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D   platelet thickness/thickness of 2D-objects 
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Summary 

Supramolecular chemistry is supposed to become one of the significant research fields in 

material science of the 21st century. This is attributed to the manifold self-assembly 

processes resulting in distinct supramolecular architectures with specific functionalities. 

However, several issues are still not easy to solve. For example, tailoring supramolecular 

architectures with precise dimensions via bottom-up approaches remains challenging. 

Therefore, this work is dedicated to self-assembly, dimensional control and application of 

supramolecular 1D- and 2D- nanomaterials based on 1,4-bisamides and 1,3,5-trisamides.  

The first part addresses the self-assembly of 1,4-benzene- or 1,4-cyclohexanebisamides into 

2D-nanoobjects. These novel 1,4-bisamides are designed with different fluorocarbon or tert-

butyl substituents resulting in symmetrical or asymmetrical substitution patterns. Within 

each substitution pattern, the length of the fluorocarbons was varied from C3F7 over C5F11 to 

C7F15. A symmetric 1,4-bisamide with tert-butyl groups was used as reference. All bisamides 

proved to feature sufficient thermal stability allowing self-assembly experiments at elevated 

temperatures. In this context, an important aspect was the structural elucidation by X-ray 

diffraction, solid-state NMR and IR spectroscopy, as these methods reveal the H-bonding 

pattern, which typically reflects the shape of nano-objects on the mesoscale. In cooperation 

with the department of Inorganic Chemistry III at the University of Bayreuth, it was shown 

that bisamides without tert-butyl substituents form rows of molecules connected by H-

bonds. These rows align into layers, which stack to form platelets. By contrast, bisamides 

comprising at least one tert-butyl substituent connect to four neighbors to form layers, 

which also stack into platelets. Based on this finding, a reference bisamide was used to 

evaluate different self-assembly processes and to tune self-assembly conditions to obtain 

thinner nano-platelets. Transferring and further optimizing these results to the symmetric 

and asymmetric 1,4-bisamides with fluorocarbon substituents it was found that an 

asymmetric bisamide formed the thinnest platelets, featuring an average thickness of 

around 32 nm, which equals 15 layers. In addition, a reduction of platelet thickness with 

longer fluorocarbon chains was revealed. Moreover, contact angle measurements of two 

fluorocarbon substituted bisamides revealed that the surfaces of their 2D-objects are highly 

hydrophobic.  

The second part focuses on dimensional control of supramolecular fibers of 1,3,5-

benzene¬trisamides via a top-down approach. In particular, length control of such fibers was 
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addressed via ultrasound. For this, supramolecular submicron fibers of 1,3,5-

benzene¬trisamide were produced in large amounts by self-assembly upon cooling of 

solutions in high-boiling hydrocarbons. For later systematic sonication experiments, several 

dispersion media for supramolecular submicron fibers such as n-hexane, methyl cyclohexane 

and anisole were explored. A systematic screening of sonication parameters such as 

sonication time, ultrasonic power amplitude, medium, cooling bath temperature and con-

centration of BTA fibers revealed their influence on the final fiber dimensions. For instance, 

the applied ultrasonic energy is the major factor for the length of the obtained fibers. By 

contrast, raising the concentration or lowering the temperature gave only slightly shorter 

submicron fibers. Remarkably, the used medium during sonication altered fibers’ length as 

well as their aspect ratio. This way, it was possible to vary the aspect ratio from 3.7 to 6.8 

and the fiber length from 0.66 to 0.98 µm. In this context, the fiber lengths were successfully 

correlated with the viscosity of the media revealing shorter fibers in more viscous media 

even after a long sonication time demonstrating the control over the fibers’ dimensions. 

In the third part, supramolecular nanofibers were applied to improve the foam morphology 

and mechanical properties of extruded polypropylene foams. This work was realized in 

cooperation with the department of Polymer Engineering at the University of Bayreuth. 

Conceptually, the homogeneously dissolved BTAs self-assemble during cooling in the 

extrusion process into solid nanofibers, which act as finely dispersed nucleation sites for the 

foam cells and consequently control the foam morphology. To realize this, three different 

BTAs at different concentrations were compounded into an isotactic polypropylene (i-PP) 

grade and injection molded. The specimens were thoroughly investigated and, based on 

these results, compounds comprising different concentrations of the three BTAs were 

chosen for foam extrusion. Talc at different concentrations was used as reference. Foam 

extrusion was realized in a tandem extrusion line using CO2 as physical blowing agent. It was 

found that the density and the morphology of extruded foams can be significantly altered by 

the presence of BTAs. With BTAs, the foam density is strongly reduced by more than 40% to 

0.09 g/cm3 compared to neat i-PP. Also, the average foam cell diameter was reduced by 

more than 40%, reaching an optimum diameter of 27 µm. Such homogenous foams with 

small cell sizes could not be achieved with the talc reference foams. Moreover, it was 

demonstrated that the specific compression moduli of foams with BTA could lead to an 

improvement of more than 100% compared to neat i-PP and more than 65% compared to 

the talc reference foam. This finding is attributed to a reinforcing effect of BTA fibers. 
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Zusammenfassung 

Die Supramolekulare Chemie wird voraussichtlich zu einem der bedeutenden Forschungs-

felder der Materialwissenschaften des 21. Jahrhunderts werden. Dies ist den vielfältigen 

Selbstassemblierungsprozessen, die zu unterschiedlichen supramolekularen Architekturen 

mit spezifischen Funktionalitäten führen, geschuldet. Dabei verbleiben jedoch bisher einige 

ungelöste Aufgaben. Beispielsweise stellt die Schaffung supramolekularer Strukturen mit 

maßgeschneiderten Dimensionen durch bottom-up-Ansätze weiter eine Herausforderung 

dar. Deshalb befasst sich diese Arbeit mit Selbstassemblierung, Dimensionskontrolle und 

Anwendung supramolekularer 1D- und 2D-Nanomaterialien auf Basis von 1,4-Bisamiden und 

1,3,5-Trisamiden. 

Der erste Abschnitt behandelt die Selbstassemblierung von 1,4-Bisamiden auf Basis von 

Benzol oder Cyclohexan zu 2D-Nanoobjekten. Diese neuartigen 1,4-Bisamide tragen 

Perfluorcarbon- oder tert-Butylsubstituenten, was eine symmetrische oder asymmetrische 

Substitution erlaubt. Innerhalb jedes Substitutionsmusters wurde die Länge der 

Kohlenwasserstoffsubstituenten von C3F7 über C5F11 hin zu C7F15 variiert. Als 

Referenzverbindung wurde ein symmetrisches 1,4-Bisamid mit tert-Butylsubstituenten 

verwendet. Alle Bisamide zeigten eine für Selbstassemblierungsexperimente bei höheren 

Temperaturen ausreichende thermische Stabilität. Für die behandelten Fragestellungen war 

die Strukturaufklärung über Röntgenstreuung, Festkörper-NMR und IR-Spektroskopie von 

großer Bedeutung, da diese Methoden die Aufklärung des Musters der 

Wasserstoffbrückenbindungen erlauben. Dieses spiegelt typischerweise die Form der 

mesoskopischen Nanoobjekte wieder. In Zusammenarbeit mit dem Lehrstuhl für 

Anorganische Chemie III der Universität Bayreuth wurde festgestellt, dass Bisamide ohne 

tert-Butylsubstituenten durch Wasserstoffbrückenbindungen verknüpfte Reihen von 

Molekülen bilden. Diese Reihen ordnen sich zu Schichten an, welche wiederum Stapel 

bilden, wodurch Nanoplättchen entstehen. Im Gegensatz dazu bilden Bisamide mit 

mindestens einem tert-Butylsubstituenten Bindungen zu vier Ihrer Nachbarn aus und formen 

so Schichten, die sich ebenfalls zu Nanoplättchen stapeln. Ausgehend von diesem Ergebnis 

wurden mithilfe eines Referenzbisamids verschiedene Selbstassemblierungsprozesse 

verglichen und die Prozessparameter hin zu dünneren Nanoplättchen optimiert. Die so 

gewonnenen Erkenntnisse wurden auf die symmetrischen und asymmetrischen 1,4-Bisamide 

mit Perfluorcarbonsubstituenten übertragen und weiter optimiert. Dabei bildete ein 
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asymmetrisches Bisamid die dünnsten Plättchen mit einer durchschnittlichen Dicke von ca. 

32 nm, was 15 Schichten entspricht. Zudem wurde ein Sinken der Plättchendicke mit 

zunehmender Länge der Perfluorcarbonsubstituenten festgestellt. Darüber hinaus zeigten 

Kontaktwinkelmessungen an 2D-Objekten zweier Bisamide mit Perfluorcarbonsubstituenten 

stark hydrophobe Oberflächeneigenschaften. 

Der zweite Abschnitt befasst sich mit der Kontrolle der Dimensionen von supramolekularen 

1,3,5-Benzoltrisamidfasern mittels eines top-down-Ansatzes. Mithilfe von Ultraschall wurde 

insbesondere eine Kontrolle der Faserlänge angestrebt. Dazu wurden supramolekulare 

Fasern eines 1,3,5-Benzoltrisamids (BTAs) in größeren Mengen durch Selbstassemblierung 

beim Abkühlen ihrer Lösungen in hochsiedenden Kohlenwasserstoffen synthetisiert. Für 

spätere systematische Ultraschallexperimente wurde mehrere geeignete Dispersionsmedien 

wie beispielsweise n-Hexan, Methylcyclohexan und Anisol identifiziert. Eine systematische 

Untersuchung der Parameter Beschallungszeit, Ultraschallleistung, Medium, Kühlbad-

temperatur und Konzentration der BTA-Fasern zeigte den jeweiligen Einfluss auf die finalen 

Faserdimensionen. Beispielsweise ist die applizierte Ultraschallleistung der Faktor mit dem 

größten Einfluss auf die Länge der erhaltenen Fasern. Im Gegensatz dazu führte eine 

Erhöhung der Konzentration oder eine Senkung der Temperatur nur zu geringfügig kürzeren 

Submikrofasern. Das zur Beschallung verwendete Medium beeinflusste bemerkenswerter-

weise nicht nur die Länge der Fasern, sondern auch ihr Aspektverhältnis. Dadurch konnte 

das Aspektverhältnis im Bereich von 3,7 bis 6,8 und die Faserlänge zwischen 0,66 und 

0,98 µm variiert werden. In diesem Zusammenhang wurde die Faserlänge erfolgreich mit der 

Viskosität des Mediums korreliert. Viskosere Medien führten selbst nach langen 

Beschallungszeiten zu kürzeren Fasern, was gleichzeitig die erfolgreiche Steuerung der 

Faserdimensionen verdeutlicht. 

Im dritten Abschnitt wurden supramolekulare Nanofasern zur Verbesserung von Schaum-

morphologie und Mechanik von extrudierten Schäumen aus Polypropylen eingesetzt. Dieses 

Projekt wurde in Kooperation mit dem Lehrstuhl für Polymere Werkstoffe der Universität 

Bayreuth realisiert. Das zugrundeliegende Konzept sieht homogen gelöste BTAs vor, die 

durch Abkühlen im Extrusionsprozess zu Nanofasern selbstassemblieren. Diese wirken als 

gut verteilte Nukleierungskeime für Schaumzellen und bestimmen so die Schaum-

morphologie. Um dieses Konzept zu verwirklichen wurden zuerst drei verschiedene BTAs in 

ein isotaktisches Polypropylen (i-PP) eingemischt und spritzgegossen. Die erhalten Probe-

körper wurden gründlich untersucht und auf Basis dieser Ergebnisse wurden Compounds mit 
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verschiedenen Konzentrationen der drei BTAs für die Schaumextrusion ausgewählt. Als 

Referenz wurde Talk in verschiedenen Konzentrationen verwendet. Für die Schaumextrusion 

wurde eine Tandem-Extrusionsanlage mit CO2 als physikalischem Treibmittel verwendet. Es 

wurde festgestellt, dass die BTAs Dichte und Morphologie der extrudierten Schäume 

deutlich veränderten. Mit BTAs wurde die Schaumdichte gegenüber reinem i-PP um mehr als 

40%, auf 0.09 g/cm3 verringert. Der mittlere Durchmesser der Schaumzellen wurde ebenfalls 

um mehr als 40% auf bis zu 27 µm reduziert. Solche homogenen Schäume mit geringen 

Zellgrößen konnten bei den talkhaltigen Referenzschäumen nicht erreicht werden. Zudem 

wurde gezeigt, dass die spezifischen Kompressionsmoduln von Schäumen mit BTAs 

vergleichen mit reinem i-PP maximal um bis zu mehr als 100% und verglichen mit den 

talkhaltigen Referenzschäumen um mehr als 65% gesteigert werden konnten. Dieses 

Resultat wird auf einen verstärkenden Effekt der BTA Fasern zurückgeführt. 
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1. Introduction 

Nanomaterials have attracted broad interest for many years due to their outstanding 

properties related to their large surface area, which differ from bulk materials featuring the 

same composition. Owing to these size-dependent properties, dimensional control is of 

paramount importance for nanomaterials. Therefore, nanomaterials featuring structures of 

defined size are supposed to play a significant role in industry and daily life in the future. 

Notably, this big impact of such materials is reflected in large research programs intended to 

foster research and technology transfer to industry and to practices. For example, the 

government of the United States of America has launched the “National Nanotechnology 

Initiative”, having the vision of "a future in which the ability to understand and control 

matter at the nanoscale leads to a revolution in technology and industry that benefits 

society."
1 Similarly, the European Union also enclosed nanotechnology into its “Horizon 

2020” research and innovation program. It is based on the expectation that 

“nanotechnologies […] will help address key societal challenges such as climate change, 

reducing carbon emission, developing renewable energies, more efficient use of resources 

and addressing medical needs of an ageing population.”2 

 

 

1.1. Nanomaterials – Definition and examples 

According to the most common definition, a nanomaterial is a “material with any external 

dimensions in the nanoscale or having internal structure or surface structure on the 

nanoscale”.3
 The nanoscale is generally understood as the range between 1 and 100 nm.3,4 

Nanomaterials often consist of many objects, which frequently feature a size distribution. As 

a rule, 50% of the objects should feature at least one dimension on the nanoscale for the 

whole material to be referred to as a nanomaterial.3 Depending on how many of the object’s 

dimensions are on the nanoscale, three morphologies are distinguished, as Figure 1 illus-

trates. If all three dimensions are on the nanoscale and feature comparable dimensions, the 

objects are called nanoparticles. If two dimensions are on the nanoscale, nanofibers result. 

They feature a third dimension significantly larger than the two others. If only one dimension 

is on the nanoscale, nanoplatelets, which are also referred to as nano-plates or nanosheets 

result. These feature two dimensions significantly larger than the other one.4 In this context, 

nanofibers may also be called 1D-nanoobjects. In a similar manner, nanoplatelets may be 

referred to as 2D-nanoobjects. These terms are used synonymously in this thesis. 
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There is a plethora of nanoparticles known from different material classes. Prominent 

examples are nanoparticles of metals, e.g. gold5 or silver6, or nanoparticles of metalloid 

oxides such as TiO2
7, ZrO2

8 or SiO2
9. As this thesis focuses on 1D- and 2D-nanoobjects, these 

two other classes will be discussed in the following. 

Examples of 1D-nanoobjects made of different materials are metallic silver nanowires, 

carbon nanotubes and polymeric poly(lactic acid) nanofibers, as shown in Figure 2. To 

achieve this kind of structures, top-down as well as bottom-up approaches are viable. A 

common way, e.g. for metallic nanowires, is a template-directed growth, as shown for silver 

nanowires in Figure 2A. In this bottom-up process, silver is released from a precursor such as 

AgNO3 in solution and due to its insolubility it starts growing into crystals. To achieve 1D-

structures, some crystal faces have to be selectively covered with the templating substance 

such as poly(vinyl pyrrolidone). This hinders further growth on same faces and results in an 

anisotropic growth into 1D-nanoobjects.10 Another example of a bottom-up preparation 

technique for 1D-nanomaterials are carbon nanotubes prepared via electric-arc discharge as 

shown in Figure 2B. By the electric-arc discharge, carbon is evaporated from the graphite 

anode and deposits as carbon nanotubes on the graphite cathode.11 A top-down method 

frequently applied to polymers, although not limited to these, is electrospinning. Here, a 

charged thread is pulled from a solution of a material by an applied electric field. After 

evaporation of the solvent, the final fiber is obtained. Under appropriate conditions, very 

thin fibers can be produced this way, as shown for electrospun poly(lactic acid) nanofibers in 

Figure 2C.12 

 

 

Nanoparticle

0D-Nano-object

3 dimensions on the nanoscale

Nanoplatelet

2D-Nano-object

1 dimension on the nanoscale

Nanofiber

1D-Nano-object

2 dimensions on the nanoscale

Figure 1: Shapes and nomenclature of nanoobjects. 
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For 2D-materials, also a plethora of substances is known, of which the probably most famous 

one is graphene. Besides, several transition metal dichalcogenides such as MoS2
13 or layered 

silicates such as sodium hectorite14 are used to obtain nanosheets. Figure 3 shows three 

examples of nanosheets representing these materials’ classes alongside with their respective 

top-down synthesis routes. Very typically, nanoplatelets are produced from layered 

materials, particularly inorganic ones, by liquid exfoliation, a top-down process.15One way to 

obtain nanoplatelets via liquid exfoliation is sonication in appropriate media. Here, 

surfactant solutions are applied, as in the case of the single layer graphene presented in 

Figure 3A.16 Alternatively, solvents with matched surface energy are used in a surfactant-

free process, as it was done to prepare the MoS2 nanoplatelets shown in Figure 3B.13 A 

second way of liquid exfoliation is based on intercalated ions. The presence of appropriate 

ions, either introduced by intercalation or ion exchange or already present in the pristine 

material, facilitates exfoliation to a great extent. This is due to the osmotic pressure induced 

by the charges, when the material is in contact with water. This pressure allows water to 

move between the layers and, thus, swells the material, which increases the interlayer 

distance. Upon that, spontaneous delamination is possible, as it was shown for the sodium 

hectorite nanoplatelets presented in Figure 3C.14  

 

 

 

 

A B C

100 nm100 nm100 nm

Figure 2: Examples of 1D-nanoobjects. A: Silver nanowires (Sun et al. 2002)10, B: carbon nanotubes (Ajayan und 

Ebbesen 1997)11 C: Poly(lactic acid) nanofibers (Hou et al. 2002)12 Reprinted with permission from refs. © 

(2002) American Chemical Society and (1997) IOP Publishing. 
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Figure 3: Examples of 2D-materials and schematic representations of their exfoliation routes. A: Single layer 

graphene (Lotya et al. 2009)16, B: MoS2 nanoplatelets (Coleman et al. 2011)13 and C: sodium hectorite 

nanoplatelets (Stöter et al. 2013) 14. A and B were exfoliated by sonication (scheme (scheme D). To avoid 

agglomeration of nanosheets, for A a surfactant and for B a medium with matched surface energy were 

applied. C was exfoliated from an intercalated material upon application of external force, i.e. shearing. This 

easy separation of layers is possible as intercalation with proper ions weakens the interaction between the 

individual layers of the material. Intercalated materials can be generated by intercalation of ions (yellow) 

(scheme E) into suitable layered materials or direct synthesis as intercalated material. Schematics were 

adopted from Nicolosi et al. 201315. Reprinted with permission from refs. © (2009 and 2013) American 

Chemical Society and (2011, 2013) The American Association for the Advancement of Science 
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1.2. Properties and applications of nanomaterials 

Nanomaterials have properties different from those of the corresponding bulk materials. For 

example, tin features a melting point of 232 °C in the bulk, which is decreased to 14 °C, when 

the material is present as particles of a size of 6 nm.17 Another prominent example for this 

phenomenon is gold, which changes from a golden inert bulk material to a red material with 

catalytic activity in the form of nanoparticles.17 Obviously, the threshold of a possible change 

of properties with decreasing dimensions depends on the material. However, it does not 

necessarily correspond to the common definition of 100 nm for nanoobjects presented 

above.17 

Due to their novel or uncommon properties, nanomaterials have found their way into many 

applications: For example, they are used in industry as antimicrobial agents, catalysts, in 

(opto)electronics and in sensors.18 Nanomaterials are present in a broad variety of consumer 

products, for example in personal care products, clothing, cosmetics, sporting goods, 

automotives and many more.19 This plethora of current applications, alongside with other 

applications expected in the future, makes nanomaterials an emerging research field. 

The shape of nanoobjects plays a significant role in many applications. For example, 1D-

objects have been shown to allow longer blood circulation times compared to their spherical 

analogues. This effect, which increases with object length, may be an important feature in 

drug delivery applications.20 Also for applications related with nano-electronics, the objects’ 

shapes are relevant: 1D-nanoobjects may be applied as nanowires21, while 2D-nanoobjects 

can serve as insulating layers.22 Furthermore, in barrier applications, the 2D-morphology of 

applied nano-materials is a profound advantage. In this context, also a high aspect ratio is 

required.14 These examples show that control of morphology and size of nanoobjects is of 

paramount importance in many applications. 

 

 

1.3. Supramolecular nanomaterials 

According to J.-M. Lehn, “supramolecular chemistry is the chemistry of the intermolecular 

bond, covering the structures and functions of the entities formed by association of two or 

more chemical species”23. This “chemistry beyond the molecule”23 relies on different non-

covalent interaction ns to form larger structures, typically via bottom-up approaches. These 
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non-covalent interactions can be divided into dipole-dipole, ion-dipole, ion-ion, ion-π and π- 

π interactions and van der Waals forces.24 Hydrogen bonding as a special case of dipole-

dipole interactions is the most frequently utilized interaction in supramolecular chemistry. 

Commonly, hydrogen bonds are formed between a donor group and an acceptor group. 

Donor groups comprise an H-atom covalently bond to an electronegative atom like e.g. 

oxygen in hydroxyl groups or nitrogen in the case of amide groups. The acceptor group is 

subsequently an electronegative atom like e.g. oxygen in carbonyl groups, nitrogen in imine 

groups or fluorine in fluorocarbons. H-bonds can achieve remarkable strength with typical 

binding energies between 4 and 60 kJ/mol24. In supramolecular chemistry, building blocks 

are very often designed in a way that hydrogen bonds facilitate directed interactions to 

build-up anisotropic structures. Supramolecular nanoobjects based on small molecules and 

held together by hydrogen bonds often feature a one- or two-dimensional morphology. 

 

1.3.1. Supramolecular 1D-nanoobjects 

Supramolecular 1D-nanoobjects can also be found in nature. For example, the tobacco 

mosaic virus consists of a strand of RNA and 2130 protein units. When mixed under 

physiological conditions, these components self-assemble into the virus’s shape. This shape 

of a 1D-nanoobject features a length of 300 nm and a diameter of 18 nm, as shown in Figure 

4A. The strand of RNA acts as a template, directing the protein units to form a well-defined 

helical assembly around it.25 

An example of artificial supramolecular 1D-nanoobjects are the nanowires reported by 

Khalily et al.. These electrically conductive nanowires are made up from p- and n-type 

peptide-chromophore conjugates via alternating co-assembly. The formed objects, which 

are shown in Figure 4B, feature diameters of around 11 nm and lengths of several 

micrometers. The self-assembly into nanowires in this case is mainly driven by the formation 

of hydrogen bonds.26 Another example are nanofibers based on the sorbitol derivative 

1,3:2,4-di(4-acylhydrazide)-benzylidene sorbitol. This compound self-assembles into 

nanofibers via hydrogen bond formation upon cooling of a hot aqueous solution, 

subsequently yielding a hydrogel, as depicted in Figure 4C.27 
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1.3.2. Materials class of 1,3,5-benzene- and 1,3,5-cyclohexanetrisamides 

A prominent class of compounds with a well-known ability to form supramolecular 1D-nano-

objects are 1,3,5-benzenetrisamides (BTAs) and 1,3,5-cyclohexanetrisamides (CTAs). Since 

the first report of compounds with this structure28, BTAs and CTAs have been subject to 

research by various research groups. Owing to the versatility of this supramolecular building 

block with three hydrogen bonding groups, many applications have been discovered. 

Prominent examples are liquid crystals, gels, polymer additives and microcapsules for drug 

delivery based on these building blocks.29 

In particular, BTAs are also applied in two chapters of this thesis. Hence, this most 

interesting chemical class is briefly introduced providing (i) the general molecular design of 

these compounds and possible variations, (ii) the self-assembly behavior of trisamides and 

supramolecular structures generated therefrom and (iii) a short overview of selected 

properties and applications of BTAs and CTAs. 

A schematic representation of the general molecular structure of 1,3,5-trisamides is 

presented in Figure 5. These molecules feature (i) a C3-symmetrical central core, (ii) 

hydrogen bond forming amide groups and (iii) a periphery. The central core can either be 

benzene or cyclohexane, resulting in 1,3,5-benzenetrisamides (BTAs) or 1,3,5-cyclohexane-

trisamides (CTAs). It is symmetrically substituted with three amide groups (1,3,5-

substitution). The amide groups can be linked to the core either by their C-atom or by their 

50 nm50 nm

BA C

50 nm

Figure 4: Examples of 1D-Nanomaterials. A: Tobacco mosaic virus (Adams et al. 2017)25, B: self-assembled 

nanowires consisting of peptide-chromophore conjugates (Khalily et al. 2017)26 and C: self-assembled 

nanofibers consisting of a sorbitol derivative (Howe et al. 2015)27. Adopted with permission from refs. © (2017) 

Microbiology Society, (2017) American Chemical Society and (2015) Royal Society of Chemistry 
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N-atom. Among other research groups, the influence of the linkage of the amide groups to 

the core was studied by Albuquerque et al.. They found that the negative heat of formation 

for stacks of BTAs increases with more amide groups being connected to the core by their N-

atoms.30 Abraham et al. found the solubility of compounds with one or two inverted amide 

groups to exceed the one of their analogues featuring symmetrical amide substitution.31 

Hence, the orientation of amide groups is a valuable tool to tune the properties of BTAs and 

CTAs. Finally, the peripheral substituent is also a decisive part of the molecular design and 

can be easily varied to a very large extent. By this substituent, solubility and thermal 

properties of the molecules can be adjusted.32,33 In particular, a great variety of hydrocarbon 

substituents have been used in numerous investigations.30,32,34,35,36 

 

 

The driving force for the self-assembly of BTAs and CTAs is mainly the formation of strong 

and directed intermolecular H-bonds. Typically, these molecules assemble in supramolecular 

columns with their cores being placed directly above each other. As depicted in Figure 6, 

BTAs assemble with each molecule rotated about 60° relative to its neighbors in the column. 

Each individual column in BTAs is held together by three helical chains of H-bonds.37 The 

strength of the H-bonds is widely determined by the ability of amide groups to rotate into 

the column’s length axis. This can be seen when comparing BTAs and CTAs: In BTAs, amide 

groups participate in the π-conjugation of the aromatic core. Hence, their rotation out of the 

core’s plane is limited to retain the π-conjugation. By contrast, in CTAs the core provides no 

conjugated system and thus the amide groups are free to rotate. In this case, the amide 

peripheral substituents

• controls assembly and dissolution behavior

• allows introduction of functional groups

amide groups

• column formation by hydrogen bonds to adjacent molecules

• assembly of many columns by macrodipole moment

central core

• 6-membered ring (typically benzene or cyclohexane)

• symmetrical 3-fold substitution

Figure 5: General molecular structure of BTAs and CTAs. 
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groups are positioned almost perpendicularly to the core’s plane and form H-bonds almost 

parallel to the column’s length axis.30 This leads to several phenomena: H-bonds in CTAs 

generally are shorter and stronger than those in comparable BTAs, rendering CTAs less 

soluble than BTAs. In addition, the H-bond direction along the column’s length axis enables 

the CTAs to assembly directly above each other. This parallel assembly evokes repulsions 

between the core’s axial atoms and increases the interdisc distance compared to BTAs.30 

 

 

The parallel and directed orientation of amide groups results in a dipole moment of a single 

BTA molecule. Within a column these dipole moments sum up to a macrodipole moment, 

i.e. the column features a supramolecular macrodipole.30 To compensate this macrodipole, 

other columns align next to the first one in an antiparallel manner, as it is depicted in Figure 

7A.38 Depending on the peripheral substituents and the applied conditions, BTAs and CTAs 

typically assemble in more or less thick fibers or needles rather than in single columns. From 

a crystallographic point of view, a (pseudo)hexagonal stacking of columns is favored.38,39 

However, the hexagonal arrangement does not allow all columns to align in the favored 

antiparallel orientation relative to all nearest neighbors, as shown in Figure 7B, which result 

in a so called geometric frustration. To compensate this geometric frustration, ferroelectric 

domains form in the mesoscopic assembly of BTAs, as Zehe et al. reported.38 

A B

Figure 6: Columnar stacking of BTAs at the example of a BTA bearing tert-butyl substituents. A: view from top. 

B: view from side. H-bonds are indicated by green dashed lines. For the sake of clarity, H-atoms not involved in 

H-bonds are omitted and carbon atoms of the second molecule are colored black. The figure is based on data 

from Schmidt et al. (Schmidt et al. 2012)
39

. 
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Finally, the chemical nature of the substituents also plays an important role in tuning self-

assembly. The size of the substituents determines the diameter of the column and thus the 

distance of columns to each other. Thus, it determines the dipolar interactions and also the 

size of ferroelectric domains.38 When the substituents are bulky carbohydrates, solid 

materials with high melting points are obtained.29,31,34 BTAs with long alkyl chains show 

thermotropic liquid crystalline behavior.29 For a BTA featuring n-octyl substituents also a 

non-columnar, sheet-like modification has been reported.40 

Typically, self-assembly upon cooling of hot solutions is the process most widely reported in 

literature. In the first step of this process, the respective 1,3,5-trisamide is mixed with the 

solvent (which can be a polymer melt) and the mixture is heated. At elevated temperatures, 

depending on the molecular structure of the 1,3,5-trisamide used, the 1,3,5-trisamide 

dissolves in the solvent or melt. In this step, diffusion of the dissolved 1,3,5-trisamide units 

results in homogeneous dispersion of those. Upon cooling, self-assembly into primary 

aggregates, i.e. columns, and, finally, into supramolecular nanofibers is induced.29,32 This 

BA

Figure 7: A: Antiparallel alignment of neighboring columns of a BTA in side-view. This alignment compensates 

their macrodipole moments µ. The direction (up or down) of each column and subsequently of its macrodipole 

moment is symbolized with white or black hexagons. B: Top view on an assembly of seven columns. For any 

triangle of three columns, two can assume the favorable antiparallel orientation (black and white hexagons), 

while the third one is geometrically frustrated (grey hexagon). Reprinted with permission from ref (Zehe 

2017)
38

. © (2017) The authors. 
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self-assembly process is reversible, i.e. dissolution and self-assembly can be repeated by 

applying the heating and cooling cycle once again. Self-assembly upon cooling is typically 

affected by several parameters, which are given in Figure 8. 

 

 

When these parameters are tuned well, supramolecular nanoobjects can be obtained 

reproducibly. Hence, BTAs can self-assemble into nanofibers, as it is demonstrated by an 

example from the group of E.W. Meijer in Figure 9.41 

 

Supramolecular

nano-objects
Medium

Concentration

of building blocks

Temperature range

and cooling rate

Molecular structure

Figure 8: Parameters influencing the formation of supramolecular nanoobjects via self-assembly upon cooling. 

50 nm

BA

Figure 9: Molecular structure of a BTA ((2S,4R)-4-((11-(3,5-Bis((1-hydroxy-3,6,9,12-tetraoxatetra-cosanyl)-

carbamoyl)benzamido)undecanoyl)oxy)pyrrolidine-2-carboxylic acid) and nanofibers of it. The fibers were 

prepared via self-assembly in water. Dark spots in the cryo-TEM image are non-vitrified water. The scale-bar 

represents 100 nm. Reprinted with permission from ref (Neumann 2015)
41

. © (2015) The Royal Society of 

Chemistry. 
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The most important property of BTAs and CTAs is their robust columnar self-assembly, which 

results in supramolecular nanofibers. Such nanofibers assembled from suitable solvents 

feature good mechanical stability, as Kluge et al. demonstrated.42,43 This allows applications 

requiring a mechanical stability of the fibers, e.g. in air filtration.44,45 Moreover, 1,3,5-

trisamides featuring a wide range of substituents can be synthesized. This makes 1,3,5-

trisamides suitable for applications requiring adjustment of the substituent and, hence, the 

fiber surface, like gelation of organic media46 or water47,48. The supramolecular 1D-packing 

induced by the 1,3,5-trisamide motif also allows for advanced functionality of nanofibers, if 

appropriate substituents are introduced. This is the case for “flexible” single columns of BTAs 

synthesized by the group of E.W. Meijer, which were also referred to as “supramolecular 

polymers”. Meijer et al have demonstrated that these “supramolecular polymers” showed 

catalytic activity, when functionalized with L-prolin.41 With another system, consisting of 

several differently substituted BTAs, L. Albertazzi et al. demonstrated assembly into 

“supramolecular copolymers”. Furthermore, they reported, that the monomer sequence of 

these structures could be controlled by external stimuli.49 This shows, that self-assembly of 

1,3,5-trisamides is a versatile tool to tailor structures of high complexity.  

Another outstanding property of BTAs and CTAs is the combination of a relatively simple 

synthesis with good chemical and thermal stability. This provides access to industrial 

applications, e.g. as polymer additives. BTAs have successfully been applied to nucleate the 

crystallization of semi-crystalline polymers like poly(vinylidene fluoride) (PVDF)50, 

poly(butylene terephthalate) (PBT)51 and isotactic poly(propylene) (i-PP)31,32,34. In the case of 

i-PP, selected BTAs nucleate the β-phase of i-PP32, which results in improved mechanical 

properties due to toughening of the material.52,53 Besides, selected BTAs improved the 

optical properties of i-PP by manipulation of the crystallization process, acting as clarifiers.32 

Moreover, BTA nanoobjects present in i-PP were demonstrated to enhance electret 

properties of the material.54 

 

1.3.3. Supramolecular 2D-nanoobjects 

From the plethora of systems forming supramolecular 2D-nanoobjects, three will be 

presented in the following exemplarily. The first example deals with nanosheets of peptoid 

polymers reported by Nam et al.. Upon mixing of the peptoids depicted in Figure 10A the 

nanosheets shown in Figure 10B spontaneously form as bilayers in aqueous solution. The 
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driving force for bilayer formation is the poor interaction between the hydrophobic parts of 

the molecules and the polar medium. Ultimately, the hydrophobic parts face each other in 

the center of the bilayer, as the model in Figure 10C illustrates. Each single layer consists of 

alternating chains of positively charged and negatively charged peptoids. Thus, the structure 

is stabilized by electrostatic interactions, while the hydrophobic groups drive bilayer 

formation.55 

 

 

A different system relying on similar interactions to form 2D-nanoobjects was reported by 

Wu et al.: They investigated the self-assembly of positively charged polycyclic aromatic 

hydrocarbon salts. Figure 11A exemplarily shows the molecular structure of an anion-cation 

combination applied. These compounds are able to form nanosheets in water/methanol 

solutions, as shown in Figure 11B. These nanosheets feature a thickness of around 20 nm. A 

schematic representation of the assembly pattern is given in Figure 11C. As in the first 

example, electrostatic interactions within the hydrophilic parts of the molecules guarantee 

stable layers. Here, particular stability is achieved by the bifunctional disulfate anions (DSA) 

linking the polycyclic aromatic hydrocarbon cations (PQP cations). The hydrophobic parts of 

the structure lead to the formation of bilayers.56 An important difference between the two 

systems presented is the stacking of bilayers to thicker nanoplatelets occuring in the second 

example. 

 

CA B 500 nm

Figure 10: A: Molecular structures of peptoids (Nae-Npe)18 and (Nce-Npe)18. These peptoids form bilayers with 

a thickness of approx. 3 nm, as the AFM image (C) and the molecular model (B) show. (Nam et al. 2010)55  

Adapted with permission from ref. © (2010) Springer Nature. 
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As a third example of supramolecular 2D-nanoobjects, a system featuring intermolecular 

hydrogen bonds is presented, namely bisacylurea derivatives investigated by the Zentel 

group. These molecules comprise two bisacylurea groups connected by a flexible hydro-

carbon spacer. Both bisacylurea groups carry a peripheral spacer, as shown in Figure 12A. 

When self-assembled upon cooling of a hot solution, each bisacylurea group forms hydrogen 

bonds to two neighboring molecules. As both bisacylurea groups within one molecule can 

twist due to the flexible spacer, they are part of hydrogen bond strands pointing in different 

directions. Hence, a layer is formed, as schematically depicted in Figure 12B. Several of these 

layers stack to form multilayered nanosheets, as shown in Figure 12C.57,58 

 

  

A CB

≡ ≡
500 nm

Figure 11: A: Polycyclic aromatic hydrocarbon cations (PQP) linked by disulfate anions (DSA) also self-assemble 

into 2D-nanoobjects (C). B: Scheme of the self-assembled structure. Here, bilayers are formed by the 

hydrophobicity of the PQP’s carbohydrate chain in a methanol/water solvent system. This structure is stabilized 

by the bifunctional DSA.(Wu et al. 2011)56 Adopted with permission from ref. © (2011) John Wiley and Sons. 

A B C

1 µm

Figure 12: A: Bis-acylurea derivatives form intermolecular hydrogen bonds in two different directions. B: 

Schematic representation of the resulting self-assembly into nanoobjects.(Kim et al. 2011a)57 C: SEM-image of 

the resulting multilayered nanosheets.(Davis et al. 2007)58 Reprinted with permission from refs. © (2010) Royal 

Society of Chemistry and (2007) John Wiley and Sons 
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1.3.4. Materials class of 1,4-benzene- and 1,4-cyclohexanebisamides 

Another class of compounds capable of forming 2D-nanostructures via self-assembly are 1,4-

benzene- and 1,4-cyclohexanebisamides. In this work only bisamides with a 1,4-substituted 

core are used, therefore they will be treated in the following. This section is partitioned into 

three parts: Firstly, the general molecular structure of these compounds is presented and 

possible variations are discussed. The second part features a brief introduction into the self-

assembly of bisamides and supramolecular structures generated therefrom. The latter are 

treated more in detail in the appropriate place in chapter 3. Finally, the third part gives an 

overview of properties and applications of bisamides. 

The molecular design of 1,4-bisamides comprising (i) a central core, (ii) two amide groups in 

1,4-position and (iii) a periphery is shown in Figure 13. In this class, the central core is either 

based on a benzene or a cyclohexane unit. The core spatially separates the neighboring 

amide groups and provides the molecule stiffness. In 1,4-position, the core is typically C2-

symmetrically substituted with amide groups. The arrangement of amino groups can be 

altered by using different cores based on e.g. terephthalic acid or 1,4-diaminobenzene. The 

type of attachment to the core has significant impact on compound properties such as 

melting point and solubility, as Mohmeyer et al. showed.59 Each amide group is connected to 

a peripheral substituent, which widely influences the solubility of the respective compound. 

