische Substitution erlaubt. Innerhalb jedes Substitutionsmusters wurde die Länge der Kohlenwasserstoffsubstituenten von C3F7 über C5F11 hin zu C7F15 variiert. Als Referenzverbindung wurde ein symmetrisches 1,4-Bisamid mit tert-Butylsubstituenten verwendet. Alle Bisamide zeigten eine für Selbstassemblierungsexperimente bei höheren Temperaturen ausreichende thermische Stabilität. Für die behandelten Fragestellungen war die Strukturaufklärung über Röntgenstreuung, Festkörper-NMR und IR-Spektroskopie von großer Bedeutung, da diese Methoden die Aufklärung des Musters der Wasserstoffbrückenbindungen erlauben. Dieses spiegelt typischerweise die Form der mesoskopischen Nanoobjekte wieder. In Zusammenarbeit mit dem Lehrstuhl für Anorganische Chemie III der Universität Bayreuth wurde festgestellt, dass Bisamide ohne tert-Butylsubstituenten durch Wasserstoffbrückenbindungen verknüpfte Reihen von Molekülen bilden. Diese Reihen ordnen sich zu Schichten an, welche wiederum Stapel bilden, wodurch Nanoplättchen entstehen. Im Gegensatz dazu bilden Bisamide mit mindestens einem tert-Butylsubstituenten Bindungen zu vier Ihrer Nachbarn aus und formen so Schichten, die sich ebenfalls zu Nanoplättchen stapeln. Ausgehend von diesem Ergebnis wurden mithilfe eines Referenzbisamids verschiedene Selbstassemblierungsprozesse verglichen und die Prozessparameter hin zu dünneren Nanoplättchen optimiert. Die so gewonnenen Erkenntnisse wurden auf die symmetrischen und asymmetrischen 1,4-Bisamide mit Perfluorcarbon-substituenten übertragen und weiter optimiert. Dabei bildete ein asymmetrisches Bisamid die dünnsten Plättchen mit einer durchschnittlichen Dicke von ca. 32 nm, was 15 Schichten entspricht. Zudem wurde ein Sinken der Plättchendicke mit zunehmender Länge der Perfluorcarbon-substituenten festgestellt. Darüber hinaus zeigten Kontaktwinkelmessungen an 2D-Objekten zweier Bisamide mit Perfluorcarbon-substituenten stark hydrophobe Oberflächeneigenschaften. Der zweite Abschnitt befasst sich mit der Kontrolle der Dimensionen von supramolekularen 1,3,5-Benzoltrisamidfasern mittels eines top-down-Ansatzes. Mithilfe von Ultraschall wurde insbesondere eine Kontrolle der Faserlänge angestrebt. Dazu wurden supramolekulare Fasern eines 1,3,5-Benzoltrisamids (BTAs) in größeren Mengen durch Selbstassemblierung beim Abkühlen ihrer Lösungen in hochsiedenden Kohlenwasserstoffen synthetisiert. Für spätere systematische Ultraschallexperimente wurde mehrere geeignete Dispersionsmedien wie beispielsweise n-Hexan, Methylcyclohexan und Anisol identifiziert. Eine systematische Untersuchung der Parameter Beschallungszeit, Ultraschallleistung, Medium, Kühlbadtemperatur und Konzentration der BTA-Fasern zeigte den jeweiligen Einfluss auf die finalen Faserdimensionen. Beispielsweise ist die applizierte Ultraschallleistung der Faktor mit dem größten Einfluss auf die Länge der erhaltenen Fasern. Im Gegensatz dazu führte eine Erhöhung der Konzentration oder eine Senkung der Temperatur nur zu geringfügig kürzeren Submikrofasern. Das zur Beschallung verwendete Medium beeinflusste bemerkenswerterweise nicht nur die Länge der Fasern, sondern auch ihr Aspektverhältnis. Dadurch konnte das Aspektverhältnis im Bereich von 3,7 bis 6,8 und die Faserlänge zwischen 0,66 und 0,98 μm variiert werden. In diesem Zusammenhang wurde die Faserlänge erfolgreich mit der Viskosität des Mediums korreliert. Viskosere Medien führten selbst nach langen Beschallungszeiten zu kürzeren Fasern, was gleichzeitig die erfolgreiche Steuerung der Faserdimensionen verdeutlicht. Im dritten Abschnitt wurden supramolekulare Nanofasern zur Verbesserung von Schaummorphologie und Mechanik von extrudierten Schäumen aus Polypropylen eingesetzt. Dieses Projekt wurde in Kooperation mit dem Lehrstuhl für Polymere Werkstoffe der Universität Bayreuth realisiert. Das zugrundeliegende Konzept sieht homogen gelöste BTAs vor, die durch Abkühlen im Extrusionsprozess zu Nanofasern selbstassemblieren. Diese wirken als gut verteilte Nukleierungskeime für Schaumzellen und bestimmen so die Schaummorphologie. Um dieses Konzept zu verwirklichen wurden zuerst drei verschiedene BTAs in ein isotaktisches Polypropylen (i-PP) eingemischt und spritzgegossen. Die erhalten Probekörper wurden gründlich untersucht und auf Basis dieser Ergebnisse wurden Compounds mit verschiedenen Konzentrationen der drei BTAs für die Schaumextrusion ausgewählt. Als Referenz wurde Talk in verschiedenen Konzentrationen verwendet. Für die Schaumextrusion wurde eine Tandem-Extrusionsanlage mit CO2 als physikalischem Treibmittel verwendet. Es wurde festgestellt, dass die BTAs Dichte und Morphologie der extrudierten Schäume deutlich veränderten. Mit BTAs wurde die Schaumdichte gegenüber reinem i-PP um mehr als 40%, auf 0.09 g/cm3 verringert. Der mittlere Durchmesser der Schaumzellen wurde ebenfalls um mehr als 40% auf bis zu 27 μm reduziert. Solche homogenen Schäume mit geringen Zellgrößen konnten bei den talkhaltigen Referenzschäumen nicht erreicht werden. Zudem wurde gezeigt, dass die spezifischen Kompressionsmoduln von Schäumen mit BTAs vergleichen mit reinem i-PP maximal um bis zu mehr als 100% und verglichen mit den talkhaltigen Referenzschäumen um mehr als 65% gesteigert werden konnten. Dieses Resultat wird auf einen verstärkenden Effekt der BTA Fasern zurückgeführt.