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ABSTRACT 15 

 16 

Hollow spheres made from titanium dioxide (TiO2) are interesting structures because of their high 17 

surface area and low density, combined with semiconducting properties of the TiO2. However, the 18 

synthesis is still challenging because of the high reactivity of the titania precursors. Here, we present a 19 

simple, reproducible, and scalable way to synthesize TiO2 hollow spheres in the micrometer/sub-20 

micrometer size range comprising three steps: Synthesis of polystyrene template particles, growth of 21 

TiO2 shells, and calcination to hollow spheres. We investigate the importance of adjusting the seed 22 

particle surface functionalization via the appropriate choice of co-monomer during the dispersion 23 

polymerization. An aging step and a calcination process at low temperatures are mandatory to retain 24 

the particle integrity during the seed particle removal. We provide a detailed characterization of each 25 

step of this process including electron microscopy, small angle X-ray scattering, simultaneous thermal 26 

analysis. 27 

  28 
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 29 

INTRODUCTION 30 

Environmental pollution is worldwide a pressing issue, which needs to be addressed by society, 31 

politicians, and researchers. Whereas “chemistry” certainly contributes in various ways to 32 

environmental pollution, it also offers solutions towards a more sustainable future. The awareness of 33 

this fact led to the field of “green chemistry”. It was introduced in 1998 by Paul Anastas and John 34 

Warner and is based on twelve principles to design chemical products and processes in an 35 

environmental friendly way. [1-3] It includes less hazardous chemical synthesis and solvents, design 36 

for energy efficiency, and catalysis. One particular materials class that is regularly discussed in the 37 

context of green chemistry is titanium dioxide. Titanium dioxide (TiO2) can be classified as a green 38 

chemical or material because of its photocatalytic activity, [4,5] usage in solar cells, [6-8] and batteries, 39 

[9-11], low toxicity, and high chemical stability. 40 

TiO2 exists in many different polymorphs, with rutile, brookite, and anatase being the most prominent 41 

ones. The main difference of the three polymorphs is their thermodynamic stability. Rutile is the most 42 

stable phase in bulk materials and at high temperatures. [12,13] However, anatase and brookite phases 43 

are preferentially formed in small structures in nature as well as during solution-based synthesis. [13-44 

15] An amorphous TiO2 phase is also known and typically used as the starting material for 45 

transformations into phase pure anatase particles at high temperatures > 100 °C. [13,16,17] 46 

In addition to the microscopic structure, the mesoscopic shape of the TiO2 material is important for 47 

photovoltaic, or photonic applications. Different shapes have been tested as electrodes for 48 

photovoltaic applications: Thin films, nanoparticle assemblies, inverse opals, and nanotube arrays. [18-49 

23] Nanotube arrays achieved photoconversion efficiencies up to 4.9 % in solar cells, [22], and can also 50 

be used for hydrogen storage applications. [24] For optical and photonic applications, typically inverse 51 

opal structures are used. [12,25-27] Here, the high refractive index of the different polymorphs of TiO2 52 

is used in the context of structural coloration or efficient scattering. 53 

The different shapes can be achieved via a wide range of synthesis routes. [12,28] The most common 54 

and easy one is the sol-gel method, where a precursor is first hydrolyzed in an acidic or basic 55 

environment, followed by polymerization into TiO2. Organic metal compounds or inorganic metal salts 56 

are used as precursors. The sol-gel synthesis method leads to a wide variety of structures, from 57 

nanoparticles in different sizes shapes to rod- and tube-like structures. Further methods are 58 

hydrothermal or solvothermal synthesis, where the reaction takes place at temperatures above the 59 

boiling point of the solvent up to 240 °C in an autoclave, and thus at high pressures. [12,13,29] Using 60 

this method it is possible to generate phase pure nanoparticles or nanorods. Chemical or physical 61 

vapor deposition processes are further synthesis methods that lead to oriented nanowire arrays. 62 

[12,28] 63 
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It is also possible to build TiO2 structures in a templated approach. This leads to inverse opals or hollow 64 

spheres after removal of the template. To prepare inverse opals, usually, a template structure from 65 

assembled polymer particles is infiltrated either with a precursor mixture that undergoes a sol-gel 66 

reaction in the pores or with pre-synthesized TiO2 nanoparticles. [30] A different approach was used 67 

by Lu et al. who first prepared polymer-TiO2 core-shell particles that were assembled and calcined to 68 

get macroporous structures. They were able to prepare phase pure anatase particles at room 69 

temperature by using polystyrene particles with grafted poly(styrene sodium sulfonate) chains as 70 

template particles. The TiO2 particles were synthesized by a sol-gel process in between the grafted 71 

polymer chains by slowly adding a precursor solution. The core-shell particles were assembled by 72 

drying the dispersion and calcined in argon to remain the three-dimensional structure. [4] This 73 

synthesis is located between an inverse opal and a hollow sphere synthesis. Hollow sphere objects 74 

have evolved over the past years as a particularly interesting shape, owing to the material structuring 75 

on multiple length scales: shell, particle diameter, and particle ensemble. [31-33] The particles have a 76 

low density but are large enough to be easily filtered and recycled after a catalysis process. 77 

