Titelangaben
Thies, Birgit:
Instationarität und räumliche Variabilität in Abflusszeitreihen aus Süddeutschland.
Bayreuth
,
2009
.
- (BayCEER-online
; 4
)
(
Dissertation,
2009
, Universität Bayreuth, Fakultät für Biologie, Chemie und Geowissenschaften)
Volltext
|
|||||||||
Download (3MB)
|
Abstract
Die meisten statistischen Methoden zur Auswertung hydrologischer Daten implizieren zumindest asymptotische Stationarität sowohl in den Wahrscheinlichkeitsdichten als auch in der dynamischen Struktur (ergodische Systeme). Vielfach werden außerdem lückenfreie Daten vorausgesetzt. In dieser Arbeit wurde untersucht, wie berechtigt diese Annahmen auf den in der Praxis zur Verfügung stehenden Zeitskalen von bis zu einem Jahrhundert sind. Dazu wurde ein Ensemble von langen, in täglicher Auflösung vorliegenden Abflusszeitreihen aus Süddeutschland analysiert. Die Spektralmethode des Lomb-Scargle-Periodogramms (LSP) – entwickelt für in unregelmäßigen Zeitabständen gemessene astronomische Daten – wurde auf ihre Anwendbarkeit für lückenbehaftete Abflusszeitreihen beurteilt. Die quantitative Fehlerabschätzung erfolgte in Abhängigkeit von Anteil, Zahl und Verteilung der Lücken. Die Methode liefert für einen Lückenanteil von 1 bis 10% verwertbare Ergebnisse und ist hier einfachen Interpolationsmethoden überlegen. Sind die Daten stark saisonal geprägt, sind auch höhere Lückenanteile unproblematisch, die ansonsten die Interpretierbarkeit der Peaks einschränken. Ist bei längeren Lücken eine Datenrekonstruktion aus geeigneten Nachbarpegeln möglich, liefern Fast-Fourier-Analysen der so vorbehandelten Daten bessere Ergebnisse als das LSP. Bei kurzen Lücken (<1%) sind einfache Interpolationsroutinen ausreichend. Der anhand der Modelleffizienz des LSP quantifizierbare maximal zu erwartende Qualitätsverlust kann mit einer für unkorrelierte Daten hergeleiteten Beziehung abgeschätzt und mittels weiterer Kriterien (Anzahl und Position der Lücken, Saisonalität der Daten) präzisiert werden. Das LSP ist damit für die Frequenzraumanalyse von Abflussdaten mit bis zu 10% Lücken eine sinnvolle Alternative zu aufwändigeren Interpolationsverfahren. Die Stationarität von 97 Pegeln im oberen Donauseinzugsgebiet wurde mittels Fenstertechnik auf Zeitskalen von 2 bis 30 Jahren mit verschiedenen Methoden untersucht. Exemplarisch durchgeführte sequentielle parametrische Verteilungsanpassungen waren methodisch unbefriedigend, nicht-parametrische Ansätze standen daher im Fokus. Herkömmliche Charakteristika von Verteilungen wie Perzentile und Momente und die Entwicklung in daraus abgeleiteten Phasenräumen wurden analysiert. Ausgehend von der Testgröße des Kolmogorow-Smirnow-Zweistichprobentests wurden verschiedene Stationaritätsmaße zum sequentiellen Vergleich von Verteilungen entwickelt, um statt einzelner Kennwerte die Veränderungen im gesamten Wertebereich zu berücksichtigen. Die neuen Maße eignen sich hervorragend zur Einschätzung der Stärke der Schwankungen im Pegelvergleich, ihre Darstellung in Matrizenform erlaubt eine detaillierte zeitliche Analyse der Einzelpegel. Der Zeitverlauf der integrativen Stationaritätsmaße ist weniger von einzelnen Episoden oder Extremereignissen geprägt und damit gleichmäßiger als die mit Hilfe einzelner Verteilungsmerkmale dargestellte Dynamik. Die Analyse des oberen Donaueinzugsgebiets zeigt einen fast alle Pegel betreffenden langfristigen Anstieg der Abflussmengen in den letzten drei Jahrzehnten. Hiervon betroffen sind insbesondere niedrige Abflüsse, abgeschwächt der mittlere Bereich der Werteverteilung und in nur geringem Maße die Hochwasserabflüsse. Streuung, Schiefe und Wölbung zeigen keine pegelübergreifenden langfristigen Tendenzen. Auf kürzeren Zeitskalen von 3 bis 6 Jahren ist bei sämtlichen Pegeln eine synchrone Mittelwerts-Schwankung zu beobachten, die sich abgeschwächt auch in Varianz und höheren Momenten zeigt. Aus dieser regional gleichmäßigen Abflussdynamik auf Zeitskalen von mehreren Jahren lassen sich starke räumliche Korrelationen ableiten, die sich über mehrere 100 km und damit über den Bereich des Untersuchungsgebiets hinaus erstrecken. Die Abflussschwankungen sind von Pegel zu Pegel unterschiedlich stark ausgeprägt, wobei die alpenbeeinflussten Abflüsse durch ihre vergleichsweise geringe Variabilität eine Sonderrolle einnehmen. Das pegelspezifische Instationaritätsniveau kann in der Praxis zur Beurteilung der Unsicherheit von aus Verteilungsanpassungen berechneten Bemessungsgrößen mit herangezogen werden.