In literature, hydrocarbons are mostly used as substituents.59,60,61,62 

 

central core

• rigid planar

• symmetrical 2-fold substitution

amide groups

• formation of hydrogen bonds to adjacent molecules

• layer formation

peripheral substituents

• determines dissolution behavior

Figure 13: General molecular structure of 1,4-bisamides with hexagonal core. 
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Bisamides with a 1,4-substituted core are known to self-assemble into objects from hot 

solutions of organic solvents or from polymer melt.59,63 In both cases, self-assembly typically 

is induced upon cooling. The temperature at which self-assembly occurs depends (besides 

solvent and concentration) on the molecular structure of the respective bisamide. For 

example, Mohmeyer et al. found a 1,4-bisamide with asymmetrically attached amide groups, 

i.e. one attached with the N-atom and one with the C-Atom, to be more soluble and to self-

assemble at lower temperatures than its analogues with symmetric amide group 

substitution.59 The peripheral substituents also influence the self-assembly conditions: For 

example, the longer the linear hydrocarbon chain of the substituent is, the lower is its self-

assembly temperature.60,61 

Regarding the morphology of the objects formed by self-assembly processes, several results 

are reported: For 1,4-benzene bisamides with cyclohexane substituents self-assembled in i-

PP, Mohmeyer et al. observed supramolecular objects regardless the orientation of amide 

groups.59 For the trans-1,4-cyclohexyl bisamide with tert-butyl substituents, Schmidt et al. 

reported large 2D-objects. The crystal structure of this compound shows a layered 

structure.63 Furthermore, crystal structures of both symmetric 1,4-benzene bisamides with 

tert-butyl substituents, which differ in the orientation of amide groups, have been reported. 

Both compounds show layered structures in the solid state.64,65 The assembly of the 

molecules and the H-bond connectivity will be discussed more in detail in chapter 3, 

alongside with the results of this work. 

If hydrocarbons are used as peripheral substituents, 1,4-benzene- and 1,4-cyclohexane-

bisamides feature good chemical and thermal stability. For example, Mohmeyer et al. 

reported melting temperatures above 280 °C without degradation.59 This makes this class of 

compounds interesting for the use as supramolecular polymer additives, where they must 

withstand temperatures around 250 °C during polymer processing. Cyclic 1,4-bisamides 

were found to improve electret properties59 and to nucleate the β-phase of i-PP.59,62 When 

cooled from solution, bisamides form very fine structures.59,60,61 Such microfibrils are a 

prerequisite for gelators. Hence, such bisamides also were successfully applied as organo-

gelators, e.g. for p-Xylene at concentrations down to 0.2 wt% of bisamide.60,61 All these 

applications are strongly related to the morphology of the structures formed. Yet, there is 

still a lack of a full understanding how to control the morphology of bisamide structures. 
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2. Aim and motivation 

The main focus of this thesis is the formation of supramolecular nanoobjects by self-

assembly of low-molecular weight building blocks, such as benzene- or cyclohexane-based 

1,4-bis- or 1,3,5-trisamides. The self-assembly process is typically initiated by variation of 

parameters such as temperature or concentration. For a rational application of 

supramolecular nanostructures formed via self-assembly processes, control of their 

morphology and dimensions is crucial. Therefore, the first two chapters of this work deal 

with the dimensional control of self-assembled 1D- or 2D-nanoobjects. The third chapter 

deals with the formation of supramolecular nanoobjects in i-PP and their use as cell 

nucleating agents during foam extrusion. 

 

2.1. Supramolecular 2D-nanoobjects via self-assembly 

Whereas numerous investigations were performed with respect to the formation and 

properties of supramolecular nanofibers (1D-nanoobjects), much less is known about the 

formation of supramolecular 2D-nanoobjects. 2D-nanoobjects, which are also referred to as 

nano-platelets, feature a small thickness, typically in the range below 100 nm, compared to 

their lateral dimensions. In this context, self-assembly of 1,4-benzene or 1,4-cyclohexane 

bisamides to supramolecular 2D-nanoobjects will be investigated. Moreover, the peripheral 

groups will be varied resulting in symmetric and asymmetric 1,4-bisamides with chemically 

different groups such as hydrophobic and fluorophilic moieties. For the preparation of 

supramolecular nanoobjects, self-assembly upon cooling is a common approach, because 

this allows for a reasonable control of processing parameters. To gain a better 

understanding of the self-assembly, the processing parameters are systematically varied and 

the resulting morphologies are investigated. This chapter is divided into four sections. In the 

first one, the molecular design, synthesis and properties of all symmetric and asymmetric 

1,4-bisamides are discussed. In the second one, crystal structures of the compounds are 

revealed and correlated to the respective molecular structure. The results of this section 

were obtained in cooperation with the department of Inorganic Chemistry III at the 

University of Bayreuth. In the third section, self-assembly upon cooling is optimized. Finally, 

in the fourth section, the molecular structure of the bisamides is optimized with respect to 

the thickness of formed self-assembled nanoobjects and their property profiles. 
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In this context, the following main scientific questions will be addressed: 

 How does the molecular structure of bisamide compounds affect their packing pattern 

in the solid state? 

 How can the thickness of supramolecular bisamide-based 2D-nanoobjects be reduced 

by molecular design of symmetric or asymmetric bisamides? 

 How must conditions for the self-assembly process be selected to optimize the 

thickness of resulting 2D-nanoobjects? 

 

2.2. Length control of supramolecular 1D-nanoobjects via ultrasound 

Supramolecular nanofibers can typically be prepared by a bottom-up approach, i.e. self-

assembly upon cooling. However, to obtain fibers with a defined morphology reproducibly, 

control of their dimensions, i.e. fiber diameter and fiber length is of paramount importance. 

It has already been shown, that the diameters of trisamide fibers can be adjusted by tuning 

the cooling process during self-assembly.66 By contrast, control of fiber length during such a 

process is hard to achieve, since the trisamide columns forming the nanofibers are supposed 

to grow faster with increasing column length.30 The aim of this work is to make use of a top-

down, post-treatment process such as ultrasound and to evaluate how the nanofibers’ 

dimensions, i.e. length and diameter can be controlled. In this context, the influence of 

important process parameters like sonication time, ultrasonic power amplitude, medium, 

temperature and concentration of the BTAs in the dispersion on the fiber dimensions will be 

systematically investigated. This chapter is divided into three sections. In the first section, 

supramolecular 1,3,5-trisamide fibers are prepared via self-assembly. In the second section, 

different media are investigated to identify suitable systems for sonication experiments. In 

the third section, selected systems are treated with ultrasound and correlations between 

chosen process parameters and dimensions of resulting nanoobjects are established. 

In this context, the following main scientific questions will be addressed: 

 Does the application of ultrasound reproducibly result in supramolecular nanoobjects 

with defined dimensions? 

 Which parameters dominate the sonication process? 

 Can the influence of the most relevant process parameters be correlated with known 

underlying physical processes? 
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2.3. Supramolecular cell nucleating agents for foam extrusion of i-PP 

Rigid polymer foams become increasingly important due to their lightweight and improved 

insulation properties. In this context, isotactic polypropylene features a beneficial property 

profile in terms of mechanical and dimensional stability as well as a higher end use 

temperature in contrast to PE and PS. Progress in this field can be achieved by preparing 

foams with more homogeneous and finer cells. Most approaches to reduce the cell size in 

polymeric foams are based on the modification of the polymers used, on optimization of the 

foam processing machinery or on the use of insoluble cell nucleating agents.67 To achieve 

this goal a different approach is chosen in this thesis, based on supramolecular nanoobjects 

as cell nucleating agents. As polymer grade a linear i-PP is selected, since it is of great 

practical importance. As supramolecular cell nucleating agents, distinct 1,3,5-benzene 

trisamides (BTAs) will be selected and applied. As processing technique foam extrusion with 

CO2 is selected, as it is a highly relevant method for foam processing. Accordingly, this 

project was realized in cooperation with the department of Polymer Engineering at the 

University of Bayreuth. This chapter is divided into five sections: In the first section, the 

applied i-PP is characterized. In the second section, compounds which are composed of 

selected BTAs and i-PP are investigated with respect to the self-assembly behavior of the 

BTAs. In the third section, promising compounds are processed by foam extrusion. 

Subsequently, in the fourth section, the morphology of the resulting foams is investigated. 

Finally, the fifth section is focused on the compression properties of these foams. 

In this context, the following main scientific questions will be addressed: 

 To which extent can BTAs be used to control the morphology of polymer foams 

produced via foam extrusion? 

 How can the role of BTA nanoobjects be visualized and evaluated to draw conclusions 

on the resulting foam morphology? 

 How are the mechanical properties of polymer foams affected by the use of 

supramolecular cell nucleating agents? 
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3. Supramolecular 2D-nanoobjects via self-assembly 

3.1. 2D-nanoobjects 

2D-nanoobjects, also known as nanoplatelets or nanosheets, have attracted great interest 

due to their versatile properties like high specific surface area, flexibility and 2D-

anisotropy.68,69,70 Nanosheets are defined as structures consisting of one or multiple layers 

of a 2D-material, i.e. a material, which features covalent or supramolecular bonding of 

similar strength along two directions and much weaker interactions along the third one.69 If 

these nanosheets become sufficiently thin, their properties may alter significantly. For 

example, graphene exhibits an anomalous room-temperature quantum Hall effect, 

contrasting to the corresponding 2D-material graphite.69 Owing to these exceptional 

properties, nanosheets are either already used or are supposed to find use, for example, in 

gas barrier applications71, to improve the flame retardancy of polymers72, for catalysis, in 

sensors and as biomaterials.73 Moreover, nanosheets providing electronic conductivity may 

be employed in e.g. optoelectronics, batteries and supercapacitors.69,73 

In principle, there are two ways of preparing nanosheets: Firstly, in a top-down approach, a 

2D-material can be exfoliated to obtain nanosheets, which in the case of complete 

exfoliation consist of single layers. Secondly, via the bottom-up approach, smaller building 

blocks can be arranged in a way that they directly build up nanosheets. In the bottom-up 

approach, surfaces can be used as templates for nanosheet growth.69 Since this templated 

growth is limited in synthetic as well as in design flexibility73, it is not discussed in the 

following. The other approaches are presented in more detail and examples are provided. 

 

3.1.1. Top-down approaches to 2D nanoobjects 

Many studies on exfoliation deal with graphene, which probably is the most prominent 

nanosheet material. Although there are many ways to produce graphene, exfoliation of 

graphite dispersions is of special interest since it is cheap and easily scalable.74 Lotya et al. 

managed to partly exfoliate graphene by simple sonication of graphite in an aqueous 

solution of the surfactant sodium dodecylbenzene sulfonate. After sonication in a low power 

ultrasonic bath for 30 min, the dispersion was centrifuged to remove non-exfoliated graphite 

particles. Thus, they yielded flakes with diameters around 1 µm, of which 3% were mono-

layers and 40% featured less than 5 layers.16 However, this method results in nanosheets 
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covered with surfactant, which is disadvantageous for some applications. Hence, exfoliation 

must be realized in a surfactant-free process. Typically, exfoliation is hindered by the 

enthalpy for generating a new surface ΔHMix, which is described, e.g. for graphene by 

equation 1.75 

 ∆𝐻𝑀𝑖𝑥𝑉 ≈ 2𝑁 (√𝐸𝑆 −√𝐸𝐺)2𝜙𝐺 (1) 

 

By this equation, ΔHMix is given for a dispersion of the volume V featuring a known volume 

fraction of graphite ΦG. N denotes the thickness of the exfoliated graphene sheets (number 

of layers) and Es and EG are the surface energies of solvent and graphene. For successful 

exfoliation ΔHMix has to be minimized or, at best, eliminated. This is achieved if the surface 

energies of solvent and graphene Es and EG become equal.75 In this context, Hernandez et al. 

reported exfoliation of graphene to work best for solvents with surface energies close to the 

one of graphene, which is 47 mJ/m2, as reported by Wang et al..
76 For example, N-

methylpyrrolidone (NMP) allowed the exfoliation of 1 wt% of the initial graphite into 

monolayer graphene upon only 30 min of treatment in a low power ultrasonic bath.77 

This liquid phase exfoliation was successfully transferred to layered metal chalcogenides, 

which are another intensely investigated class of inorganic 2D-materials. The most popular 

material of this class is MoS2, for which Coleman et al. obtained nanosheets with lateral 

dimensions between 50 and 1000 nm and thicknesses between 3 and 12 nm, which equals 3 

to 12 layers, using NMP as solvent.13 Though liquid phase exfoliation works well for a 

plethora of materials15,69,78, it can be further improved by prior intercalation of ionic species 

between the material’s individual layers. Intercalation increases the layer spacing and 

reduces the energy barrier for exfoliation.15 This phenomenon is commonly utilized for 

layered silicates, where intercalated ions induce an osmotic pressure resulting in additional 

intercalation of neutral solvent molecules.79,80 Based on this, Stöter et al. reported the 

production of sodium hectorite nanosheets featuring lateral dimensions of several 

micrometers and a thickness around 1 nm. Hence, these single layer nanosheets reached 

exceptional aspect ratios up to 20,000.14 
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3.1.2. Bottom-up approaches to 2D nanoobjects  

Bottom-up approaches, which represent the second pathway to nanosheets, are often 

applied for organic compounds.73 For example, Govindaraju et al. used self-assembly of 

cyclic dipeptides in a solvent mixture of chloroform and trifluoroacetic acid to obtain 

nanosheets with a thickness of only 60 nm.81 Also for derivatives of naphthalenediimide, an 

organic n-type semiconductor material, self-assembly to 2D-structures with lateral 

dimensions up to 100 µm was reported, yet the thickness of these objects was not 

determined.82,83 For a similar material, 2-aminooctane-functionalized naphthalenediimide, 

Wang et al. showed self-assembly into platelets with lateral dimensions in the range 

between 2 and 7 µm. They induced the self-assembly process by injection of a solution of 

the naphthalenediimide in ethyl acetate into a mixture of the poor solvents methanol and 

water. Apparently, the self-assembly process was highly dependent on the water content in 

the mixture of poor solvents.84 They also applied this method to a solution of 9,10-

bis(phenylethynyl)-anthracene in dichloromethane as good and isobutyl alcohol as poor 

solvent. The 2D structures prepared this way featured lateral dimensions of several hundred 

micrometers and a thickness around 600 nm.70 In another study, Hou et al. obtained very 

thin nanosheets of a 1,3,5-benzene trisamide featuring n-octyl substituents upon injection of 

acetone solutions either into water or into heptane. They demonstrated that the nature of 

the non-solvent influenced the morphology of formed nanosheets, but did not alter the 

crystal structure. They also showed that the injection approach is important for 

nanostructure formation. For example the simply dried sample from acetone yielded thicker 

and larger 2D structures.40 

For complexes of positively charged polycyclic aromatic hydrocarbons and platinum ions 

Yang et al. observed self-assembly into nanosheets via another process: Here, self-assembly 

occurred directly after synthesis of the insoluble complexes in a mixture of DMF and MeOH. 

The obtained nanosheets featured a thickness of 23 nm, while lateral dimensions of several 

hundreds of nanometers were reported.85 Lai et al. demonstrated direct assembly during 

synthesis for perylene. Hereto, they released perylene from perylene perchlorate in an 

aqueous hexadecyltrimethylammonium bromide (CTAB) solution. Since CTAB is surface 

active in aqueous solutions, it adsorbed to the top and bottom planes of the perylene nuclei 

and thus blocked the thickness growth of the formed nanosheets. By this elaborated 

approach, nanosheets featuring a thickness below 10 nm were produced successfully.86 
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For the generation of 2D-structures from bis-acylureas the Zentel group applied an approach 

relying on self-assembly upon cooling: A hot solution of the respective bis-acylurea was 

allowed to cool to room temperature, which resulted in precipitation of nanosheets. The bis-

acylureas feature two acylurea groups connected by a flexible pentyl spacer, as shown in 

Figure 14. The flexible spacer allows torsion of the acylurea groups relative to each other 

(Figure 14A). Hence, H-bonds in two different planes to four neighboring molecules in total 

can be formed, resulting in a nanosheet connected by H-bonds.58 In further studies, the 

Zentel group functionalized bis-acylureas prior to self-assembly and found the morphology 

formed to be highly dependent on the functional substituents. Bulky or thiol substituents 

hinder regular self-assembly, which results in morphologies other than sheets. Nevertheless, 

for a large variety of functional groups, nanosheets were obtained.57,87 Furthermore, they 

reported successful assembly of a bis-acylurea asymmetrically substituted with a pyridine 

end group into nanosheets upon cooling of hot ethanol solutions. These nanosheets were 

several hundred nanometers thick and featured lateral dimensions of several micrometers. 

Due to the pyridine groups at the nanosheet surfaces, gold nanoparticles could be 

immobilized on the nanosheets, demonstrating the versatility of this approach.88 

 

 

Ray et al. investigated 1,4-benzenebisamides with methyl esters of amino acids as 

substituents. With the stiff benzene spacer, no tilt of each molecule’s amide groups is 

Figure 14: A: Biaxial hydrogen bonding of bis-acylurea. B: Self-assembly to nanosheets upon cooling and 

stacking to multilayered nanosheets. Reprinted with permission from ref.(Kim et al. 2011a)
57

. © (2010) Royal 

Society of Chemistry 
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possible anymore. Hence, each molecule is involved in two antiparallel strands of hydrogen 

bonds. Molecules directly connected by a hydrogen bond are tilted by 90°. These structures 

are stabilized by C-H···π interactions, as depicted in Figure 15. From this, corrugated layers of 

connected molecules result. Ray et al. denoted this structure as ‘nanostaircases’.89 

 

 

In a previous publication, we investigated similar compounds, which feature a rigid 

cyclohexane core instead of the benzene core used by Ray et al..63 Again, this rigid core 

hinders twisting of the two hydrogen bonding groups. The investigated compounds 

comprised amide (Figure 16), urea or acylurea units as hydrogen bonding groups and tert-

butyl substituents. The bisamide from this publication is used as starting point and 

comparison in this work and hence denoted as bisamide 1. 

 

 

All three compounds also self-assembled into large and thick sheets upon cooling of hot 

solutions. For the bisamide 1 and the bis-urea derivative a similar crystal packing into 

layered materials was determined by combination of powder X-ray diffraction and NMR 

Figure 16: Molecular structure of the trans-1,4-cyclohexane bisamide 1. 

A B

Figure 15: A: Nanostaircase assembly of a bisamide with amino acid methyl ester substituents. Molecules in 

this structure are connected by hydrogen bonds. Molecules connected this way feature a tilt of 90°, yielding 

the staircase structure. B: Crystal packing with C-H···π interactions stabilizing the tilt. Reprinted with permission 

from ref.(Ray et al. 2006)
89

. © (2006) Elsevier 
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crystallographic methods.63 It is discussed more in detail at the example of the bisamide 1 in 

the following. 

Figure 17 shows the packing pattern of bisamide 1 from several perspectives, based on the 

published data.63 As it is visible from Figure 17C, the crystal is made up of molecules, which 

are tilted relatively to each other along the b-axis. Viewing along the b-axis (Figure 17B), 

chains of H-bonds along the c-axis become visible. By this H-bond pattern, each molecule is 

connected to four others. Since these four are tilted in the other direction than the initial 

one, the structure is simultaneously built up in two directions by the H-bonds. In the third 

dimension, only Van der Waals interactions connect the formed layers. The resulting 

structure is schematically depicted by a stack of thin layers (A), where (B) and (C) then 

represent side views on the stacking from two directions. In the space-filling representation 

(D) it becomes clear, that the tert-butyl-substituents of adjacent layers are densely packed. 

Additionally, this representation helps to illustrate the molecules’ alternating tilt mentioned 

above.  

Guo et al. solved the crystal structure of a benzene-based bisamide, which also bears 

peripheral tert-butyl substituents. Here, the same structure is observed, although the 

authors proposed a different H-bond pattern, which implies each molecule being connected 

to only two neighboring molecules by two hydrogen bonds, respectively.64 The structure 

described is based on the stiff molecules tilting relatively to each other in both studies.63,64 

In this work, 1,4-bisamides with rigid core moiety were used to self-assemble nanosheets. 

These experiments were performed without use of any surfactants to avoid coverage of 

obtained nanosheets with these surfactants. As an alternative to self-assembly, the 

production of bisamide nanosheets via top-down approaches was also performed and 

evaluated. To learn about the influence of the molecular structure on the morphology of 

self-assembled structures, 1,4-bisamides with symmetric and asymmetric substitution were 

synthesized. Here, substituents with big differences in their chemical nature, i.e. 

fluorocarbons and hydrocarbons, were applied. Crystal structures of all utilized 1,4-

bisamides allowed comparison of their packing patterns in the solid state. 
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Figure 17: Crystal packing of compound 1. A: Model of a platelet made up from several layers. The 

arrows indicate viewing directions along b- and c-axis shown in B, C and D. Corresponding side views on 

the crystal packing along the c-axis (B) and the b-axis (C, D) are provided. In B and C, two layers are 

displayed as ball-and-stick models with H-atoms not involved in hydrogen bonds omitted for clarity. D: 

The space filling model along the b-axis shows the dense packing of the layers and illustrates the 

alternating tilting direction of the molecules, i.e. molecules’ tops slightly direct either away from or 
towards the viewer. Own representation based on published data (Schmidt et al. 2013).

63 
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3.2. Concept and selection of bisamides 

One major aim of this chapter is thickness reduction of self-assembled 2D-objects (also 

called platelets) by molecular design of the applied bisamides. In this context, two design 

approaches were pursued. The intended mechanism for thickness reduction by these 

modifications is strongly connected with the molecular packing in the solid and therefore is 

discussed alongside with it below. On the one hand, fluorine-containing groups were 

introduced. These groups were chosen, because it is well-known, that fluorocarbons feature 

weaker interactions and are more easily sheared compared to hydrocarbons.90,91 On the 

other hand, asymmetric substitution of bisamides was applied. Here, a shift to benzene-

based bisamide was made to grant easier access to asymmetrically substituted bisamides:  

The latter can be obtained in a facile synthesis via three-steps. (I) Attaching one peripheral 

substituent to 4-nitroaniline, (II) subsequent reduction of the nitro-group and, finally, (III) 

reaction with the second substituent in the form if an organic acid. As a consequence of 

these deliberations, a set of seven benzene-based bisamides, as shown in Figure 18, was 

used. The three compounds of series 3 are expected to yield thinnest platelets, as both 

approaches to thinner platelets were applied to them, i.e. fluorocarbon groups and 

asymmetric substitution. To distinct between the effects of fluorocarbons and asymmetric 

substitution, the molecules of series 4, which are symmetrically substituted by two 

perfluoroalkyl chains each, were designed. In series 3 and 4, the length of perfluorocarbon 

chains was varied to be able to detect possible additional effects arising therefrom. Finally, 

reference compound 2, symmetrically substituted with tert-butyl groups, is intended to link 

series 3 and 4 to compound 1, discussed above, and to shed light on the influence of the 

fluorocarbon chains. 
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The factor mediating between molecular structure and platelet shape is crystal packing. 

Hence, the correlation between molecular structure and crystal packing of 1,4-bisamides is 

another major question addressed in this chapter. Compound 1 demonstrates a sheet-like 

packing according to its crystal structure reported in literature.63 From its packing pattern, 

four models, as shown in Figure 19, can be derived. As bisamide 2 is only distinct from 1 by 

its aromatic core, it is supposed to from platelets with a packing pattern similar to that of 1. 

Here, the tert-butyl groups are expected to be exposed to the platelets top and bottom 

surfaces (Figure 19A). Consequently, a comparable pattern is expected for series 4, resulting 

in fluorocarbon surfaces (Figure 19D). For series 3, two different packing patterns are 

possible. On the one hand, all molecules in a layer may assemble with their fluorocarbon 

substituents pointing to one side of the layer, avoiding energetically unfavorable hydro-

carbon/fluorocarbon interfaces. This ultimately would result in every layer to feature one 

fluorocarbon and one hydrocarbon surface. The additional layers then would stack in such a 

way, that only surfaces with the same surface chemistry are in contact (Figure 19B). On the 

other hand, substituents made up of tert-butyl groups and those with linear fluorine-

containing groups may form alternating rows to counterbalance the higher spatial demands 

of the bulky tert-butyl groups. This then will lead to layers featuring surfaces with mixed 

contributions of hydrocarbon and fluorocarbon rows (Figure 19C). For these two possible 

patterns, slowed thickness growth of the platelets is expected: If a new layer is formed 

during self-assembly, this has to start with a nucleus on the surface of the existing platelet. 

Symmetric bisamides

with hydrophobic
side groups

Asymmetric bisamides with

hydrophobic and fluorophilic side

groups

Symmetric bisamides 

with fluorophilic side groups

2

3A

3B

3C

4A

4B

4C

Figure 18: Molecular structures of investigated symmetric and asymmetric 1,4-benzene bisamides with 

different hydrophobic and fluorophilic side groups. 
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Since the interaction of surfaces built of fluorinated substituents is weak91, nuclei are 

supposed to form slower, resulting in remarkably retarded thickness growth. At the same 

time, following the concept, growth of individual layers will not be slowed down 

significantly. As a result, thinner platelets with higher aspect ratio are expected to form by 

self-assembly of molecules from series 3. To test this hypothesis, the symmetric reference 

compounds are investigated parallel to the asymmetrically substituted ones.  

To the best of my knowledge, all compounds of series 3 are new, i.e. not reported in 

literature yet, although a crystal structure solution has been reported for 2.64 4B is also new, 

while 4A and 4C are known in literature, yet not in the context of self-assembly or crystal 

structure.92,93,94,95 

 

 

Besides molecular structure and crystal packing, self-assembly conditions are another 

important factor guiding the platelets’ shape. Thus, the third major topic in this chapter is 

reducing the thickness of 1,4-bisamide based platelets by adjusting self-assembly conditions 

The main process selected for this purpose is self-assembly upon cooling. For this 

investigation, bisamide 1, which is shown in Figure 16, was applied. This is due to bisamide 1, 

a 1,4-trans-cyclohexane bisamide with tert-butyl-substituents, being known to easily form 

platelets via self-assembly. In addition, its crystal structure has already been solved.63 

Moreover, it can be synthesized in amounts sufficient for comprehensive testing and 

evaluation of various self-assembly conditions. 

  

A

C

B

D

Figure 19: Possible sheet structures of symmetric (A, D) and asymmetric (B, C) bisamides. Red and green planes 

and stripes represent areas made up of tert-butyl-substituents or fluorocarbon substituents.  
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3.3.  Synthesis and thermal properties of bisamides 

The synthesis of all bisamides described here was done by the technicians Jutta Failner and 

Sandra Ganzleben under my supervision. A detailed synthesis protocol for each compound is 

provided in the experimental section. They also performed basic analytic procedures like 1H-

NMR and TGA for each compound under my supervision. Analysis and interpretation of the 

corresponding data was carried out by me. 

For the symmetrically substituted benzene bisamides 2, 4A, 4B and 4C, a facile one-step 

synthesis was selected, as it is shown schematically in Figure 20. 1,4-phenylenediamine was 

reacted with the respective acid chloride in THF as solvent. To remove HCl formed during the 

reaction, an acid scavenger like triethylamine or pyridine was added. This synthesis is similar 

to the one of the 1,4-trans-cyclohexane bisamide 1, which has been reported in literature.63 

 

 

To successfully synthesize the asymmetrically substituted bisamides 3A, 3B and 3C, three 

steps were necessary, as shown in Figure 21. In the first step, the tert-butyl-substituent was 

attached to a 4-nitroaniline core. Next, the nitro-group was reduced with H2 using palladium 

on activated charcoal as catalyst to obtain the corresponding amine group. In the third step, 

the respective fluorocarbon acid chloride was reacted with this amine group to finally obtain 

the asymmetric bisamides. 

 

Figure 20: Schematic synthesis of the symmetrically substituted benzene bisamides 2 and 4A - C 
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After synthesis, all bisamides were purified by crystallization from methanol, ethylacetate or 

THF. All bisamides were obtained as crystalline white solids in good yields, which are listed in 

Table 1. 

 

Table 1: Yields of 1,4-benzene bisamides after crystallization. For asymmetric bisamides, the relative yield takes 

only the last step of the synthesis into account. 

compound 2 3A 3B 3C 4A 4B 4C 

rel. yield [%] 77 64 20 84 94 43 81 

 

Molecular characterization and purity of all synthesized bisamides was determined by NMR 

and mass spectroscopy. The respective data for each compound are given in the 

experimental section.  

The thermal behavior of the synthesized 1,4-benzene bisamides was evaluated by means of 

TGA and DSC. This is important, as in this work self-assembly is mostly done upon cooling of 

hot bisamide solutions in this thesis. The thermal characterization is necessary to ensure the 

stability of the bisamides under these conditions, e.g. at 120 °C when using o-DCB as solvent. 

TGA curves of all applied bisamides are displayed in Figure 22. The TGA curve of the 

reference bisamide 1 is given in the experimental section. Apparently, all investigated 

bisamides are thermally stable up to at least around 210 °C. All of them show a one-step 

3A   n = 2

3B   n = 4

3C   n = 6

Figure 21: Schematic synthesis of asymmetrically substituted bisamides 3A - C. 
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mass loss from 100% to 0%, which is indicative for an evaporation of the compounds rather 

than a decomposition process. The curves of 2 and 4A feature very little kinks around 90% 

mass. Therefore, the temperature at 5% mass loss is applied as TGA temperature. These 

temperatures are provided in Table 2. The TGA of bisamide 1 reveals a one-step mass loss 

during heating with 10 K/min under N2. A weight loss of 5% is reached at 267 °C. The 

benzene bisamide 2, which comprises no fluorine, is the most stable material with 5% mass 

loss at 295 °C. All three compounds of series 3 show a mass loss of 5% at the same 

temperature, namely at 221 °C. 
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For later self-assembly experiments it is also important to know about the phase behavior, 

especially melting and crystallization temperatures, because melting during self-assembly 
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Figure 22: TGA curves of all seven investigated 1,4-benzene bisamides. Measurements were performed with a 

heating rate of 10 K/min under N2. 
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experiments may result in a system with two liquid phases. In such systems, assembly may 

occur in a phase with larger bisamide content, which is detrimental to a proper self-assembly 

investigation. Thus, the thermal transitions of the compounds were measured via DSC. The 

results are shown in Figure 23 alongside with those of the reference bisamide 1. 

The fluorine-free bisamides 1 and 2 melt above 270 °C. By contrast, all six fluorine containing 

bisamides melt between 200 and 250 °C. Upon cooling, 2 crystalizes at 265 °C, which is at a 

much higher temperature than all other bisamides investigated. Notably, bisamide 1, which 

features the same substituents, shows no sharp crystallization peak. Here, crystallization 

occurs in a broad range around 160 °C, which is scarcely visible in the cooling curve. All 

bisamides of series 3 and 4 crystallize between 190 and 220 °C.  

 

 

For comparison, Table 2 lists melting and crystallization temperatures of the compounds. 

The discrepancy between the decomposition temperatures of the TGA and the melting 

temperatures of the DSC Tm can be explained by the different procedures of the two 

methods. In particular, the DSC measurements were performed in a high-pressure pan, 

preventing the compounds from evaporation as it takes places in the TGA, where 

additionally a significant nitrogen flow of 75 mL/min is applied. In the sealed pan applied in 

DSC, the bisamides of series 3 also melt in a close temperature range from 221 to 226 °C. 

Nevertheless, their crystallization temperatures TC range from 194 to 213 °C with 3A 
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Figure 23: DSC second heating (left) and cooling (right) curves of all seven investigated benzene bisamides. 

Measurements were performed with a heating/cooling rate of 10 K/min in a sealed high-pressure pan. 
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crystallizing at the highest and 3B at the lowest temperature. So, in this series, no trend of TC 

with increasing fluorocarbon chain length is apparent. In series 4, temperature at 5% mass 

loss increases with the length of the substituent from 212 °C for 4A to 235 °C for 4C. 

Contrary to this, Tm and TC exhibit another pattern: 4B features lowest Tm and TC, while 4A 

and 4C melt and crystallize roughly at the same temperature. Most interestingly, this pattern 

with the compound bearing a fluorinated C5-chain providing lowest TC of the series is the 

same as in series 3. Yet, to prove this rule, investigation of more compounds would be 

necessary, which is beyond the scope of this work.  

 

Table 2: Thermal properties of all seven 1,4-benzene bisamides investigated. The 1,4-cyclohexane bisamide 1 is 

listed for comparison. Temperatures at 5% mass loss were taken from TGA measurements under N2. Peak 

melting (Tm) and crystallization (Tc) temperatures and melting enthalpy (ΔHm) were measured by DSC in a 

sealed pan. Tm and ΔHm were determined during second heating and Tc was measured during first heating. 

Heating and cooling rate was 10 K/min for all measurements. 

Compound M [g/mol] T5% mass loss [°C] Tm [°C] ΔHm [kJ/mol] Tc [°C] 

1 282 267 272 6.4 ~ 160 

2 276 295 281 32.5 265 

3A 388 221 226 3.8 213 

3B 488 221 226 9.8 194 

3C 588 221 221 11.0 203 

4A 500 212 225 38.9 219 

4B 700 216 215 58.7 206 

4C 900 235 228 61.6 219 

 

To sum up the results from thermal characterization, all eight investigated bisamides are 

thermally stable beyond 200 °C and do not melt upon heating in this range. Therefore, they 

all appear suitable for self-assembly upon cooling from hot solutions, at least, as long as the 

temperature of the hot solution does not exceed 200 °C. 

The thermal characterization of each individual compound is also provided in the compound 

data sheets in the experimental part. 
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3.4. Crystal structure elucidation of 1,4-bisamides 

The knowledge of the arrangement of the bisamides are in the solid state is of vital 

importance, as it may influence the morphology of nanoobjects on the mesoscale formed by 

self-assembly. All crystal structures discussed here are based on powder or single crystal X-

ray diffraction experiments. The crystal structure solutions of 1,4-benzene bisamides along 

with the respective diffraction experiments were done by Kasper van der Zwan at the 

department of Inorganic Chemistry III of the University of Bayreuth. The images displaying 

the crystal packing were made by me using the program Diamond 3.0 by Crystal Impact. 

To draw conclusions about bisamides with a still unclear crystal structure, solid state NMR 

experiments were also done by Kasper van der Zwan. The results are provided in the 

experimental section. 

Moreover, a summary of the investigated bisamides’ most important crystallographic data is 

also given in Table 14 in the experimental section. 

 

 

3.4.1. Symmetrically substituted 1,4-bisamides with tert-butyl-substituents 

The crystal structure of bisamide 1 has already been determined by combination of powder 

X-ray diffraction and NMR crystallographic methods. Figure 17 (see section 3.1) shows its 

packing pattern from several perspectives, based on the published data.63 

The crystal structure of compound 2 has already been reported in literature by Guo et al..64 

This crystal structure solution was reproduced using powder X-ray diffraction. A monoclinic 

crystal system with space group P21/c was found. The packing of 2 in the crystal is illustrated 

in Figure 24. This crystal packing of 2 is similar to the one of compound 1 presented above, 

which may be attributed to the small difference between both molecules’ structure. 

Figure 24B gives a schematic representation of the layered structure of 2. The platelet 

thickness D and layer thickness d, which will be important later on, are appointed. As it is 

visible from Figure 24C, the crystal is made up of molecules, which are tilted relative to each 

other along the b-axis. Viewing along the b-axis (Figure 24B), chains of H-bonds along the c-

axis become visible. By this H-bond pattern, each molecule is connected to four others. Since 

these four are tilted in the other direction than the initial one, the structure is 

simultaneously built up in two directions by the H-bonds. In the third dimension, only Van 
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der Waals interactions connect the formed layers. The resulting structure is schematically 

depicted by a stack of thin layers (B), where (C) and (D) then represent side views on the 

stacking from two directions. The resulting platelet features two hydrocarbon surfaces, as 

proposed before. Following the top layer in Figure 24D from left to right, the first molecule’s 

top end points away from the viewer, while the one of the second molecule points towards 

the viewer. The third one is parallel to the first one; the fourth one is parallel to the second 

one and so on. This packing pattern results in a solid consisting of layers with a thickness d of 

12,25 Å. In the space-filling representation (E) it becomes clear, that the tert-butyl-

substituents of adjacent layers are densely packed. Additionally, this representation 

illustrates the molecules’ alternating tilt mentioned above.  
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Figure 24: Crystal packing of compound 2. A: Model of a platelet made up from several layers. The arrows 

indicate viewing directions along b- and c-axis shown in C, D and E. A: Illustration of one molecule with all four 

adjacent ones, to which it is connected by one hydrogen bond each. Carbon atoms in the central molecule are 

colored black for clarity. C-E: Side views on the crystal packing along the b-axis (D, E) and the c-axis (C). In C 

and D, two layers are displayed as ball-and-stick models with H-atoms not involved in hydrogen bonds 

omitted for clarity. E: The space filling model along the b-axis shows the dense packing of the layers and 

illustrates the alternating tilting direction of the molecules: Molecules’ tops slightly direct either away from 
the viewer or towards the viewer. 
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3.4.2. Asymmetrically substituted 1,4-bisamides 

To solve the crystal structure of the asymmetric bisamides 3A and 3B single crystals were 

grown and analyzed via single crystal XRD. For the third asymmetric bisamide 3C, no suitable 

single crystals could be obtained to date. Hence, PXRD was measured and a structure 

solution from the resulting powder data was performed. For all three asymmetric bisamides, 

a monoclinic crystal system with space group P21 was determined. 

As a representative example for these asymmetric bisamides, the crystal structure of 3A is 

presented in Figure 25. Here, the arrangement of the molecules and the hydrogen bond 

pattern are similar to the ones of 1 and 2 discussed above. Again, rows of parallel molecules 

diagonal to the layer’s lateral extension are formed, which stack to layers with parallel rows 

via H-bonds. The striking difference to the aforementioned structures is due to the 

asymmetric substitution of 3A: Within one row, all the molecules’ fluorocarbon groups point 

into the same direction, i.e. up or down. In the two neighboring rows, they are orientated in 

the opposite way. If, for example, when viewing along the a-axis (Figure 25C), all fluoro-

carbon substituents in the first row point to the bottom right, then, in the second row, they 

point to the top right. In row three, the structure of row one is repeated and so on. As a 

result, each layer’s surface is made up from alternating rows with hydrocarbon or 

fluorocarbon character, as Figure 25B schematically shows. Since the hydrocarbon rows are 

formed by tert-butyl groups, which are shorter than n-undecafluoropentyl groups, these 

rows’ level is deeper than the level of the fluorocarbon rows, causing a corrugated surface 

pattern of each layer. In the platelet, neighboring layers assemble in such a way, that each 

fluorocarbon row of one layer is covered by a hydrocarbon row of the other layer and vice 

versa. This ensures close packing in the solid state. Nevertheless, as n-undecafluoropentyl 

groups are sterically less demanding than tert-butyl groups, still very small voids exist 

between two layers, which can be seen from the space-filling representation in Figure 25E. 