Furthermore, the surface area is large and freely accessible from both sides which may be interesting 78 

for solar cells or battery devices.  79 

A wide-spread and general approach towards hollow sphere structures is based on shell growth on top 80 

of polymeric seed particles. Three steps need to be controlled for this process: 1) Template particle 81 

formation, 2) Shell growth, and 3) Template removal (see Fig. 1). 82 

 83 
Fig. 1 Overview on the three steps that are needed to prepare TiO2 hollow spheres. First, cationic 84 

polystyrene particles are synthesized via dispersion polymerization, using Polyvinylpyrrolidone (PVP) 85 

as stabilizer, and 2-Methacryloxyethyltrimethylammoniumchloride (MTC) as comonomer. The TiO2 86 

shells are fabricated by a condensation reaction of titanium butoxide (TBT). After an aging step of 24 h 87 

the particles were calcined at 400 °C in air. 88 

We briefly outline these steps: 89 

1) The template particles are typically synthesized via emulsifier-free emulsion polymerization or 90 

dispersion polymerization. The mechanism of dispersion polymerization has been discussed by Barrett 91 
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and Arshady and is well known. [34,35] Generally, size control in dispersion polymerization is achieved 92 

by the amount of monomer[36], solvent, [35,37,38], and stabilizer selection, [34,37,38], respectively. 93 

Cheng et al. [36] used an ethanol/water mixture as solvent and polyvinylpyrrolidone (PVP) as stabilizer. 94 

Furthermore, a co-monomer can be used to introduce a specific surface charge.  95 

2) Shell growth: One major issue of the TiO2 shell growth – in contrast to a silica coating – is the high 96 

reactivity of the TiO2 precursors. Barlier et al. examined the condensation reaction in detail. [39] The 97 

reaction happens in two steps: the hydrolysis of the titanium precursor and the condensation to the 98 

TiO2 network (Scheme 1). Imhof was the first who coated polystyrene (PS) particles with a thin TiO2 99 

layer in a one-step sol-gel approach. [40] Up to now, several more methods have been published based 100 

on sol-gel synthesis: varying precursors, solvents, and template particles. [36,41-43] Wang et al. 101 

controlled the diffusion of the TiO2 precursor by synthesizing in an ethanol/acetonitrile mixture. With 102 

this approach, they were able to get defined shell thicknesses between 8 – 65 nm on 300 nm anionic 103 

PS particles. [43] Taniguchi et al. used grafted poly[2-(N,N-dimethylamino)ethyl]methacrylate chains 104 

on PS template particles that catalyzed the hydrolysis and condensation of the TiO2 precursor and were 105 

able to coat template particles in a size range of 90 – 450 nm. [42] Cheng et al. were the only ones who 106 

controlled the reaction speed by adding the TiO2 precursor dropwise within 30 min instead of one 107 

quick addition step. Similar to Imhof et al., they used cationic PS template particles that attracted the 108 

TiO2 precursor and lead to shell growth. [36] 109 

 110 

 111 

 112 

 113 

Scheme 1 Condensation reaction of titanium butoxide in water 114 

 115 

 116 

3) There are two options to remove the template particles: dissolution and calcination. Toluene [40] 117 

or THF [41] are commonly used to dissolve non-crosslinked polymer cores via repeated centrifugation 118 

and redispersion. This requires a certain degree of porosity and pore sizes in the coated shell to allow 119 
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for sufficient mass transport. Cheng et al. removed the core directly after the synthesis while heating 120 

the core-shell particles in an ethanol-ammonia mixture. [36] Calcination, however, is the more 121 

widespread strategy to remove the template. [41,40,42-44] An inherent side-effect of the thermal 122 

decomposition is the concomitant phase transition of the amorphous TiO2 shell into its anatase form. 123 

Therefore, the selection of the right temperature profile and calcination atmosphere is of main 124 

importance for the stability of the final hollow particles. It is common to simply heat the samples in air 125 

between 500 and 600 °C, followed by an isothermal step of 2 to 3 hrs. [40,42,43] Lu et al. found that 126 

their structures collapsed when using this simple approach. That is why they first pyrolised their 127 

structures in an inert atmosphere at 500 °C, followed by a calcination step in air to remove the carbon 128 

that stabilized the structure. [4] Schroden et al. solved the stability problem by applying a more 129 

complex heating ramp. Generally, they used very slow heating rates of 2 K/min and heated the sample 130 

first to 300 °C for 2 hrs, followed by a second heating step to 400 °C for 2 hrs. With this profile, they 131 

were able to get stable inverse opal structures without using an inert atmosphere during the thermal 132 

treatment. [25] 133 

We build upon these existing methods and provide an approach towards highly uniform TiO2 hollow 134 

