URN to cite this document: urn:nbn:de:bvb:703-epub-4859-5
Title data
Lechner, Anna M. ; Feller, Tanja ; Song, Qimeng ; Kopera, Bernd A. F. ; Heindl, Lukas ; Drechsler, Markus ; Rosenfeldt, Sabine ; Retsch, Markus:
Scalable synthesis of smooth PS@TiO2 core-shell and TiO2 hollow spheres in the (sub) micron size range: understanding synthesis and calcination parameters.
In: Colloid and Polymer Science.
(2020)
.
ISSN 0303-402X
DOI der Verlagsversion: https://doi.org/10.1007/s00396-020-04626-3
|
|||||||||
Download (1MB)
|
|||||||||
|
|||||||||
Download (1MB)
|
Abstract
Hollow spheres made from titanium dioxide (TiO2) are interesting structures because of their high surface area and low density, combined with semiconducting properties of the TiO2. However, the synthesis is still challenging because of the high reactivity of the titania precursors. Here, we present a simple, reproducible, and scalable way to synthesize TiO2 hollow spheres in the micrometer/sub-micrometer size range comprising three steps: synthesis of polystyrene template particles, growth of TiO2 shells, and calcination to hollow spheres. We investigate the importance of adjusting the seed particle surface functionalization via the appropriate choice of comonomer during the dispersion polymerization. An aging step and a calcination process at low temper- atures are mandatory to retain the particle integrity during the seed particle removal. We provide a detailed characterization of each step of this process including electron microscopy, small angle X-ray scattering, and simultaneous thermal analysis.
Further data
Item Type: | Article in a journal |
---|---|
Keywords: | Titania hollow spheres; Dispersion polymerization; Calcination parameters
Nanoparticles; Thermal decompositioN |
DDC Subjects: | 500 Science > 540 Chemistry |
Institutions of the University: | Profile Fields > Advanced Fields > Polymer and Colloid Science Profile Fields > Advanced Fields > Advanced Materials Research Institutions > Central research institutes > Bayreuth Institute of Macromolecular Research - BIMF Research Institutions > Central research institutes > Bayreuth Center for Colloids and Interfaces - BZKG Research Institutions > EU Research Projects > VISIRday Profile Fields Profile Fields > Advanced Fields Research Institutions Research Institutions > Central research institutes Research Institutions > EU Research Projects |
Language: | English |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-4859-5 |
Date Deposited: | 22 May 2020 06:30 |
Last Modified: | 15 Sep 2023 10:30 |
URI: | https://epub.uni-bayreuth.de/id/eprint/4859 |