This ordering into alternating rows may be attributed to the different spatial demands of 

both substituents: If the more bulky tert-butyl groups were on the same side of a platelet 

and, at the same time, the distance between the cores was kept constant to keep the 

energetically favorable short H-bonds, a sphere would be the resulting morphology, as it is 

well-known in micelle formation of surfactants.96 In such a situation, the molecule can be 

imagined as a 2D-wedge. When all wedges’ tips point in one direction, close packing results 

in a circle, whereas alternating tip orientation gives a straight line of wedges. So, 3A exhibits 
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the packing pattern suggested in Figure 19C, whereas the model with layers featuring pure 

hydrocarbon and fluorocarbon surfaces (Figure 19B) has been refuted. From the packing 

pattern of 3A thinner platelets should emerge upon self-assembly than from the structure of 

2. This expectation is based on the fact that in the structure found all the layer-to-layer 

contact planes are between hydro- and fluorocarbons, which show weaker interactions than 

two hydrocarbons.91 

Structure solution of the remaining two asymmetric bisamides was possible from single 

crystal diffraction data (3B) or from powder diffraction data (3C). Both data sets show that 

these two bisamides exhibit the same crystal packing pattern as 3A. Therefore, the hydrogen 

bonding pattern and schematic representation presented in Figure 25 are also valid for 3B 

and 3C. The layer thickness d derived from the respective crystal structure was found to be 

15.36 Å for 3A, 18.56 Å for 3B and 20.68 Å for 3C. 

To provide further evidence of the similarity of crystal packing patterns in series 3, solid 

state NMR spectroscopy was performed. The results, which are shown in the experimental 

section, also support results of XRD with respect to the crystal packing of these compounds. 
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Figure 25: Crystal packing of compound 3A. A: Model of a platelet made up from several layers. The arrows 

indicate viewing directions along a- and b-axis shown in C, D and E. B: Illustration of one molecule with all four 

adjacent ones, to which it is connected by one hydrogen bond each. Carbon atoms in the central molecule are 

colored black for clarity. Side views on the crystal packing along the b-axis (C) and the a-axis (D and E) are 

provided. In C and D, two layers are displayed as ball-and-stick models with H-atoms not involved in hydrogen 

bonds omitted for clarity. E: The space filling model along the a-axis shows that small voids exist between the 

tert-butyl-groups of neighboring layers and illustrates the alternating tilting direction of the molecules, i.e. 

molecules’ tops slightly direct either away from or towards the viewer. 
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3.4.3. Symmetrically substituted 1,4-bisamides with fluorocarbon substituents 

For the crystal structure solution of 4A, single crystals were grown and analyzed via single 

crystal XRD. However, no suitable single crystals could be obtained for both other bisamides 

symmetrically substituted with fluorocarbon substituents. Hence, PXRD was measured and 

evaluated. For 4B, the structure was successfully solved this way, whereas for 4C only cell 

parameters could be determined via PXRD until now. 

As an example for these symmetric bisamides with fluorocarbon substituents, the crystal 

structure of 3A is presented in Figure 26. This crystal packing of 4A significantly differs from 

the other packing patterns: Viewing along the a-axis, i.e. along the hydrogen bonds, all 

molecules in the crystal are oriented parallel to each other. Each row made up from these 

parallel molecules is connected by two antiparallel hydrogen bond strands. The space-filling 

model in Figure 26E demonstrates that no voids of significant size exist between the 

individual layers in this structure. All in all, the structure found for 4A follows the scheme 

initially expected for this compound. Yet, in this structure, molecules are only connected by 

hydrogen bonds in one direction (along the a-axis) within each layer. Perpendicular to that 

(along the b-axis), only van der Waals interactions are present. In consequence, the layers 

are bound more stable in one direction than in the other. This finding also implies different 

growth rates along the lateral extensions of the platelets, with much faster growth along the 

hydrogen bonds due to stronger binding in that direction, which should result in elongated 

platelets.  

Considering all crystal structures shown, it appears that the bulky tert-butyl group directs 

assembly of bisamides into a structure with crossed molecules as found for 1, 2 and 3A to 

3C. If no bulky substituents are present, as for 4A, a parallel assembly of all molecules 

occurs, as seen in Figure 26. 

The general packing pattern motif of 4A has also been found for 4B. Both compounds 

crystalize in a triclinic crystal system with space group P1̅. The layer thickness d is 16.02 Å for 

4A and 21.10 Å for 4B. A transfer of these results to the third bisamide in series 4, 4C, cannot 

easily be made, because no full crystal structure solution was possible for that compound 

yet. Nevertheless, the indication of a unit cell was successful, indicating a monoclinic crystal 

system with space group P2. 
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As described before, NMR crystallography was also applied to the symmetric 1,4-benzene 

bisamides 4A – C supporting the results of the XRD evaluation (see experimental section). By 

contrast, the crystal structure of 4C, which has not been solved yet, appears to be distinct, as 

it features two different positions for the molecules in the solid-state NMR measurements.  

The finding of the packing of 4C to be distinct also reflects in the cell parameters presented 

in Table 14 in the experimental section (6.5.): For 4C, the length of the a-axis is approxi-

mately doubled, compared to 4A and 4B. This is attributed to two molecules being included 

in one cell of 4C along this axis instead of one, as for 4A and 4B. By contrast, the length of 

the second short axis, which is the b-axis for 4A and 4B and the c-axis for 4C, is comparable. 

The third axis performs a noteworthy length growth from around 16.1 nm for 4A to around 

21.2 nm for 4B and to around 27.0 nm for 4C. This correlates very well with the increase in 

chain length between these molecules when assuming all-trans configurations for the stiff 
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Figure 26: Crystal packing of compound 4A. A: Model of a platelet made up from several layers. The arrows 

indicate viewing directions along a- and b-axis shown in B, C and D. Side views on the crystal packing along the 

a-axis (C, D) and the b-axis (B) are provided. In B and C, two layers are displayed as ball-and-stick models with 

H-atoms not involved in hydrogen bonds omitted for clarity. D: The space filling model along the a-axis shows 

the dense packing of the layers. 
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fluorocarbon chains. Thus, it points to a similar orientation of all three compounds in their 

unit cells. Based on these findings, it is concluded that all three molecules pack in an overall 

similar way, though 4C shows some differences compared to the others, as discussed above. 

As the precise orientation of the molecules is unknown, no value for d can be derived for 4C. 

Another method to gain insight into the solid-state structure of bisamides is infrared (IR) 

spectroscopy, as it provides information about hydrogen bonds, which are the main force for 

the assembly of bisamides in the solid state. In this context, absorption bands of the amide 

groups are of interest, in particular the N-H stretching vibration around 3300 cm-1 and the 

C=O stretching vibration in the area between 1700 and 1650 cm-1 (Amide I).97 The strength 

of the hydrogen bond can be deduced from the N-H stretching vibration band, as it has been 

shown for 1,3,5-benzene trisamides98: Stronger hydrogen bonds weaken the N-H bond. This 

weaker covalent bond features lower activation energy and hence the associated band is 

shifted to lower wavenumbers.98 

FTIR spectra of all seven 1,4-benzene bisamides were recorded and are presented in Figure 

27. Bisamide 2 exhibits a N-H stretching vibration band at 3295 cm-1, which is the lowest 

wavenumber of all seven compounds and, therefore, 2 is concluded to show the strongest 

hydrogen bonds. All molecules of series 3 provide a vibration band at 3365 cm-1. This high 

wavenumber indicates that hydrogen bonds are relatively weak in solids of these 

compounds. Compounds of series 4 show bands at different wavenumbers, i.e. at 3305 cm-1 

for 4A, at 3313 cm-1 for 4B and at 3317 cm-1 for 4C. Hence, it is concluded, that the hydrogen 

bond is slightly weakened with increasing length of the fluorocarbon chain within this series. 

Nevertheless, the strength of hydrogen bonding of series 4 still is between the ones of 

compound 2 and series 3. The weaker hydrogen bonding observed in the IR spectra of series 

3 is in accordance with the behavior in solubility tests, where compounds of series 3 are 

dissolved more easily than the other bisamides. A remarkable finding of the FTIR spectra is, 

that molecules of the asymmetric series 3 just seem to form only hydrogen bonds with a 

similar energetic level in the solid state, as indicated by the single N-H stretching vibration. 

This matches the solid state structure of series 3 (illustrated in Figure 25 at the example of 

3A) very well, where only H-bonds between substituents of different nature are formed. In 

the hypothetic case of asymmetric bisamides forming layers with all fluorocarbon 

substituents pointing to one side and all tert-butyl-substituents pointing to the other side 

(Figure 19B), two different N-H stretching vibrations would be expected: One for hydrogen 
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bonds between fluorocarbon substituents and another one for those between tert-butyl-

substituents. Thus, the finding of just one kind of hydrogen bonds for asymmetric bisamides 

in IR supports the crystal structures found and leads to the rejection of the suggested 

packing pattern with pure fluorocarbon and pure tert-butyl surfaces (Figure 19C). 

The position of the C=O stretching vibration bands reflects the chemical nature of the 

respective substituent, which is in direct vicinity to the amide C=O group. For bisamide 2, 

this band is located at 1650 cm-1, which is the lowest value of all seven compounds. The 

three compounds of series 4, which also are symmetrically substituted, provide one band at 

1695 cm-1. As expected, all compounds of series 3, which bear two different substituents, 

accordingly feature two bands at 1700 and 1665 cm-1. The one with lower wavenumber is 

roughly at the position found for bisamide 2 and therefore is attributed to the tert-butyl 

substituted C=O groups. The C=O stretching vibrations of series 3 at higher wavenumbers 

are at the same position as the ones of series 4 and hence are attributed to the C=O groups 

with fluorocarbon substituents.  
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Figure 27: FTIR spectra of all seven investigated benzene bisamides in the solid state. For orientation, guiding 

lines mark N-H (blue) and C=O (red; Amide I) stretching vibration bands of fluorine containing bisamides. 
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3.5. Self-assembly to 2D-nanoobjects 

3.5.1. Procedures for self-assembly at the example of a cyclohexane bisamide. 

The bisamide platelets known up to now, which were e.g. used for crystal structure analysis, 

feature thicknesses d in the range of hundreds of nanometers. The aim of this section is to 

demonstrate the ability of bisamide compounds to form supramolecular nano-structures 

featuring thicknesses below 100 nm. Therefore, suitable preparation routes have to be 

developed and evaluated. In preliminary experiments, grinding with mortar and pestle and 

ultrasonic treatment were tested as top-down approaches. Both methods did not yield well-

defined supramolecular nano-platelets. Hence, bottom-up approaches based on self-

assembly are exclusively applied here. In this context, the influence of processing conditions 

was investigated to gain a deeper understanding of the nano-platelet formation and to be 

able to control the dimensions of the formed nanoobjects. The trans-1,4-cyclohexane 

bisamide 1 was chosen as model compound for these experiments, since it was already 

known to form stable 2D-objects.63 

To initiate self-assembly of bisamide 1 from solution, there are different triggers such as 

increasing the concentration by evaporation of solvent, addition of a non-solvent to the 

solution, and decreasing the solution’s temperature. In the following, self-assembly is 

predominantly done by cooling hot bisamide solutions, since this method is highly 

reproducible. As a second method, addition of non-solvent was used. By contrast, self-

assembly upon solvent evaporation requires precise control over several parameters 

governing the evaporation rate during the whole experiment, which is hard to achieve. In 

addition, solvent evaporation occurs exclusively at the liquid’s surface, adding additional 

surface phenomena to the self-assembly process. Consequently, this method was not 

applied in this work to have self-assembly influenced by as few factors as possible and to 

achieve the highest possible reproducibility. 

The surface energy difference between material and medium is the most important factor, 

when trying to produce thin platelets. To find good solvents for the self-assembly into thin 

platelets, surface energies of the bisamides must be known. The surface energy of many 

media is reported in literature, yet for most solids like e.g. bisamide 1 it has to be 

determined. A common method to achieve this is contact angle measurement with different 

media on the surface of the solid sample. As single platelets of 1 are by far too small for this 

method, tablets of 1 with a diameter of 12 mm were pressed. Due to the fact, that the top 
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𝜎𝐿(1+cos 𝜃)

2 𝜎𝐿𝑑 = √𝜎𝑠𝑃 ∙  𝜎𝐿𝑃 𝜎𝐿𝐷 + 𝜎𝑆𝑑  

 

       𝑦        =   𝑚   ∙    𝑥   +    𝑡 

area of platelets is much bigger than the side ones, it is assumed, that the tablet’s surface is 

dominated by such top areas. Therefore, surface energies determined on top of the tablets 

are assumed comparable to the ones of the top surface of bisamide stacks. 

Contact angle measurements using only one test liquid are often uncertain. Hence, the 

method following Owens, Wendt, Rabel und Kaelble (OWRK-method), which uses contact 

angles of several liquids, is applied to calculate the surface energy here. The OWRK-method 

uses the total surface tension of each test liquid σL alongside with its both components, i.e. 

polar and disperse contributions σP

L
 and σD

L
 to calculate the polar and the disperse contribut-

ion to the sample’s surface energy, σP

S
 and σD

S
, from the measured contact angle ϴ for each 

liquid. These variables are brought in the form of a linear equation, as equation 2 shows.99 

 

 

Surface energy contributions for each solvent can be found in literature (see Table 11 in the 

experimental section) and the determined contact angles are presented on the left side of 

Figure 28. Plotting these data in the form indicated by equation 2, a straight line can be 

fitted to the data, as shown on the right side of Figure 28. Slope m and intercept t of this line 

finally yield the polar and the disperse part of the sample’s surface energy. For bisamide 1, 

the polar contribution σP

S
 is 0.5 ± 0.7 mJ/m2 and the disperse one is 31.3 ± 2.9 mJ/m2, 

resulting in a total surface energy of approximately 32 mJ/m2. The small value of the polar 

contribution supports the assumption, that the non-polar top and bottom surfaces of the 

bisamide platelets dominate the surface of the tablet. If the side surfaces of the nano-

platelets were predominant, a bigger polar contribution would be expected due to the 

amide groups on these surfaces. 
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Medium θ [°] 

Water 78.9 ± 5.5 

Formamide 77.8 ± 1.4 

Glycerol 75.7 ± 3.9 

Ethylene glycol 69.2 ± 1.8 

Diiodo-methane 55.1 ± 1.8 

Aniline 51.2 ± 1.3 

 

Figure 28: Left: Contact angles ϴ of bisamide 1 measured by the sessile drop method with six different test 

liquids. Averages and standard deviations for each test liquid are based on at least five measurements each. 

Right: OWRK-plot for bisamide 1. Literature values of the liquids are plotted on the x-axis, while the y-axis is 

determined by liquid literature values as well as by the determined contact angles ϴ. The solid line represents a 

linear fit of all six data points. 

 

Generally, the self-assembly process should be exothermic. Therefore, DSC-measurements in 

solution were performed. Since the soluble amount of bisamide in the solvent is typically low 

(e.g. 500 ppm), a very small signal is expected, which makes the use of a very sensitive so-

called µ-DSC necessary. As solvent, o-dichlorobenzene (o-DCB), which is the most frequently 

applied solvent for self-assembly in this chapter, was used. For the measurement, the 

sample cell was filled with the dispersion at ambient temperature and the reference cell was 

filled with a comparable amount of pure o-DCB. Both cells were heated to 110 °C, shortly 

kept at this temperature to make sure that the bisamide is completely dissolved and then 

cooled with cooling rates of 0.1, 0.5 or 1.0 K/min. The cooling curves recorded this way are 

presented in Figure 29. In all heating curves no dissolution peaks were observed, hence 

these curves are not shown here. All cooling curves with exception of the second cooling 

curve at 1 K/min show a weak exothermic peak, which is attributed to self-assembly of the 

bisamide. In the first cooling curves, the peak is shifted to lower temperatures with 

increasing cooling temperature. Since supersaturation must occur at the same temperature 

for the same solution from a thermodynamic point of view, this shift must stem from a 

kinetic hindrance. This means, that supercooling of the solution is increased at higher 

cooling rates. So, the cooling rate will most likely influence self-assembly of bisamide 1. On 
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the contrary, both second cooling curves featuring exothermic signals show their peaks 

approximately at the same temperature.  

 

 

In a next step, the influence of various solvents as media on this process was tested. Several 

solvents were pre-selected for this study with respect to the requirements of self-assembly 

experiments: The solvent should feature a melting point clearly below ambient temperature, 

to allow cooling to low temperatures without freezing the solvent. Furthermore, the boiling 

point must be high enough to allow dissolution of the bisamide at high temperatures. More-

over, the liquid must feature a certain vapor pressure at ambient temperature to enable 

drying of samples under vacuum. Finally, at high temperatures (below the boiling point), a 

sufficient amount of bisamide must be soluble. Here, a minimum solubility of 50 ppm was 

selected. Table 3 lists solvents meeting these requirements alongside with selected 

properties. Solubility tests were conducted in all of these solvents. Some solvents show a 

very high solubility of bisamide 1 even at low temperature, which is in the following referred 

to as residual solubility. This is undesirable, since substance remaining in solution after 

cooling will self-assemble upon solvent evaporation during later SEM sample preparation, 

which is be a process different from the desired self-assembly upon cooling. Thus, solvents 

featuring a high residual solubility like e.g. chloroform were discarded. Hence, six solvents, 

namely toluene, anisole, o-DCB, cyclohexanone, 1,4-dioxane and 1-heptanol, which exhibit 
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Figure 29: Cooling curves of 500 ppm of compound 1 in o-DCB measured via µ-DSC. Measurements were 

conducted with cooling rates of 1 K/min, 0.5 K/min, 0.1 K/min. Black lines indicate the first cooling, red lines 

indicate the second cooling of the sample. 
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surface energies in the same region as the bisamide (approx. 32 mJ/m2) were selected. 

Subsequently, bisamide solutions were prepared in these solvents by heating the dispersions. 

Details on the preparation of bisamide solutions are given in the experimental section. Self-

assembly experiments were performed by cooling the hot solutions to room temperature.  

 

Table 3: Selected properties of solvents applied for self-assembly experiments with compound 1. Values are 

sorted by increasing surface energy and are determined at 25 °C, if not stated otherwise.100,101,102 

Medium 
Surface energy 

[mJ/m2] 
Freezing point 

[°C] 
Boiling point 

[°C] 
Viscosity 

[mPa*s] 

Ethanol 22.0 -114.1 78.4 1.074 

Butanone 24.0 -86.7 79.9 0.405 

1-Pentanol 25.4 -77.6 138.9 3.619 

Chloroform 26.7 -63.5 61.3 0.537 

THF 26.9 -108.5 65.9 0.456 

Toluene 27.9 -95.0 110.6 0.560 

Acetonitrile 28.7 -43.8 81.7 0.369 

1-Heptanol 32.0 -34.0 174.9 5.810 

Chlorobenzene 32.9 -45.2 132.0 0.753 

1,4-Dioxane 32.9 11.8 101.2 1.177 

Cyclohexanone 34.4 -31.15 154.9 2.017 

Anisole 35.0 -4.4 153.6 1.056 

Benzyl alcohol 36.8 -15.3 204.9 5.474 

o-Dichlorbenzene 38.1 -17.0 180.6 1.324 

1,2,4-Trichlorobenzene 40.6 17.0 213.6 2.08 [20 °C] 
 

Figure 30 shows supramolecular structures formed by bisamide 1 upon cooling in the six 

different solvents. For these experiments, the bisamide concentration was adapted to the 

solubility in the respective solvent. Bisamide 1 forms platelets in all six solvents. For toluene 

and anisole, the large platelets formed look quite similar: They measure more than 20 µm 

across and predominantly exhibit regular, straight edges. Also, o-DCB yields single platelets, 

althought with less regular edges. Upon self-assembly in cyclohexanone, a thin layer rather 

than distinct platelets is formed. This indicates that assembly may occur during drying of the 

sample, which means that the residual solubility in this solvent still is too high. In 1,4-

dioxane, platelets with wavy edges are formed, which also feature a rough, wavy surface. 
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The platelets formed in 1-heptanol again feature straight edges, but seem to be quite thick. 

Besides the defined shape of the platelets, o-DCB was chosen for further experiments due to 

its superior combination of properties, namely low melting point, high boiling point, high 

bisamide solubility (more than 1000 ppm at 120 °C) and low residual solubility. 
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Figure 30: SEM images of structures formed by self-assembly of bisamide 1 in various solvents upon cooling. 

Concentrations were adapted to the solubility in each hot solvent: A: 200 ppm in toluene, B: 200 ppm in 

anisole, C: 1000 ppm in o-DCB, D: 500 ppm in cyclohexanone, E: 1000 ppm in 1,4-dioxane and F: 500 ppm in 1-

heptanol. 
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The second factor influencing self-assembly is the cooling rate. In general, smaller and 

thinner platelets are expected at higher cooling rates. In µ-DSC experiments, no cooling rates 

of more than 1 K/min are possible. Therefore, other setups were used, which allow higher 

cooling rates and at the same time allow processing of several milliliters of solution in one 

single experiment. The latter is important, since, due to the low bisamide concentrations 

used, smaller samples increase the concentration error, when preparing the different 

solutions. The use of 4 mL-glass vials with screw cap turned out to meet these requirements. 

For each experiment, 2.5 mL of the respective bisamide dispersion were placed in a vial. The 

vial was screwed tightly and placed in a heated metal block, which could be moved by a 

shaker, and the bisamide was dissolved upon heating. Subsequently, different cooling rates 

were achieved by applying six different methods: I) Allowing the hot solution in the vial to 

cool in the shaker’s metal block. II-IV) Shaking the vial in in three different cooling baths, 

which feature different temperatures, respectively. V) Dropping the hot solution into a 

water/ice bath. VI) Dropping the hot solution onto a nitrogen-cooled wafer. All six applied 

methods are discussed in the following. 

The first four methods of cooling the hot solutions, i.e. switching off both heating and the 

shaker and leaving the vial to cool in the metal block or shaking the vial in different cooling 

baths are shown in Figure 31. For self-assembly by cooling in the shaker (method I), heater 

and shaker were simply turned off and the respective hot solution remained in the hot metal 

shaker block until block and sample reached ambient temperature. For self-assembly by 

immersion of the hot sample vial in three different cooling baths (methods II-IV) the hot vial 

containing the sample was vigorously shaken in the respective cooling bath by hand for one 

minute and subsequently stirred with a magnet stirrer for 5 min vigorously. Cooling baths 

were prepared by either mixing water and ice or letting enough dry ice sublime from an 

ethanol bath to reach the bath temperature of 20, 0 or -60 °C, respectively. 
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During these processes, the temperature of the sample liquid can be monitored with a 

thermocouple, which is introduced into the vial through a septum and a hole in the screw 

cap. By use of ethanol or ethanol in combination with dry ice, different cooling bath 

temperatures were adjusted. Variation of cooling bath temperature (20, 0 and -60 °C) results 

in different cooling rates, as shown in Figure 32. For comparison, also profiles for cooling in 

the shaker’s metal block and in a water/ice bath are displayed. The temperature profile for 

the sample remaining in the shaker exhibits a very flat decline of temperature. E.g., a 

temperature of 40 °C is only reached after more than 50 min (3000 s). The use of cooling 

baths drastically accelerates the cooling process: All samples cooled in baths exhibit cooling 

rates in the range between 7 and 12 K/min above 80 °C. At lower temperatures, the bath 

temperature becomes increasingly relevant. In contrast to the experiments in the µ-DSC, 

whereby self-assembly only took place between 30 and 40 °C at cooling rates up to 1 K/min, 

, self-assembly is assumed in this case to take place between 20 and 30 °C due to the higher 

cooling rates. Therefore, to estimate the cooling rate during self-assembly, the slopes of the 

cooling curves in the area around 25 °C are compared. Using a cooling bath at 20 °C, a 

relatively low cooling rate around 20 K/min is reached, which is nevertheless still 200 times 

higher than the highest one in the µ-DSC. The use of a 20 °C colder ethanol/dry ice bath 

(T = 0 °C) significantly raises the cooling rate to the region of 110 K/min. If a water/ice bath is 

used instead, approximately 140 K/min are reached. Yet, the curves for both cooling bath 

compositions at 0 °C feature a similar shape, which means that the lower heat capacity and 

slightly higher viscosity of ethanol compared to water103 does not play a major role. Using an 

ethanol/dry ice bath with a temperature of -60 °C, a cooling rate around 330 K/min is 

measured between 20 and 30 °C.  

method I: heated shaker methods II - IV: cooling bath

sample in vial

thermocouple

II ethanol bath

III water/ice bath

IV ethanol/dry ice bath

Figure 31: Schematic representation of the setup for the measurement of temperature profiles. After heating 

to 120 °C (in the case of o-DCB) under shaking the vials are immersed in the cooling bath. The temperature of 

the sample liquid is determined by a thermocouple. 
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With this setup comprising a 4 mL glass vial and a cooling bath, it is hard to achieve higher 

cooling rates. Thus, two other procedures for extreme cooling speeds were developed. This 

was achieved by improving the heat transfer with setups featuring a higher surface per 

volume of the solution. In addition, the omission of a container wall between cooling 

medium and sample will further accelerate the heat transfer and thus increase the cooling 

rate.103 These considerations led to simply dropping of the hot solution into or onto the 

cooling medium. An ice bath or a wafer cooled by liquid nitrogen were chosen as cooling 

media. Both setups are schematically shown in Figure 33. 

On the left side, dropping into a water/ice bath (method V) is illustrated. For the handling of 

the 120 °C hot solution, a preheated glass pipette was used. Some drops of the solution 

were carefully dropped into an ice bath without any stirring. Doing so, the pipette’s tip had 

to be immersed into the bath to avoid swimming of the drops on the surface due to the 

water’s surface tension. As o-DCB features higher density than water, the released drops 

sink to the bottom of the bath, where they form an organic phase. Subsequently, this phase 

containing the nanoobjects is collected for further investigation.  

In the case of method VI, a wafer piece (approx. 1*1 cm) was placed on a solid steel block, 

which in turn was surrounded by liquid nitrogen in an insulation dish (Figure 33). The 

nitrogen is used to exclusively cool the steel block. In contrast to method V, method VI is 

0 20 40 60 80

0

20

40

60

80

100

120
T

 [
°C

]

t [s]

0 2000 4000 6000 8000 10000 12000

0

20

40

60

80

100

120

T
 [
°C

]

t [s]

Figure 32: Temperature profiles of vials filled with o-DCB. Cooling was done by keeping the sample in the 

shaker (black) and by shaking in an ethanol bath at 20 °C (red), in an ice bath (green), in an ethanol/dry ice bath 

at 0 °C (blue) and in an ethanol/dry ice bath at -60 °C (magenta). The left side shows all profiles during the first 

120 s, while the right side shows the whole profile for the slow cooling in the shaker. 
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preferable, since it avoids the so called Leidenfrost effect: If a mass is placed in contact with 

a liquid and the temperature of the mass is far above the liquid’s boiling point, the liquid will 

boil and the formed vapor will thermally insulate mass and liquid. Hence, the transport of 

thermal energy into the liquid will decrease drastically.103 To rule out issues related to the 

Leidenfrost effect, the sample was dropped into the wafer, wafer and block remained in the 

liquid nitrogen for at least 5 min to allow them cooling to liquid nitrogen temperature 

despite the slower cooling. Subsequently, 2 – 3 drops of the hot solution were dropped onto 

the wafer with a preheated glass pipette. When the sample was dropped on the wafer, the 

drop froze almost immediately. Next, block and wafer were moved into a desiccator and 

high vacuum was applied to remove the frozen solvent. 

 

 

Freezing means, that the sample is at least cooled to the melting point of o-DCB, which is at  

-17 °C100. Taking a time of approximately 1 s for freezing of the formerly 120 °C hot solution, 

a cooling rate of at least 137 K/s, which equals 8220 K/min, was achieved. This value is just a 

rough estimate, as the time until freezing is not determined precisely. The main reason for 

this is that a testing probe in contact with the small drop volume would most likely alter the 

results significantly. Moreover, the cooling rate is likely to vary within the sample drop, since 

the lower layers insulate the upper ones from the wafer and thus lower their cooling rate.  

The methods described cover a wide range of cooling rates from below one to several 

thousands of K/min in the relevant temperature range for self-assembly of bisamide 1 in o-

DCB. These methods were applied in the self-assembly process. The resulting nano-platelets 

ice bath

hot pipette

hot bisamide

solution

hot pipette

hot bisamide solutionsteel

block
silicon wafer

liquid 

nitrogen

method V: dropping into ice bath method VI: dropping onto cooled wafer

Figure 33: Schematic representation of sample cooling by dropping into an ice bath (left) or onto a silicon wafer 

cooled by liquid nitrogen (right). The hot (120 °C in the case of o-DCB) solution is carefully dropped into the ice 

bath or onto the wafer, respectively, with a preheated pipette. Drops of dispersion in o-DCB sink in water, 

forming a liquid phase at the ground of the ice bath. 
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were investigated in the SEM and resulting micrographs are shown in Figure 34. Upon self-

assembly, bisamide 1 forms nano-platelets for all cooling rates applied. When cooling the 

solution slowly in the metal block of the shaker, large platelets with lateral dimensions in the 

range of tens of micrometers are formed. They feature smooth edges and regular shape and 

appear quite thick. When increasing the cooling rate by use of an ethanol/dry ice bath at 

20 °C, significant smaller platelets with less regular shape, which appear much thinner, form. 

Further acceleration of cooling by a bath temperature of 0 or -60 °C enhances this effect, i.e. 

platelet size decreases with increasing cooling rate. This is in agreement with classical 

nucleation theory, according to which nucleation of new objects competes with the growth 

of existing ones. Stronger and faster supersaturation boosts nucleation and thus results in 

the formation of more and smaller objects.104 Surprisingly, when the hot solution was 

dropped into an ice bath, larger platelets formed, despite the higher cooling rate expected 

for this experiment, as discussed above. Self-assembly under extreme cooling rates achieved 

by dropping onto a wafer at liquid nitrogen temperature surprisingly yields thick platelets 

with lateral dimensions of tens of micrometers, which exhibit either smooth or jagged edges. 

As described above, for cooling rates as high as the ones achieved by this setup, extremely 

small and thin platelets were expected. Yet, the precise process, which leads to such big 

objects at this extreme cooling rate, remains unclear. Since the gained platelets are far from 

the desired shape anyway, this cooling process is not relevant for this work any further and 

therefore was not investigated more in detail. 

  



Supramolecular 2D-nanoobjects via self-assembly 

64 

 

Summarizing, the cooling rate was found to affect the dimensions of formed platelets to a 

great extent. For the experiments in which cooling was done in a vial, a clear trend towards 

smaller objects with higher cooling rate was observed. When the cooling was done by 

dropping in a cold liquid or onto a cold solid, this trend was not continued, and again larger 

objects were obtained despite further increase of cooling rate. Therefore, for the 

method V
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method I, < 0.5 K/min method II (20  C), 20 K/min

method III (0  C), 110 K/min method III (-60  C), 330 K/min

method VI 

Figure 34: SEM images of structures formed by self-assembly of bisamide 1 upon cooling with different cooling 

rates. Vials containing the hot solutions were cooled at ambient conditions in the shaker (A) or in ethanol/dry 

ice baths at 20 °C (B), 0 °C (C) and -60 °C (D). Further, hot solutions were dropped into an ice/water bath (E) or 

onto a silicon wafer cooled with liquid nitrogen (F). Cooling rates for the latter two methods can only be 

estimated and hence are not given here. Solutions consisted of 500 ppm of bisamide 1 in o-DCB. 
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investigation of platelet thickness, the most promising samples, i.e. the ones from cooling 

baths at 0 and 60 °C were selected. For comparison, a sample prepared by dropping into an 

ice bath, was also investigated.  

Up to now, only the lateral dimensions of the platelets formed have been investigated, since 

they are easily accessible via SEM. With all platelets lying flat due to their high aspect ratio, 

their thickness cannot be measured looking from the top, as it is done in SEM. To investigate 

platelet thickness despite that, AFM was applied. Figure 35 exemplarily shows results from a 

measurement done with the purpose of gaining information about the thickness of platelets. 

On the left side, an AFM height image of a sample self-assembled by cooling in an 

ethanol/dry ice bath at -60 °C is shown. Big agglomerates as well as single platelets are 

visible in the image. For thickness measurements, only the isolated single platelets are used 

to avoid accidental measurement of several platelets stacked together. For each platelet, a 

cross-section along the scanning direction of the AFM was measured. In the example 

presented, three of these cross-sections are marked with colored lines. On the right, the 

height profile along each of these lines is displayed. Platelet heights measured from the 

profiles are illustrated with arrows. 

 

 

For each sample, several SEM images were evaluated to get at least 12 platelets’ heights per 

sample. Table 4 lists average thicknesses for the samples cooled with a bath at 0 or -60 °C 

and for the one prepared by dropping into an ice bath. 
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Figure 35: Measurement of platelet thickness at the example of bisamide 1 in o-DCB cooled with an 

ethanol/dry ice bath at -60 °C. On the left an AFM image with three cross-sections marked by colored lines is 

shown. Corresponding height profiles are displayed on the right. Arrows mark measured platelet heights. 
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From both cooling bath experiments (methods II and III), nano-platelets with average 

thicknesses below 50 nm are obtained. Using a bath at 0 °C, 48 nm are achieved. With the 

layer thickness d of 1.4 nm, which has been determined via XRD, as described above, this 

thickness equals a stack of 34 layers. Faster cooling with a bath at -60 °C results in a 

thickness of 38 nm, which equals 27 layers. Dropping into an ice bath (method 5) results in 

significantly thicker platelets, as it has already been suggested by the SEM pictures discussed 

above. Here, the average platelet thickness is 119 nm (85 layers), which is more than twice 

as thick as the platelets from cooling baths. 

 

Table 4: Platelet thickness as determined via AFM for 500 ppm solutions of bisamide 1 in o-DCB cooled with an 

ice bath, an ethanol/dry ice bath at -60 °C and after dropping the solution into an ice bath. 

Sample 
average thickness 

[nm] 
standard deviation 

[nm]  
number of 

measurements 

Method II (0 °C bath) 48 17 15 

Method III (-60 °C bath) 38 7 18 

Method V (dropping 
into 0 °C bath) 119 53 12 

 

In all subsequent experiments, method II (water/ice bath) was used, as it is easy to 

reproduce and to handle. Moreover, it gives similar results as the -60 °C bath, which is more 

difficult in terms of handling and reproducibility. 

 

The concentration of bisamide 1 in the hot solution is also known to influence the 

dimensions of self-assembled nano-platelets from preliminary experiments. There are two 

adversary effects expected to cause this influence: On the one hand, an increase in 

concentration shifts self-assembly to higher temperatures. There, the cooling rate is higher 

(see Figure 32) and therefore smaller platelets are expected to be formed due to a resulting 

increase of nucleation density, as discussed above. This effect has already been published for 

another self-assembly system.66 On the other hand, an increase in concentration means 

more bisamide per volume, i.e. more material per nucleus, if the nucleation density remains 

unchanged. This should result in larger platelets. To elucidate the effect of concentration, 

samples comprising 1000, 500 and 50 ppm of bisamide 1 in o-DCB were prepared. Cooling 

was done by shaking of the vial containing the 120 °C hot solution in an ice bath. Figure 36 
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shows SEM micrographs of nano-platelets resulting from these experiments. Apparently, 

self-assembly from all three investigated solutions results in thin platelets. From the 50 ppm 

solution, regularly shaped rhombi are formed, whereas the 500 ppm solution yields a less 

defined platelet shape. At 1000 ppm, a mixture of small regular shaped platelets and bigger 

and less regular ones is found. The platelet size decreases with the concentration, yet the 

samples with 500 and 1000 ppm of bisamide 1 feature a broad platelet size distribution. The 

increase of platelet size with raised concentration indicates that increased nucleation 

density due to higher supersaturation caused by a shift of self-assembly temperature 

towards higher temperatures, as discussed above, does not play a dominant role in this 

process. However, the presence of more bisamide per nucleus (assuming roughly constant 

nucleation density) due to increased concentration, explains the finding very well: Every 

nucleus or growing crystal will grow, until so much of the surrounding solved bisamide is 

consumed, that the supersaturation is gone. The more solved bisamide is present, the larger 

the object can grow until reaching that point. Since this deliberation matches the results, this 

effect is concluded to be the dominant one.  

In conclusion, lowering the bisamide concentration decreases object size, although this 

effect is much smaller than e.g. the influence of the previously discussed cooling rate. As 

higher concentration on the other hand means, that more material can be processed in the 

same volume, dimensional control via cooling rate appears to be the preferable parameter 

for size adjustment in the production of bisamide nano-platelets. 
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The systematic study presented in the first part of this section solely relies on self-assembly 

upon cooling. Nevertheless, there are other methods like self-assembly upon removal of the 

solvent or addition of non-solvent to the solution. The latter can be realized by injection of 

the hot solution into a non-solvent at ambient temperature. By this procedure, object 

morphologies different from the ones formed upon cooling can be gained, as it has 

successfully been demonstrated by Hou et al..40 
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Figure 36: Structures formed by self-assembly of compound 1 upon cooling of hot solutions with different 

concentrations in o-DCB. Vials containing the hot solutions were cooled in an ice bath. Solution concentrations 

were 1000 ppm (1), 500 ppm (2) and 50 ppm (3). SEM images at low (A) and high magnifications (B) are given 

respectively. 
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For such experiments, non-solvents for bisamide 1 had to be found. Here, it is crucial that no 

residual solubility exists at ambient temperature, because even a very low solubility would 

result in dissolution of a great share of 1 in the big non-solvent volume used. Solubility tests 

revealed that water as a polar medium and n-heptane as a non-polar medium meet this 

criterion. Subsequently, a solvent, which solves a sufficient amount of bisamide 1 at elevated 

temperature and, at the same time, dissolves well in both non-solvents had to be selected. 

In this case, ethanol was found well suited for that purpose. For self-assembly, a saturated 

solution of 1 in ethanol was prepared at 75 °C by removal of non-dissolved solid from the 

liquid with a preheated syringe filter. 100 µL of this hot solution was injected into 10 mL of 

the respective non-solvent (water or n-heptane) under vigorous stirring. Then, the liquid was 

further stirred for 10 min, before a sample for SEM preparation was taken. Figure 37 

presents SEM micrographs synthesized by injection into water and n-heptane. 

Injection of a hot saturated solution of bisamide 1 in ethanol into water yielded elongated 

platelets featuring very smooth surfaces. Apparently, they possess high thickness and a low 

aspect ratio. Platelets self-assembled by use of n-heptane as non-solvent by contrast are less 

elongated. Obviously, injection into non-solvents yields a different platelet shape, featuring 

a much lower aspect ratio, compared to the one from the cooling experiments. 

 

 

The generation of platelets with high aspect ratio is one major aim of this chapter. With 

respect to this, self-assembly upon cooling clearly outperformed the tested approach of self-

assembly upon addition of non-solvent. Hence, self-assembly upon cooling is exclusively 

applied in the following sections.   