spheres with a scalable and simple synthesis route. We used dispersion polymerization to prepare 135 

monodisperse polystyrene particles in a size range of 700 nm to 1.3 µm. Our method extends the range 136 

of accessible particle sizes known from emulsifier-free emulsion polymerization considerably, where 137 

an upper limit of 600 – 800 nm is known. [45] Furthermore, few purification steps are needed in our 138 

protocol, which improves the efficiency and yield of the synthesis. Using a combined mass loss – 139 

differential scanning calorimetry – infrared analysis, we also provide a better understanding of the 140 

calcination mechanism. 141 

 142 

MATERIALS AND METHODS 143 

Materials. 2-Methacryloxyethyltrimethylammoniumchloride (MTC, Sigma-Aldrich GmbH, 75 % soln. in 144 

water), Ethanol abs. (Sigma-Aldrich GmbH, ≥ 99.8 %), Polyvinylpyrrolidone (PVP, Sigma-Aldrich GmbH, 145 

40 000 g/mol), Styrene (Sigma-Aldrich GmbH, > 99 %), Titanium butoxide (TBT, Sigma Aldrich GmbH, 146 

97 %) were used as received. Millipore water was taken from a Millipore Direct Q3UV unit (Merck 147 

Millipore). 2,2ʹ-Azobis(2-methylpropionitril) (AIBN, Sigma-Aldrich GmbH) was recrystallized from 148 

ethanol before use. 149 

Synthesis of PS particles. 3 g PVP (40 000 g/mol) were dissolved in 10 mL ethanol via ultrasonication. 150 

The PVP solution, 46 mL of ethanol, 10 mL ultrapure water, half of the styrene (see table 1), and 300 mg 151 

AIBN were added to a 250 mL three-necked flask equipped with a reflux condenser and a gas inlet. The 152 
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solution was degassed while stirring with an egg-shaped stirring bar with a speed of 150 rpm. After 153 

30 min the mixture was slowly heated to the reaction temperature of 70 °C by turning the hot plate 154 

on. 56 mL ethanol, the second half of the styrene, and the MTC were premixed in an Erlenmeyer flask 155 

and added after 90 min. The reaction was carried out overnight stirring continuously with a speed of 156 

150 rpm under a slight argon flow. The polymerization was stopped by exposing the dispersion to 157 

ambient air and filtrated using a 125 μm nylon filter sieve. The concentration of the particles was 158 

determined gravimetrically. For the calculation of the conversion of the particles, the concentration 159 

was divided by the theoretical concentration at 100 % conversion.  160 

Synthesis of TiO2 shells. The synthesis was performed at room temperature. 6.3 mL PS dispersion and 161 

37 mL ethanol were added to an Erlenmeyer flask equipped with a septum. The dispersion was stirred 162 

at 350 rpm using a magnetic stirrer bar during the degassing and TBT addition steps. The dispersion 163 

was degassed for 10 min with argon. 0.8 mL TBT was mixed with 3.2 mL ethanol and added within 164 

30 minutes using a syringe pump. After the addition, the dispersion was allowed to age for 24 h 165 

without stirring. This aging step is essential to obtain core-shell particles of sufficient mechanical 166 

robustness to allow for the final calcination procedure. Particles were washed three times with ethanol 167 

for purification. 168 

Synthesis of hollow TiO2 particles. The particles were freeze-dried in an 80:20 vol% ethanol-water 169 

mixture. The PS core was removed by calcination in air. A modified temperature profile of 170 

Schroden et al. [25] was used. The samples were heated to 300 °C with a heating rate of 2 K/min, 171 

followed by an isothermal step of 2 h. The samples were then heated to 400 °C with a heating rate of 172 

2 K/min, followed by an isothermal step of 12 h. Finally, the sample was cooled down to room 173 

temperature for 5 h. 174 

Characterization Methods. Scanning electron microscopy (SEM) and scanning transmission electron 175 

microscopy (STEM) were performed using a Zeiss Ultraplus instrument using acceleration voltages of 176 

3 kV or 10 kV. An InLens, Everhard-Thornley, and STEM detector were used. Core-shell particles were 177 

calcined directly on a silicon wafer or SiO2 TEM grid (Plano GmbH). 178 

The diameter of the PS template particles was evaluated using the MATLAB circle detection function 179 

(see S1). The search parameters were optimized manually.  180 

Zeta potential was measured using Zetasizer Nano-ZS (Malvern Panalytical). Three measurements 181 

consisting of 10 – 100 runs were performed. The particles were diluted in ethanol without further 182 

purification. No additional substances were added to adjust the pH and background salt concentration.  183 

Transmission electron microscopy (TEM) measurements were performed with a JEOL JEM-2200FS field 184 

emission energy filtering transmission electron microscope (FE-EFTEM) operated at an acceleration 185 



7 
 

voltage of 200 kV. Zero-loss filtered micrographs (∆E ~ 0 eV) were recorded with a bottom-mounted 186 