Abstract in weiterer Sprache
Most statistical methods for the analysis of hydrological data imply asymptotic stationarity for probability densities and dynamic structure (ergodic systems). Moreover, data without gaps are required in many cases. This study examines if these assumptions are valid for timescales of available datasets, reaching up to one century. For this purpose, a set of long river runoff data from Southern Germany with daily resolution was examined. The applicability of the Lomb-Scargle periodogram (LSP), a spectral method developed for data measured in irregular time intervals in astronomy, is discussed for runoff series including gaps. Quantitative error estimations are developed as a function of gap sizes, their distribution, and number. The LSP provides feasible results for gap ratios between 1 and 10%; in this range it is superior to simple interpolation methods. Gap ratios exceeding this level impair the interpretability of peaks in the spectrum, unless the analysed data show strong seasonal dynamics. Longer gaps can be reconstructed using data from adequate, neighbouring gauges – a standard Fast Fourier Transform of these pre-treated data leads to better results than the analysis with the LSP. For data with short gaps (< 1%) simple interpolation routines are sufficient. A simple relationship between gap ratio and model efficiency as goodness-of-fit criterium was found for normally distributed, random data. This relationship is suitable as conservative error estimate for correlated runoff data and can be specified by further criteria (e.g. number and position of gaps, seasonality). The Lomb-Scargle periodogram is a reasonable alternative to sophisticated interpolation methods for runoff series with gap ratios ranging from 1% to 10%. In the second part of the study, the stationarity of 97 discharge series with daily resolution from the upper Danube basin was analysed for timescales ranging from 2 to 30 years using window techniques. Sequential fitting of parametric distribution functions was methodically unsatisfying; therefore nonparametric approaches were focused on. Conventional characteristics of frequency distributions like percentiles and moments as well as their development in phase spaces were analysed. To account for changes in the entire range of values of the distribution different stationarity quantities for the sequential comparison of distributions were developed by modifying the test statistic of the two-sample Kolmogorov-Smirnov test. The new measures are well suited for comparing the level of instationarity for different gauges. Their presentation in form of matrices allows a detailed temporal analysis of the runoff measured at single gauges. The stationarity quantities are less influenced by single episodes or extreme events; therefore, the overall dynamic of the runoff is depicted more evenly than would be possible with single distribution characteristics. During the last three decades nearly all gauges in the upper Danube basin show an increase in runoff. This affects especially low runoff events, to a lesser degree medium runoff events, and only marginally the upper part of the distributions. Variance, skewness, and kurtosis do not show any overall trends for the gauges. For timescales of three to six years, all runoff series show a synchronous periodic drift in the mean which – too a lesser extent – can be detected in variance and higher moments as well. From this synchronous runoff dynamic strong spatial correlations can be deduced rangign over hundreds of kilometres and exceeding the limits of the investigated area. The level of instationarity varies between gauges: the lowland gauges are relatively variable while runoff series with alpine influence remain comparably stationary. The site specific level of instationarity can serve in practice to estimate the uncertainty level of design parameters used in flood protection, which are derived by fitting distributions to the data.
Weitere Angaben
Publikationsform: | Dissertation (Ohne Angabe) |
---|---|
Keywords: | Abflussregime; Zeitreihenanalyse; Nichtstationärer Prozess; Spektralanalyse <Stochastik>; Empirische Verteilungsfunktion; Datenlücken; Donaueinzugsgebiet; Kolmogorow-Smirnow-Test; Lomb-Scargle-Periodogramm; Stationaritätsmaße; Data gaps; Danube basin; Komogorov-Smirnov-test; Lomb-Scargle periodogram; stationarity quantities |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften Fakultäten Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften |
Sprache: | Deutsch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-opus-6147 |
Eingestellt am: | 25 Apr 2014 10:09 |
Letzte Änderung: | 25 Apr 2014 10:09 |
URI: | https://epub.uni-bayreuth.de/id/eprint/498 |