4 µm 4 µm

A B

Figure 37: SEM images of supramolecular structures formed by injection of a hot saturated solution of bisamide 

1 in ethanol into A: water or B: n-heptane. 
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3.5.2. Self-assembly of fluorine-containing benzene bisamides 

To get a first impression of the object morphology, all six fluorine containing bisamides were 

recrystallized from suitable solvents after synthesis and the formed solid state structures 

were investigated by SEM. Figure 38 shows SEM micrographs of these structures. All six 

bisamides assemble into flat structures, as it had been predicted from their crystal 

structures, as discussed above. 4A, 3B and 4B form particularly thin platelets with very 

smooth and defined edges. 
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Figure 38: SEM micrographs of structures formed by the fluorine containing bisamides 3A (A), 4A (B), 3B (C), 4B 

(D), 3C (E), 4C (F) by recrystallization from methanol (A-D), ethyl acetate (E) or DMF (F) during synthesis. 
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All in all, the objects formed by this poorly controlled process feature quite large lateral 

dimensions of 20 or more micrometers. Also, these objects appear to be quite thick.  

Therefore, a method with better parameter control is needed to reduce platelet dimensions 

significantly. In chapter 3.5.1., such a method has been developed for a similar bisamide. 

There, self-assembly upon cooling with the aid of an ice bath was found to be a suitable 

method for the preparation of thin 2D-objects. Consequently, each fluorinated bisamide 

alongside with the non-fluorinated reference bisamide 2 was dissolved in o-DCB at 120 °C in 

a glass vial with screw cap to obtain a clear solution with a bisamide concentration of 

500 ppm. Subsequently, each filled vial was shaken in an ice bath for one minute to cool the 

solution and to induce self-assembly, which turned the liquids in the vials turbid. After that, 

the vials were allowed to rest in the ice bath for additional 15 min under stirring, before 

samples were prepared by dropcasting onto silicon wafer pieces. Figure 39 shows SEM 

micrographs of the objects obtained from the reference bisamide 2 and the asymmetrical 

bisamides of series 3 by this procedure. The non-fluorinated reference bisamide 2 forms big 

platelets with lateral dimensions up to several micrometers wide. 3A forms much smaller 

objects, which measure around 1 µm across. Platelets of both compounds exhibit relatively 

smooth and regular edges. For some platelets of 3A, an underlying hexagonal shape can be 

observed. Increasing the fluorocarbon chain length renders the obtained structures smaller, 

as can be seen from Figure 39 B to D. Moreover, both compounds with larger fluorinated 

substituents, 3B and 3C, exhibit rough platelet edges with no noticeable underlying regular 

shape.  
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Figure 40 compares SEM images of the three symmetric fluorinated bisamides of series 4 

(prepared the same way as described above) to one image of the reference bisamide 2. All 

three bisamides of series 4 form elongated platelets upon self-assembly, contrasting to the 

asymmetric bisamides. The platelets of bisamides 4A – C feature lengths up to more than ten 

micrometers, while their diameters measure 2 µm maximum. Formation of such elongated 

structures already has been proposed based on their crystal structures: It is supposed, that 

the long lateral dimension is parallel to the strong hydrogen bonds in the structure, while 

the shorter lateral dimension is cross to it. In the latter direction, only relatively weak van 

der Waal forces are present. Thereby, the different growth speeds are attributed to the 

higher amount of crystallization enthalpy released upon growth along the hydrogen bonds. 

The platelets formed by series 4 still appear to be thin, yet much thicker than the ones 

formed by the asymmetric bisamides. 

  

4 µm 1 µm

1 µm1 µm
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Figure 39: SEM micrographs of structures formed by self-assembly upon cooling of the asymmetrically 

substituted bisamides 3A (B), 3B (C) and 3C (D). For comparison, the reference compound 2 is also shown (A). 

Samples were prepared by rapidly cooling a 120 °C hot solution of 500 ppm of the respective bisamide in o-DCB 

by means of an ice bath. 
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To obtain precise information about the thickness of platelets formed by these seven 

bisamides, platelets self-assembled from o-DCB solutions upon cooling in an ice bath were 

measured via AFM. Figure 41 illustrates such a measurement at the example of the 

asymmetric bisamide 3C. On the left side, a hight image of platelets of 3C is shown. Most 

platelets are agglomerated to form one big structure. For thickness measurements, only 

isolated single platelets around the agglomerates are used to avoid accidental measurement 

of several stacked platelets together. All aggregated platelets are ignored, assuming both, 

isolated and aggregated platelets, to feature equal average thickness. For each platelet 

taken into account, a cross-section along the scanning direction of the AFM was analyzed. In 

the example shown in Figure 41, three of these cross-sections are marked with colored lines. 

On the right, the height profile along each of these three is displayed. The platelet heights 

determined from the profiles are illustrated with arrows.  
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Figure 40: SEM micrographs of structures formed by self-assembly upon cooling of the symmetrically 

substituted bisamides 2 (A), 4A (B), 4B (C) and 4C (D). Samples were prepared by rapidly cooling a 120 °C hot 

solution of 500 ppm of the respective bisamide in o-DCB by means of an ice bath. 
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For each sample, several height images were evaluated to get at least 12 platelets’ height 

values per sample. Table 5 lists average thicknesses D for the respective samples of bisamide 

2 and of all six fluorinated bisamides. 

The average platelet thickness of all seven bisamides is in the nanometer range. All three 

asymmetric bisamides 3A to 3C feature much thinner platelets than their symmetric analogs. 

Remarkably, the platelet thickness in series 3 decreases with the fluorocarbon chain length 

from around 50 nm for C3F7 to around 30 nm for C7F15. The symmetric fluorinated bisamides 

4A – C yield thick platelets, even when compared to the symmetric bisamide 2, bearing two 

tert-butyl substituents. Nevertheless, the reduction of platelet thickness with increased 

chain length is also found here: With C3F7 substituents an average thickness of around 

710 nm is achieved, while C5F11 reduces this value to around 250 nm and C7F15 finally yields 

platelets as thin as 130 nm. This effect of the chain length may be explained by the 

increasing mobility of the fluorocarbon chain: The longer the chain becomes the less defined 

and softer will the platelet surface become. This lack of defined structures is supposed to 

hamper epitaxial growth of additional layers on this surface. A second possible explanation 

for this phenomenon is based on energetic considerations: The motion of chains is 

associated with increased entropy and is therefore energetically favorable. If these chains 

are covered by another layer, they will lose degrees of freedom, since some previously 

available space is now covered by the new chains (see Figure 26 for the packing pattern), 

which fix each chain in a certain position in the crystal. This loss in entropy reduces the total 
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Figure 41: Measurement of platelet thickness at the example of compound 3C self-assembled in o-DCB upon 

cooling with an ice bath. On the left an AFM image with three cross-sections marked with colored lines is 

shown. The corresponding height profiles are displayed on the right. Arrows illustrate the measured platelet 

heights. 
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energy released by assembly of additional molecules on the top surface of an existing 

platelet and hence slows down thickness growth of the platelets. From the data of series 3 

and 4, this effect of decreased platelet thickness with longer fluorocarbon chains can be 

expected to continue with further elongation of fluorocarbon chains. 

 

Table 5: Platelet thickness D as determined via AFM for all seven benzene bisamides. Samples were prepared 

by self-assembly from 500 ppm solutions in o-DCB upon cooling with an ice bath.  

Compound 
D 

[nm] 

st.dev.  

[nm] 

Number of 

measurements 

2 142 52 21 

3A 53 21 21 

3B 36 15 18 

3C 32 22 12 

4A 713 339 15 

4B 253 148 18 

4C 130 95 17 

 

 

3.5.3. Determination of the height of bisamide single layers 

Up to now, only the total height of bisamide platelets has been investigated. Yet, the crystal 

structures suggest, that the platelets consist of much thinner layers. Measurements of these 

layers help to connect crystal structure and platelet shape. To determine this layer thickness 

d of 2D-nanoobjects, AFM can also be employed. This is necessary, as the values of d (XRD) 

indicate that the orientation of the layers is along the planes predicted from the crystal 

structures, which has not been proven yet. In other words, the assumed relative orientation 

of unit cells and platelets has not been confirmed yet. To obtain the d values via AFM, the 

surface of a platelet is scanned. In some regions of the 2D-nanoobjects terraces are 

observed. They form, when layers do not cover the entire platelet surface (as in the schemes 

in Figure 19). The height difference between two neighboring terraces equals d (AFM).  

Figure 42 shows the measurement of such terraces at the example of a platelet of bisamide 

3C. In the height image depicted on the right side, several terraces can be distinguished. The 

terrace heights are in the range of one to two nanometers, a range in which the noise of 

AFM measurements becomes relevant. To diminish the effect of this noise, many parallel 
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horizontal lines are considered and for every point along these lines the average height is 

calculated from all lines. In the example shown in Figure 42 all lines contained in the white 

box on the right image are considered in this method. A disadvantage of this method is the 

smoothing of steps. This happens, if the steps are not perpendicular to the lines, which is 

observed in the average height profile on the left side of Figure 42. In this height profile, 

three layers can be distinguished, although the level between the two lower layers is very 

short. In the example of the upper layer, which is very distinct, lines along the levels and 

their distance, from which the layer thickness is read out, are marked. 

 

 

The layer thickness d (AFM) for each benzene bisamide was determined as shown at the 

example of Figure 42. The results are listed in Table 6. For some bisamides, exact 

measurements were extremely difficult and ambiguous. Therefore, in these cases the range 

of measured values for d (AFM) is given in these cases. For both fluorine-free bisamides, d 

(AFM) and d (XRD) are equal. With respect to the fluorine-containing bisamides from series 3 

and 4, values of d (AFM) appear to be somewhat smaller than the ones of d (XRD). This 

phenomenon, which is more pronounced when longer or more fluorocarbon chains are 

involved, is not fully understood to date. 

Combining the platelet thickness D with the average layer thickness d determined in section 

3.4., the number of layers per platelet can be calculated as D/d. Thereto, d (XRD) is used 

where available, as it is thought to be more precise and reliable than d (AFM). Moreover, the 
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Figure 42: Determination of layer thickness via AFM at the example of compound 3C. A: AFM height image of 

the surface of a platelet formed by cooling of a solution in o-DCB with an ice bath. The white frame marks the 

measured area. B: Mean heights for each point along the frame (x). The diagram shows four different levels, 

yet the third level (red arrow) is very short and undefined. Therefore, only the thickness of the top layer is 

provided. 
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platelets feature more internal layer surfaces than exposed ones, which are better probed 

by XRD as discussed above. The resulting numbers for all seven bisamides are also given in 

Table 6. As here the effects of thicker layers and thinner platelets come into play together, 

increasing fluorocarbon chain length exerts a strong effect on the number of layers per 

platelet: For the asymmetric bisamides, a reduction from 34 layers with C3F7 to only 15 

layers with C7F15 is found. For 3A, these 15 layers equal a reduction of layer number about 

more than 85% compared to its analogue 2, which features two tert-butyl substituents. For 

the symmetric bisamides in series 4, even a reduction from 446 to 76 layers is observed 

between the molecules with shortest and longest fluorocarbon chains. Compared to their 

asymmetric analogues of series 3, these bisamides feature an at least fivefold increase in 

layer numbers. This is explained by the poor interaction of fluorocarbon chains and the non-

fluorinated solvent o-DCB used for self-assembly, as this poor interaction yields an interface 

with high energy, which fosters thickness growth of the platelets. Nevertheless, when 

discussing the layer number of 4C, one should keep in mind, that this value is based on d 

(AFM) due to the lack of a value for d (XRD). This limits its comparability to layer number 

values of other bisamides, which are all based on d (XRD). 

Summarizing, it was shown that the concept of asymmetrical substitution for reduced 

platelet thickness D works well, although the assembly pattern was different from the one 

initially expected. Moreover, an elongation of fluorocarbon chains further decreases D 

effectively. 

 

Table 6: Comparison of averages of layer thickness d as determined via AFM, d values taken from crystal 

structures with platelet thickness D measured by AFM. In addition, average numbers of layers are given, which 

are calculated as D/d. For this calculation, d (XRD) is used, except for 4C, where d (XRD) is not available. 

Compound 
d (AFM) 

 [nm] 

d (XRD)  

[nm] 

D  

[nm] 

number of 

layers 

2 1.2 1.23 142 115 

3A 1.5 - 1.8 1.54 53 34 

3B 1.6 1.86 36 19 

3C 1.9 2.07 32 15 

4A 1.3 1.60 713 446 

4B 2.0 2.11 253 120 

4C 1.7 – 2.1 --- 130 61 - 77 
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3.6. Wetting behavior of 2D-structures formed by benzene bisamides with water 

In the previous section, benzene bisamides featuring fluorocarbon substituents have 

successfully been shown to assemble into platelets. The platelet’s upper and lower surfaces 

consist of fluorocarbon or mixtures of fluorocarbon and hydrocarbon substituents, based on 

the respective benzene bisamide applied. Consequently, the fluorophilic character of the 

surfaces can easily be tuned. Thus, a short section on surface properties is included in the 

following. As representative model compounds for this the bisamides 3A and 4A, featuring 

one and two fluorocarbon substituents, were chosen and their wetting behavior, by means 

of contact angle measurements with water was investigated. A common method to easily 

determine the contact angle is the sessile drop method using water as test liquid. For the 

sessile drop method, water drops are carefully cast onto the tested surface through a 

syringe. These drops are recorded via a camera system and contact angles of each drop are 

measured, as exemplarily depicted in Figure 43. To get reliable results about a compound’s 

surface, it is crucial to generate a layer with as less defects as possible for measurement. To 

achieve this, a straightforward sample preparation was chosen: Both compounds were 

found to be suitable for physical vapor deposition in high vacuum. Prior to the evaporation 

step, glass platelets were silanized to offer a more hydrophobic substrate, which fits the 

surface of the fluorophilic bisamides. The respective benzene bisamide was vapor deposited 

on the surface in high vacuum resulting in a thin homogeneous film on the glass substrate. 

Via crazing incidence X-ray experiments it was proven by Kasper van der Zwan (Inorganic 

Chemistry III of the University of Bayreuth) that the crystal surface forming the top of the 

bisamide film correlates with the crystal structure of bisamides’ substituents. This finding 

demonstrates that the film was deposited on the substrate in a manner comparable to a flat 

platelet.  

The measured contact angles are presented in Table 7. The asymmetrically substituted 

bisamide 3A features a contact angle of approx. 105°, whereas the symmetrically substituted 

bisamide 4A yields a contact angle of approx. 118° with water. This tendency is explained by 

the molecular design of 3A featuring a mixed fluorocarbon/hydrocarbon surface in the 

crystal, while the surface of layers of 4A consists only of fluorocarbons. Most remarkably, 

these values are in the range of the 112 to 114° reported for static contact angles of water 

on smooth PTFE surfaces.105 Taking into account the high fluorocarbon character of PTFE, 

the contact angles of both benzene bisamides appear quite high. Possible explanations for 
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such high values are textured or rough surfaces, as they are well-known under the term 

“lotus-effect”. In the case of bisamides, this roughness can either origin in the texture of the 

platelets surfaces on the nano-scale (see space-filling models in Figure 25 and Figure 26) or, 

in thickness variations within the bisamide film. 

 

 

Table 7: Contact angles with standard deviations for different surfaces. Non-treated and silanized glass are 

included as references. 

Surface Contact angle 

3A 104.6 ± 1.4° 
4A 118.0 ± 1.8° 

glass 16.9 ± 2.5 

silanized glass 90.8 ± 5.1° 
 

Thus, the principal applicability of benzene bisamides substituted with fluorocarbon 

substituents for a highly hydrophobic modification of surfaces was successfully 

demonstrated in this section. The comparison of compounds 3A and 4A showed that 

resulting contact angles can be tuned by molecular design of the bisamides. For possible 

further applications, the supramolecular nature of the bisamide film is of particular interest. 

This is due to the fact, that it in principle allows dissolution and recycling of the bisamides 

applying suitable solvents. 

  

Figure 43: Water drops on thin vapor deposited films of 3A (left) and 4A (right). The dark object at each image’s 

top is the tip of the syringe applied for casting each drop. Blue baselines were adjusted manually. The 

measured contact angles are given in green. 
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3.7. Conclusions 

The major subject of this chapter deals with the self-assembly of 1,4-benzene- and 1,4-cyclo-

hexanebisamides into 2D-nanoobjects and the identification of a facile route to produce 

nano-platelets with low thickness.  

The molecular design of the supramolecular building blocks comprises 1,4-bisamides with 

different fluorocarbon or tert-butyl substituents yielding compounds with a symmetrical or 

asymmetrical substitution pattern. Within each substitution pattern, the length of the 

fluorocarbons was varied from C3F7 over C5F11 to C7F15 yielding six compounds in total. A 

symmetric 1,4-bisamide with tert-butyl groups was used as reference. Most of the 

compounds were obtained in good yield and their molecular structure was clearly identified 

by common characterization methods. Thermal characterization proved the thermal stability 

of all compounds to be sufficient for all subsequent self-assembly experiments. 

An important aspect was the structural elucidation by single crystal or powder X-ray 

diffraction, revealing the H bonding pattern, which may also reflect the shape of nano-

objects on the mesoscale. Crystal structures were solved as part of a cooperation project at 

the department of Inorganic Chemistry III for the compounds. Remarkably, it was found that 

the presence of tert-butyl groups exerts decisive influence on the crystal packing pattern. All 

bisamides featuring tert-butyl substituents form layers with rows consisting of tilted 

molecules, whereby the tilt direction alternates between the rows. In these structures, each 

molecule is connected to four neighboring ones via H-bonds. On the contrary, molecules 

lacking tert-butyl groups assemble into layers with all molecules parallel. Here, each 

molecule forms H-bonds to only two of its neighbors. For all crystal structure solutions, the 

layer thicknesses extracted from them could successfully be proven by AFM measurements. 

Based on these findings, 1,4-cyclohexanebisamide with tert-butyl substituents 1 was used as 

a model compound to evaluate different self-assembly processes and to tune self-assembly 

conditions to obtain thinner nano-platelets. 1 is known to feature a similar crystallographic 

structure and to assemble into platelets with a layer thickness of 1.2 nm. A bottom-up 

approach based on the self-assembly from hot solutions was ultimately selected as process 

due to its good reproducibility of the formed platelets and the control of the parameters. A 

parameter mapping for this process was conducted to gain deeper insight into the self-

assembly process and to prepare platelets as thin as possible. This included the solvent, 

cooling rate and concentration in the solution. It was found that a high residual solubility of 
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the bisamide in the respective solvent at ambient temperature is unfavorable, as it led to 

unwanted self-assembly upon drying of the samples for further analysis. Promisingly, the 

self-assembly process with o-DCB as solvent resulted in platelets with a very regular shape 

and low thickness. Moreover, the cooling rate, which was tested between 20 and 

8000 K/min, also showed a huge impact on self-assembly. A moderate increase of cooling 

rates up to 330 K/min yields smaller and thinner platelets, as expected. Surprisingly, extreme 

cooling cates of several thousands of K/min led to thick platelets with a poorly defined 

appearance. Under the selected conditions, cooling with an ice bath yielded a cooling rate 

around 140 K/min and supramolecular nano-platelets with an average thickness of 48 nm. 

Thus, it was selected as a facile method for further experiments. The influence of the 

concentration was investigated in the range from 50 to 1000 ppm. It was found that lower 

concentrations yield smaller platelets, which is attributed to a higher ratio of nucleation 

density during cooling and material available for object growth. 

Using the identified straightforward method to nano-platelets, the findings were transferred 

to investigate the seven symmetric and asymmetric 1,4-benzene bisamides. All of them were 

successfully assembled into platelets upon cooling from hot solutions in o-DCB. It was found 

that the asymmetric bisamides yielded the thinnest platelets. This is attributed to weaker 

interactions between their mixed fluorocarbon/hydrocarbon surfaces, which is a key point of 

the initial concept for the design of the investigated bisamides. Also within each series, 

fluorocarbon substituents with increasing length decrease the platelet thickness. For 

example, 3C, featuring a C7F15 group and a tert-butyl group, assembles into platelets with an 

average thickness of 32 nm, which equals as few as 15 layers. Its symmetrical analogues 

bearing two C7F15 or tert-butyl substituents form thicker platelets with 130 nm (around 62 to 

77 layers) or 142 nm (115 layers) on the average. These results demonstrate the successful 

application of the concept of asymmetric substitution of bisamides for reduced platelet 

thickness. 

In view of potential applications, contact angles of selected vapor deposited symmetrical 

(4A) or asymmetrical (3A) bisamides with C3F7 substituents were performed. Crazing 

incidence X-ray experiments revealed that the fluorophilic side groups form the interface to 

air. Both compounds showed superhydrophobic behavior with contact angles of 105° for 3A 

and 118° for 4A, which varied depending on the substitution pattern of the applied bis-

amide, rendering these compounds suitable as highly hydrophobic supramolecular coatings. 
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4. Length control of supramolecular 1D-objects via ultrasound 

4.1. Dimensional control of submicron- and nano-sized objects 

Benzene trisamide derivatives (BTAs) have attracted great research interest in recent years. 

This is mainly due to their well-known capability to form supramolecular columnar stacks, 

which build up further submicron fibers and nanofibers.30,37,66,106 By controlling the 

conditions for self-assembly, Weiß et al. were able to influence the average diameter of such 

supramolecular fibers, yet all formed fibers were extremely long.66 Length control of 

supramolecular BTA fibers has not been achieved yet. 

In general, for self-assembled fibers, two general ways of controlling the length are known: 

1) The desired fiber length is already achieved within the self-assembly step by carefully 

selecting the conditions like e.g. cooling rate or concentration (bottom-up approach). 2) Self-

assembled fibers may cut to the desired length in a subsequent step (top-down approach). 

In literature, various bottom-up methods for length control of supramolecular assemblies 

are present107, while top-down methods are rare: For example, the length of supramolecular 

1D-assemblies can be varied to some extent by control of the building block concentration in 

the solution. Alternatively, fiber length can be regulated by end-capping, i.e. the addition of 

a second species of building blocks, which feature just one binding site and thus terminate 

the assembled structure when joining the assembly.108,109 Another way of length control are 

vernier assemblies: Two molecules, featuring different numbers (m and n) of complementary 

supramolecular binding sites, are combined. In the examples published by Hunter and 

Tomas and Kelly et al., m and n were equal to 3 and 2. If two of these molecules combine, 

one binding site remains unsaturated; this leads to addition of further building blocks. At an 

assembly length of m*n, the numbers of binding sites are counterbalanced and the 

assembly’s growth is terminated.110,111 This approach allows synthesis of monodisperse 

assemblies, but suffers from low assembly stability, since the weakest supramolecular link 

determines the stability of the whole assembly.107 Another way towards monodisperse 1D-

assemblies was presented by Bull et al.: They assembled peptide amphiphile building blocks 

around a dumbbell-shaped template made of oligo(phenylene ethynylene). The template 

efficiently limited the assembly’s length, the same way as it works at the tobacco mosaic 

virus in nature, where coat proteins assemble around a single viral RNA strand.112 Several 

groups have also presented a seeded growth approach for length control of 1D-nanoobjects 
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at the example of block copolymer micelles. This approach is based on the use of very short 

micelles, produced via a top-down approach by sonication of larger ones, as seeds. When 

these seeds are added to an oversaturated building block solution, the molecularly dissolved 

building blocks crystallize onto the seeds in a bottom-up step and form monodisperse 

objects. Furthermore, this so-called living supramolecular polymerization can form block co-

assemblies, when different materials are used for seeds and dissolved building blocks.20,113 

With respect to top-down approaches, ultrasound is a tool frequently used. A broad variety 

of 1D-structures featuring diameters in the range of nano- or micrometers has been 

shortened by ultrasound, such as e-spun polymer fibers114, carbon nanotubes115,116,117 silver 

nanowires117,118, SiO2-nanowires119, molecular bottlebrushes120, protein fibrils117, block 

copolymer micelles20,113 and cellulose nanofibrils121.  

Cutting by ultrasound is due to mechanical drag forces caused by imploding cavities, as 

Rooze et al. showed at the example of a coordination polymer.122 To elucidate the 

fragmentation mechanism, Zeiger and Suslick investigated the sonofragmentation of acetyl-

salicylic acid crystals. By variation of the sonication setup, they excluded breaking of the 

crystals by collisions with the setup. They also tested different crystal mass loadings and 

found no correlation between sonofragmentation and mass loading. This indicates that 

particle-particle collisions play no major role in sonofragmentation, since then a linear 

dependency of mass loading and fragmentation speed would have been observed. Having 

excluded all these factors, they consequently concluded, that direct interaction of crystals 

with imploding cavities is the dominant mechanism behind sonofragmentation.123 

Investigating the ultrasonic cutting of carbon nanotubes, Lucas et al. found a linear 

correlation between average fiber fragment length and delivered ultrasonic energy, 

regardless the power amplitude, at which sonication was done. This means, that the total 

energy determines the cutting process. This finding further supports the theory of cutting by 

collapsing cavities, since ultrasonic energy correlates with the number of cavities, at least, if 

the acoustic pressure exceeds the cavitation threshold.116 Hennrich et al. established a 

model for the cavitation-induced scission of 1D-nanoobjects at the example of carbon nano-

tubes (CNTs): Assuming a radial orientation of the 1D-nanoobjects towards the collapsing 

bubble, they found the strain field caused by the solvent displacement upon bubble collapse 

to exert a force F on the object. F can be expressed as a function of the object’s length L, the 

solvent’s viscosity μ and the strain rate dε/dt, as expressed in equation 3.115 
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 𝐹 = 𝜋𝜇𝐿22 (𝑑𝜖𝑑𝑡) (3) 

 

This dependency on the object length L also explains the decrease of cutting speed with 

shorter objects and the existence of a terminal object length, which is approached after long 

sonication times, both observed by different researchers.114,115,116,120 The shorter the objects 

become, the lower is the drag force F. If F becomes smaller than the force needed for 

rupture, the object cannot be shortened any further, which means, that the terminal object 

length is reached.115 

This in turn means that from a given terminal length the minimum force needed for rupture 

can be calculated. If the fiber’s diameter is known, the tensile strength of the 1D-nanoobject 

can be derived from this force. Following this approach, Huang et al. were able to measure 

values for tensile strengths of carbon nanotubes, silver nanowires and protein fibrils, which 

were in agreement with literature values.117 Later, Saito et al. successfully adopted this 

method for tensile strength measurements of cellulose nanofibrils.121 By simulation of 

nanofibers in proximity to collapsing cavities, Pagani et al. found the theory described above 

to hold only for short fibers. For longer fibers, a tangential orientation towards the collapsing 

cavity is more likely than the radial one, on which the model discussed above is based. This 

tangential fiber orientation results in cutting via buckling. This makes the cutting speed scale 

with the fourth power of the length, L4, as Figure 44 schematically shows at the example of 

carbon nanotubes (CNTs). For shorter fibers, the cutting speed scales with L2, as these orient 

radially and are ruptured.124 
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Sawawi et al. investigated the behavior of electro spun polymer fibers made of poly(styrene) 

(PS), poly(methyl methacrylate) (PMMA), poly(acryl nitrile) (PAN) and poly (L-lactide acid) 

(PLLA) when treated with ultrasound. They found that the fibers made of the brittle 

polymers PS and PMMA were easily cut, while the ones made of the more ductile polymers 

PAN and PLLA remained intact. Only after rendering the latter ones brittle by an UV-ozone 

treatment, they were cut by ultrasound. This shows that ultrasonic fiber cutting is sensitive 

to the fibers’ material properties. Moreover, in the investigated temperature range from 30 

to 90 °C, the temperature did not have any impact on the sonication of PS fibers. Despite the 

high local temperatures generated in sonicated liquids, no melting of any polymer fibers was 

observed in this study.114 

So far, most of the works on ultrasonic comminution of dispersed solids used water as 

dispersion medium, and typically surfactants had to be added to gain stable dispersions. 

Despite that, in principle, variation of sonication media is an interesting field of research, 

since solvent parameters like viscosity, surface tension and vapor pressure are known to 

affect sonication results.125 For example, Cheng et al. investigated the dispersion of CNTs in 

twelve different organic solvents. They found a strong correlation between vapor pressure 

and viscosity of the media and the dispersing efficiency of ultrasound in these media: 

Dispersion of CNTs was worsened by higher vapor pressures, which was attributed to 

cushioning effects by solvent vapor filling cavities prior to their collapse. Contrary, increasing 

viscosity enhanced dispersion of CNTs. This was explained by the higher amount of energy 

Bubble 
growth

Bubble 
collapse

Nearby CNTs 
align tangentially

Short CNTs rotate
radially and stretch

Long CNTs remain
tangential and buckle

liquid

CNTs

cavity

Figure 44: Schematic representation of the orientation of carbon nanotubes (CNTs) relative to a growing and 

collapsing cavity (light blue) and the influence on their failure mechanism. CNTs (black) are oriented by the 

incompressible liquid layer (dark blue) surrounding the cavity. Upon bubble collapse, short fibers are stretched, 

resulting in the scission rate to scale with L
2. Longer fibers remain tangential and buckle, resulting in the 

scission rate to scale with L
4. Adapted with permission from ref.(Pagani et al. 2012)

124
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being released by cavity collapse in more viscous media. This also matches the models 

described above, where the drag force F is proportional to the solvent viscosity μ (see 

equation 3).126 

The aim of this work was to systematically and comprehensively investigate ultrasonic 

cutting of supramolecular fibers, which has to the best of my knowledge not been done 

hitherto. As a material forming supramolecular fibers via self-assembly, benzene trisamides 

(BTAs) were used. Fibers of these compounds may feature the ability to splice into thinner 

nanofibers, because they are composed of smaller columnar stacks, as discussed in the 

introduction (chapter 1.3). The possibility of ultrasound induced splicing, which has not been 

reported yet, is to be investigated in this chapter, alongside with cutting into shorter fibers. 

As mentioned above, in most reports of ultrasonic comminution of submicron- and nano-

sized objects water was used as dispersion medium, while knowledge on organic media is 

rare. Therefore, this study focuses on organic dispersion media and their applicability in 

ultrasonic treatment of BTAs is tested. 

The results in this chapter are divided into three sections: The first section deals with the 

production of defined supramolecular fibers made of BTA 5 as raw material for later 

sonication experiments. Thereby, upscaling of the self-assembly process applied is important 

to obtain sufficient amounts of fibers for several series of ultrasonication experiments. In the 

second section, the produced supramolecular BTA fibers are dispersed in different media 

and treated with ultrasound. Based on the results obtained, BTA 5 is combined with several 

suitable media to obtain model systems for more detailed sonication studies. In addition, 

sonication parameters suited for subsequent experiments are identified. Finally, in the third 

section, the sonication of the selected BTA is investigated more in detail. To this purpose, 

sonication conditions, i.e. sonication time, dispersion medium, cooling bath temperature 

and concentration of supramolecular fibers in the slurry, are varied systematically. The effect 

of these variations on the dimensions of the particles obtained after sonication is evaluated 

to establish correlations between sonication conditions and dimensions of resulting 

nanofibers. Understanding these correlations is crucial to enable future production of BTA 

nanofibers with controlled dimensions. Parts of the results in this chapter have been 

published in Macromolecular Materials and Engineering.127 
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4.2. Materials and preparation of supramolecular fibers 

4.2.1. Materials 

Preliminary experiments showed that BTA 5 is well-suited for sonication experiments, as 

distinct supramolecular fibers can be easily obtained as starting material for sonication. 

Moreover, being a commercially available material, which was received from BASF SE, access 

to amounts sufficient for all experiments is granted. The molecular structure of BTA 5 is 

shown in Figure 45.  

 

 

 

4.2.2. Preparation of supramolecular fibers 

Preparation of dispersions 

Prior to sonication experiments, supramolecular fibers with defined dimensions were 

prepared. These fibers were processed via self-assembly of BTA 5 upon cooling of 250 °C hot 

solutions in the high-boiling hydrocarbons Marlotherm and paraffin. To this, the respective 

amount of BTA was dispersed in Marlotherm or paraffin. Amounts of BTA 5 and the 

respective medium were chosen in a manner, so that a dispersion mass of 1500 g in the case 

of Marlotherm and 1300 g in the case of paraffin was reached. For example, 0.3 g of BTA 5 

was added to 1499.7 g of Marlotherm to yield a dispersion comprising 200 ppm of BTA 5.  

 

Dissolution- and self-assembly behavior 

Each of the dispersions was heated to 250 °C under stirring with a mechanical stirrer at 

300 rpm. To determine the self-assembly temperature of the BTA, the liquid was allowed to 

cool under continued stirring. The temperature, when the solution distinctly turned turbid, 

5

Figure 45: Molecular structure of BTA 5. 
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was denoted as self-assembly temperature. Subsequently, the dispersion was once again 

heated to 250 °C and the temperature, when the liquid turned clear and exhibited no more 

optically visible laser scattering, was denoted as dissolution temperature (see Figure 47A). 

Concentration dependent solubility curves, as they are shown in Figure 46, were recorded 

for different BTA contents. Using Marlotherm as medium, dissolution and self-assembly 

temperatures were obtained over a wide range of concentrations from 40 to 500 ppm. At 

40 ppm the BTA was dissolved upon heating around 120 °C, while self-assembly took place 

slightly below 60 °C upon cooling. At 500 ppm, which is the highest concentration 

investigated, the dissolution temperature was around 180 °C and the self-assembly 

temperature was around 155 °C. By contrast, the solubility in paraffin is much lower, with 

50 ppm of 5 dissolving only at 180 °C and self-assembly occurring already at temperatures 

around 150 °C. Due to the low solubility in paraffin, 200 ppm was the highest concentration 

of 5 investigated in paraffin. At this concentration, dissolution took place above 200 °C and 

self-assembly was observed at 170 °C. Since this temperature is already close to 175 °C, 

which in the following preparation step is the temperature for the application of the cooling 

bath, no higher concentrations were applied. Higher concentrations are expected to feature 

self-assembly temperatures above 175 °C, where a cooling bath was planned to be applied 

during the preparation of supramolecular fibers (see below). As a start of self-assembly 

during application of the cooling bath would probably make the process more complicated 

and less reproducible, no higher concentrations were tested.  

Due to the ice bath, cooling rates in the fiber preparation process explained below are much 

higher than the ones applied here. Hence, self-assembly is likely to occur at slightly lower 

temperatures than the ones reported here during fiber preparation. 
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Self-assembly into supramolecular fibers 

Finally, to prepare supramolecular fibers, each dispersion was heated to 250 °C (Figure 47A). 

Then, the heating mantle was removed and the solution was allowed to cool to 175 °C at 

ambient temperature (Figure 47B). Above 175 °C, no cooling bath was applied in order not 

to risk rupture of the flask by temperature-induced stress within the glass wall. Then, an ice 

bath was applied to cool the solution more rapidly from 175 to 20 °C (Figure 47C). During the 

whole procedure, the liquid was continuously stirred at 300 rpm.  

 

0 100 200 300 400 500

40

60

80

100

120

140

160

180

200
T

 [
°C

]

BTA concentration [ppm]

0 100 200 300 400 500

40

60

80

100

120

140

160

180

200

T
 [
°C

]

BTA concentration [ppm]

Figure 46: Concentration dependent dissolution and self-assembly temperatures of BTA 5 in Marlotherm (left) 

and paraffin (right). The temperature, at which the respective dispersion turned optically clear upon heating, 

was denoted as dissolution temperature (black), while the temperature, at which visible turbidity was observed 

upon cooling, was denoted as self-assembly temperature (red). 

A B C

Figure 47: Preparation of supramolecular nanofibers from marlotherm: A: Heating under stirring, until a clear 

solution is reached. B: Subsequent cooling to 175 °C at ambient conditions. C: Further cooling with an ice bath 

from 175 to 20 °C. All three steps are done under continued stirring. 
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Using a thermocouple, temperature profiles of the cooling process were monitored. Figure 

48 exemplarily shows such temperature profiles for Marlotherm and paraffin. From 250 °C 

to 175 °C, the solution was allowed to cool at ambient conditions, which is reflected by the 

relatively low cooling rate. At 175 °C, an ice bath was added to raise cooling rates. As Figure 

48 shows, high cooling rates were achieved in doing so. The average cooling rate between 

170 and 140 °C is 32 K/min for Marlotherm and 34 K/min for paraffin. Upon further cooling, 

the temperature difference to the ice bath is decreased, which lowers cooling rates to 

22 K/min and 21 K/min between 125 and 120 °C. Between 105 and 100 °C, both solutions 

feature a cooling rate of only 17 K/min. This cooling process is highly reproducible and 

therefore well suited for homogeneous self-assembly of supramolecular BTA fibers, as it has 

already been shown.66 

 

 

At the end of the self-assembly process, when the liquid had reached room temperature, the 

fibers were filtered off using a filter paper, washed with hexane twice and dried.  
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Figure 48: Cooling curves of 250 °C hot solutions of BTA 5 in Marlotherm and paraffin during the fiber 

production process. Cooling from 250 to 175 °C is at ambient conditions, while from 175 to 20 °C an ice bath is 

applied for cooling. Both liquids are stirred during the whole cooling process. The self-assembly regimes for the 

selected BTA concentrations of 40 to 500 ppm (Marlotherm) and 50 to 200 ppm (paraffin) are marked. 
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Morphology of supramolecular fibers 

To prepare SEM samples of the fibers, SEM stubs were equipped with a conductive tab and 

carefully put onto the fiber mat, so that some of the supramolecular fibers were glued to the 

tab’s sticky surface. Using these samples, the morphology of fibers formed by self-assembly 

at different concentrations in both media was investigated. Corresponding SEM micrographs 

are shown in Figure 49. To cover a broad concentration range, SEM images of one low and 

one high concentration per medium are presented. Supramolecular fibers from all four 

compositions show similar morphology. Supramolecular fibers from small concentrations of 

BTA in the solvent, i.e. 50 ppm in Marlotherm or paraffin, appear thinner and more bent 

than the ones from 400 ppm of BTA in Marlotherm or 150 ppm in paraffin. 

 

 

To quantitatively evaluate these concentration dependent fiber diameters, they were 

measured for all prepared samples. Figure 50 shows the mean fiber diameters with 

corresponding standard deviations. All average fiber diameters are between 0.17 and 

C D

A B
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0.5 µm 1 µm

150 ppm, paraffin

400 ppm, Marlotherm50 ppm, Marlotherm

50 ppm, paraffin

Figure 49: SEM images of nanofibers of BTA 5 self-assembled from non-polar media. Concentrations of BTA in 

paraffin shown are 50 ppm (A) and 150 ppm (B). Concentrations in Marlotherm shown are 50 ppm (C) and 

400 ppm (D). 
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0.60 µm. Fibers assembled from solutions comprising less than 200 ppm of BTA tend 

towards smaller diameters with decreasing BTA concentration. For fibers prepared in 

Marlotherm, the lowest average diameter of 0.17 µm is reached at 50 ppm. Using paraffin as 

medium, only BTA concentrations up to 200 ppm were investigated, since at 200 ppm the 

self-assembly temperature already raised to around 170 °C, which is too high for the applied 

self-assembly process, as discussed above. Significantly lower diameters than for the 

corresponding samples assembled in Marlotherm are reached at 100 and 200 ppm of BTA in 

paraffin. For example, at 200 ppm average diameters are 0.30 µm in paraffin and 0.49 µm in 

Marlotherm. All compositions feature broad fiber diameter distributions, which is attributed 

to temperature inhomogeneities. They may be present due to the huge solution volume 

during the self-assembly process of the supramolecular fibers despite stirring. As it has been 

shown above, assembly of fibers occurs at lower temperatures, when the fiber 

concentration is decreased. At the same time, the cooling rate is decreased at lower 

temperatures (see Figure 48), which means, that fibers are assembled with lower cooling 

rates, when the BTA concentration is decreased. It has been shown in literature that lower 

cooling rates result in thicker fibers.66 It is a most interesting finding, that this effect here is 

overbalanced by the influence of lower concentration, which causes thinner fibers. 
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Figure 50: Concentration dependent diameters of fibers of BTA 5 assembled from Marlotherm (black) or 

paraffin (red). Averages and standard deviations (error bars) are based on at least 150 measured fibers each. 