CMOS camera system (OneView, Gatan) and processed with DM 3.3 image processing software 187 

(Gatan). Tilt series and tomography reconstructions were performed with SerialEM and IMOD software 188 

packages, supporting the entire tomography workflow, from data acquisition to image processing and 189 

modeling, developed by David Mastronarde at the Boulder Laboratory for 3D Electron Microscopy 190 

(Boulder, Colorado, USA). Videos of the tilt-series of hollow TiO2 particles were exported from ImageJ 191 

distribution Fiji [46]. 192 

Small-angle X-ray scattering (SAXS) measurements were performed on freeze-dried samples in 1 mm 193 

glass capillaries (Hilgenberg, code 4007610, Germany) at room temperature. The measurements were 194 

performed in a transmission geometry using a Double Ganesha AIR system (SAXSLAB). A rotating 195 

copper anode (MicroMax 007HF, Rigaku Corporation) is the X-ray source of this system. Data was 196 

recorded using a position-sensitive detector (PILATUS 300 K, Dectris). Different detector positions were 197 

used to cover scattering vectors q between 0.0024 and 0.2 nm−1. The radially averaged data were 198 

normalized to the incident beam and sample thickness. Calculations were done using the software 199 

SASFIT (version 0.94.1, Kohlbrecher and Bressler) [47] or SasView (version 4.2) [48] or Scatter (version 200 

2.5) [49]. 201 

X-ray powder diffraction patterns for the core-shell and hollow spheres were recorded in Bragg-202 

Brentano-geometry on an Empyrean diffractometer (PANalytical B.V.; the Netherlands) using Cu Kα 203 

radiation (𝜆 = 1.54187 Å). 204 

Simultaneous thermal analysis (STA) measurements were performed on a STA 449 F3 Jupiter (Netzsch) 205 

equipped with a Bruker Alpha III IR spectrometer using the same temperature ramp that was used for 206 

calcination. A DSC/TG OctoS sample holder and PtRh20 crucibles with lids were used. An airflow of 50 207 

mL/min was adjusted for the measurement. Differential scanning calorimetry (DSC) measurements 208 

show an increase in the baseline at the heating step from 400 to 700 °C, which is caused by the baseline 209 

calibration. IR measurements were divided by a reference measurement that was taken before the 210 

sample measurement started. Due to fluctuations of the baseline over the measurement time, this led 211 

to transmission values above 100 % for water bands (3750 cm-1 and 1500 cm-1) and CO2 bands 212 

(2250 cm-1). Furthermore, a rubber band baseline correction was performed to cancel out an overall 213 

intensity shift that was caused by the increasing temperature of the measured gas. 214 

 215 

RESULTS AND DISCUSSION 216 

Synthesis of polystyrene template particles 217 



8 
 

An overview on the explicit particle recipes is shown in table 1. To control the particlesize, the amount 218 

of styrene was increased from 6 mL to 22 mL. As can be seen in Fig. 2a, the particle diameter can be 219 

adjusted linearly with the amount of added styrene. The amount of initiator 2,2ʹ-Azobis(2-220 

methylpropionitril) (AIBN) does not influence the final particle size. This can be inferred from particles 221 

A-E with 0.3 g of AIBN, and particles F-J with 0.15 g AIBN. Further, we find no influence of the initiator 222 

concentration on the conversion of the synthesis within this range. The overall conversion was 223 

determined to be 80 % to 90 % for all syntheses. 224 

Electrostatic stabilization is introduced by the addition of the comonomer 2-225 

Methacryloxyethyltrimethylammoniumchloride (MTC). This introduces a positive charge to the 226 

particle surface. For particles A-J, we kept the molar ratio between monomer and comonomer 227 

constant with a ratio of 0.8 mol-%. This ratio results in a zeta potential of about + 40 mV for all particles. 228 

A ratio between monomer and comonomer in the range of 0.8 mol % (particles A-J) up to 1.2 mol % 229 

(particles Y) will lead to well-functionalized, stable colloids. This is demonstrated by the synthesis of 230 

particles X-Z with different amounts of MTC, while styrene and AIBN concentration were kept constant 231 

(Fig. 3). Particles X were fabricated without MTC, resulting in a zeta potential ~ 0 mV. Nevertheless, 232 

owing to the use of PVP as a steric stabilizer, the dispersion is still stable. Without MTC, the particles 233 

exhibit a very smooth surface. Increasing the amount of MTC to 170 µl lead to a rougher surface, while 234 

the particle shape remained spherical. Further increasing the amount of MTC to 300 µl lead to 235 

aggregated and deformed particles. The particle aggregation is accompanied by a reduction in the 236 

overall conversion. The particle diameter decreased by 200 nm from particles X to Y. A potential reason 237 

for this deviation from the expected particle diameter is the better solubility of the PS oligomers due 238 

to the copolymerization with MTC. This can reduce the tendency for newly formed oligomers to 239 

precipitate onto the existing nuclei. As a consequence, the particle growth is less compared to the co-240 

monomer free synthesis. Furthermore, newly formed, small nuclei may aggregate on larger particles, 241 

resulting in an increasing particle roughness. Overall, using dispersion polymerization it is possible to 242 

prepare polymer particles with standard deviations that are less or equal 5 % of the diameter and are, 243 

therefore, highly monodisperse (see SI Fig. 2). It provides access to a complementary size range with 244 

particle sizes around 1 µm. We want to stress the simplicity of these recipes, where all chemicals, 245 

except for AIBN were used without any additional purification. 246 

 247 

Table 1: Amount of styrene, comonomer 2-Methacryloxyethyltrimethylammoniumchloride, and 248 

initiator 2,2ʹ-Azobis(2-methylpropionitril) (AIBN), that was used for the dispersion polymerization with 249 

112 mL ethanol and 10 mL water. Concentrationa, Conversiona, diameterb, d, standard deviationb, s, 250 

and zeta potential, x, of the resulting particles. 251 
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Sample 

V 

(Styrene) 

[mL] 

V 

(MTC) 

[µL] 

m 

(AIBN) 

[g] 

Conc. 

 

[mg/mL]a 

Conv. 

 

[%]a 

d 

(SEM) 

[nm]b 

s 

 

[%]b 

x 

 

[mV]d 

A 6 109 0.3 65 90 673 1.9 34 

B 10 180 0.3 90 87 952 2.4 40 

C 14 254 0.3 110 83 1059 3.6 34 

D 18 327 0.3 134 82 1196 2.3 39 

E 22 400 0.3 158 81 1353 2.8 36 

F 6 109 0.15 65 87 735 3.6 378 

G 10 180 0.15 89 88 902 5.0 37 

H 14 254 0.15 106 80 970 4.2 39 

I 18 327 0.15 131 81 1191 2.5 37 

J 22 400 0.15 178 92 1374 1.7 38 

         

X 6 0 0.3 65 92 802 2.3 1 

Y 6 170 0.3 62 86 621 3.6 34 

Zc 6 300 0.3 51 69   34 

a determined gravimetrically, b measured by SEM image analysis of at least 100 particles, c no values 252 

are provided for diameter and standard deviation, because of an unspherical shape and clustering of 253 

the particles. d the Zeta potential was determined in an ethanolic dispersion 254 

 255 

 256 

Fig. 2 Diameter of particles from dispersion polymerization dependent on the amount of styrene and 257 

the amount of initiator AIBN (a). Corresponding SEM images of the PS particles (b) top row with a high 258 

and bottom row with a low initiator concentration. The styrene volume increases from left to right. 259 

 260 

Synthesis of TiO2 shells 261 
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The PS particles were used as seed templates without purification – not even centrifugation after the 262 

dispersion polymerization was employed. This procedure is similar to the scalable synthesis of PS@SiO2 263 

core-shell and SiO2 hollow spheres, [50], which provided access to gram-scale amounts of hollow silica 264 

spheres. An ethanolic solution (V = 4 mL) of the precursor titanium butoxide (TBT) was added with a 265 

concentration of 0.6 molL-1 to the ethanolic particle dispersion using a syringe pump within 30 min. 266 

We first investigated the influence of the template particle surface functionalization on the TiO2 267 

immobilization and shell formation. 268 

269 
Fig. 3 SEM and TEM images of particles X-Z, the corresponding PS@TiO2 core-shell particles, and hollow 270 

TiO2 particles, as well as TEM tomography reconstructions of parts of a slice of the hollow particles 271 

Fig. 3 demonstrates the necessity to adjust the cationic surface functionalization. Without the addition 272 

of MTC granular TiO2 nuclei are immobilized on the polymer surface. For both cases of added MTC 273 

(particles Y and Z, respectively) an increasingly smooth shell was observed. The granular appearance 274 

of the TiO2 shell is already apparent in the amorphous shell directly after the TiO2 condensation. This 275 

can be inferred from the SEM images of the core-shell structures (Fig. 3, second column), where white 276 

speckles cover the previously smooth surface. The presence of MTC at the particle surface apparently 277 

influences the nucleation and growth mechanism, which we assign to the altered electrostatic 278 

environment. Removing the template core by calcination preserves this granularity, which is shown in 279 

TEM and TEM tomography images (Fig. 3 right panels). The spherical shape of the hollow sphere is also 280 

preserved, which is apparent from the TEM tilt series (see SI gif files). The highest amount of MTC 281 
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resulted in the most compact and least granular shells. Nevertheless, the TiO2 coated structures were 282 

clustered due to the already clustered particles in the PS seed dispersion. Consequently, a balanced 283 

adjustment of the particle surface functionality via MTC is crucial for the colloidal stability and 284 

successful coating step. 285 

Calcination process 286 

Calcination is the final step to obtain hollow TiO2 particles (Fig. 3 right panel). We want to stress that 287 

the core-shell particles can only be transformed into hollow spheres successfully after aging the core-288 

shell dispersion for 24 h prior to purification. This aging process apparently improves the formation of 289 

a pre-condensed TiO2 network and proper covalent connectivity among the granular nuclei in the shell. 290 