Symbols at 100 ppm and red symbols are slightly shifted for the sake of clarity. 
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Summarizing, it was found, that self-assembly of BTA 5 from the non-polar media 

Marlotherm and paraffin is possible. The developed procedure allows production of large 

quantities of fibers (up to 0.75 g) in one batch. Depending on the BTA concentration used, 

average fiber diameters between 0.17 und 0.6 µm were realized. 

To also determine the fiber length for BTA 5, the dried supramolecular fibers were dispersed 

in anisole and a drop of the dispersion was dried on a Si-wafer piece, yielding some spatially 

separated fibers, whose length could be measured via SEM. This procedure was exemplarily 

conducted for supramolecular fibers self-assembled from a 400 ppm solution in Marlotherm. 

Corresponding SEM images are shown in Figure 51, alongside with length and diameter 

histograms. The average fiber length was found to be around 150 µm, while the average 

fiber diameter is 0.6 µm, as discussed above. Hence, an aspect ratio around 250 is found.  
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Figure 51: Supramolecular fibers of BTA 5, assembled upon cooling of a 400 ppm solution in Marlotherm. 

Histograms are based on at least 150 measured fibers each. Adopted with permission from ref. (Steinlein et al. 

2019)
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4.3. Setup for ultrasonic treatment and selection of media 

4.3.1. Setup for ultrasonic treatment 

Ultrasonication was done using a Branson 450 sonifier with a tapped step horn (101-147-

037; Branson) at 20 kHz. The ultrasonic horn (tip diameter: 12.7 mm) was immersed to a 

depth of 2.4 cm in 25 mL of the respective supramolecular fiber dispersion contained in a 

40 mL welded glass. To make sure that the rate, at which ultrasonic energy is delivered into 

the dispersion, is the same for all experiments, this immersion depth was maintained in all 

sonication experiments. To control the setup’s temperature, the glass vial containing the 

dispersion was cooled by a surrounding ethanol/dry ice bath. Cooling bath temperature and 

dispersion temperature were monitored by thermocouples (type K). To adjust the cooling 

bath temperature, dry ice was added until the desired temperature was reached.127 The 

described setup is schematically displayed in Figure 52. 

To estimate the ultrasonic power absorbed by the liquid in the applied setup, calorimetric 

experiments using 25 mL of water as model substance were conducted, similar to 

procedures described in literature.128 Here, the water was exposed to continuous sonication 

with defined power amplitudes (30, 50 or 70%) in the setup described above, but without 

any cooling bath. The temperature increase of the water upon ultrasonic treatment was 

monitored. Using the specific heat capacity of water and considering the warming of the 

glass vial as well, the energy absorbed by the liquid was calculated. Here, for a power 

amplitude of 30% a power of 13 W, at 50% of 23 W and at 70% of 32 W was obtained.  
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4.3.2. Investigation of BTA fiber/dispersion media systems for ultrasonic treatment 

Before starting investigations concerning dimensional control of supramolecular trisamide 

fibers via ultrasound, suitable dispersion media for supramolecular fibers of BTA 5 had to be 

identified. These media have to meet several selection criteria: 1) Preparation of 

homogeneous dispersions must be achieved. This is crucial, as big agglomerates of BTA 

might influence sonication results. In addition, non-dispersed BTA fibers floating at the 

liquid’s surface in case of poor dispersion are expected not to be exposed to ultrasonic 

energy the same way as within the medium. 2) The respective medium’s melting point 

should be low, at best below -15 °C to allow sonication at low dispersion temperatures. 3) 

The medium in question may not solve significant amounts of BTA (at least at low 

B

A
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Figure 52: Ultrasonication setup. A: The ultrasonic horn is immersed in the sample dispersion contained in a 

glass vial. The vial is cooled by a surrounding CO2/EtOH bath. Using thermocouples, the temperatures of 

dispersion and cooling bath are monitored. B: Schematic representation of one sonication cycle, which equals 

one minute of sonication. One cycle lasts 180 s in total and includes 30 segments of sonication taking 2 s each. 

Adopted with permission from ref. (Steinlein et al. 2019)
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temperatures), to avoid effects associated with partial dissolutions such as Ostwald ripening 

of formed objects, i.e. growth of larger objects at the expense of smaller ones. Preliminary 

experiments with isopropanol/water mixtures as media, in which BTA 5 exhibits a certain 

solubility, emphasize the importance of this requirement: Mixtures containing larger 

amounts of isopropanol, which solve larger amounts of BTA 5 resulted in larger fibers and a 

poor reproducibility of sonication experiments. To avoid this problem, media, which feature 

a lower solubility of BTA 5, had to be found to investigate the behavior of this BTA in 

ultrasound experiments. Hence, the solubility and dispersibility of BTA 5 was tested in 

several solvents and their respective melting points were considered. From that, n-hexane, 

toluene, methyl cyclohexane (MCH) and anisole were selected.  

Ultrasonic experiments were conducted at a cooling bath temperature of -15 °C, dispersion 

concentration of 1000 ppm and an ultrasonic power amplitude of 50% using the pulse 

program shown in Figure 52 to avoid excessive heating of the samples. To prepare samples 

for SEM characterization, one drop of each sonicated supramolecular fiber dispersion was 

drop-cast on a clean silicon wafer piece of approx. 1 cm2. Supernatant liquid was removed 

from the wafer using a piece of filter paper. Subsequently, the sample was allowed to dry, 

before it was glued onto a SEM stub with a conductive tab. All samples were coated with 

2.0 nm of platinum prior to SEM investigation.  

Figure 53 shows nanofibers formed by ultrasonic treatment of supramolecular fibers of BTA 

5 for 15 min in the four media n-hexane, toluene, methyl cyclohexane and anisole. In all four 

media, nanofibers of BTA 5 were formed successfully by ultrasonic treatment. Nanofibers 

obtained from n-hexane seem thinner and longer than those from the other media used. 

Nanofibers from toluene and anisole give a quite similar impression. It is noteworthy, that 

fibers from both of these media show rough surfaces where the initial fiber was ruptured. 

This is an indication that no significant dissolution occurs during sonication of these systems, 

as otherwise the fractured surfaces would be smoother due to surface minimization by 

Ostwald ripening. As results in toluene and anisole are comparable, toluene was not used as 

medium for further experiments any more to reduce the number of experiments. 

Consequently, to elucidate effects of the used medium, three different media, n-hexane, 

MCH and anisole, were selected for further use. 
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4.3.3. Ultrasonic power amplitude 

In the applied sonication setup, the ultrasonic power amplitude, i.e. the rate, at which 

ultrasonic energy is delivered into the dispersion, can be adjusted. In principle, the cutting 

speed could either just depend on the total absorbed sonication energy or it could 

(additionally) depend on the applied power amplitude. To find proper starting conditions for 

the correlation of selected process parameters with resulting nanofibers, this possible 

dependency on power amplitude was investigated. Hence, three different power 

amplitudes, namely 30, 50 and 70%, which equal absorbed powers of 13 W, 23 W and 32 W, 

were applied with the pulse program shown in Figure 52. SEM samples from the treated 

dispersions were prepared as described above. Fiber dimensions after treatment with these 

different power amplitudes for different sonication times were measured and plotted as a 

function of ultrasonic power absorbed by the corresponding samples in Figure 54. 

It is clearly visible, that all results form a single curve quite well, despite they origin from 

experiments with different power amplitudes. Yet, average fiber lengths show some 

C D

A B
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anisolemethyl cyclohexane

n-hexane toluene

Figure 53: SEM images of nanofibers of BTA 5 after 15 min of sonication in A: n-hexane, B: toluene, C: methyl 

cyclohexane and D: anisole. 
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deviations at short sonication times, which is attributed to fluctuations in the measure-

ments, as it is also implied by the huge standard deviations observed in this region. The 

existence of the single curve found indicates that the total absorbed ultrasonic energy is the 

factor governing the cutting of the supramolecular fibers, while the power amplitude plays 

no significant role, at least for the power amplitudes tested. This finding is in agreement with 

reports by Lucas et al., where the supplied ultrasonic energy, but not the power amplitude, 

determines the scission of carbon nanotubes.116 Also the phenomenon of the fiber 

dimensions approaching a terminal value when treated with sufficient ultrasonic energy 

agrees with results reported for other systems, e.g. carbon nanotubes115,116 or electrospun 

polymer fibers114. 

 

 

As it has been shown, the power amplitude, adversely to the total applied ultrasonic energy, 

does not affect the resulting fibers’ dimensions, a medium power amplitude of 50% was 

chosen and maintained for all further sonication experiments. The intention for this choice 

was to avoid the rapid heating of the samples caused by high power amplitudes. At the same 

time, a sufficiently high power amplitude was chosen to shorten the experiments’ duration. 
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Figure 54: Evolution of length (left) and diameter (right) of nanofibers with increasing absorbed sonication 

energy. Sonication energy is supplied with ultrasonic power amplitudes of 30% (■), 50% (●) or 70% (▲). 

Sonication medium is anisole, BTA concentration is 1000 ppm and cooling bath temperature is -15 °C. Averages 

and standard deviations (error bars) are based on at least 150 measured fibers each. 
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4.4. Influence of sonication process parameters on the dimensions of nanofibers 

Control of the resulting fibers’ dimensions is crucial to successfully utilize ultrasound for the 

production of nanofibers. This control can only be achieved, when the impact of all relevant 

process conditions is known. Therefore, those parameters, i.e. sonication time, sonication 

medium, BTA concentration in the dispersion and temperature are systematically varied in 

this chapter. The dimensions of resulting submicron fibers are determined via SEM and 

correlated with sonication conditions. The initial set of parameters was adopted from the 

previous section: Ultrasonic power amplitude is 50%, BTA concentration is 1000 ppm and 

cooling bath temperature is -15 °C. The BTA used is BTA 5 and anisole is used as medium, 

where not stated otherwise. 

To prepare dispersions for later ultrasonic treatment, 1000 (50, 2000) ppm of supra-

molecular fibers of BTA 5 were dispersed in 25 mL of 4 °C cold n-hexane, MCH or anisole by 

mixing with a vortex shaker (Merck Eurolab). Next, the vial containing the cold liquid was 

attached to the ultrasonic horn as described above (section 4.3.1.). Sonication was done 

using the pulse program shown in Figure 52 B (section 4.3.1.): 2 s of sonication were 

followed by 2 s without sonication. This sequence was repeated 30 times, so that the total 

sonication time within the 2-minute-program was 1 min. This pulse program was followed by 

1 min resting time without any sonication, before the next pulse program was applied, until 

the total sonication time for the sample was reached. To monitor the temporal evolution of 

fiber dimensions, the resting time was used to draw samples of about 0.1 mL. This was 

typically done after 1, 3, 6, 9, 12, 15 and 20 min of sonication. All breaks integrated in the 

described sonication procedure are meant to give the sonicated dispersion time to thermally 

equilibrate with the cooling bath. After sonication, all samples were stored at 4 °C prior SEM 

samples preparation. To measure the dimensions of resulting fibers, SEM images from at 

least three different areas of each sample were taken into account. Using Image Tool 3.00 

(The University of Texas Health Science Center in San Antonio) at least 150 fibers per sample 

were analyzed. All dimensions presented in the following were measured this way to obtain 

comparable results. 
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4.4.1. Sonication time 

In order to study the influence of sonication time, a dispersion of supramolecular fibers in 

anisole was treated with the pulse sonication program described in the previous section for 

90 min. Samples were taken from this dispersion after different sonication times to monitor 

the temporal evolution of fiber dimensions. Figure 55 shows SEM micrographs and 

corresponding fiber length and diameter histograms for samples up to 90 min of sonication 

taken in the same single experiment.  

Within only 1 min of sonication, the initial fibers featuring lengths of around 150 µm have 

been cut into shorter supramolecular fibers with an average length of 2.76 µm and an 

average diameter of 0.24 µm (Figure 55 A). After 6 min of sonication, supramolecular 

nanofibers with an average length of 0.92 µm are found. Among them are only very few 

ones with lengths between 2 and 4 µm and none with a length above 4 µm (Figure 55 C). As 

shown in the image, long fibers exist besides very small ones, which also are significantly 

thinner. After 30 min of sonication, the longest fibers have been comminuted to the benefit 

of small fibers featuring lengths below 0.5 µm (Figure 55 H). Finally, after 90 min of 

sonication, the fiber length distribution is further narrowed: After this sonication time, very 

few fibers longer than 1.0 µm are left. At this stage, fibers feature an average thickness of 

0.14 µm and no fibers thicker than 0.6 µm are present anymore (Figure 55 L). 
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To quantitatively analyze temporal evolution of the lengths and diameters of the nanofibers 

after sonication, averages and standard deviations of all samples are displayed in Figure 56. 

Even after only one minute of sonication, the average fiber length has already been reduced 

from an initial value of 148.93 µm to 2.76 µm by a factor of 54. Upon continued sonication, 

this value is further reduced. For example, after 20 min the average fiber length is 0.63 µm, 

after 60 min it is 0.44 and after 90 min it is as low as 0.33 µm. The latter value equals a 

length reduction by a factor of 455 compared to the non-sonicated sample. The shorter the 

nanofibers become, the slower is the cutting speed, which leads to the asymptotic curve 

shape visible in Figure 56. This curve shape also implies a terminal value, after which no 

significant further cutting occurs any more. Yet, this terminal value appears not to have fully 

been achieved after 90 min. This means that fiber dimensions may be further reduced to 

some extent by increasing the sonication time. Looking at fibers’ average diameters, a less 

pronounced reduction is observed: Within the first minute of sonication, the diameter is 

more than halved from 0.59 µm to 0.24 µm. By continued sonication, this value is reduced to 

0.16 µm after 20 min and to 0.15 µm after 60 min. After 90 min, an average fiber diameter 

of 0.14 µm is reached, which represents a 4.3 times lower diameter than that of the initial 
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Figure 55: SEM images of nanofibers of BTA 5 after sonication in anisole for 1 min (A) to 90 min (L). BTA 

concentration was 1000 ppm and cooling bath temperature was -15 °C. Histograms are based on at least 150 

measured fibers each. Adopted with perm. from ref. (Steinlein et al. 2019)
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self-assembled fibers. Summarizing, both fiber dimensions are reduced drastically by 

sonication, whereas this effect is much more pronounced with respect to fiber length. 

As shown, most of the cutting of the fibers occurs within the first 20 min of sonication. 

Therefore, to focus on this most interesting part of the cutting process, all further 

experiments were only run up to total sonication times of 20 min. 

 

 

Reproducibility of these fiber dimensions is crucial to draw valid conclusions from fiber 

dimensions after sonication. To investigate this, one sonication experiment was run up to 

20 min three times independently and samples were drawn after defined sonication times. 

Figure 57 gives a comparison of the resulting fiber dimensions. The plots show slight 

differences between fiber dimensions. For example, in the first run, the fiber length after 

1 min of sonication is approx. 1.0 µm, whereas it is approx. 1.5 µm after the same time in the 

second run. Yet, such differences are still in an acceptable dimension, when taking the broad 

standard deviation of the 150 measured fiber dimensions for each data point into account. 

This argument is further supported by no run showing consistently lower or higher values 

than the others. For instance, the mentioned average fiber length after 3 min is lower in the 

first than in the second run. By contrast, the fiber length after 6 min is higher in the first run. 

Concluding, slight deviations in fiber dimensions exist, which are attributed to statistical fluc-

tuations caused by the broad distributions of fiber dimensions. To further improve the data 
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Figure 56: Temporal evolution of length (left) and diameter (right) of nanofibers during sonication. Sonication 

medium is anisole, BTA concentration is 1000 ppm and cooling bath temperature is -15 °C. Initial fiber dimen-

sions l0 and d0 are marked. Averages and standard deviations (error bars) are based on at least 150 measured 

fibers each. Reprinted with permission from ref. (Steinlein et al. 2019)
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basis for the following results, each experiment was conducted three times and the resulting 

data were merged to get a data basis of at least 450 measured fibers per data point. 
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independent runs. The sonication medium is anisole, BTA concentration is 1000 ppm and the cooling bath 

temperature is -15 °C. Initial fiber dimensions l0 and d0 are marked. Averages and standard deviations (error 

bars) are based on at least 150 measured fibers each. Reprinted with permission from ref. (Steinlein et al. 

2019)
127

. © (2019) John Wiley and Sons 



Length control of supramolecular 1D-objects via ultrasound 

107 

4.4.2. Sonication medium 

Results from the previous section already indicated an influence of sonication media on fiber 

cutting speed. Hence, variation of sonication media was evaluated next. Based on the 

experiments described in the previous section, n-hexane, MCH and anisole were chosen as 

sonication media. All three media feature no significant solubility of BTA 5 at ambient 

temperature. Figure 58 shows a comparison of the temporal evolution of nanofiber 

dimensions after ultrasonic treatment for up to 20 min in all three selected solvents.  

 

 

Looking at the length of the nanofibers, clear differences between results from the three 

media are observed: After one minute of sonication, 4.29 µm are reached in n-hexane, 

3.23 µm are reached in MCH and 2.80 µm are reached in anisole. This means that nanofibers 

from n-hexane are 53% longer and the ones from MCH are 15% longer than those sonicated 

in anisole. This huge difference decreases with further sonication. With respect to the 

diameter of supramolecular nanofibers, the opposite phenomenon is visible: Highest values 

for the diameter are achieved by use of anisole. After one minute of sonication, the average 

diameter is 0.27 µm using anisole and 0.15 µm using MCH or n-hexane. By contrast, 

diameters from MCH and n-hexane appear to be comparable throughout all sonication times 

investigated. From the dependency of fiber dimensions on the sonication media used arise 

differences in the aspect ratio. The aspect ratio of the fibers is defined as fiber length divided 

Figure 58: Temporal evolution of length (left) and diameter (right) of nanofibers during sonication in 

dispersions in anisole (■), MCH (■) and n-hexane (■). The dispersion concentration is 1000 ppm, the ultrasonic 

power amplitude is set to 50% and the cooling bath temperature is -15 °C. Averages and standard deviations 

(error bars) are based on at least 450 measurements per medium each. 

0 5 10 15 20

2

4

6

8

100

200

 Anisole 1000 ppm

 n-Hexane 1000 ppm

 MCH 1000 ppm

 pristine length

le
n
g
th

 [
µ

m
]

sonication time [min]

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

d
ia

m
e
te

r 
[µ

m
]

sonication time [min]

 Anisole 1000ppm

 n-Hexane 1000ppm

 MCH 1000ppm

 Pristine Diam

l0

d0



Length control of supramolecular 1D-objects via ultrasound 

108 

by fiber diameter (l/d). After one minute, l/d equals 10.3 with anisole, 21.1 with MCH and 

even 29.0 with n-hexane. Further sonication up to a total duration of 20 min reduces aspect 

ratios to 3.7 for anisole, 5.3 for MCH and 6.8 for n-hexane. Table 8 lists selected data gained 

from the sonication medium variation experiments for comparison.  

Concluding from all these results, average dimensions of nanofibers after sonication are 

dependent on the medium used during sonication. This opens a facile way to control 

dimensions and aspect ratios of the nanofibers: By picking the matching dispersion medium 

and sonication time for each aspect ratio desired, aspect ratios ought to be adjustable at 

least between 4 and 29. The reason for the differences between the media will be discussed 

later on. 

 

Table 8: Length (l), diameter (d) and aspect ratio (l/d) of nanofibers after sonication for 1, 6 and 20 min in 

anisole, n-hexane and MCH. For each dispersion, BTA concentration is 1000 ppm, cooling bath temperature is -

15 °C and the ultrasonic power amplitude is set to 50%. Averages and standard deviations (error bars) are 

based on three independent experiments per medium each.
127

 

Sonication 

time [min] 

Anisole n-Hexane Methylcyclohexane 

l [µm] d [µm] l/d l [µm] d [µm] l/d l [µm] d [µm] l/d 

1 2.80 0.27 10.3 4.29 0.15 29.0 3.23 0.15 21.1 

6 1.04 0.19 5.4 1.53 0.15 9.7 1.30 0.15 8.8 

20 0.66 0.18 3.7 0.98 0.14 6.8 0.73 0.14 5.3 

 

 

4.4.3. Temperature 

The temperature of the dispersion during sonication is another factor known to possibly 

affect results achieved by ultrasonic treatment of dispersions.
114

 To examine this factor’s 

impact on the ultrasonic cutting of BTA fibers, a 1000 ppm dispersion of BTA 5 in anisole was 

sonicated at a power amplitude of 50% applying cooling bath temperatures of -30, -15 and 

20 °C. For each temperature, temporal evolution of fiber dimensions is shown in Figure 59. 

At a cooling bath temperature of 20 °C, slightly longer nanofibers were formed, compared to 

nanofibers from both other temperatures. For instance, after one minute of sonication the 

average fiber length was 2.97 µm at 20 °C, 2.80 µm at -15 °C and 2.36 µm at -30 °C. After 

prolonged sonication, the differences between the curves were reduced. All three curves 

exhibit a similar shape and the cutting speed was reduced with increasing sonication time 
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for all cooling bath temperatures. As far as the fiber diameter is concerned, sonication at 

20 °C also tended to result in higher values. Cutting at -15 °C appears to have been slightly 

slower than at -30 °C, but this small effect is superimposed by the standard deviations of the 

length averages from three independent runs of the same experiment, respectively. All in all, 

there appears to be a slight decrease of cutting speed with increasing temperature. In 

literature, this effect is attributed to lower energy release upon collapse of cavities, which 

had been formed by ultrasound beforehand, in warmer media.
114

 

 

 

Summarizing, it can be stated that the temperature of the medium cooling the sonicated 

dispersion plays a minor role in the ultrasonic cutting of BTA 5, at least in the temperature 

window investigated. At higher temperatures, additional effects due to partial dissolution of 

the BTA would expectantly have to be taken into account. 

 

 

4.4.4. Concentration of BTA fibers 

The concentration of BTA fibers in the sonicated dispersion is the last processing parameter 

investigated. Variation of this parameter yields information on the cutting mechanism of 

supramolecular fibers: In principle, cutting can either occur upon interaction of fiber and 
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Figure 59: Temporal evolution of length (left) and diameter (right) of nanofibers during sonication in anisole at 

cooling bath temperatures of 20 °C (■), -15 °C (■) and -30 °C (■). BTA concentration is 1000 ppm and the 

ultrasonic power amplitude is set to 50%. Averages and standard deviations (error bars) are based on at least 

450 measured fibers per temperature each. 
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imploding ultrasound-induced cavity or upon collision of two fibers, which are accelerated 

by implosions of cavities. In the first case, the cutting speed is independent of the fiber 

concentration, whereas in the second case it depends on the number of fiber-fiber collisions, 

which rises by the squared fiber concentration.
123

 For this investigation, eligible 

concentrations were limited: BTA 5 was found to be insoluble in anisole at ambient 

temperature. Nevertheless, at high temperatures, as they can locally be generated by 

ultrasound, it is likely to be soluble to some small extent. Using high concentrations, this 

effect can be neglected, but at very low dispersion concentrations it might become 

significant. Therefore, the lowest concentration chosen was 50 ppm. On the other hand, at 

high concentrations, the initial long fibers render the viscosity of the dispersion very high, 

which is attributed to entanglements of the fibers. This effect could also influence the fiber 

cutting results and therefore was avoided by choosing 2000 ppm of BTA 5 as the highest 

concentration. As a third concentration, 1000 ppm were chosen, which is the standard 

concentration used for all sonication experiments described so far. Figure 60 shows the 

temporal evolution of nanofiber dimensions upon sonication of dispersions comprising 2000, 

1000 and 50 ppm of supramolecular fibers in anisole. The cooling bath temperature in the 

experiments shown is -15 °C and the ultrasonic power amplitude is 50%. 

There is no significant difference visible between experiments with 1000 or 2000 ppm of BTA 

5, with respect to both, length and diameter. By contrast, fibers from sonication of 50 ppm 

dispersions are significantly larger in both dimensions. For example, an average length of 

1.31 µm is achieved after 3 min of sonication with 1000 ppm, while it takes twice as long, i.e. 

6 min, to achieve a comparable average length of 1.34 µm with 50 ppm. This means that the 

cutting speed is approximately halved in this region for the 50 ppm sample. As described by 

Zeiger and Suslick, a linear correlation between concentration and particle size would be 

expected, if particle breakage was exclusively caused by fiber-fiber collisions and the 

decrease of the cutting rate with smaller fiber size was neglected.
123

 Comparing the samples 

with 50 and 1000 ppm of BTA 5, this would mean a 20 times higher cutting speed for the 

1000 ppm sample. Even if the decrease of the cutting speed with smaller fibers is 

considered, a much higher difference than the observed factor of two (or less, if comparing 

other data points) would be expected for exclusive cutting by collision of fibers. This means, 

that such collisions are not the predominant cutting mechanism. Yet, they may play a minor 

role and thus cause the differences found for different BTA concentrations. These findings 
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are in good agreement with those by Zeiger and Suslick. Investigating the fragmentation of 

three-dimensional crystals of acetylsalicylic acid, they reported direct interactions between 

cavities and the particles to be the dominating fragmentation mechanism. At the same time, 

they found the cutting speed to slowly increase with higher particle concentrations, the 

same way as it is demonstrated here.
123

 

 

 

All in all, it was found that the impact of the BTA concentration is small, with lower 

concentrations resulting in slightly larger fibers. Since this affects fiber length as well as fiber 

diameter, the aspect ratio cannot be altered by this parameter. From the comparison of 

cutting speeds at different concentrations it can be concluded that fiber-fiber collisions are 

not the predominant cutting mechanism.  

 

 

4.4.5. Underlying factors determining ultrasonic fiber cutting 

As described above, an influence of the chemical nature of the medium as well as an 

influence of the cooling bath temperature on the dimensions of nanofibers was found. Since 

both parameters alter characteristics like e.g. viscosity of the media, both effects might be 

traced back to such a solvent property. There are three main parameters in question to 
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Figure 60: Temporal evolution of length (left) and diameter (right) of submicron objects upon sonication in 

anisole at supramolecular BTA fiber concentrations of 2000 ppm (■), 1000 ppm (■) and 50 ppm (■). Cooling 

bath temperature is -15 °C and the ultrasonic power amplitude is set to 50%. Averages and standard deviations 

(error bars) are based on at least 450 measurements per concentration each. 
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cause the size differences of nanofibers upon ultrasonic treatment: 1) Surface energy of the 

medium. The surface energy difference between BTA and medium governs the free energy 

at this surface, which in turn influences the ultrasound-induced formation of cavities at this 

surface. 2) Vapor pressure of the medium. When a cavity is formed, the vapor pressure of 

the medium governs its filling with solvent vapor due to medium evaporating at the surface 

of the cavity. The higher the vapor pressure, the more gaseous medium will enter the cavity, 

building up an internal pressure. When the cavity finally collapses, a higher internal pressure 

will decrease the energy released by that collapse.129 3) Viscosity of the medium. Energy 

from the collapse of a cavity is transported to the dispersed solid fibers by the flow induced 

by solvent filling the imploding cavity. This flow is governed by viscosity.116,117 To identify the 

dominant factor behind supramolecular fiber cutting, possible correlations of all three para-

meters with the average fiber length were investigated. The applied average fiber lengths 

were taken after sonication of a dispersion of 1000 ppm of supramolecular fibers of BTA 5 

with an ultrasonic power amplitude of 50% for 20 min. To achieve a variation of solvent 

parameters, data from medium and temperature variation experiments described above 

were applied together and the respective solvent properties were determined from 

literature data. For the viscosity, a very strong correlation was found, which is displayed by 

the plot in Figure 61. The graph shows a plot of fiber length versus viscosity of the medium. 

Viscosities for anisole were extrapolated using various literature data130,131,132 while for n-

hexane and MCH they were calculated using an equation from literature103. For the viscosity 

of the medium, a very strong linear correlation, at least in the viscosity range displayed, is 

observed. 
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Secondly, possible correlations with the medium’s surface energy were examined. Surface 

energies used in this were calculated using data provided by Yaws.133 The plot of fiber length 

after 20 min of sonication versus surface energy showed a certain correlation of both 

parameters, with a higher surface energy yielding shorter nanofibers. Nevertheless, this 

correlation was much weaker than the one found between viscosity and fiber length.  

Thirdly, vapor pressures of media and average fiber length were correlated. Here, a positive 

correlation of medium’s vapor pressure and average fiber length after sonication was 

observed. This correlation is stronger than the one for the surface energy, as it was expected 

concluding from considerations described in literature.114,129 Nevertheless, it is still 

significantly weaker than the correlation with viscosity. All values for vapor pressures were 

calculated using literature data.103,133,134, 

Based on the comparison of these three solvent properties, the viscosity of the medium was 

identified as the factor having the strongest impact on the length of nanofibers after 

sonication. Hence, it is exclusively plotted in this thesis. Nevertheless, both other parameters 

also show relatively good correlation strengths and therefore are supposed to exert at least 
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Figure 61: Plots of average fiber lengths after 20 minutes of sonication versus viscosity of dispersion media. 

Media are anisole, MCH and n-Hexane. Besides the standard cooling bath temperature of -15 °C, for anisole 

also data with cooling bath temperatures of 20 °C and -30 °C are presented. Dispersion concentration was 

1000 ppm and the ultrasonic power amplitude was set to 50%. Averages and standard deviations shown are 

based on three independent experiments each. Adapted with permission from ref. (Steinlein et al. 2019)
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some influence on the fiber length. A clearer analysis of these three factors is hindered by 

the difficulty of varying single factors independently: Media with high surface energy 

typically feature lower vapor pressure and higher viscosity and vice versa. Hence, it is hard to 

clearly discriminate the individual contributions of these three solvent properties to fiber 

length after sonication. 

The massive influence of the sonication medium’s viscosity on the cutting of fibers has also 

been described in literature by Huang et al.: They used a formula indicating a negative 

correlation of viscosity with the square of the terminal length approached by fibers upon 

extensive sonication.117 By contrast, the correlation found in this work appears linear, at 

least in the investigated viscosity range. A possible explanation for these divergent results is 

that, the fiber lengths applied here are taken after only 20 min of sonication. Hence, they do 

not represent final lengths approached after long sonication, as can be seen from Figure 56, 

where even after 90 min of sonication further fiber length decrease is visible. This means 

that in this work a length slightly different from the terminal fiber length used by Huang et 

al. is correlated to the medium’s viscosity. 
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4.5. Conclusions 

The major subject of this chapter deals with the dimensional control of supramolecular 

submicron fibers of 1,3,5-benzene¬trisamides via a top-down approach. In particular, the 

length control as well as the aspect ratio of such fibers was addressed via ultrasound. 

In a first step, the preparation of supramolecular fibers based on a BTA with tert-butyl 

substituents (BTA 5) in large amounts by self-assembly upon cooling was successfully 

conducted. Self-assembly was performed using hydrocarbons as media in a batch process 

with a solution mass of up to 1.5 kg, yielding up to 0.75 g of supramolecular BTA fibers per 

batch. The obtained supramolecular fibers feature average diameters in the range of a few 

hundred nanometers and an average length around 150 µm.  

In a second step, suitable conditions for sonication experiments were identified. Thus, a 

setup for reproducible sonication experiments was established. It consists of an ultrasonic 

horn immersed into the sample dispersion. A sonication program including sufficient breaks 

and a cooling bath were applied to avoid excessive heating of the sample during sonication. 

With a water bath, the ultrasonic power exerted by this setup was determined to be 13, 23 

and 32 W when setting the amplitude of the sonication device to 30, 50 or 70%, respectively. 

Anisole, n-hexane, toluene and methyl cyclohexane were identified as media suited for 

dispersion of BTA 5 and subsequent sonication, as they yielded well-defined nanofibers upon 

sonication. In addition, the dependency of the fiber cutting speed on the ultrasonic power 

amplitude was tested. It was found, that the overall applied ultrasonic energy, i.e. the 

product of applied ultrasonic power amplitude and sonication time, plays a major role. By 

contrast, the ultrasonic power amplitude itself had no major impact. Hence, for all further 

experiments, the power amplitude was fixed and the sonication time, correlating with the 

ultrasonic energy, was altered. As a result of these experiments, a standard set of 

parameters, i.e. anisole as medium, a dispersion concentration of 1000 ppm and a cooling 

bath temperature of -15 °C was established. 

In the third section, BTA 5 was used as a model BTA for a detailed study of the impact of 

sonication process parameters on the dimensions of the obtained fibers. Based on the 

results from the second section, the parameters sonication time, sonication medium, cooling 

bath temperature during sonication and supramolecular BTA fiber concentration in the 

sonicated dispersion were tested. It was found that the fiber length was reduced from 

148.93 µm to 2.76 µm, i.e. by a factor of 54, within only one minute of sonication. 
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Furthermore, with decreasing fiber length the cutting speed decreased, indicating, that it will 

approach zero after sufficient sonication time. Hence, terminal nanofiber dimensions which 

than cannot be reduced any more, should be reached then. Yet, this state has not been 

reached even after 90 min of sonication for the applied system. After 90 min, which was the 

longest sonication time applied in this work, averages for nanofiber length and diameter 

were 0.33 µm and 0.14 µm. Variation of the concentration of BTA in the sonicated dispersion 

(50, 1000 and 2000 ppm) and of the cooling bath temperature (-30, -15 and 20 °C) only 

shows minor impact on the fiber dimensions after sonication. Thereby, increased 

concentration and decreased temperature yield smaller fibers after sonication, respectively. 

By contrast, the dispersion medium reproducibly exhibited significant impact on the 

nanofibers’ length and diameter. For example, sonication for 20 min in n-hexane yielded 

nanofibers with an average length of 0.98 µm and an aspect ratio of 6.8, while sonication in 

anisole under the same conditions yielded an average fiber length of only 0.66 µm and a 

much lower aspect ratio of 3.7. This finding allows control of length and aspect ratio of BTA 

nanofibers in the future by choosing appropriate sonication media and total sonication 

energies. Finally, the viscosity of the sonication medium was found to explain as well the 

influence of temperature as the one of sonication medium on fiber length after sonication. 

Therefore, it is thought to be the other decisive parameter for the cutting speed of BTA 

supramolecular fibers by ultrasound, besides the ultrasonic energy applied. 

To conclude, it was shown that ultrasonication is a straightforward top-down method to 

produce supramolecular submicron short fibers with controlled fiber lengths and aspect 

ratios. These findings may pave the way to use the submicron short fibers as seeds for the 

production of long BTA nanofibers with small size dispersity via a seeded growth process. 

Moreover, these submicron short fibers may be suitable to be homogeneously dispersed 

into polymer matrix materials feasibly, where these objects can act as nucleating sites for 

the foam cell nucleation or the crystal nucleation. 
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5. Supramolecular cell nucleating agents for foam extrusion of i-PP 

5.1. Polymer foams 

5.1.1. Polymer foam fundamentals 

Generally, foams are referred to as a discontinuous gaseous phase dispersed in a continuous 

liquid or solid phase.135 For polymer foams, the continuous phase consists of a polymer. Due 

to this morphology, polymer foams provide several outstanding properties, which bring their 

wide use in different applications. Perhaps the most prominent property of polymer foams is 

their low thermal conductivity, which renders them interesting for thermal insulation 

applications.136 Good energy absorption, i.e. shock absorption, is another property of 

polymer foams: Energy is absorbed by buckling of the foam’s cell walls. With an elastomeric 

polymer phase, this buckling is mostly elastic. After deformation, the energy is again 

released.136 This is used in applications like e.g. sports shoes. If a rigid polymer phase is 

applied, cells are irreversible deformed due to brittle failure of cell walls, as it is the case e.g. 

for PS foams. Nevertheless, these materials are good in absorbing the first impact, as it is 

important in packaging applications, for instance.136 In this context, it is also of importance, 

that polymer foams generally feature low densities compared to compact solids. Moreover, 

depending on the cell sizes, polymer foams can feature much better specific mechanical 

properties, i.e. a much better property per weight ratio. This makes them important for 

lightweight construction applications, particularly in the transportation sector.135 

Polymer foams are typically classified along their structural properties like density, cell size, 

cell density and open cell content.136 The foam density is an intuitive parameter widely used 

for the description of polymer foams. Usually, it is determined by the buoyancy method 

(Archimedes method). There are several numbers associated with the foam density ρF: The 

expansion ratio Φ equals ρF divided by the density of the compact polymer ρP. Φ is 

connected to relative density ρrel and void fraction υF via equation 4:137 

 Φ = 𝜌𝐹𝜌𝑃 = 1𝜌𝑟𝑒𝑙 = 11 − 𝜐𝐹 (4) 

 

Using the expansion ratio, foams are classified into high-density (Φ ≤ 4), medium-density 

(4 < Φ < 10) and low-density (Φ ≥ 10) foams.138 Another important property of foams is the 

cell size. Typically, it is measured by means of SEM at cut or cryo-fractured surfaces of foam 
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samples. Apparent cell areas are taken from SEM micrographs. For each apparent cell area, a 

circle featuring the same area is calculated and the circle’s diameter is taken as cell 

diameter, as it is depicted in Figure 62.  

 

 

Yet it is commonly applied, results generated via this procedure should be taken with care: 

When a foam with randomly placed cells is cut by a plane, the cells are mostly not cut at the 

plane showing their average (or largest) intersectional area. This causes a broad distribution 

of cell diameters measured, even if the foam solely contained monodisperse spherical cells, 

as shown in Figure 63.139 

 

 

Despite these limitations, the cell size is very popular in describing foams. Based on this 

number, a classification into conventional, fine-celled, microcellular and nanocellular foams 

is made.67 As the cell size does not allow conclusions on the number of cells in a foam, a 

third common number for foam characterization, the cell density, i.e. the number of cells 

A A d

Figure 62: Procedure for the determination of cell diameters. Left: The area A of the cell is determined. Right: A 

circle of area A equivalent to the one of the cell section is calculated and its diameter d is taken as cell 

diameter. 

cutting plane

Figure 63: Left: Two-dimensional representation of a section (red) through a foam comprising ideal mono-

disperse spherical cells. Here, the cutting plane is seen from the side. Right: View onto the cutting plane. Most 

cell diameters appear smaller here, as they originate from cells not cut in the middle. The left side of this figure 

is adapted from Park (Park 2017)139. 
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within a certain foam volume, typically within one cubic centimeter, is necessary. For cell 

density determination, similar SEM micrographs as for the cell diameter are used. The 

number of cells n on each micrograph is counted (also considering cells only partly on the 

image) and the area of the sample AS depicted on the image is calculated. Using equation 5, 

this 2D-information is expanded into the final cell density in 3D-space. 

 𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = (𝑛𝐴)1,5 (5) 

 

The respective cell size and cell density limits for the classification into conventional, fine-

celled, micro-cellular and nanocellular foams are listed in Table 9. 

 

Table 9: Classification of foams based on cell size and cell density.67 

Foam type Cell size [µm] Cell density [1/cm3] 

Conventional > 300 < 106 

Fine-celled 10 – 300 106 – 109 

Microcellular 0.1 – 10 109 – 1015 

Nanocellular < 0.1 > 1015 

 

Small cell diameters and high cell densities are typically beneficial for foam properties like 

thermal insulation and impact strength. The next section provides a closer look at the 

foaming process with a focus on the improvement of these two properties.  

 

 

5.1.2. Foaming process 

The foaming process can be divided into polymer/gas homogenization, foam cell nucleation, 

foam expansion and foam stabilization, as they are schematically depicted in Figure 

64.139,140,141 These four steps are used as a guideline in this chapter to lead through the 

process of polymer foam generation from thermoplastic polymers. In addition, a short 

discussion of means to reduce cell size and enhance cell density in each step is given. 
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The first step for the preparation of polymer foams is the homogenization of gas and 

polymer melt. Gas used in this process may either stem from a physical blowing agent (e.g. 

CO2 or N2) or be formed during the homogenization step by release from a chemical blowing 

agent. In this step, the gas is dissolved in the liquid polymer and the gas concentration is 

equilibrated in the whole material by diffusion. To obtain homogeneous foam in the end, 

complete dissolution of the gas in this first step is of particular importance.  

The second step is the nucleation of the foam cells. To induce nucleation, normally the 

pressure is released, so that the polymer/gas phase becomes supersaturated. For 

homogeneous small cells, a nucleation density NN as high as possible is needed. The 

nucleation density NN here is understood as the number of supercritical nuclei formed in a 

given volume of polymer/gas phase. Assuming that all nuclei have grown into foam cells, it 

can be estimated from cell density and expansion ratio Φ of the final foam according to 

equation 6:142,143 

 𝑁𝑁 = 𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × Φ (6) 

 

In practice, the actual nucleation density will most likely be higher than the one calculated 

using equation 6, as not every nucleus grows into a cell and several cells can unite to form 

one larger one. There are several methods to enhance nucleation density: A common way is 

intentional heterogeneous nucleation at the surface of added nucleating agents. Offering 

sufficient nucleation sites this way, more cells are nucleated.143 Besides, nucleation can be 

facilitated by increasing the supersaturation of the melt, i.e. dissolving more gas, which may 

require higher pressure.143 Finally, the pressure drop rate plays a key role: As the third step, 

cell growth, and nucleation in practice occur parallel to each other, they compete for 

dissolved gas. Hence, the pressure should drop as quickly as possible to induce at best 

gas

polymer

gas 
dissolved in 

polymer

I II III IV

Figure 64: Schematic representation of the single steps in the foaming process: I) Homogenization. II) Foam cell 

nucleation. III) Foam expansion. IV) Foam stabilization. 
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instantaneous nucleation in the entire polymer melt.143,144 Furthermore, simultaneous 

nucleation reduces Ostwald ripening, i.e. further growth of larger cells on the expense of 

smaller nuclei. 

The third step is foam expansion due to growth of foam cells. Here, supercritical nuclei start 

to grow into foam cells. This process is driven by gas diffusion from the supersaturated melt 

into the foam cells. As a result, the melt is depleted of gas around each growing foam cell, 

which hinders further nucleation in direct vicinity of the cell.144 When a cell expands, the 

polymer layer at its surface is prone to biaxial stretching. If the melt strength of the polymer 

is insufficient, this layer forming the cell wall between two cells may rupture, which results in 

cell coalescence, i.e. both cells unite into a larger one. To suppress this process decreasing 

cell density, the melt strength of the polymer must be enhanced. This can be achieved by 

reducing the melt temperature. Unfortunately, the melt viscosity also raises upon cooling, 

rendering the melt too viscous for foam processing at a certain temperature.145 From these 

two limitations, i.e. too low melt strength at high temperatures and too high viscosity at low 

temperatures, the so-called foaming window arises. It describes the temperature window, 

where the material can be foamed.146 Amorphous polymers generally feature a slow 

decrease of viscosity in the foaming temperature region and hence provide a wide foaming 

window, which allows easy processing. By contrast, the beginning crystallization of semi-

crystalline polymers causes a rapid increase of viscosity in the critical temperature region, 

rendering the foaming window much narrower.145 For example, linear i-PP exhibits a 

foaming window of only up to 4 °C145, which is hard to realize in an industry-scale process. To 

overcome this problem, long-chain branched polymers are frequently applied, because they 

provide increased melt strength at elevated temperature, thus widening the foaming 

window.137,146,147 Generally, determination of the melt strength under realistic conditions is 

hard, as this includes biaxial stretching under high pressure to allow investigation of gas-

loaded polymer melts. Commonly, at least relative values can be obtained by extensional 

rheology (Rheotens experiment).137 In this experiment, the polymer melt without any 

blowing agent is extruded through a die and the strand is hauled off. During the 

measurement, the haul-off speed is increased to enhance the extensional strain exerted on 

the melt strand. Hereby, the melt strength is understood as the maximum stress the strand 

is able to bear prior to rupture. 
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The fourth and final step of the foaming process is foam stabilization. Stabilization is caused 

by decreasing foam temperature, which enhances the viscosity of the polymer. This 

increased viscosity raises the force necessary for further cell expansion and, consequently, 

stops foam expansions. This is supported by the melt being depleted of gas, which ceases 

the plasticizing effect of the gas. During the foam stabilization step, expansion ratio and 

shape of the final foam can be adjusted to some extent: Fast freezing of the foam prevents 

excessive loss of gas to the surrounding air by diffusion through the outer foam skin or cell 

wall rupture. Hence, it increases the expansion ratio of the foam, which is of particular 

importance for small foamed parts with a high surface to volume ratio.148 To accelerate 

freezing of the foam, e.g. a water bath or a cooled mold, depending on the processing 

method chosen, can be applied. Besides that, the foam can also be shaped, e.g. by a 

thickness calibration unit in the case of foam extrusion.148 At the end of this step, solid 

polymeric foam is obtained. 

 

 

5.1.3. Thermoplastic foam processing 

The foaming process described in the previous section can be realized in different ways. For 

thermoplastic polymers, which are exclusively treated here, foam extrusion, batch foaming, 

foam injection molding and particle foam processes are widely used. All these techniques 

are shortly introduced here, whereby the main focus is on foam extrusion, as it is the foam 

processing technique applied in this work. Moreover, a short introduction to chemical and 

physical blowing agents (CBAs and PBAs), which can be used in these processing techniques, 

is given. 

Foam extrusion is perhaps the most straightforward processing technique presented here. 

During foam extrusion, only the first step described above, homogenization, takes place in 

the extruder, while all subsequent steps are located outside of it. In the extruder, first the 

raw polymer is plasticized. Next, the blowing agent is injected (PBAs) or gas is released by 

the elevated temperature (CBAs). This gas subsequently has to be dispersed in the polymer 

to accelerate dissolution. As the gas typically acts as a plasticizing agent, the melt 

temperature must normally be lowered towards the extrusion die to approach the foaming 

window, while the pressure simultaneously is increased. Finally, the die should cause a high 

pressure drop rate to reduce cell size.144 Extrusion into a water bath or calibration allows 
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control of the cooling profile and the shape of the final foam to some extent. In principle, the 

whole extrusion process can be realized using a simple single-screw extruder. In case 

additives must be dispersed, a twin-screw extruder typically yields better results.135 To 

facilitate control of the temperature profile within the process, a tandem extrusion line is 

applied frequently.137 Here, the gas is injected (or released) at the end of the first extruder, 

where the highest melt temperature of the process is found. The second extruder is applied 

to solve the gas and to cool the gas-loaded melt. Therefore, it has to build up pressure 

towards the foaming die. This particular setup including a tandem extrusion line is applied in 

this work and hence is described more in detail at the practical example in chapter 5.4. 

Foam injection molding is another industrial relevant foam processing technology. It is very 

similar to foam extrusion with respect to the first foam processing step: Homogenization of 

polymer and gas takes place in the barrel of the injection unit. The difference here is that the 

gas-loaded melt is not extruded continuously, but is held back by a valve in the nozzle to 

form a cushion between nozzle and screw. All other foaming steps occur when the gas-

loaded melt is injected into the mold. In the simplest case of a standard mold, nucleation 

and foam expansion immediately start upon injecting, due to the ambient pressure in the 

mold. The stabilization of the foam is induced by the mold’s cold walls. Typically, the melt 

volume injected is lower than the volume of the cavity to allow foam expansion (“short-

shot”). A problem associated with this simple method is the low control of foaming. During 

expansion, the foam fills the mold beginning at the end adjacent to the nozzle. This leads to 

cells being elongated along the direction of expansion, which causes anisotropic foam 

properties. In addition, the foam density within the molded part usually is lowered with 

increasing distance from the nozzle. To suppress this effect, a counter-pressure can be 

applied to the cavity.148,149 Another option for better control of the foaming is the so-called 

breathing mold technology: Here the cavity is completely filled with melt, which at first 

prevents foaming. Then, the cavity’s volume is abruptly increased, which instantly induces 

foaming.150 In injection molding, foams typically feature a comparably thick non-foamed skin 

layer, which is caused by the cold mold surface freezing the outer melt layer before foaming 

of this region can occur. This layer formation can be governed by tempering the mold prior 

to injection. Over all, foam injection molding offers good control of molded foam parts in 

terms of shape and foam density, the latter being precisely adjusted by the filling grade of 

the cavity. A major drawback is the formation of foams being inhomogeneous in their 
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properties, which can only be reduced by elaborated machinery and process conditions, as 

described above. 

In research, where mostly small material amounts are required, batch foaming often is the 

processing technique of choice. Two methods of thermoplastic batch foaming can be 

distinguished based on whether foaming is induced by a pressure drop or raising 

temperature. Pressure-induced batch foaming is somewhat similar to the previously pre-

sented industrial techniques: A compact polymer sample, which is typically disc-shaped, is 

heated to foaming temperature in an autoclave and saturated with gas at high pressure. 

Since there is no mechanical mixing associated with this process, saturation of the molten 

polymer sample may take up to several hours, depending on the sample’s dimensions. When 

saturation is reached, the pressure is rapidly released to induce foaming. By contrast, in 

temperature-induced batch foaming the sample is saturated with gas below the foaming 

temperature. Thus, no foaming is induced by the subsequent pressure release. Foaming only 

starts when the sample is subsequently immersed in a liquid bath at foaming 

temperature,.137,138 Temperature-induced batch foaming does not work well with semi-

crystalline polymers, as gas saturation happens below the polymer’s melting temperature. 

Hence, crystalline regions are present, into which no or almost no gas diffuses, resulting in 

inhomogeneous foams. In addition, crystalline regions act as a barrier for the gas and hence 

drastically slow the saturation of the polymer’s amorphous regions. Advantages of batch-

foaming are low equipment costs and small sample size. Furthermore, processing conditions 

can easily be varied and adjusted. Its major drawback is the discontinuous process and the 

limited sample thickness due to saturation occurring only by diffusion. Both result in a very 

limited throughput, rendering this process interesting rather for research than for 

production.  

Particle foaming is the last foam processing technology presented here. It typically includes 

three independent steps: At first, the polymer particles (normally beads) are formed. 

Secondly, the particles are loaded with a physical blowing agent and pre-foamed. Finally, the 

pre-foamed particles are filled into the mold and further foamed and fused together at 

elevated temperature using steam, obtaining the final foamed part.139,148 Advantages of this 

procedure are the access to various shapes of the foamed parts and good control of foaming 

conditions due to the separation of the process into independent steps. 
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Foaming or blowing agents for foam processing of thermoplastic polymers are subdivided 

into physical (PBAs) and chemical blowing agents (CBAs) by the way they provide the gas 

needed for foaming. PBAs are inert (supercritical) liquids or gases, which diffuse into the 

sample or are injected into the polymer melt during foam processing. They dissolve in the 

polymer without any chemical reactions. PBAs must meet various requirements like e.g. 

inertness, safety, sufficient solubility in the polymer melt under pressure, low solubility in 

the polymer at ambient pressure, a boiling point adequate to the process chosen and low 

price.135 Examples of typical PBAs are hydrocarbons, e.g. n-pentane, supercritical carbon 

dioxide and nitrogen.137 In contrast, CBAs are solid or liquid substances which decompose 

under foam processing conditions releasing the gas needed for foaming. They have to meet 

requirements such as sufficient and controllable gas liberation within a narrow temperature 

window, formation of inert decomposition products, a decomposition temperature 

matching the respective foaming process and good dispersibility in the polymer prior to 

decomposition.137 Common CBAs are azo compounds like azodicarbonamide, hydrazine 

derivatives like p-toluene sulfonyl hydrazide or bicarbonate/acid combinations like sodium 

bicarbonate/citric acid.136,137 CBAs are mainly used for the production of high- or medium-

density foams due to their high price compared to PBAs.136 Over time, PBAs or the gases 

released by CBAs normally diffuse out of the foamed parts and are replaced by the ambient 

gas, typically air.148 

 

 

5.1.4. Cell nucleating agents 

Within the last two decades, there was an increase in world energy consumption about 

approx. 50% from 2000 to 2016, with a further increase about more than 30% until 2040 

being forecast.151 Since this growing demand cannot be met with renewable energies alone, 

an increase about 34% in energy-related emissions of the greenhouse gas CO2 from 2012 to 

2040 is expected.152 To limit these emissions, energy saving by improving energy efficiency is 

of paramount importance. Rigid thermoplastic foams can support this mainly in the 

important fields of thermal insulation and of lightweight construction, the latter particularly 

in the transportation sector. Rigid thermoplastic polymer foams are mainly made of PE, PS 

and PP. Yet, PE and PS suffer from low service temperatures, being not applicable beyond 
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100 °C.67 Moreover, PP offers, among other advantageous properties, low materials cost, 

chemical resistance and, compared to PS, better impact properties.67 

To enhance thermal insulation properties and to improve mechanical properties, cell sizes of 

foams have to be decreased towards microcellular (cell size ≤ 10 µm) or, at best, 

nanocellular (cell size ≤ 1 µm) foams.138 As the cell diameter reaches the region of the mean 

free path length of cell gas molecules, the so-called Knutsen effect comes into play, which 

drastically lowers thermal conduction through the cell gas.138,153 However, also foams not 

reaching cell sizes prerequisite for the Knutsen effect benefit from smaller cells via a 

reduction of the thermal conductivity of the solid phase. This is attributed to increasing solid 

phase tortuosity with decreasing cell sizes.153 At the same time, foam density plays a major 

role, with low density foams (≥ 90% void) featuring best insulation properties, while medium 

density foams (50 - 90% void) offer a higher specific strength, defined as the ratio of tensile 

strength over density, which is highly advantageous in construction and packaging 

applications.154 

To achieve foams with small cells and low foam density, two steps are crucial: First, during 

foam cell nucleation, the largest number of cell nuclei possible has to be formed.155 

Secondly, as many of these nuclei as possible must grow into foam cells during the 

subsequent growth of the foam cells.142,156 

The latter is achieved by suppressing cell coalescence via increasing the melt strength of the 

polymer. This is of paramount importance in the case of PP, since normal linear PP suffers 

from low melt strength.67,138,157,158,159 There are several ways to address this problem by 

modification of the polymer: 1) Use of long chain branched PP146,149,156,160,161, 2) crosslinking 

of the PP162 and 3) blending with a polymer featuring higher melt strength such as 

PE163,164,PS165, PTFE166 or an ethylene-octene copolymer141. 

To address the other leverage point, i.e. the foam cell nucleation step, heterogeneous 

nucleation is utilized. Heterogeneous nucleation happens at interfaces, in contrast to 

homogeneous nucleation, which spontaneously occurs in the supersaturated melt. 

Heterogeneous nucleation is advantageous, as the number of formed nuclei can be 

increased by the surface present, which depends on the amount of nucleating agent applied. 

According to McClurg et al., ideal nucleating agents must feature nucleation sites, at which 

nucleation is energetically favored compared to homogeneous nucleation. Furthermore, 

size, shape and surface properties of the nucleating agent should be uniform, to guarantee 
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simultaneous nucleation at all nucleation sites or at least to prevent premature nucleation at 

few sites. Also, an ideal nucleating agent should be present in excess in the polymer, to 

nucleate as many foam cells as possible, and it must be easily dispersed homogeneously, to 

achieve constant foam morphologies in the whole material.167 Concerning the nucleating 

agents’ surface geometry, Leung et al. showed that a surface comprising many crevices 

featuring small opening angles as nucleation sites is highly beneficial.168 There are different 

approaches to generate such nucleating surfaces: Firstly, a second polymer like e.g. PS can 

be used. In this case, cells are nucleated at the interface between PP and the second 

polymer.165 Secondly, nanostructures, typically nanoparticles, can be applied. 

Most frequently, insoluble inorganic nanoparticles made of Talc146,169,170,171,172,173, 

montmorillonite159,174,175,176, cloisit157,158,177, nanosilica178,179, titanium dioxide171, graphite170 

or carbon nanotubes180 are applied as nucleating agents. The use of organic insoluble 

cellulose nanofibers has also been reported.175 All of these nanoobjects work as cell 

nucleation agents, yet they tend to agglomerate during processing. Since this would 

deteriorate foam morphology, agglomeration has to be suppressed by use of compatibilizers 

as dispersing agents.179 Moreover, Lee et al. showed at the example of nanosilica that the 

nanoparticle dispersion quality is also highly sensitive to extrusion conditions.178 Yet, Zhai et 

al. were able to achieve cell densities up to 109 cells/cm3 by extrusion of linear PP using up 

to 1% of nanosilica.179 

To overcome aggregation problems associated with insoluble nucleating agents, soluble 

ones can be used. For the crystal nucleation of i-PP, soluble additives based on sorbitol 

derivatives or 1,3,5-benzene trisamides are well established.181 In general, such soluble 

additives are solved in the polymer melt in a first step at high temperature, yielding a 

homogeneous solution. In a second step, when the melt is cooled to foaming temperature, 

these additives form nanoobjects. The objects formed this way are well dispersed in the 

entire melt volume and later nucleate foam cells in the foaming step. There are some 

reports on the use of soluble nucleating agents for foaming of PP in literature: Wang et al. 

used the sorbitol derivative 1,3:2,4-bis(p-methylbenzylidene) sorbitol (S20) for pressure 

induced batch foaming experiments with linear i-PP. Applying only 0.7% of S20 in i-PP, they 

achieved a cell density of 5.5*107 1/cm3. This is a more than 3-fold improvement relative to 

neat i-PP, which yielded a cell density of 1.5*107 1/cm3, when processed under the same 

conditions.182 Saniei et al. also used pressure induced batch foaming to process i-PP com-
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prising 1,2,3-tridesoxy-4,6:5,7-bis-o-[(4-propylphenyl)methylene]nonitol sorbitol (NX8000). 

Applying 0.5% of NX8000 they obtained a nanoporous medium featuring open cells with an 

average cell size of around 70 nm and a cell density in the order of 1015 1/cm3. The thermal 

conductivity of this foamed material was found to be almost eight times lower than the one 

of the compact material.183 Another sorbitol derivative, 1,3:2,4-bis-O-(4-methylbenzylidene)-

D-sorbitol (Gel-all MD) was applied in a foam injection molding process by Miyamoto et al.. 

They also reported high open cell contents (> 9%) using 0.5 or 1.0% of Gel-all MD. They 

achieved cell diameters below 5 µm and cell densities higher than 109 1/cm3. However, the 

expansion ratio of the foams obtained was limited to a maximum of only five by the applied 

injection molding process.184 1,3,5-trisamide derivatives have also been used as cell 

nucleating agents: Stumpf et al. used 1,3,5-tris(2,2-dimethylpropionylamino)-benzene (BTA 

5) and N,N’,N’’-tris(3-methylbutyl)-1,3,5-benzenetricarboxamide (BTA 6) to improve the 

foaming behavior of i-PP in a foam injection molding process employing a breathing mold. 

They found the cell size to be reduced from 120 µm for the neat i-PP to 20 µm by addition of 

only 0.02% of BTAs, while reaching cell densities higher than 109 1/cm3. However, the foam 

expansion ratio in this study was only two, which means, that very dense foams have been 

produced.150 

Apart from this morphological foam characterization, mechanical foam characterization is 

crucial for rigid thermoplastic foams, since the foam’s mechanical properties determine its 

applicability e.g. for lightweight construction applications. There exist many test methods for 

this purpose, e.g. compression testing (yields compressive modulus and compressive 

strength)137, tensile testing (yields, among others, tensile strength)185, flexural testing (yields 

flexural strength)137,150, impact testing (yields impact toughness)185 and dynamic shock 

cushioning137. Nevertheless, compression is the most popular testing mode for polymer 

foams.137 Bureau et al. showed at the example of PS that compression properties like 

modulus and compression strength depend on the foam morphology: They found, that both, 

modulus and strength, drastically increased with foam density. Next, they defined a 

‘microstructural parameter’ as foam density divided by average cell diameter. Also for that 

parameter, they found a positive correlation with mechanical properties. This implies, that 

foam mechanics can be maintained while reducing foam density by reduction of the cell 

size.186 For PE containing PTFE fibrils, Zhao et al reported an improvement of compressive 

strength with increased foam density and reduced cell diameters.187 This improvement 
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associated with smaller cells was confirmed by Gong et al., who also found a narrower cell 

diameter distribution to be beneficial for mechanical properties of PP foams.185 Concerning 

the improvement of foam mechanics, particularly compressive properties, by using 

additives, Chen et al. were able to improve modulus and collapse strength of PMMA foams 

by addition of carbon nanotubes to a great extent. Furthermore, an increase in nanotube 

length further enhanced this phenomenon, which indicates a reinforcing effect of the 

nanotubes.188 For PS, Ogunsona et al. achieved a more than doubled compression modulus 

by reinforcement with montmorillonite. This tremendous increase could not be related to 

cell size or foam density and was attributed to a reinforcing effect of the additive 

montmorillonite.189 Shen et al. reported an increase of specific compression moduli about up 

to around 45% by addition of up to 5% of carbon nanofibers to PS, which they also attributed 

to reinforcing effects of the nanofibers. Furthermore, they showed the extent of this 

reinforcement to be highly dependent on the foaming process applied.190 

In this thesis, the effect of the use of 1,3,5-benzenetrisamides (BTAs) as soluble additives on 

morphology and mechanical properties of extruded i-PP foams is investigated. The aim was 

to use low-cost, linear i-PP as polymer to meet industry demands. Avoiding the much more 

expensive long chain branched i-PP, which provides higher melt strength and is by far easier 

to foam 146, special care had to be taken when selecting a proper i-PP grade. The 

characterization of the selected i-PP grade later used for foaming is presented in the first 

part of this chapter. Next, suitable BTAs for the foaming experiments had to be chosen. 

Therefore, based on data already present32, BTAs were pre-selected and thoroughly 

characterized. This is presented in the second section of this chapter. As processing 

technique, foam extrusion was chosen. This is due to its higher industrial relevance 

compared to batch foaming. A main focus of this work was to test a novel concept for using 

BTAs as foam cell nucleating agents in foam extrusion. This concept, along with machine 

configurations resulting from it, is presented in Figure 65.  
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To characterize the resulting foams, their foam morphology, i.e. foam density, cell diameter 

distribution and cell density, was investigated. Finally, foam mechanics were characterized at 

the example of the compressive modulus, which is a method to show possible reinforcing 

effects of additives on foams well-established in literature, as discussed above. The BTAs 

were pre-selected in such a way that a wide range of BTA contents can be adjusted. The 

study of the impact of both parameters, nature and content of BTA, on the compressive 

properties of the foams is a main goal of this chapter. 

The project presented in this chapter was done in cooperation with Dr. Michaela Mörl from 

the department of Polymer Engineering at the University of Bayreuth. Most of the results 

presented here have also been published in the Journal of Cellular Plastics.191 

The following results in this chapter are structured into four sections. The first section shows 

the characterization of the applied i-PP-grade with respect to its usability in later foaming 

experiments. The second section also includes compact, i.e. non-foamed materials. It 

presents properties of different compounds of four BTAs with the selected i-PP-grade. The 

third section focusses on the foaming process and the morphology of resulting foams. 

Finally, the fourth section demonstrates a drastic improvement of the compression modulus 

of foams by application of BTAs and aims to shed light on the mechanism of this 

improvement.   
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Figure 65: Concept of foam cell nucleation with the aid of supramolecular additives. From left to right, the 

system’s temperature decreases. (1) At first, physical blowing agent (PBA) and additives are dissolved in the 

polymer melt under pressure. (2) Upon cooling, the additive self-assembles into supramolecular 

nanostructures, while the PBA remains dissolved. (3) When the pressure is beginning to be released, foam cells 

are nucleated at the interfaces between supramolecular nanostructures and polymer melt. (4) While the 

pressure further decreases, the cell nuclei simultaneously grow into foam cells. (5) When the polymer melt 

becomes sufficiently viscous due to further cooling, stable polymer foam with fine cells is obtained. Adapted 

with permission from ref. (Mörl et al. 2019)
191

. © (2017) The authors. 
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5.2. Characterization of i-PP for foaming experiments 

Foaming of linear i-PP is typically difficult due to its low melt strength and the small foaming 

window resulting from this. Nevertheless, a linear i-PP grade is applied in this work, as linear 

i-PP is significantly less expensive than long-chain branched i-PP tailored for foaming. Firstly, 

an i-PP grade supposed suitable for foaming was preselected. This linear i-PP (Moplen 

HF400G) was kindly supplied by LyondellBasell. The material was a reactor grade without 

any further additives. In the following, its properties are characterized with respect to its 

foaming behavior. In addition, first foam extrusion experiments are presented to prove the 

formation of appropriate foams. 

At first, the i-PP was characterized with regard to its thermal behavior, i.e. phase transitions, 

which were detected by means of DSC. For these measurements, the i-PP was compounded 

with stabilizers. Figure 66 depicts DSC results. Upon heating, the material shows a distinct 

melting peak at 161 °C. Upon cooling, a crystallization peak maximum at 115 °C is observed. 

 

 

To determine the molecular weight distribution of the i-PP, SEC was kindly measured with 

hot 1,3,5-trichlorobenzene as eluent by Dr. W. Kretschmer at the department of Inorganic 

Chemistry II at the University of Bayreuth. Results are shown in Figure 67. As the SEC has 

been calibrated with a PS standard, the absolute molecular weight value for i-PP has to be 
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Figure 66: DSC second heating (top) and cooling (bottom) scans of stabilized i-PP. Curves were measured 

between 30 and 280 °C with a heating/cooling rate of 10 K/min under N2 flow. 
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taken with care and might be shifted. The curve maximum is at 157 kg/mol and the weight 

average molecular weight (Mw) is 218 kg/mol. The polydispersity (PD) is 2.9. 

 

 

For foam extrusion, the temperatures of die and melt can only be varied in a very narrow 

range. Too low temperatures make the polymer freeze in the extruder, whereas too high 

temperatures cause too low melt strength, resulting in collapse of the foam. Hence, the melt 

viscosity can only be adjusted in a narrow range by temperature variation. Therefore, a 

material with a suitable viscosity has to be selected for foam extrusion beforehand. The 

behavior of the polymer upon pressing through a die is well simulated by the facile standard 

characterization method of melt flow index (MFI) determination, where polymer melt is 

pressed through a die with defined pressure and temperature and the mass of polymer 

pressed out in a given time is measured. The MFI of a neat and a stabilized sample of the i-

PP was measured to learn about the influence of stabilization. Stabilization was done by 

compounding i-PP with 0.05 wt% of Irganox 1010 and 0.1 wt% of Irgafos 168. MFI values 

were determined at 235°C with a weight of 2.15 kg following ISO 1133. Neat, i.e. non-

stabilized, i-PP features an MFI of 34.2 g/10 min, which is supposed much too high for foam 

extrusion. With stabilizers, the MFI is reduced about more than 93% to 2.5 g/10 min. This 

tremendous difference indicates a significant degradation of non-stabilized material under 

test conditions (235 °C in air). Hence, the use of stabilizers for the foam extrusion is 
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Figure 67: Molecular weight distribution of the applied i-PP. Curves were measured by SEC in 1,3,5-

trichlorobenzene at 160 °C using a polystyrene calibration. 
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obligatory in order to avoid degradation of i-PP, which could not only worsen the foaming 

performance, but also make the experiments less reproducible. 

For the foaming of i-PP, the melt strength of the material is of vital importance. Melt 

strength describes the resistance of the melt against rupture. Hence, a high melt strength 

during foaming prevents the cell walls from tearing apart, which would otherwise cause 

collapse of the foam. Melt strength measurements of the stabilized i-PP and, for 

comparison, of neat i-PP are presented in Figure 68. They were done by means of Rheotens 

at the department of Polymer Engineering at the University of Bayreuth. Both curves do not 

reach a flat plateau of drawing force F with sufficient drawing speed, but show a wave-like 

pattern. This is attributed to the high molecular weight of the investigated materials. As 

Rheotens measurements depend on various factors, it is hard to reproduce reliable absolute 

values. Nevertheless, if measurements are done in a row by the same operator, as it is the 

case here, they allow good conclusions about the relative melt strength of the investigated 

materials. Here, the non-stabilized i-PP, which was measured for comparison, features a 

lower slope in the beginning and finally reaches drawing forces much lower than the one 

reached for the stabilized material. This is in good accordance with the findings of MFI 

measurements, where the non-stabilized i-PP featured much lower viscosity, which 

correlates to a lower melt strength compared to the stabilized material. Concluding, also 

from the point of melt strength, stabilization of i-PP for foam extrusion is crucial for later 

foam extrusion. 
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Figure 68: Melt strength of stabilized (black) and non-stabilized (red) i-PP. Shown curves are averages of at 

least five measurements each. 
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To finally prove the foaming performance of the stabilized material, preliminary foam 

extrusion tests were performed. The applied foam extrusion process is discussed in detail in 

chapter 5.4. All relevant foam extrusion parameters applied are given in the experimental 

section (6.4.). Figure 69 exemplarily shows an obtained foam strand. The shown foam strand 

clearly features a high expansion ratio and a relatively homogeneous shape. Hence, the 

applied stabilized i-PP is well-suited for foam extrusion and consequently is used for all 

further experiments in this chapter, i.e. additive characterization, foaming and foam 

investigation.  

 

 

  

Figure 69: Extruded foam strand of stabilized i-PP. The strand’s diameter is between 5 and 7 mm. Foam 

extrusion was done with 6 wt% of CO2. 
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5.3. Selection of additives for cell nucleation in compact i-PP 

In this chapter, the next step towards foam extrusion, i.e. the selection of promising BTA/i-

PP systems, is taken. Therefore, four different BTAs were compounded in the i-PP in various 

concentrations and the resulting compounds were characterized thoroughly. The analysis of 

solubilities of BTAs in the polymer melt, i-PP crystallization temperatures, share of β-

modification of i-PP, haze and clarity and melt strength of the compounds, is presented in 

the following chapter. 

At first, different BTAs for the characterization in i-PP had to be preselected. To this purpose, 

BTAs already studied in other i-PP grades were employed. A key criterion for the BTA 

selection was the possibility of a scale-up to amounts exceeding 100 grams. This means, that 

the educts had to be relatively inexpensive and available in sufficient amounts, and, that 

synthesis and purification protocols, which tolerate large amounts of material, are available. 

The secondary selection criterion applied was the solubility in the i-PP melt. Based on their 

known solubility in other i-PP grades as a guideline, BTAs covering a broad solubility range, 

were to be selected in order to discover possible correlations between BTA solubility (and 

therefore applicable BTA concentration) and cell nucleation performance. The four BTAs 

selected according to these criteria are shown in Figure 70, sorted from left to right by 

increasing solubility in the i-PP melt as reported by Blomenhofer et al.32. 

 

 

BTA 5, commercially available as Irgaclear XT 386, is an α-nucleating agent which features a 

very low solubility of less than 500 ppm at 240 °C in i-PP. BTA 6 is another α-nucleating 

agent. It features a much higher solubility of more than 3000 ppm at 240 °C in the i-PP melt. 

5 6 7

Figure 70: Molecular structures of BTAs investigated as cell nucleating agents for i-PP. 
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BTA 7 is reported to both nucleate α- and β-modification (k-value: 0.40). For this BTA no 

solubility data in i-PP were available in literature.32 

BTAs self-assemble into supramolecular nanofibers in the polymer melt upon cooling and 

these nanofibers are supposed to nucleate foam cells. Therefore, the morphology of formed 

nanofibers is of vital importance for the foaming performance. Since i-PP is chemically much 

more stable than BTAs, the i-PP matrix can’t be etched away to directly see the nano-

structures formed by the BTAs in the i-PP compounds. At best, marks, which are left by the 

BTA structures etched away, remain and allow indirect conclusions about the BTA 

structures.53 

Hence, 2,2,4,4,6,8,8-heptamethylnonane (HMN), a solvent featuring a molecular structure 

related to the one of i-PP, was applied as a model system for i-PP: BTA and HMN were mixed 

in the desired relation and the dispersion was boiled under reflux at 240 °C for one hour. 

After cooling at ambient conditions, the homogeneous dispersion was filled into a dropping 

point cell. There, after anew heating to 240 °C, the cooling could be conducted with very 

controlled speed (e.g. 20 K/min) to yield self-assembled nanofibers. Subsequently, HMN was 

removed by means of high vacuum, leaving the self-assembled BTA structures for SEM 

investigations. Figure 71 shows SEM micrographs of self-assembled structures of the three 

BTAs prepared that way. All three BTAs form fibers with diameters far below 1 µm, which 

therefore are denoted as nanofibers in the following. BTAs 5 and 7 form comparably thick 

nanofibers with diameters partly thicker than 100 nm. These fibers appear stiff (BTA 5) and 

brittle (note breaking points in fibers of BTA 7). On the contrary, nanofibers of BTAs 6 exhibit 

significantly smaller diameters and appear softer. Concluding, all three BTAs can be used for 

further experiments, since they self-assemble into the desired nanofibers in HMN, which is a 

model system for i-PP. 
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To produce samples with a defined BTA content in i-PP for the following characterization 

experiments, stabilized i-PP powder and BTA powder were mixed in a tumble mixer, 

compounded in a twin-screw mini compounder under nitrogen and subsequently injection 

molded into disc-shaped specimens with a diameter of 25 mm and a thickness of 1.1 mm. 

Since the effect of BTA additives is highly concentration dependent, samples with different 

BTA contents were investigated. Therefore, a concentration series for each BTA was done by 

diluting the aforementioned powder-powder mixture with additional stabilized i-PP powder 

prior to compounding. 

A

1 µm

1 µm

B

C

1 µm

Figure 71: SEM micrographs of fibers of BTAs 5 (A), 6 (B) and 7 (C). Fibers were prepared by cooling hot 

solutions of 200 ppm of BTA in HMN at a rate of 20 K/min. 
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As the next step, dissolution and self-assembly temperatures for each BTA concentration 

were measured by means of polarized light microscopy (PolMic). Samples for PolMic were 

prepared by melting a grain of the respective BTA/i-PP compound between two glass slides, 

obtaining a thin film after cooling to ambient temperature. Film and glass slides were placed 

in a hot-stage to precisely control the temperature. Each sample was heated from 150 to 

260 °C, or, where necessary, to 270 °C. The temperature, where the last visible birefringence 

caused by BTA objects disappeared, was denoted as dissolution temperature of the BTA. Of 

course, one should keep in mind that even above this temperature BTA objects, yet too 

small to be detected by PolMic, may exist. So, in this context, dissolution does not 

necessarily mean the formation of a molecular solution of BTA in i-PP. After heating, the 

samples were again cooled to 100 °C. The temperature where the first birefringence caused 

by BTA objects appeared was denoted as self-assembly temperature. In Figure 72, this 

dissolution/self-assembly process is displayed at the example of 8000 ppm of BTA 6 in i-PP. 

Figure 72 A shows BTA objects present in the i-PP melt during the heating step. In Figure 72 

B, the dissolution temperature is reached and an optically isotropic melt is formed. In Figure 

72 C, which is taken during the subsequent cooling process, few BTA objects have formed, 

causing visible birefringence. This picture is taken little below the self-assembly 

temperature. Upon further cooling, more BTA self-assembles, forming additional objects and 

growing the existing ones (Figure 72 D). The BTA structures formed during this process are 

much larger than the ones formed beforehand in the injection molding or film pressing 

process (Figure 72 A). This size difference is attributed to the much slower cooling in the 

PolMic (10 K/min) compared to the other processes, where the hot material is cooled by a 

metal surface at ambient temperature. 
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Dissolution and self-assembly temperatures of different concentrations of a BTA in i-PP melt 

determined this way are then plotted versus BTA concentration. This is exemplarily shown 

for BTA 6 in Figure 73. The presented data originate from two heating/cooling cycles applied 

directly after each other. All curves show a steep slope at low concentrations. At higher 

concentrations the slope flattens with exception of the first dissolution curve, which shows a 

steeper slope above 6000 ppm. In the second cycle, dissolution temperatures could be 

measured down to lower concentrations than in the first cycle. This is due to the fact that 

BTA objects are larger after the first cycle than before: The bigger aggregates can be 

detected even at lower concentrations, which is necessary for dissolution temperature 

determination, while the smaller ones are invisible at low concentrations. In principle, at 

high concentrations, some very big BTA objects are not totally dissolved during the com-

165 °CA 264 °CB

233 °CC 221 °CD

Figure 72: Dissolution and self-assembly of a BTA in molten i-PP. BTA objects (blue and yellow) (A) are dissolved 

upon heating with 10 K/min (B). Subsequent cooling with 10 K/min results in self-assembly into fibers (C and 

D). Images show 8000 ppm of BTA 6 in i-PP observed through an optical microscope equipped with crossed 

polarizers and a λ platelet. 