The shell resilience to the thermal decomposition process is improved. Furthermore, the calcination 291 

process itself is very important. We used an adapted temperature profile of Schroden et al., [25], 292 

where the template removal is achieved in a two-step process. The first calcination step is undertaken 293 

just at the onset of PS decomposition at a relatively low temperature (300 °C). The complete 294 

degradation of the PS is then achieved by a second step at 400 °C. To gain a deeper understanding of 295 

the calcination process, combined TGA, DSC, and IR measurements have been performed in air and 296 

nitrogen (see Fig. 4 a-d and Fig. S4).  297 

The pure template particles (polystyrene) show three prominent steps. These are directly related to 298 

the applied temperature profile. The degradation starts at the end of the first heating ramp (2 K/min) 299 

(1). Already 80 % of polystyrene decompose in the form of CO2 during the isothermal conditions 300 

(300 °C), which took 2 h. The PS decomposition is strongly accelerated during the second heat ramp 301 

(2  K/min) to 400 °C (2). Within 300 mins another 13 % of PS are decomposed to CO2, whereas the 302 

residues remain by and large stable in air for the 5 h isothermal heating step at 400 °C. The last 5 % of 303 

material is fully decomposed during the last heating ramp up to 700 °C (3). The IR spectra (Fig. 4c) only 304 

indicated CO2 as the decomposition product. Single IR spectra of the three steps can be found in the 305 

supporting information. Each of the decomposition steps was accompanied by an exothermal event in 306 

the DSC signal. This indicates the oxidative decomposition of the polystyrene backbone.[51,52] 307 

The calcination of the core-shell particles shows a couple of interesting deviations from the pure PS 308 

decomposition. The degradation starts at the same time/temperature as the pure polystyrene particles 309 

(1). Since the IR spectra show exclusively CO2 bands (see Fig. 4d), it is reasonable to assume that only 310 

the polymer decomposed at this point. The PS decomposition, however, is significantly slower 311 

compared to the neat seed particles. This could be caused by the limited mass transport to the PS core 312 

owing to the presence of the TiO2 shell. Only 40 % mass has been lost by the end of the first isothermal 313 

annealing step at 300 °C. The DSC signal reveals a second event occurring during the isothermal part 314 
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at 300 °C (2). Xie et al. saw a similar exothermic peak in their differential thermal analysis 315 

measurements on TiO2 particles from different phases at 280 °C. [53] They found that this peak is due 316 

to the loss of water absorbed at the TiO2 particle surface. Therefore, the peak can be linked to a 317 

precondensation process in the TiO2 shell and the release of the enclosed water molecules. Owing to 318 

the law amount of released water we cannot unambiguously determine the onset of water loss in the 319 

IR spectra. The second heating ramp lead to a third prominent step at 400 °C (3). In this case, the 320 

degradation product is also CO2. In contrast to the pure PS particles the last heating step to 700 °C 321 

results in a very small mass loss of only 2 %. Since the corresponding IR data show no trace of CO2, all 322 

PS must already be decomposed at the end of the second isothermal step and a further condensation 323 

reaction of the TiO2 is assumed. Calculations show that 34 % material should be left over, which agrees 324 

well with the experimental data of 33 %. We conclude that the TiO2 shell aids the decomposition 325 

reaction of the polymer even though the mass transfer is reduced. In our case it is not possible to see 326 

the transformation of the amorphous to the anatase phase in the DSC curves. Xi et al. and Li et al. saw 327 

this event happening at temperatures above 400 °C. [53,54] Therefore, the effect is likely to be 328 

superimposed by the exothermic degradation peak of PS. 329 

 330 

Fig. 4 Combined STA (a), DSC (b) and IR measurements to investigate the calcination process of pure 331 

PS particles (c) and PS@TiO2 particles (d). Results of SAXS measurements of PS, PS@TiO2 and TiO2 332 

hollow spheres (e) and XRD measurements of the PS@TiO2 and hollow TiO2 spheres (f). For all 333 

measurements, particles Y have been used. 334 

 335 
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These results show the importance of the right temperature profile for the calcination process. Since 336 

the polymer starts to decompose before the condensation of the TiO2 takes place, the template 337 

particle shrinks, which leads to a shrinkage of the final hollow sphere. The overall particle shrinkage 338 

can be estimated by the mass loss of the PS particle before the TiO2 condensation process starts. The 339 

mass loss translates into a volume shrinkage of the template particle. Assuming an isotropic shrinkage 340 

of the template particle, the diameter of the shrunk particle can be recalculated. The shrunk particle 341 

size should then correspond to the final hollow core diameter. Starting with an initial particle with a 342 

diameter of 621 nm and considering a mass loss of 40 %, this would result in a shrunk particle diameter 343 

of 520 nm. Starting with a PS core diameter of 621 nm and a mass loss of 40 % (Step 2) this would 344 

result in a hollow core diameter of 520 nm. This is in reasonable agreement with the experimental 345 

data, where the hollow core has a size of ~ 500 nm. Calcinations in inert atmosphere, where the 346 

template particle is intact much longer, show less shrinkage of the hollow spheres (see SI Fig. 4). 347 