Supramolecular cell nucleating agents for foam extrusion of i-PP 

140 

pounding step and remain in the compound, being the third species of BTA objects which 

can be detected from Figure 73. Upon heating with a constant heating rate, objects with 

more volume are generally dissolved slower than those with less volume. This phenomenon 

can be used to distinguish the three described species of nanofibers from the dissolution 

temperature data: Medium sized fibers are only present in the second heating curve. In the 

first heating curve, either smaller fibers (in the case of complete dissolution during 

compounding) or bigger fiber fragments (from incomplete dissolution during compounding) 

occur. Smaller objects dissolve faster, which means that the dissolution temperature for the 

small species is below the one of medium sized objects from second heating. Vice versa, it is 

above for the big undissolved species. In Figure 73, the transition from small to big fibers is 

in the area around 6000 ppm of BTA, which means that BTA concentrations above this level 

have not been completely dissolved during compounding. At 6000 ppm, the BTA dissolves at 

around 245 °C during second heating in the PolMic. Since 240 °C was the melt temperature 

during compounding, this indicates that dissolution temperatures during compounding and 

in the PolMic match to some extent.  
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Figure 73: Concentration dependent dissolution and self-assembly behavior of a BTA in molten i-PP at the 

example of BTA 6. Data from first (black) and second (red) heating/cooling cycles are shown. Dissolution 

temperatures (□ and □) indicate the disappearance of birefringence caused by BTA objects, while the self-

assembly temperatures ( and ) mark the reappearance of the birefringence. Heating and cooling rate was 

10 K/min. The blue line marks the melt temperature during the previous compounding of the samples. Parts of 

the data presented here have already been published (Mörl et al. 2018)
191, also see Figure 74. 
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Data from the second heating/cooling cycle are less sensitive to compounding parameters 

and can easily be reproduced in additional heating/cooling cycles. Therefore, they were 

exclusively used and are displayed in the following. Figure 74 gives concentration dependent 

dissolution and self-assembly temperatures in the i-PP melt for all three BTAs. BTA 5 exhibits 

low solubility: 300 ppm are soluble at 240 °C, while 400 ppm are already insoluble. For BTA 

6, up to 4000 ppm are soluble at this temperature. This more than 10-fold increased 

solubility compared to BTA 5 is attributed to the switching of amide groups and the longer 

and more flexible substituents. BTA 7 shows an even higher solubility of 8000 ppm at 240 °C. 

All results presented here are in good accordance with literature values measured using 

different i-PP grades, as far as those are available.32 
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Next, crystallization temperatures of i-PP in all compounds were determined as a measure of 

the nucleating efficiency of the three BTAs. These data are necessary to identify possible 

correlations of foam properties with the nucleation of i-PP by BTAs later. All i-PP 

crystallization temperatures presented in Figure 75 were determined by DSC with a cooling 
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Figure 74: Concentration dependent dissolution and self-assembly behavior of BTAs 5 (A), 6 (B) and 7 (C) and in 

molten i-PP. Dissolution temperatures (□) indicate the disappearance of birefringence caused by BTA objects, 

while the self-assembly temperatures () mark the reappearance of birefringence. Data from second 

heating/cooling cycles are shown. Heating and cooling rate was 10 K/min. Adapted with permission from ref. 

(Mörl et al. 2019)
191

. © (2017) The authors. 
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rate of 10 K/min. Shown data are averages of crystallization temperatures (maxima of 

exothermic peaks) from first and second cooling cycles. 

Under these conditions, the neat stabilized i-PP crystallizes at 114 °C. Already at a concen-

tration of only 100 ppm, BTA 6 raises this temperature to 121 °C, reaching a maximum of 

122 °C at 500 ppm. BTA 7 is an even more efficient nucleating agent, shifting the i-PP crystal-

lization temperature up to 126 °C at a BTA concentration of 1000 ppm, which is 12 °C above 

the value of neat i-PP. BTA 5 shows a more complex behavior: It promotes a local 

crystallization temperature maximum of 125 °C at only 100 ppm of BTA. Increasing the 

concentration, the value fluctuates around a lower level, until a new maximum of 127 °C is 

reached around 1000 ppm. This behavior is attributed to the poor solubility of BTA 5: After 

the first maximum, partly non-dissolved BTA acts as a nucleus for the self-assembly of the 

BTA, removing the BTA from the surrounding area. Thus, in this area no further BTA objects 

are formed, which in consequence reduces the BTA object concentration and, via that, the i-

PP crystallization temperature. By addition of more BTA, the concentration of non-dissolved 

BTA aggregates finally reaches a level which again provides sufficient BTA object surface for 

efficient nucleation of i-PP, causing the the second i-PP crystallization temperature 

maximum.  

To sum it up, all three BTAs nucleate i-PP. BTA 6 is the worst nucleating agent reaching an i-

PP crystallization temperature of only 122 °C and therefore. BTA 7 is, at least in the soluble 

range, the best nucleating agent, reaching an i-PP crystallization temperature of 126 °C. 
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As a final characterization for compact i-PP/BTA compounds, melt strength was measured. It 

describes the resistance of the melt against rupture. Hence, a high melt strength during 

foaming prevents the cell walls from tearing apart, which otherwise would cause collapse of 

the foam. Therefore, to achieve foams with fine cells, a melt strength as high as possible is 

desirable. To detect possible effects of the BTAs on melt strength, the highest concentration 

of each of the three BTAs, which was still in the soluble regime, was selected. As a state-of-

the-art reference material, talc with a median size of 0.7 µm was applied. Talc is a hydrated 

magnesium silicate of the formula Mg3Si4O10(OH)2, which is insoluble in polymer melts. It is 

often used as a cell nucleating agent for foaming of polymers.  

The selected compounds alongside with neat stabilized i-PP were expressed through a die 

and the resulting strand was abstracted with a Rheotens machine. The force needed for 

abstraction was measured while increasing the abstraction speed, which is proportional to 

the shear rate applied. Resulting plots of force vs. speed are shown in Figure 76.  

As it was the case for neat i-PP samples, the curves show strong oscillation in the plateau 

area. All curves show similar slopes at low drawing speeds. Neat i-PP and all samples 

containing BTAs reach the same plateau level, while values for i-PP containing 5000 ppm of 
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Figure 75: Crystallization temperatures of i-PP containing various concentrations of BTAs 5 (), 6 (○) and 7 (□). 

Data represent peaks of crystallization enthalpies measured by DSC. Heating and cooling rate was 10 K/min. 
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talc are slightly higher. These findings indicate that the investigated BTAs do not significantly 

influence melt strength within the investigated concentration range. 
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Figure 76: Melt strength of stabilized i-PP (black), stabilized i-PP comprising 5000 ppm of talc (red) and BTAs. 

The maximum concentration of each BTA for later foaming is displayed, i.e. 300 ppm of BTA 5 (green), 

5000 ppm of BTA 6 (blue) and 4000 ppm of BTA 7 (magenta). Shown curves are averages of at least five 

measurements each. 
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5.4. Foam extrusion of i-PP with additives for cell nucleation 

For foam extrusion, thirteen selected materials were compounded in amounts of 10 kg each: 

neat stabilized i-PP, stabilized i-PP with 200 or 300 ppm of BTA 5, 500, 1000, 2000, 3000 or 

5000 ppm of BTA 6, 2000, 3000 or 4000 ppm of BTA 7 and 1000 or 5000 ppm of talc. The 

compound comprising 5000 ppm of BTA 6 is included as a reference material, since this 

concentration of this BTA does not dissolve in the foam extrusion process, as it was shown in 

the previous section. This reference is meant to prove that BTA dissolution during foam 

extrusion is necessary to obtain good foams. 

The setup for foam extrusion of these materials followed our concept for foam extrusion 

with supramolecular additives. Setup and concept are schematically shown and explained in 

Figure 77.  

Following this concept, it is of particular importance that the chosen BTA in the respective 

concentration is completely dissolved at 240 °C at the end of the first extruder (A-extruder), 

to avoid big undissolved BTA objects, which otherwise would worsen foam properties. In the 

second extruder (B-extruder), the BTA must self-assemble into supramolecular nano-objects 

before reaching the die to ensure the presence of sufficient nucleating sites in the sub-

sequent foaming step. When the pressure is released, CO2 becomes insoluble and the 

foaming starts, yielding a thin foam strand. 
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To produce larger samples, which are suitable for mechanical investigations, a calibration 

unit can optionally be added to the setup. This unit features two parallel water-cooled plates 

at a distance of 18 mm. They retard the movement of the hot foam and thus accumulate it 

into a thicker, oval shape, as it is exemplarily shown in Figure 78. 
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Figure 77: Schematic representation of the foam extrusion process (top) and of the concept of foam cell 

nucleation with supramolecular additives (bottom). In the first extruder the polymer-additive mixture is heated 

to 240°C and the physical blowing agent CO2 is added. At the end of the first extruder additive and CO2 are both 

dissolved in the polymer melt (1). In the second extruder the melt is cooled to the foaming temperature, which 

is around 160 °C. Here, the additives self-assemble into supramolecular nano-objects (2). At the same time, the 

melt is compressed to the foaming pressure towards the die. At the die the pressure is abruptly released and 

foam cells are nucleated at the nano-objects’ surfaces (3). Subsequently, the nuclei grow into larger foam cells 

(4) to yield the final foam after cooling to room temperature (5). Adapted with permission from ref. (Mörl et al. 

2019)
191

. © (2017) The authors. 
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To achieve a foam extrusion according to the concept explained above, process parameters 

have to be slightly adjusted for each material processed. In Table 10, a set of the most 

important parameters is given at the example of stabilized i-PP containing 200 ppm of BTA 5. 

The shown parameters are optimized for the material with respect to foam morphology. 

 

Table 10: Selected processing parameters for the foam extrusion of stabilized i-PP with 200 ppm of BTA 5. 

material 
through-

put 

Tmelt 

@ end of A-

extruder 

Tset 

@ end of B-

extruder 

Tmelt 

@ end of B-

extruder 

Tdie 
pmelt 

@ die 

i-PP + 

200 ppm 5 
4.3 kg/h 240 °C 155 °C 161 °C 150 °C 100 bar 

 

The foam extrusion parameters found for this compound were slightly adapted for 

subsequent foam extrusion of all thirteen compounded materials, including neat i-PP, i-PP 

with talc and i-PP with BTAs, as described above. The different materials to some extent 

varied actual throughput and pressure before the die. Yet, these differences were not 

significant. Process data from foam extrusion experiments, which were done at the 

Department of Polymer Engineering at the University of Bayreuth, are listed in in the 

experimental section (see 6.4) for each individual material. 

  

Figure 78: Extruded strand (top) and calibrated sample (bottom) of i-PP with 200 ppm of BTA 5. 
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5.5.  Morphology of extruded i-PP foam strands 

In this section, the morphology of the foams, which were produced as described in the 

previous chapter, is presented. Here, extruded foam strands are characterized with regard to 

foam density, cell diameter, foam appearance and cell density. The next section (5.6), covers 

calibrated foams: There, foam density and cell diameter will give an overview of 

morphological differences introduced by calibration. A further focus is set on BTA objects 

and crystal modification of i-PP in the foams. 

Average densities of foam strands of the extruded compounds are shown in Figure 79 

alongside with standard deviations based on at least three samples each. Density measure-

ments were conducted at the department of Polymer Engineering at the University of 

Bayreuth using the buoyancy method. 

The neat stabilized i-PP features a density of 0.15 g/cm3. Both compounds comprising BTA 5 

show significantly reduced densities below 0.12 g/cm3. With increasing amounts of BTA 6, 

foam density raises to a maximum of 0.18 g/cm3 at 3000 ppm of BTA 6. The reference 

material i-PP with 5000 ppm of BTA 6 does not fit into that trend, which is attributed to the 

fact that BTA 6 does not completely dissolve during foam extrusion at this concentration. For 

BTA 7, no trend is observed, as all three compositions yielding densities between 0.10 and 

0.16 g/cm3. Foam densities for compounds with talc are among the lowest measured, with a 

minimum of 0.08 g/cm3 at 5000 ppm of talc. Summarizing, all compounds show good foam 

densities in the range from 0.08 to 0.18 g/cm3. Compounds comprising talc yielded slightly 

lower densities than the other compounds. 
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Next, cell diameters of all foam strands were determined using SEM images. The area of the 

cross section of at least 100 cells per material was measured. The diameter of a circle of the 

same area was calculated and is taken as the cell diameter. This SEM based method tends to 

underestimate the cell diameters since not all cells are cut in half, which results in smaller 

cross-sections and thus too small determined cell radii, as already discussed in Figure 63. Cell 

diameters determined by this method are presented in Figure 80. The neat stabilized i-PP 

features an average cell size of 52 µm. Addition of BTA 5 results in much finer cells with a 

minimum diameter of 29 µm at 300 ppm, which equals a cell size reduction of 44% 

compared to the neat sample. Cell diameters of samples comprising BTA 6 show strong 

fluctuation, but a weak tendency towards smaller cells with increasing BTA content can be 

deduced. At a concentration of 5000 ppm, where the BTA is insoluble, best results with a cell 

diameter of 27 µm were found. Yet, considering the large standard deviations, this is 

comparable to the best result in the soluble region, which is 30 µm at 1000 ppm. Increasing 

the content of BTA 7, also a slight tendency towards smaller cells can be observed, finally 

reaching an average cell diameter of 27 µm at 4000 ppm of BTA 7. This equals an 

improvement about 49% compared to neat i-PP. Using talc, the addition of 1000 ppm even 

deteriorates the cell size to 61 µm. This is attributed to a too low nucleation density due to 

the insufficient concentration of dispersed talc objects in the melt. This is in accordance with 

the finding that a good value of 30 µm is reached with 5000 ppm of talc.  
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Figure 79: Foam densities of extruded foam strands of neat i-PP (black), i-PP containing talc (red) and i-PP 

containing BTAs 5 (green), 6 (blue) and 7 (magenta). Symbols represent averages and error bars represent 

standard deviations of three measurements each. 
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Concluding, it has been shown that the concept of foam cell nucleation with BTAs works in 

foam extrusion, halving cell diameters at best. BTAs perform as well as the established cell 

nucleating agent talc while requiring much lower additive concentrations. 

 

 

To further investigate these results, SEM images and cell diameter histograms of the 

respective concentration of each additive, which yielded finest cells, are compared to the 

neat stabilized i-PP in Figure 81. Neat stabilized i-PP exhibits many small cells along with few 

huge ones in the SEM image, which is also distinct in the diameter histogram: Though most 

of the cells feature diameters below 50 µm, many cells with diameters up to 100 µm are also 

found. Addition of 5000 ppm of talc causes a pronounced shift towards smaller cell 

diameters. However, some cells larger than 50 µm are still found. Application of 300 ppm of 

BTA 5 results in an even higher content of very small cells, but parallel also in an increase of 

the amount of cells larger than 50 µm. This might indicate insufficient nucleation density in 

that compound, as big cells are supposed to grow in areas where no nucleating BTA objects 

are available. The compound comprising 3000 ppm of BTA 6 shows a very homogeneous cell 

size distribution with all cells being smaller than approx. 120 µm. Use of 4000 ppm of BTA 7 

yields the highest amount of very small cells, but also some large cells. Summarizing, all 

shown samples comprising cell nucleating agents feature a unimodal cell diameter 

distribution with a maximum at low values below 25 µm and a tail towards higher values. 
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Figure 80: Average foam cell diameters of extruded foam strands of neat i-PP (black), i-PP containing talc (red) 

and i-PP containing BTAs 5 (green), 6 (blue) and 7 (magenta). Averages and standard deviations (error bars) are 

based on at least 100 measured foam cells each. Overlapping symbols are slightly shifted for the sake of clarity. 
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Figure 81: SEM micrographs of extruded foam strands and corresponding cell diameter histograms. Materials 

are neat i-PP (A) and i-PP with 5000 ppm of talc (B), 300 ppm of BTA 5 (C), 3000 ppm of BTA 6 (D) and 

4000 ppm of BTA 7 (E). Histograms are based on at least 100 measured cells each. 
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The second property critical for macroscopic foam properties like thermal conductivity found 

on a microscopic scale is the cell density. It is determined by counting the number of cells on 

an SEM image of known area and potentiating it by 1.5 to obtain the cell density in 3D-space. 

Figure 82 presents cell densities of extruded foam strands determined this way and plotted 

on a logarithmic scale. 

Strands of neat stabilized i-PP exhibit a cell density of 1.1*107 cm-3. Addition of 1000 ppm 

talc improves this value almost 4-fold to 4.0*107 cm-3, while a concentration of 5000 ppm 

does not alter the neat value. By the use of BTA 5 cell density is slightly increased to 

1.2*107 cm-3 at 200 ppm and more than halved to 4.3*106 cm-3 at 300 ppm. For all 

concentrations of BTA 6 soluble in the extruder, no big changes in foam density are 

observed, whereas the not completely soluble concentration of 5000 ppm reduces cell 

density to 6.4*106 cm-3. With BTA 7 cell density is not altered significantly at all tested 

concentrations compared to the neat stabilized i-PP reference material.  

 

 

All in all, the cell density values determined are in the same order of magnitude, with 

1000 ppm of talc giving a slight improvement, while all samples comprising BTAs show no 

significantly enhanced cell densities. The well-established method for cell density determina-

tion used is likely to cause a certain scattering of values since all foams investigated are 
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Figure 82: Cell densities of extruded foam strands of neat i-PP (black), i-PP containing talc (red) and i-PP 

containing BTAs 5 (green), 6 (blue) and 7 (magenta). 
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inhomogeneous to some extent (see Figure 63). Hence, small changes in cell density are not 

considered relevant.  

However, following the concept of foam cell nucleation by supramolecular additives, one 

would expect drastically increased foam cell densities by the use of BTAs. As a reason for the 

low cell densities found, insufficient nucleation density can be excluded, since the applied 

BTAs form a dense network of fine fibers (see Figure 71). In addition, BTAs are known to 

feature high nucleation densities from i-PP crystal nucleation studies in literature.32 So, if a 

great number of cells is nucleated during foaming, the problem must be associated with the 

growth of nucleated cells into their final shape. In this step, a loss of cells typically occurs by 

cell coagulation, which is the fusion of cells upon rupture of the cell wall separating them. 

This indicates a lack of melt strength, which otherwise would prevent cell wall rupture. Low 

melt strength and cell coagulation resulting from this is a well-known issue with linear i-PP. 

Thus, the low cell densities found are attributed to cell coagulation, which prevents reliable 

conclusions about nucleation densities during foaming. 
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5.6. Morphology of calibrated foams 

The thin foam strands treated above are too small for mechanical measurements. Hence, a 

calibration unit was applied to obtain calibrated foams, which enable preparation of larger 

test specimens. In this section the morphology of these calibrated foam samples is discussed 

and compared to the morphology of the foam strands. 

Figure 83 depicts densities of all calibrated foams investigated, which were measured at the 

department of Polymer Engineering at the University of Bayreuth using the buoyancy 

method. Densities of all calibrated foams are in the range between 0.24 and 0.33 g/cm3. This 

means a drastic density enhancement caused by the compression of the hot foam during 

calibration compared to densities of foam strands without calibration, which are between 

0.08 and 0.18 g/cm3. Neat stabilized i-PP without any cell nucleating agents features a 

density of 0.33 g/cm3 after foam calibration, which is the highest of all calibrated foams. All 

samples comprising cell nucleating agents feature lower densities. For these samples, 

correlations with foam density after calibration are observed neither for the chemical struc-

ture nor the concentration of additive. Concluding, by calibration of foams, large samples for 

mechanical testing were successfully produced, which feature densities in a narrow range. 

The comparability of foam densities after calibration is highly beneficial for later mechanical 

testing, as it prevents variation of mechanical properties due to density differences. 
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Figure 83: Foam densities of calibrated foams of neat i-PP (black), i-PP containing talc (red) and i-PP containing 

BTAs 5 (green), 6 (blue) and 7 (magenta). Symbols represent averages and error bars represent standard 

deviations of three measurements each. Adapted with permission from ref. (Mörl et al. 2019)
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Next, the microscopic morphology in the bulk of calibrated samples was investigated, being 

another property which could alter mechanical properties. Figure 84 shows SEM images of 

selected examples of calibrated foams. The images show that the cellular structure is still 

intact after calibration. In contrast to the foam strands discussed above, cells of calibrated 

foams feature clear shape anisotropy, i.e. they have been deformed during calibration.  

 

 

Foam cell size was taken as a quantitative measure for the bulk morphology. Figure 85 

shows average cell diameters of calibrated foams measured from SEM images at the 

department of Polymer Engineering at the University of Bayreuth. After calibration, foam cell 

diameters are in the range between 27 and 68 µm. This is quite the same as for non-
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Figure 84: SEM micrographs of calibrated foams. Materials are neat i-PP (A) and i-PP with 5000 ppm of talc (B), 

300 ppm of BTA 5 (C), 3000 ppm of BTA 6 (D) and 4000 ppm of BTA 7 (E). 
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calibrated foams, which featured diameters in the range of 27 to 73 µm. Moreover, after 

calibration no correlation between cell diameter and cell nucleating agent is observed 

anymore. By contrast, a tendency towards smaller cells with increasing additive content was 

visible for foam strands (see Figure 80). Besides, standard deviations have increased, 

meaning that foam cell sizes are less homogeneous after calibration. This is attributed to the 

mechanical deformation of the foam during the calibration process. Summarizing, average 

cell sizes after calibration are comparable to the ones prior to calibration, which indicates 

that the calibration process does not alter the inner foam structure to a great extent. 

 

 

Up to now, all compounds of stabilized i-PP and cell nucleating agents have been treated as 

macroscopically homogeneous materials. To obtain information about the single nano-

objects present in the materials, calibrated foam samples were searched for additive objects 

at the SEM. In doing so, foams without further treatment as well as etched foams were 

investigated. For the latter, etching was done in an aqueous solution of KMnO4, H2SO4 and 

H3PO4 for 1 h. SEM images of etched and non-etched foams after sputtering with Pt are 

shown in Figure 86. To increase the chance of finding objects, only foams comprising the 

maximum concentration applied in foaming of each additive were investigated this way. 
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Figure 85: Average foam cell diameters of calibrated foams of neat i-PP (black), i-PP containing talc (red) and i-

PP containing BTAs 5 (green), 6 (blue) and 7 (magenta). Symbols represent averages and error bars represent 

standard deviations of at least 100 measured foam cells each. Overlapping symbols are slightly shifted for the 

sake of clarity. Data have already been published in ref. (Mörl et al. 2019)
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Neat stabilized i-PP (1A) exhibits a rough surface texture with spikes prior to etching. This 

surface texture is removed by etching (1B), resulting in a smoother surface. The rough 

surface may stem from polymer crystallization processes at the gas/polymer interface. At 

the sample comprising 5000 ppm of talc, nano-platelets covered by a thin i-PP layer were 

observed without etching (2A). After etching, similar platelets lying at the surface without 

any cover layer were apparent (2B). These structures are identified as talc nano-platelets. 

For all three samples comprising BTAs, nanofibers were present in the non-etched samples 

(3A-5A). These fibers all seem to be partly covered by the i-PP matrix, while other parts 

pierce closer to the surface and can therefore be observed. In most cases it cannot be 

decided from SEM images whether visible fiber segments are still covered with a thin i-PP 

film or are in direct contact with cell gas. Nevertheless, at least for the right fiber in image 

5A, a direct contact with air is visible for the fiber’s end. This direct contact is required for 

the applied cell nucleation concept: It is based on cell nucleation at the interface between i-

PP and the nano-object. When a cell nucleated this way grows, the nucleation site is 

supposed to stay uncovered at the foam cell surface. Yet, reliable conclusions on the 

occurrence of the proposed cell nucleation mechanism from these pictures are not possible.  

After etching, all samples comprising BTAs show structures which are understood as 

impressions from the above mentioned nanofibers (Figure 86 3B-5B). Since BTA fibers are 

completely removed from the surface in the etching process, these impressions are 

supposed to be relicts of these fibers. The impressions only feature a small length reflecting 

the formerly uncovered area of the former fibers, which could exclusively be removed by the 

etching solution. In image 3B at the top end of the impression, a brighter area indicates that 

the fiber was longer than the imprint. Of course, fibers which are totally buried deep in the i-

PP matrix cannot be displayed by this method. Also, due to the curved morphology of the 

foam surface, only a very small area of each cell could be investigated with the SEM, which is 

nevertheless assumed representative for the whole cell. 

Concluding, it is possible to detect BTA fibers at the surface of foam cells. The use of non-

etched samples is preferable to etched ones, as those allow direct observation of fibers, 

whereas after etching only a negative impression remains. Moreover, etching removes some 

i-PP from the cell surface and so prevents observation of fiber structures at the cell surface, 

which are the most interesting ones for drawing conclusions on the nucleation process. 
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Figure 86: SEM micrographs of calibrated foams prior to (A) and after (B) etching. Materials are neat i-PP (1) 

and i-PP with 5000 ppm of talc (2), 300 ppm of BTA 5 (3), 3000 ppm of BTA 6 (4) and 4000 ppm of BTA 7 (5). 

Poorly visible nanostructures are marked with arrows. 
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5.7. Compression modulus of calibrated i-PP foams 

In this section, mechanical properties of the calibrated foams and possible correlations of 

these properties with foam morphology are investigated. From all modes of load possible for 

solid matter, compression was selected, as it is the most used one for foams, as discussed in 

chapter 5.1.4. To exclude the effect of the more compact skin layer on foam mechanics, it 

was cut off the cylinders punched out of the calibrated foams. Thus, cylindrical specimens 

with a height and a diameter of 8 mm were obtained. All specimens were tested in 

compression using a universal testing machine at the department of polymer engineering at 

the University of Bayreuth. 

Figure 87 exemplarily shows stress-strain-curves of neat i-PP, i-PP containing talc as 

reference and i-PP containing BTA. i-PP and i-PP with 5000 ppm talc exhibit a similar 

behavior up to a compression of around 7%. By contrast the sample comprising BTA exhibits 

higher stress values than both others up to around 8% of compression. However, at higher 

compressions, the sample comprising 4000 ppm of BTA 7 shows a much smaller slope, 

reaching a maximum compressive stress of almost 5 MPa at 50% strain. Its slope at high 

compressions is even flatter than that of the sample with talc, which reaches between 5 and 

6 MPa at 50% compression. Neat i-PP reaches more than 8 MPa at 50% compression. 
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Figure 87: Stress-strain curves of foamed samples of neat i-PP (black), i-PP containing 5000 ppm of talc (red) 

and i-PP containing 4000 ppm of BTA 7 (magenta). Data have already been published in ref. (Mörl et al. 

2019)
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The specific compressive modulus is a property well-suited to compare the compression 

behavior of different foams. It is derived from the slope of the curve in the linear region, i.e. 

at low compressions. Thus, the compression modulus describes reversible small 

deformations, as they are supposed to be predominant for construction materials. 

Specific compression moduli of all calibrated foams are given in Figure 88. The neat 

stabilized i-PP features a specific compression modulus of around 100 MPa*cm3/g. Addition 

of only 200 ppm of BTA 5 more than doubles this value to 210 MPa*cm3/g. This is the 

highest value measured. Compounds comprising BTA 6 show a slow increase of compression 

modulus with increasing additive content in the concentration regime, where the BTA is 

soluble under compounding conditions. Finally, a maximum modulus of 185 MPa*cm3/g is 

reached at 3000 ppm. By contrast, the sample comprising 5000 ppm of BTA 6 features a 

lower modulus. This is attributed to big BTA objects, which remained undissolved during 

compounding. Also for BTA 7, improved moduli are observed with increased BTA content, 

reaching a maximum of 194 MPa at 4000 ppm of BTA 7. Similarly, talc improves the 

compression modulus at both concentrations. Yet, with talc only the level of the worst 

performing compound comprising BTA in a soluble concentration is reached. Thus, BTA 

additives must feature an additional effect, which enables such drastic modulus 

improvements. As shown above, the densities of all calibrated foams are in the same region 

and thus cannot be the reason for the superior performance of the foams containing BTAs. 
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To shed light on the cause of this partly tremendous modulus improvement, factors which 

could influence mechanical properties of foams are excluded systematically. Therefore, 

compression moduli were plotted versus degree of crystallinity of i-PP, polymer 

crystallization temperature and foam cell size. 

The degree of crystallinity of i-PP was taken into account as it is well-known that a higher 

degree of crystallinity renders polymers more brittle192. The degree of crystallinity was 

calculated from melting enthalpies as measured by means of DSC at the department of 

Polymer Engineering at the University of Bayreuth. No correlation between degree of 

crystallinity of i-PP and compression modulus of the foam was found. Moreover, the 

compound comprising 5000 ppm of talc, which does not perform better than any BTA, even 

yielded the highest degree of crystallinity. 

Even if the overall degree of crystallinity of a sample is not changed, still the size and size of 

crystals might be. It is known that crystal nucleating BTAs reduce the crystal size of i-PP while 

enhancing the number of crystals32. In addition, heterogeneous crystal nucleation will take 

place on the surface of the nanofibers, while homogeneous nucleation occurs in the bulk i-

PP material. In the first case, rod-like crystals are formed, while the second case yields 

spherulites. This crystal shape is also likely to have an impact on foam mechanics. Since the 
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Figure 88: Specific compression moduli of calibrated foams of neat i-PP (black), i-PP containing talc (red) and i-

PP containing BTAs 5 (green), 6 (blue) and 7 (magenta). Averages and standard deviations (error bars) are 

based on at least eight measured samples each. Overlapping symbols are slightly shifted for the sake of clarity. 

Data have already been published in ref. (Mörl et al. 2019)
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applied BTAs feature dissimilar efficiencies in crystal nucleation, which results in different i-

PP crystallization temperatures, these temperatures are used to track possible mechanics 

improvements by crystal shape: It is assumed that the worst nucleating agents yield a higher 

content of homogeneously nucleated i-PP. Hence, these samples should perform differently 

from the ones comprising better nucleating agents in terms of compression modulus, if 

there was a correlation between crystal shape and compression modulus. For the 

investigated samples, no clear correlation was observed. For the well nucleating BTAs 5 and 

6, high compression moduli are found, which could indicate a weak correlation. 

The cellular morphology is a third possible reason for drastically enhanced compression 

moduli using BTAs. Therefore, the already discussed cell sizes of calibrated foams were 

plotted versus compression moduli. No apparent correlation between both properties was 

observed. Thus, the compression modulus variations also cannot be attributed to differences 

in the foam morphology. 

Having excluded all these possible reasons for enhancement of compression moduli of 

foams containing BTAs, another hypothesis remains: The BTA nanofibers present in the 

foams could reinforce the i-PP matrix, thus prevent bending of the cell walls and 

consequently raise the modulus.191 Unfortunately, this hypothesis is hard to test, 

particularly, since the 3D-structure of BTA fibers in the cell walls cannot be accessed by 

etching due to the high chemical stability of i-PP. 

For further investigation of the increase of compression modulus upon use of BTAs, which is 

beyond the scope of this thesis, it should be tested, whether this phenomenon is also 

present under other load types like shear or tensile stress. In addition, transfer of the 

concept to different polymers, which can be hydrolyzed, should allow studying the 3D-

structure of the BTA formed. This will answer the question, whether isolated single fibers or 

a fiber network, which could bear load more easily, are present. Finally, a combination of 

two or more BTAs, which have to assemble independently, could be applied. This 

combination should not alter the single BTA’s solubility, so that a much greater amount of 

BTAs can be solved overall. This is expected to yield more nanofibers and a further increased 

compression modulus, if the enhancement of the compression modulus is in fact due to the 

nanofibers,. 
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5.8. Conclusions 

A major topic of this chapter was the improvement of extruded thermoplastic foams by 

supramolecular cell nucleating agents at the example of i-PP and BTAs. To overcome 

inhomogeneous dispersion, which is a possible negative feature of established non-soluble 

nucleating agents, a concept for foam extrusion including a step at which the BTA is 

dissolved, was applied. Following this concept, BTA and physical blowing agent are solved at 

high temperature and pressure in the first stage, providing good distribution of the BTA due 

to diffusion. Secondly, the temperature is lowered towards the foaming temperature to 

have the BTA self-assemble. In the third stage, the pressure is released rapidly to render the 

blowing agent insoluble. Here, the self-assembled structures from the second stage are 

intended to act as nucleation sites, reducing the foam cell diameter and hence improving 

final foam properties. 

In the first part of this chapter, the applied linear i-PP was characterized thoroughly. The 

applied i-PP grade was investigated with and without stabilizers. The stabilized material was 

found to be well-suited for foam extrusion, while the non-stabilized i-PP suffered from 

degradation. 

In the second section, three different preselected BTAs, which cover a broad range in terms 

of concentration, were self-assembled from 2,2,4,4,6,8,8-heptamethylnonane (HMN) to 

simulate later self-assembly in i-PP. All three BTAs yielded well-defined nanofibers. Next, 

different concentrations of each BTA were compounded into stabilized i-PP. The obtained 

compounds were characterized with respect to their dissolution and self-assembly 

temperatures to be able to select concentrations with a behavior matching the intended 

concept for the foaming process. In addition, the melt strength of the compounds was 

proven not to be significantly altered by the presence of the BTAs. 

In the third section, ten compounds were produced in amounts of 10 kg each, comprising 

amounts from 200 to 4000 ppm of the three BTAs, selected on basis of the dissolution and 

self-assembly temperatures determined in the second section of this chapter. For 

comparison, also one compound without any cell nucleating agents, one BTA concentration 

being not entirely soluble in the foaming process and two compounds containing the 

insoluble reference material talc were produced. Using supercritical CO2 as physical blowing 

agent, all materials were successfully processed with a tandem foam extrusion line, 

obtaining foams with densities in the range from 0.08 to 0.18 g/cm3. Foam morphology 
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studies revealed that all additives reduced cell diameters, when applied in suitable 

concentrations. Average cell diameters down to around 27 µm were realized with talc as 

well as with a BTA bearing tert-octyl substituents. This shows that the initial concept, 

comprising dissolution and self-assembly of BTAs, followed by cell-nucleation at the self-

assembled structures, works at least as well as the application of non-soluble standard 

nucleating agents such as talc, while making dispersing easier due to the dissolution step. In 

anticipation of the sample treatment for mechanical testing, the morphology of calibrated 

foams was compared to the one of foam strands discussed above. As expected, the foam 

density was drastically enhanced to the range from 0.24 to 0.33 g/cm3 by calibration. By 

contrast, cell diameters still were in the same range as in the foam strands. Yet, they showed 

broader distributions after calibration, which is taken as a sign of shear-induced deformation 

and, to some degree, coagulation of cells. In addition, BTA fibers were visualized in foams, to 

the best of my knowledge for the first time. As well, talc platelets were found in the 

respective compounds. This was performed by SEM without any etching of the foams. 

Samples, which had been etched for comparison, just showed impressions in the i-PP matrix. 

These were caused by BTA fibers, which had been removed by the previous etching. The 

detected structures prove that the self-assembly prerequisite for the presented cell 

nucleation concept yields nanoobjects even under real foam processing conditions. 

The fourth section reports results of compression modulus measurements of calibrated 

samples of the foams, which were conducted at the department of Polymer Engineering. 

Addition of up to 5000 ppm of talc improves the specific compression modulus just to 

140 MPa*cm3/g from 104 MPa*cm3/g for neat i-PP. By contrast, only 200 ppm of the best 

performing BTA raise the neat value by more than 100% to 211 MPa*cm3/g. Having excluded 

several possible other factors, a reinforcing effect of BTA nanofibers is thought to be 

responsible for this drastic improvement. Furthermore, foam mechanics were shown to be 

highly dependent on the respective BTA’s chemical nature, which opens further optimization 

possibilities by investigation of other BTAs. The results presented also have partly been 

published in the Journal of Cellular Plastics.191 
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6. Experimental Section 

6.1. Materials 

Solvents and isotactic polypropylene 

Marlotherm (Marlotherm SH; Julabo Labortechnik GmbH) and paraffin (Grüssing GmbH) 

were destilled prior to use. Anisole (Sigma Aldrich; 99%), methyl cyclohexane (MCH; Sigma 

Aldrich; 99%), 1-Heptanol (ABCR; 99%) and n-hexane (Acros; 96%) were used as received. All 

other solvents were destilled prior to use. 

The investigated linear i-PP (Moplen HF400G) was kindly supplied by LyondellBasell. The 

material was a reactor grade without any further additives. 

 

Chemicals 

BTA 5 (trade name XT386) was kindly provided by Ciba Specialty Chemicals. BTAs 6 and 7 

where synthesized as described in literature193,194,195. Detailed synthetical procedures and 

product characterizations are given in the respective compound sheets.  

Talc for cell nucleation (Jetfine 3 C A) with a median particle size of 0.7 µm was retrieved 

from Imerys Talc. The stabilizers Irganox 1010 and Irgafos 168 were supplied by BASF SE. All 

i-PP samples were stabilized with 0.05 wt% of Irganox 1010 and 0.1 wt% of Irgafos 168, if not 

stated otherwise. 
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6.2. Analytical methods 

Nuclear magnetic resonance (NMR) 
1H-NMR experiments were performed using a Bruker Ultrashield 300 NMR spectrometer. 

The corresponding resonance frequency was 300 MHz. Data evaluation was performed with 

SpinWorks 4 (University of Manitoba). As internal reference, peaks of the respective solvent 

were utilized. 

 

Mass spectroscopy (MS) 

Mass spectroscopy was performed on a Finnigan MAT 8500 mass spectrometer using 

electron ionization. 

 

Thermogravimetric analysis (TGA) 

TGA measurements were done using a Mettler Toledo TGA/DTA-system (TGA/SDTA851e). 

Typically, for analysis 8 to 12 mg of the substance were heated from ambient temperature to 

700 °C with a rate of 10 K/min under a nitrogen flow of 50 mL/min. 

 

Differential scanning calorimetry (DSC) 

DSC measurements were done using a Mettler Toledo DSC 2 with a nitrogen flow of 

50 mL/min.  

For the investigation of pure bis- and trisamides, a high pressure steel pan was completely 

filled with sample material and closed. Next, the pan containing the sample was heated from 

50 °C to the respective maximum temperature with a heating rate of 10 K/min and held at 

this temperature for five minutes. Subsequently, it was cooled to 50 °C again with a cooling 

rate of 10 K/min. This heating/cooling cycle was repeated once. Typically, second heating 

and cooling scans are given. For compounds prone to decomposition, first heating and 

cooling scans are given instead. 

Compounded i-PP samples were molten into the aluminium DSC pans prior to the measure-

ments to improve the heat transfer between samples and pans. For the BTA screening, 

compounded samples of BTAs in i-PP were heated from 50 to 240 °C, kept at 240 °C for 

5 min and subsequently cooled to 50 °C again. Heating and cooling rate was 10 K/min. This 

thermal profile was repeated at least once and the polymer crystallization temperature of 
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each composition was determined as the average of the crystallization peaks of first and 

second heating/cooling cycle. For the determination of the i-PP crystallization temperatures 

of the compounds for foam extrusion a higher top temperature was necessary to erase 

orientation effects originating in the harsher compounding conditions applied: Here, DSC 

samples were heated to 280 °C instead of 240 °C. Besides that, the rest of the temperature 

program was unchanged and corresponds the BTA screening measurements reported above. 

 

Crystal structure determination 

Powder X-ray diffraction was done with a STOE StadiP diffractometer using Cu Kα1-radiation 

(λ = 1.5418 Å). The ground powder was filled into capillary tubes with a diameter of 0.5 mm. 