Calcination profiles, which omit the mild calcination at 300 °C or that feature too fast heating ramps, 348 

sacrifice the shell integrity and result in collapsed structures (see SI Fig. 5). 349 

The structure of the polystyrene, core-shell and hollow particles Y (see Fig. 4e), were further 350 

characterized by SAXS and SEM/TEM. The measured SAXS data exhibit only week features, which 351 

prevent a thorough fitting analysis. Furthermore, PS seed particles are too large to identify the radius 352 

in the experimentally reachable q range. Thus, based on the TEM result we calculated the form factor 353 

of homogeneous spheres with a diameter of 621 nm and compared it to our experimental data – both 354 

agree well. The model has a Gaussian size distribution with a standard derivation of 10 %, which is 355 

slightly higher compared to the SEM images due to instrumental smearing effects. The measurement 356 

of the PS@TiO2 core-shell particles is shown in Fig. 4e (green symbols). The scattering of PS@SiO2 can 357 

be described by the model of a homogeneous core-homogeneous shell. [50] The sharp and well 358 

defined boundary between core and (monodisperse) shell leads to significant oscillations in the 359 

scattering data. In contrast to PS@SiO2 the shell of PS@TiO2 is less dense and highly particulate (see 360 

Fig. 3). As consequence of such a fractal-like shell morphology the corresponding form factor scattering 361 

miss such pronounced oscillations. The main features are a q-4 scaling at intermediate q (ca. 0.008-0.05 362 

Å-1) and a q-2 power law for q > 0.057 Å-1. A very weak oscillation around 0.017 Å-1 hints towards the 363 

expected dimension of the shell thickness of about 30-40 nm before calcination. The q-2 power law for 364 

q > 0.057 Å-1 is indicative of strong scatters with a mainly 2D-structure. This is in contrast to scattering 365 

patterns of similar (silica-based) core-shell systems [55,56]. These systems exhibit a pronounced form 366 

factor and no q-2 scaling law at high q. The deviation of our system from these findings can be 367 

understood by the scattering contrast situation (PS ≈ 9.51·10-6 Å-2, TiO2 ≈ 31.8·10-6 Å-2, no solvent) and 368 

the lower bending curvature due to the large template particle diameter. At high q the q-2 term seems 369 

to simply add up to the scattering of a pure PS-sphere (q-4) underlining the fact that the shell is 370 
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particulate. For comparison the scattering of a homogeneous core-homogeneous shell sphere is given 371 

(d = 621 nm, 10 % Gaussian distribution and dshell = 35 nm, 20 % Gaussian distribution; green dotted 372 

line PS@TiO2). During the calcination process, the amorphous TiO2 shells undergo a transformation 373 

into anatase phase (Fig. 4f). During this process the overall size of the particle shrinks. The experimental 374 

SAXS scattering pattern of this hollow spheres exhibits a minimum at q ≈ 0.026 Å-1. The corresponding 375 

correlation length of about 24 nm agrees well with the thickness of the TiO2 shell obtained from TEM 376 

analysis. The q-4 behavior at intermediate and high q reflects the contrast situation for a hollow sphere. 377 

This is corroborated by the calculation of a homogenous hollow sphere (blue dotted line; dinner=621 nm, 378 

10 % Gaussian with zero contrast, dshell = 24 nm, 25 % Gaussian with contrast 31.8·10-6 Å-2). The q-2 379 

power law at low q is attributed to the particulate shell, since rough surfaces can be considered as 380 

fractals. 381 

As stated above, the TiO2 shell undergoes a phase transition during the calcination procedure. This can 382 

be seen in X-ray diffraction measurements in Fig. 4f. The core-shell particles (green line) do not show 383 

any features except for an amorphous halo. This pattern is caused by the TiO2 and the amorphous 384 

polymer core. After calcination, distinct peaks are visible (blue line). The inset shows the normalized 385 

data, that agree very well with the expected diffraction pattern of anatase.  386 

 387 

Size series of TiO2 hollow particles 388 

We now want to highlight the robustness of our synthetic protocol. Therefore, TiO2 shells have been 389 

synthesized on PS particles A-E. Setting the MTC/Styrene ratio to 0.8 % during the seed synthesis and 390 

the amount of TBT to 5.5·10-4 to 6.5·10-4 mol/m² particle surface during the coating step, it is possible 391 

to fabricate TiO2 core-shell particles without secondary nucleation or particle clustering (Fig. 5). When 392 

using 800 µl of titanium butoxide, shell thicknesses between 45 nm and 60 nm could be achieved. 393 