Measurements were done in Debye–Scherrer geometry with a step size of 0.015° in an 

angular range (2ϴ) from 3 to 50°. For the bisamides 1 and 2, a DFT optimization was 

conducted using Accelrys MS Modeling. For the other bisamides, the program Castep 6 was 

utilized in this step. The geometry was optimized by means of the Tkatchenko-Scheffler 

method. For Rietveld refinement, the program Topas 5 was applied.  

Single crystal diffraction was done using a STOE IPD II diffractometer equipped with a 

Ge(111) monochromator at 173 K with Mo Kα radiation (λ = 0.71073 Å). The software STOE 

X-Area was applied for data acquisition, space group determination and construction of 

reciprocal space planes. Structure solution and refinement was done using ShellX. 

Refinement was done with isotropic displacement parameters for H-atoms and with 

anisotropic displacement parameters for non-H-atoms. All protons were added 

geometrically. These crystal structure determinations were conducted at the department of 

Inorganic Chemistry III at the University of Bayreuth. 

To visualize the structures, the resulting files (*.cif) were used to display the molecular 

structures with viewing directions along the crystallographic axes with Diamond (version 

3.0). For the sake of clarity, H-Atoms not involved in any hydrogen bonds were omitted for 

the ball-and-stick-models. 

 

Solid-state NMR spectroscopy 

Solid-state NMR experiments were performed using a Bruker Avance III HD 600 

spectrometer. The frequency for magic angle spinning (MAS) was 10 kHz, if not stated 

otherwise, and the magnetic field strength B0 was 14.10 T. At this field strength the 
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resonance frequencies were 600.15 MHz for 1H, 150.92 MHz for 13C and 564.65 MHz for 19F., 

1H 13C cross polarization was done for 13C spectra. Therefore, 1H was excited with a 90°-pulse 

for 2.7 µs, before a contact time of 3 ms was allowed. During this time, a linear ramp from 

50 to 100% intensity was applied. During data acquisition, protons were decoupled with the 

spinal 64 sequence. 

 

Fourier-transform infrared spectroscopy (FTIR) 

FTIR was done by means of a Spectrum 100 FTIR spectrometer (Perkin Elmer) in attenuated 

total reflection (ATR) mode. The respective sample powder was placed on the ATR window 

and fixed with a stamp. Four scans from 650 to 4000 cm-1 with a step size of 4 cm-1 were 

performed for each sample. 

 

Surface energy measurement 

The test substance was pressed into flat circular specimens with a diameter of 1.2 mm. 

Therefore, 80 to 140 mg of the substance was placed between two circular capton foils and 

compacted with a pressure of 10 bars for 5 min by a manually operated pump. For six test 

liquids (water, formamide, glycerol, ethylene glycol, diiodo-methane and aniline), contact 

angles on the the specimens’ flat surfaces were determined by the sessile drop method 

using a Krüss DSA25S drop shape analyzer. The average contact angle of at least five 

measurements was determined for each liquid. Using the polar and disperse contribution to 

the surface energy of each liquid, as they are listed in Table 11, the surface energy of the 

sample was calculated with a analysis software (DSA4; Krüss GmbH, 2004) using the OWRK 

method99. 

 

Table 11: Disperse and polar contributions and the total surface tension for all six test liquids according to the 

analysis software (DSA4; Krüss GmbH) used for surface energy determination.99 

Liquid disperse polar total 

Water 26.4 46.4 72.8 

Formamide 39.5 18.7 57.0 

Glycerol 37.0 26.4 63.4 

Ethylene glycol 26.4 21.3 47.7 

Diiodo-methane 50.8 0.0 50.8 

Aniline 33.1 10.3 43.4 



Experimental Section 

171 

Micro differential scanning calorimetry (µ-DSC) 

µ-DSC measurements were done using a Setaram Micro DSC III. A dispersion of 500 ppm of 

bisamide 1 in o-DCB was heated to 120 °C and a homogeneous dispersion of nano-platelets 

was formed by shaking the hot vial in an ice bath. This is described in detailed at the self-

assembly methods. 909 mg of the dispersion were filled into the sample cell of the µ-DSC. 

The reference cell was filled with 911 mg of pure o-DCB. The sample was heated from 20 to 

115 °C and subsequently cooled to 20 °C. After an isothermal step lasting 2 h, this 

heating/cooling cycle was repeated once. This experiment was conducted with three 

different heating/cooling rates (1, 0.5 and 0.1 K/min) using the same sample. 

 

Atomic force microscopy (AFM) 

AFM measurements were done using a Veeco dimension 3100 atomic force microscope 

equipped with a NanoScope IV controller. Bruker OTESPA-R3 silicon cantilevers were used in 

tapping mode. Squared AFM height images were recorded with 512 lines and 512 points per 

line. Images were evaluated using Bruker NanoScope Analysis software (version 1.40). Prior 

to further analysis, the images were flattened (1st order). 

To analyze layer thicknesses, small sections from crystals’ top surfaces were used. A step 

analysis, which considers many parallel lines to reduce noise in z direction, gave a profile of 

the steps along the x axis. From this profile, tilts were removed using the evaluation 

software. Next, parallel lines were fitted to the different step levels and the lines’ distance 

was measured to obtain the step heights. 

Total heights of platelets were determined fom cross sections. The z distance between wafer 

level and top of the individual platelet was measured from each cross section. Average and 

standard deviation of the height were calculated from a minimum of 12 platelets from at 

least three areas of each sample. Agglomerated platelets were excluded in this analysis, 

since these at least partly overlapping specimens did not give reliable data. 

 

Scanning electron microscopy (SEM) 

For the preparation of SEM samples from dispersions, one drop of the respective dispersion 

was cast on a clean silicon wafer. The supernatant solvent was removed with a filter paper 

from the rim of the wafer piece. Then, the sample was dried at ambient conditions or in high 

vacuum and fixed on a SEM stub using a conductive tab. Subsequently, the sample was 
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sputtered with a typically 1.3 nm thick platinum layer using a Cressington 208HR sputter 

coater. 

Foam samples were prepared by cutting up to 2 mm thick slices out of the foams with a 

scalpel and gluing them onto a SEM stub using a conductive tab. Foam samples were etched 

in a freshly prepared solution consisting of 3 wt% of KMnO4, 64.7 wt% of H2SO4 (95%) and 

32.3 wt% of H3PO4 (85%). Etching took 1 h in the stirred solution. Afterwards, the samples 

were rinsed with H2O2, water and acetone. Foam samples were sputtered with a 1.3 nm 

thick platinum layer or with gold.  

SEM was done with a field emission scanning electron microscope (Zeiss LEO 1530) using an 

accelerating voltage of 3 kV. 

 

Size exclusion chromatography (SEC) 

SEC was done at 160 °C using 1,3,5-trichlorobenzene as solvent. Samples of i-PP in 1,3,5-

trichlorobenzene with a concentration of 2.30 mg/mL were prepared by stirring at 160 °C 

overnight. 200 µL of each sample were injected on the SEC column. Signal detection was 

done with a refractive index detector. For the data evaluation a calibration curve based on a 

polystyrene standard was used. Therefore, measured values of i-PP allow a good relative 

comparison, but should not be taken as absolute values.  

 

Melt flow index (MFI) 

MFI measurements were done using a Meltflixer MT (SWO Polymertechnik GmbH) at 235 °C 

with a weight of 2.16 kg following ISO 1133. 

 

Melt strength determination 

Melt strength determination was done using a Rheograph 6000 capillary rheometer 

(Göttfert) with a Rheotens 71.97 (Göttfert). Measurement temperature was 210 °C. Piston 

speed was 0.208 mm/s and a die with a length of 30 mm and a diameter of 2 mm was used. 

The strand length was 95 mm and the shear speed was 30 s-1. Five measurements were 

conducted for each material and average curves were plotted. 
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Additive solubility determination 

Concentration dependent dissolution and self-assembly temperatures of the additives were 

recorded using a Diaphot 300 light microscope (Nikon) equipped with crossed polarizers, 

while the samples were heated with a FP82TM hot-stage (Mettler). Films of about 10 mg of 

the injection molded materials were heated from 100 to 260 °C at a heating rate of 

10 K/min. The temperature at which the last visible birefringent additive structures vanished 

was denoted as dissolution temperature. Then, the film was cooled to 100 °C again with 

10 K/min. When the first birefringent additive structures were observed, the corresponding 

temperature was denoted as self-assembly temperature. This heating/cooling procedure 

was repeated once. 

 

Wide angle X-ray scattering (WAXS) 

WAXS of the injection molded samples was done using a D8 advance X-ray diffractometer 

(Bruker). Measurements were done using Cu K-α radiation in transmission geometry in an 

angular range (2ϴ) from 8 to 30° with a step size of 0.05° and an acquisition time of 10 s per 

step. Peak heights were evaluated with the software X’Pert High Score Plus (PANalytical). 

 

Optical properties of injection molded samples  

Haze and clarity of the injection molded samples were measured with a hazemeter Haze 

Gard plus (BYK Gardener). Three samples of each composition were measured to determine 

average values and standard deviations. 

 

Foam density measurements 

Foam densities were determined according to ISO 1183 using the buoyancy method in a 

water bath. At least three samples per material were investigated to determine average 

values and standard deviations. Pieces of the foam strand or cylinders (8 mm diameter and 

height) drilled out of the calibrated foams were used as samples. From the cylinders the skin 

layer was cut from bottom and top prior to measurements. 

 

Characterization of foam morphology 

To characterize foam morphologies, cell densities and diameters were investigated using 

SEM images of the foams (see above). To enhance the image contrast for automated 
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evaluation, the cell walls were manually traced onto a transparent foil, covered with a white 

paper and scanned. The resulting black and white image was evaluated with ImageJ 

(National Institute of Mental Health). Cell radii were calculated from circles featuring the 

same area as the cell sections on the SEM images. Cell densities were determined from 

representative rectangular sections of the SEM images. The cell density was calculated from 

the section’s area A and the number of cells within the section n via equation 7: 

 𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = (𝑛𝐴)1,5 (7) 

 

For all cell density determinations, n was calculated taking all cells, even those only partly 

within the section, into account. 

 

Determination of the compression modulus 

Compression moduli were measured in compression mode following DIN 53421 with a Z 2,5 

universal testing machine (Zwick). Cylinders (8 mm diameter and height) drilled out of the 

calibrated foam were measured. Prior to the measurement, the samples were pre-loaded 

with 2 N. For modulus determination, the test speed was 1.0 mm/min. At higher com-

pressions, the test speed was reduced to 0.8 mm/min. Measurements were stopped at 50% 

compression strain. Each compression modulus was calculated from the linear region of the 

stress-strain curve. At least eight samples per material were measured to determine 

averages and standard deviations. 
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6.3. Synthesis and properties of compounds 

6.3.1. Symmetrically substituted 1,4-bisamides with tert-butyl-substituents 

 

Bisamide based on trans-1,4-diaminocyclohexane with tert-butyl-substituents 

Identifier:  1 (in this thesis) 

 N,N‘-(Cyclohexane-trans-1,4-diyl)bis(2,2-dimethylpropanamide) 

 

Synthesis: 

 

 

7.3 g of pivalic acid chloride (61 mmol) were slowly added to a mixture of 3.0 g of trans-1,4-

diaminocyclo-hexane (26 mmol), 10 mL of pyridine, 0.05 g of LiCl and 180 mL of N-methyl-2-

pyrrolidone (NMP) at 0 °C under nitrogen atmosphere. The reaction mixture was heated to 

80 °C and stirred overnight. The mixture was precipitated in cold water and the white solid 

was filtered off, dried under vacuum for 2 h (70 °C, 100 mbar) and crystallized from 

methanol. Yield: 4.5 g (62%) of 1 were obtained as white crystals. 

 

Characterization 

1H-NMR (300 MHz, CDCl3/CF3COOD): δ (ppm) = 3.89 (2 H,m), 2.00 (4 H, m), 1.44 (4 H, m), 

1.27 (18 H, s) 

MS (m/z, %): 282 (M+, 3.3), 197 (10.4), 181 (74.5), 127 (5.7), 102 (100), 85 (9.4), 80 (6.6), 57 

(3.8) 

 

  

1
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 267 °C. 

 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transition at 272 °C (6.4 kJ/mol) 

 2nd cooling curve: Phase transition between 130 °C and 190 °C (9.2 kJ/mol) 
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Figure 89: TGA curve of compound 1. The Measurement was done with a heating rate of 10 K/min under N2. 
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Figure 90: DSC second heating and cooling scans of compound 1. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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Bisamide based on 1,4- phenylendiamine with tert-butyl-substituents 

Identifier:  2 (in this thesis) 

 N,N‘-(phenyl-1,4-diyl)bis(2,2-dimethylpropanamide) 

 

Synthesis: 

 

 

8.6 g of pivalic acid chloride (71 mmol) were slowly added to a mixture of 3.5 g 1,4-

phenylenediamine (32 mmol), 40 mL of triethylamine and 250 mL of tetrahydrofuran (THF) 

at 0 °C under argon atmosphere. The reaction mixture was refluxed and stirred for two days. 

After evaporation of solvents, the solid residue was dispersed in water and filtered off. 

Recrystallization from methanol yielded 6.8 g (77%) of the product as white crystals. 

 

Characterization 

1H-NMR (300 MHz, DMSO): δ (ppm) = 9.12 (2 H, s), 7.52 (4 H, s), 1.21 (18 H, s) 

MS (m/z, %): 276 (M+, 81.0), 233 (4.7), 192 (48.3), 108 (17.4), 85 (7.2), 58 (100), 42 (15.9) 

 

  

2
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 295 °C. 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transitions at 263 °C (0.6 kJ/mol) and 281 °C (36.0 kJ/mol) 

 2nd cooling curve: Phase transitions at 237 °C (0.7 kJ/mol) and 268 °C (37.1 kJ/mol). 
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Figure 91: TGA curve of compound 2.The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 92: DSC second heating and cooling scans of compound 2. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 



Experimental Section 

179 

6.3.2. Asymmetrically substituted 1,4-bisamides 

 

Synthesis of the mono-substituted intermediate 

 

 

2.9 g of pivaloyl chloride (24 mmol) was dropped to a mixture of 3.0 g 4-nitroaniline 

(22 mmol), 20 mL of trimethylamine and 150 mL of anhydrous tetrahydrofuran (THF) at 0 °C 

under argon atmosphere. The reaction mixture was refluxed and stirred overnight. After 

removal of solvents, the solid residue was washed with water and recrystallized from 

hexane, yielding 4.3 g (89%) of N-(4-nitrophenyl)-2,2-dimethylpropionamide.  

Subsequently, 250 mL of THF and 50 mL of MeOH were added to the product together with 

palladium on activated charcoal (10% Pd, 0.4 g). Hydrogenation with H2 (3 bar) at 35 °C was 

performed overnight. The catalyst was removed by filtration over Alox N and the solvents 

were evaporated. The product N-(4-aminophenyl) -2,2-dimethylpropanamide was obtained 

as white powder in a quantitative yield (3.7 g). 
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Bisamide based on 1,4-phenylenediamine with tert-butyl- and n-perfluoropropane 
substituents 

Identifier:  3A (in this thesis) 

 2,2,3,3,4,4,4-Heptafluoro-1-(p-pivaloylaminophenylamino)-1-butanone 

 

Synthesis: 

 

 

3.1 g of n-perfluorobutanoyl chloride (14 mmol) were slowly added to a mixture of 2.0 g of 

N-(4-aminophenyl)-2,2-dimethylpropanamide (11 mmol), 10 mL of triethylamine and 100 mL 

of anhydrous THF at 0 °C under argon atmosphere. The reaction mixture was kept at 0 °C 

and stirred for one hour. Subsequently, it was refluxed and stirred overnight. After 

evaporation of solvents, the solid residue was dispersed in water and filtered off. 

Crystallization from methanol yielded 2.6 g (64%) of the product as white crystals. 

 

 

Characterization 

1H-NMR (300 MHz, DMSO): δ (ppm) = 11.23 (1 H, s), 9.30 (1 H, s), 7.62 (4 H, m), 1.22 (9 H, s) 

MS (m/z, %): 388 (M+, 72.1), 369 (6.7), 354 (4.5), 304 (29.3), 133 (2.1), 107 (17.1), 85 (14.8), 

69 (4.2), 57 (100), 41 (12.0) 

 

  

3A
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 221 °C 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transition at 226 °C (3.7 kJ/mol) 

 2nd cooling curve: Phase transition at 213 °C (3.6 kJ/mol) 
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Figure 93: TGA curve of compound 3A. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 94: DSC second heating and cooling scans of compound 3A. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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Bisamide based on 1,4-phenylenediamine with tert-butyl- and n-perfluoropentane 
substituents 

Identifier:  3B (in this thesis) 

 2,2,3,3,4,4,5,5,6,6,6-Undecafluoro-1-(p-pivaloylaminophenylamino)-1-hexanone 

 

Synthesis: 

 

 

Perfluorohexanoyl chloride (4.5 g, 14 mmol) was slowly added to a mixture of 2.0 g of N-(4-

aminophenyl)-2,2-dimethylpropanamide (10 mmol), 10 mL of triethylamine and 100 mL of 

anhydrous THF at 0 °C under argon atmosphere. The reaction mixture was refluxed and 

stirred overnight. After evaporation of solvents, the solid residue was dispersed in water and 

filtered off. Crystallization from methanol yielded 1.0 g (20%) of the product as white 

crystals. 

 

 

Characterization 

1H-NMR (300 MHz, DMSO): δ (ppm) = 11.23 (1 H, s), 9.30 (1 H, s), 7.62 (4 H, m), 1.22 (9 H, s) 

MS (m/z, %): 488 (M+, 77.0), 469 (13.9), 445 (4.77), 404 (30.9), 107 (13.9), 85 (15.4), 57 (100), 

41 (10.8) 

 

  

3B
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 221 °C 

 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transition at 226 °C (9.8 kJ/mol) 

 2nd cooling curve: Phase transition at 195 °C (10.5 kJ/mol) 
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Figure 95: TGA curve of compound 3B. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 96: DSC second heating and cooling scans of compound 3B. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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Bisamide based on 1,4-phenylenediamine with tert-butyl- and n-perfluoroheptane 

substituents 

Identifier:  3C (in this thesis) 

 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluoro-1-(p-pivaloylaminophenylamino)-     

1-octanone 

 

Synthesis: 

 

 

4.4 g of perfluorooctanoyl chloride (10 mmol) were slowly added to a mixture of 1.5 g of N-

(4-aminophenyl)-2,2-dimethylpropanamide (7.8 mmol), 10 mL of triethylamine and 100 mL 

of anhydrous THF at 0 °C under argon atmosphere. The reaction mixture was refluxed and 

stirred overnight. After evaporation of solvents, the solid residue was dispersed in water and 

filtered off. Crystallization from ethyl acetate yielded 3.85 g (84%) of the product as white 

crystals. 

 

 

Characterization 

1H-NMR (300 MHz, DMSO): δ (ppm) = 11.21 (1 H, s), 9.30 (1 H, s), 7.61 (4 H, m), 1.22 (9 H, s) 

MS (m/z, %): 588 (M+, 26.9), 569 (7.5), 504 (14.0), 107 (10.7), 85 (15.1), 57 (100) 

 

  

3C
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 221 °C 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transition at 221 °C (11.0 kJ/mol) 

 2nd cooling curve: Phase transition at 203 °C (11.7 kJ/mol) 
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Figure 97: TGA curve of compound 3C. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 98: DSC second heating and cooling scans of compound 3C. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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6.3.3. Symmetrically substituted 1,4-bisamides with fluorocarbon substituents 

 

Bisamide based on 1,4-phenylendiamine with n-perfluoropropane substituents 

Identifier:  4A (in this thesis) 

 N,N'-1,4-phenylenebis(2,2,3,3,4,4,4-heptafluorobutanamide) 

 

Synthesis: 

 

 

4.73 g of perfluorobutanoyl chloride (20.3 mmol) were dropped to a mixture of 1.00 g of 1,4-

phenylene diamine (9.2 mmol), 3 mL of pyridine, LiCl and 100 mL of anhydrous 

tetrahydrofuran (THF) at 0 °C under argon atmosphere. The reaction mixture was heated to 

40 °C and stirred overnight. After evaporation of solvents, the solid residue was dispersed in 

water and filtered off. Crystallization from methanol yielded 4.35 g (94%) of the product as 

white crystals. 

 

 

Characterization 

1H-NMR (300 MHz, DMSO): δ (ppm) = 11.40 (2 H, s), 7.71 (4 H, s) 

MS (m/z, %): 500 (M+, 100), 481 (31.3), 331 (15.1), 303 (98.3), 169 (11.5), 133 (10.9), 108 

(65.2), 81 (14.8), 69 (22.9) 

 

  

4A
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Thermogravimetric analysis (TGA 

 mass loss of 5% at 212 °C 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transition at 225 °C (38.9 kJ/mol) 

 2nd cooling curve: Phase transition at 219 °C (57.4 kJ/mol) 
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Figure 99: TGA curve of compound 4A. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 100: DSC second heating and cooling scans of compound 4A. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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Bisamide based on 1,4-phenylenediamine with n-perfluoropentane substituents 

Identifier:  4B (in this thesis) 

 N,N'-1,4-phenylenebis(2,2,3,3,4,4,5,5,6,6,6-undecafluorohexanamide) 

 

Synthesis: 

 

 

5.28 g of perfluorohexanoyl chloride (15.9 mmol) were slowly added to a mixture of 0.66 g 

of 1,4-phenylene diamine (6.10 mmol), 3 mL of pyridine, LiCl and 100 mL of anhydrous 

tetrahydrofuran (THF) at 0 °C under argon atmosphere. The reaction mixture was refluxed 

and stirred overnight. After evaporation of solvents, the solid residue was dispersed in water 

and filtered off. Crystallization from methanol yielded 1.83 g (43%) of the product as white 

solid. 

 

 

Characterization 

1H-NMR (300 MHz, DMSO): δ (ppm) = 11.39 (2 H, s), 7.69 (4 H, s) 

MS (m/z, %): 700 (M+, 100), 681 (9.9), 431 (13.0), 303 (95.2), 133 (11.5), 119 (5.1), 108 (37.6), 

81 (7.7), 69 (10.8) 

 

 

  

4B
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 216 °C 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transition at 215 °C (58.7 kJ/mol) 

 2nd cooling curve: Phase transition at 206 °C (65.0 kJ/mol) 
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Figure 101: TGA curve of compound 4B. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 102: DSC second heating and cooling scans of compound 4B. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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Bisamide based on 1,4-phenylenediamine with n-perfluoroheptane substituents 

Identifier:  4C (in this thesis) 

 N,N'-1,4-phenylenebis(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctan- 

 amide) 

 

Synthesis: 

 

 

6.62 g of perfluorooctanoyl chloride (15.3 mmol) were slowly added to a mixture of 0.75 g of 

1,4-phenylene diamine (6.96 mmol), 5 mL of triethylamine and 200 mL of anhydrous 

tetrahydrofuran (THF) at 0 °C under argon atmosphere. The reaction mixture was refluxed 

and stirred overnight. After evaporation of solvents, the solid residue was dispersed in water 

and filtered off. Crystallization from N,N-dimethylformamide yielded 5.07 g (81%) of the 

product as white solid. 

 

 

Characterization 

1H-NMR (300 MHz, DMF): δ (ppm) = 11.68 (2 H, s), 8.20 (4 H, s) 

MS (m/z, %): 900 (M+, 100), 881 (46.9), 531 (6.2), 503 (54.6), 169 (4.9), 133 (6.3), 119 (5.7), 

108 (28.2), 81 (5.1), 69 (10.7) 

 

  

4C
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 235 °C 

 

Differential scanning calorimetry (DSC) 

 2nd heating curve: Phase transitions at 213 °C (5.7 kJ/mol) and 228 °C (61.6 kJ/mol) 

 2nd cooling curve: Phase transition at 219 °C (75.6 kJ/mol) 
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Figure 103: TGA curve of compound 4C. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 104: DSC second heating and cooling scans of compound 4C. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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6.3.4. 1,3,5-cyclohexane- and 1,3,5-benzene-based trisamides 

 

Trisamide based on 1,3,5-cyclohexanetricarboxylic acid with isopentyl substituents 

Identifier:  6 (in this thesis) 

 N,N',N''-tris-isopentyl-1,3,5-cyclohexane-tricarboxamide 

 

Synthesis: 

 

 

5.1 g of isopentylamine (58 mmol) was slowly added to a mixture of 4.8 g of 1,3,5-

cyclohexanetricarbonyl chloride (18 mmol), 30 mL of pyridine, 2 spatula tips of lithium 

chloride and 150 mL of n-methyl-2-pyrrolidone (NMP) at 0 °C under argon atmosphere. The 

reaction mixture was stirred at 60 °C overnight. Afterwards, it was quenched with ice water 

and the resulting white solid was filtered off. Crystallization from methanol yielded 5.5 g 

(67%) of the product as white solid. 

 

 

Characterization 

1H-NMR (300 MHz, CDCl3/CF3COOD): δ (ppm) = 3.71 (6 H, m), 3.05 (3 H, m), 2.48 (3 H, m), 

2.20 (3 H, m), 1.94 (3 H, m), 1.81 (6 H, m), 1.27 (18 H, d) 

MS (m/z, %): 423 (M+, 63.8), 408 (9.5), 380 (19.2), 367 (17.4), 337 (78.3), 321 (12.8), 309 

(100), 282 (14.4), 267 (20.8), 253 (26.9), 222 (5.4), 195 (25.2), 169 (25.8), 142 (16.0), 109 

(29.8), 88 (51.4), 81 (54.8), 71 (38.4), 55 (10.5), 43 (61.6)   
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 356 °C 

 

Differential scanning calorimetry (DSC) 

 1st heating curve: Phase transitions around 172 °C (broad), 216 °C (7.2 kJ/mol) and 

358 °C (50.8 kJ/mol) 

 1st cooling curve: Phase transition at 258 °C (6.1 kJ/mol) 
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Figure 105: TGA curve of compound 6. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 106: DSC heating and cooling scans of compound 6. Measurements were performed with a 

heating/cooling rate of 10 K/min in a sealed high-pressure steel pan. 
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Trisamide based on trimesic acid with tert-octyl substituents 

Identifier:  7 (in this thesis) 

 1,3,5-Benzenetricarboxylic acid tris(tert-octylamide) 

 

Synthesis: 

 

 

To 1000 g (7.73 mol) of degassed tert-octylamine 100 g (0.376 mol) of 1,3,5-benzenetri-

carbonyl trichloride were slowly added at 0 °C under inert gas and stirring. Subsequently, the 

mixture was allowed to warm to ambient temperature and it was stirred overnight. The solid 

product was precipitated by addition of 0.5 L of water and some spatulas of potassium 

carbonate and filtered off. Crystallization from 4 L of N,N-dimethylformamide yielded 

180.9 g (88%) of the product as white solid. 

 

 

Characterization 

1H-NMR (300 MHz, CDCl3/CF3COOD): δ (ppm) = 8.52 (3 H, s), 1.96 (6 H, s), 1.60 (18 H, s), 1.04 

(27 H, s) 

MS (m/z, %): 543 (M+, 4.3), 528 (17.1), 486 (16.9), 472 (100), 433 (48.4), 415 (93.1), 360 

(22.8), 320 (15.1), 303 (19.2), 259 (4.6), 248 (13.8), 231 (4.7), 208 (18.0), 191 (118.8), 163 

(7.2), 146 (4.1), 97 (8.4), 57 (15.8) 
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Thermogravimetric analysis (TGA) 

 mass loss of 5% at 324 °C 

 

Differential scanning calorimetry (DSC) 

 1st heating curve: Phase transitions around 280 °C, 291 °C and 308 °C (67.6 kJ/mol) 

 1st cooling curve: Phase transition at 306 °C (43.5 kJ/mol) 
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Figure 107: TGA curve of compound 7. The measurement was done with a heating rate of 10 K/min under N2. 
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Figure 108: DSC heating and cooling scans of compound 7. Measurements were performed with a 

heating/cooling rate of 10 K/min in an argon-flushed sealed high-pressure steel pan. 
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6.4. Sample preparation procedures 

Preparation of bisamides solutions for self-assembly experiments 

The respective bisamide was placed in a 4 mL glass vial. The amount of bisamide was chosen 

in a manner that subsequent filling with a solvent resulted in approx. 2.5 mL of dispersion of 

the desired concentration (e.g. 1.65 mg of bisamide 1 and 3.298 g of o-DCB gave 2.5 mL of a 

500 ppm dispersion). Next, the vial was sealed using a PTFE septum and a screw cap. The 

sample was placed in a custom-made laboratory shaker. The metal block of the laboratory 

shaker carrying the vial with the sample was heated under shaking. The target temperatures 

for the solvents were chosen with respect to each solvent’s boiling point and the durability 

of the screw caps, which allow gas proof tightening up to 120 °C. Maximum temperatures 

used for the applied solvents are listed in Table 12. The samples were kept at this 

temperature at least for 2 h to dissolve the solid and gain optically clear solutions. 

 

Table 12: Temperatures, at which disassembly in the respective solvents was done, for all solvents applied in 

bisamide self-assembly studies. 

Solvent 

Selected maximum 

temperature for bisamide 

dissolution [°C] 

Toluene 110 

Anisole 110 

Acetonitrile 80 

Butanone 75 

Cyclohexanone 120 

1,4-Dioxane 95 

THF 60 

Benzyl alcohol 120 

Ethanol 75 

1-Heptanol 120 

1-Pentanol 120 

Chloroform 55 

Chlorobenzene 120 

o-Dichlorbenzene 120 

1,2,4-Trichlorobenzene 120 
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Self-assembly in 2,2,4,4,6,8,8-heptamethylnonane (HMN) 

A solution of 200 ppm (BTAs 5 and 6) or 500 ppm (BTA 7) of BTA in 10 g HMN was prepared 

by boiling under reflux while stirring for 1 h in a round bottom flask. Subsequently, each 

solution was cooled to room temperature and some drops of the homogeneous dispersion 

were filled into the sample chamber of a FP83HT dropping point cell (Mettler Toledo). After 

closing the sample chamber, it was inserted into the dropping point cell, heated to 240 °C 

and held at 240 °C for 5 min. Next, the sample was cooled down to 30 °C at a cooling rate of 

20 K/min. Afterwards, one drop of the resulting dispersion was dropped onto a silicon wafer 

piece and dried at high vacuum overnight.  

 

Compounding of i-PP 

To prepare compounds for additive screening stabilizer powder (0.05 wt% Irganox 1010 and 

0.1 wt% Irgafos 168) was placed in a laboratory glass bottle together with i-PP powder. Sub-

sequently, the powders were mixed in a tumble mixer overnight at 45 rpm. Next, additive 

powder was added to the i-PP/stabilizer mixture the same way. In the following step, the 

powder mixture was compounded at a melt temperature of 240 °C 

in a Xplore co-rotating twin-screw extruder (DSM) at 50 rpm under 

nitrogen atmosphere for 5 min. The temperature at all three heating 

zones of the compounder was set to 250 °C during that. Then, the 

melt was collected in a heated transfer barrel and injection molded 

using an Xplore 12 mL (DSM) micro injection molding machine. For 

injection molding, an injection pressure of 6 bars, an injection time 

of 5 s and a back pressure time of 15 s was applied. The mold was 

kept at ambient temperature. Three circular sample platelets of each composition with a 

thickness of 1.1 mm were injection-molded (see Figure 109). To vary the additive 

concentration, the highest concentration was processed first and the remaining dead 

volume in the compounder was diluted with neat stabilized i-PP. 

Compounding of selected compositions for foam extrusion in amounts of 10 kg was done by 

Lifocolor Farben GmbH & Co. KG using a twin-screw extruder at a temperature of 240 °C. 

Subsequently, the compounds were granulated. 

  

Figure 109: Injection 

molded sample platelet 
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Foam extrusion 

Foam extrusion was performed at the department of Polymer Engineering at the University 

of Bayreuth. It was done using a tandem extrusion line (Dr. Collin), combining a twin-screw 

extruder A (25 mm screws, L/D 42) and a single screw extruder B (45 mm screw, L/D 30). The 

second extruder was equipped with a 3 mm round die. The throughput was around 4.5 kg/h. 

At the end of extruder A 6 wt% of CO2 were injected as physical blowing agent. The melt 

temperature was around 240 °C at the end of extruder A and around 160 °C at the foaming 

die. An optional additional calibration unit with a gap distance of 18 mm between the water-

cooled plates was used directly after the die to produce calibrated foams. The processing 

scheme is displayed in Figure 77. All i-PP samples were stabilized with 0.05 wt% of Irganox 

1010 and 0.1 wt% of Irgafos 168. The materials were kindly compounded by Dr. Markus 

Blomenhofer (Lifocolor Farben GmbH & Co. KG). Process parameters used for foam 

extrusion of the compounds are given in Table 13. 

 

Table 13: Selected processing parameters from the foam extrusion of i-PP. Each compound contained the same 

basic stabilization package. 

material 

 

throughput 

[kg/h] 

T 

[°C] 

p 

[bar] 

 

melt 

@ end of 

A-

extruder 

as set 

@ end of 

B-

extruder 

melt 

@ end of 

B-

extruder 

@ die 
melt 

@ die 

Neat i-PP 4.5 240 151 157 150 79 

i-PP + 1000 ppm talc 4.3 239 155 162 150 94 

i-PP + 5000 ppm talc 4.0 239 155 161 150 97 

i-PP + 200 ppm 5 4.3 240 155 161 150 100 

i-PP + 300 ppm 5 4.3 240 155 159 150 99 

i-PP + 2000 ppm 7 4.2 241 155 160 150 100 

i-PP + 3000 ppm 7 4.3 239 155 160 150 116 

i-PP + 4000 ppm 7 4.3 241 155 160 150 99 

i-PP + 500 ppm 6 3.8 240 155 160 150 88 

i-PP + 1000 ppm 6 3.9 239 155 160 150 99 

i-PP + 2000 ppm 6 3.9 240 155 160 150 95 

i-PP + 3000 ppm 6 4.3 240 155 161 150 95 

i-PP + 5000 ppm 6 4.2 240 155 160 150 106 
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6.5 Supplementary information to crystal structure solutions 

NMR-Crystallography 

NMR crystallography is - besides XRD - a second way to obtain information about molecular 

crystals. Here, it is mainly applied to check the similarity of crystal packing patterns in series 

3 suggested by XRD. In case the packing pattern varies between several compounds, the 

distance of carbon atoms in each molecule to other atoms and thus their electronic 

structure is altered. This consequently would reflect in 13C NMR spectra of the solids, as they 

are presented in Figure 110. The signals of bisamide 3A are assigned to the carbon atoms in 

the molecular structure representatively for the whole series. In this spectrum, the signals 

for both CF2 groups overlap. It is clearly visible, that all signals except for the ones of the CF2 

groups, which are altered by the variation of fluorocarbon chain length, are exactly the same 

for all three asymmetric bisamides. This is a further indication for the crystal packing of 

these compounds to be the same. Consequently, all conclusions from the packing pattern of 

3A are valid for all three bisamides of series 3. 
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Figure 110: Solid state 13C NMR spectra of asymmetric bisamides 3A (black), 3B (red) and 3C (green). Spectra 

were recorded using 1H 13C CP under MAS condition (νrot = 16 kHz). Signals of 3A are assigned exemplarily. 
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A similar investigation is done here for the compounds of series 4. NMR spectra of all three 

bisamides of series 4 in solid state, which are displayed in Figure 111, are furthermore used 

to gain information about the crystal packing 4C. All signals are assigned to the C-atoms in 

the molecular structure at the example of compound 4A. For 4A and 4B, chemical shift and 

shape of most signals are similar. Yet, signals of the CF2-groups are slightly shifted at 4B, 

which is attributed to its increased fluorocarbon chain length. Moreover, 4B and 4C lack any 

signal of the CF3-groups. This is attributed to the fact that these groups do not feature any 

protons in their vicinity, which could transfer polarization to C-atoms. Hence, these C-atoms 

lack sufficient polarization for visible signals in the spectra. Interestingly, for 4C signals 1 – 3, 

which belong to the aromatic core and the carbonyl group, are split into duplets (1 and 2) or 

into a duplet and a singlet (3). This finding indicates at least two distinct positions for these 

atoms in the crystal, i.e. the crystal structure of this compound is expected to be different 

from the ones of 4A and 4B. 
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Figure 111: Solid state 13C NMR spectra of symmetric bisamides 4A (black), 4B (red) and 4C (green). Spectra 

were recorded using 1H 13C CP under MAS condition (νrot = 16 kHz). Signals of 4A are assigned exemplarily. 

Please note the splitting of signals 1 to 3 for 4C. 
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Crystallographic data of bisamides 

Table 14 gives an overview of selected crystallographic data from structure solutions of 

bisamides. Literature data of bisamide 1 are included for comparison.63 In addition, Table 14 

provides values for the layer thickness d of all seven compounds with their crystal structure 

solved. These values were calculated from cell parameters using trigonometric functions. 

Since all bisamides investigated assemble with their molecules almost upright within their 

respective layers, d is highly dependent on the length of the molecules. For example, 2, 

featuring two relatively short tert-butyl groups, gives a crystallographic monolayer thickness 

of only 1.2 nm, whereas 4, bearing two C7F15-chains, yields 2.1 nm for d, which is the highest 

value determined. For 4C, no layer thickness can be derived, as no structure solution for 

crystals of this compound has been performed successfully yet. 

 

Table 14: Selected crystallographic data of the six crystal structures of 1,4-benzene bisamides yet solved. In 

addition, available information for 4C, where data allow indexing of space groups, yet no structure solution, is 

given. For comparison, data for 1 are taken from the published crystal structure solution.63 Values for the layer 

thickness d calculated from the crystallographic data are also provided.  

 
1 2 3A 3B 3C 4A 4B 4C 

crystal 

system 

mono-

clinic 

mono-

clinic 

mono-

clinic 

mono-

clinic 

mono-

clinic 
triclinic triclinic 

mono-

clinic 

space 

group 
P21/c P21/c P21 P21 P21 P1̅ P1̅ P2 

d [Å] 14.18 12.25 15.36 18.56 20.68 16.02 21.10 --- 

a [Å] 14.183(3) 12.166(4) 9.2124(2) 9.2340 21.2891 5.1278 5.1161 10.4482 

b [Å] 6.159(1) 7.677(3) 5.8994(1) 5.8718 6.0489 5.2125 5.2824 27.0334 

c [Å] 9.889(2) 9.243(3) 30.732(6) 18.787(4) 8.9188 16.090(3) 21.1583 5.4466 

α [°] 90 90 91.57(3) 90 90 95.27(3) 93.97 90 

β [°] 98.383(1) 96.61(1) 90.57(3) 98.87(3) 103.78 90.74(3) 88.83 85.66 

γ [°] 90 90 90 90 90 91.74(3) 89.26 90 

V [Å3] 854.6(8) 857.54 1669.58 1006.45 1115.48 428.00 570.25 1533.99 

Z 2 2 4 2 2 1 1 2 

ρ [g/cm3] 1.097(1) 1.070 1.545 1.611 1.751 1.941 2.153 1.949 
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