Stable and smooth TiO2 shells could be immobilized on the PS seed particles. Also, the template 394 

particles themselves remain colloidally stable and are coated as individual objects. One may expect 395 

that the shell thickness decreases with increasing template particle diameter when employing the 396 

same amount of TBT precursor. This, however, would only be true, if the same particle concentration 397 

was used. Owing to our scalable process, we directly use the as-synthesized polymer dispersion, where 398 

both, particle diameter and particle concentration vary with the initial monomer concentration. Both 399 

parameters cancel each other out leading to comparable shell thicknesses for each batch. 400 

Calcining the particles in air leads to an isotropic shrinkage up to 20 % compared to the core-shell size 401 

(see STEM, Fig. 5). For particles > 700 nm we find no systematic variation of the degree of shrinkage to 402 

the particle size. As a consequence, the TiO2 hollow spheres B, C, and D all have the same particle 403 
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diameter of ~ 900 nm; particle E is slightly larger with 1025 nm. Yet, despite the considerable 404 

shrinkage, the particles retain their spherical shape and shrink in an isotropic fashion. This is even more 405 

remarkable as the ratio t/D between shell thickness (t) and particle diameter (D) is very small. t/D 406 

ranges from 4 % for the smallest hollow spheres to 2 % for the largest one. With decreasing t/R ratio 407 

the mechanical stability of the TiO2 hollow spheres decreases, which is also known for their silica shell 408 

counterparts [57]. We, consequently, observed an increased portion of fractured or buckled hollow 409 

spheres from particles C to E. 410 

 411 

Fig. 5 SEM images of PS@TiO2 core-shell particles of different sizes (A-E), and corresponding TiO2 412 

hollow spheres. The last row shows STEM images of single TiO2 hollow spheres. 413 

 414 

CONCLUSIONS 415 

Our contribution addresses several important aspects in the field of templated hollow sphere 416 

synthesis. We firstly introduced dispersion polymerization as a suitable alternative to established 417 

emulsion polymerization techniques for synthesizing template particles in the 500 nm to 1300 nm size 418 

regime. The template particles can be functionalized with comonomers to control the particle surface 419 

charge. These template beads can be used without additional purification steps for the synthesis of 420 

homogeneous TiO2 shells. This strategy allows for a scalable synthesis of well-coated TiO2 core-shell 421 

particles. However, it is important to control the amount of comonomer used during the dispersion 422 

polymerization. This affects the stability of the colloidal particles and the granularity of the TiO2 shell. 423 

We thoroughly investigated the calcination procedure yielding the hollow particles. The usage of an 424 
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isothermal step at the onset of polystyrene decomposition is crucial for retaining the hollow particle 425 

shape. Our presented method could be applied to a range of template particles with different sizes. 426 

Overall, this facile, reproducible and scalable method creates well-defined TiO2 core-shell or hollow 427 

particles that can be used in applications, where the properties of TiO2 are beneficial. 428 

 429 

ACKNOWLEDGEMENDS 430 

We thank Stefan Rettinger for the help with STA experiments and the Bavarian Polymer Institute, 431 

especially Martina Heider, for helping with SEM and STEM measurements. This project was funded by 432 

the German Research Foundation (DFG RE3550/2-1). Additional support was provided by ERC Starting 433 

Grant VISIRday under Grant No. 714968. This work benefited from the use of the SasView application, 434 

originally developed under NSF Award DMR-0520547. SasView also contains code developed with 435 

funding from EU Horizon 2020 programme under the SINE2020 project Grant No. 654000. 436 

 437 

CONFLICT OF INTEREST 438 

The authors declare no conflict of interest. 439 

 440 

REFERENCES 441 

1. Anastas P, Eghbali N (2010) Green Chemistry: Principles and Practice. Chem Soc Rev 39 (1):301-312. 442 
doi:10.1039/B918763B 443 
2. Sheldon RA, Arends I, Hanefeld U (2007) Green Chemistry and Catalysis. Wiley. 444 
doi:10.1002/9783527611003 445 
3. Anastas PT (2007) Introduction:  Green Chemistry. Chem Rev 107 (6):2167-2168. 446 
doi:10.1021/cr0783784 447 
4. Lu Y, Hoffmann M, Yelamanchili RS, Terrenoire A, Schrinner M, Drechsler M, Möller MW, Breu J, 448 
Ballauff M (2009) Well-Defined Crystalline TiO2 Nanoparticles Generated and Immobilized on a 449 
Colloidal Nanoreactor. Macromol Chem Phys 210 (5):377-386. doi:10.1002/macp.200800608 450 
5. Kisch H (2015) Semiconductor Photocatalysis: Principles and Applications. Wiley. 451 
doi:10.1002/9783527673315  452 
6. O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal 453 
TiO2 films. Nature 353 (6346):737-740. doi:10.1038/353737a0 454 
7. Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent 455 
conducting oxide for highly efficient solar cells. Nature Nanotech 4 (9):592. 456 
doi:10.1038/nnano.2009.226 457 
8. Phani G, Tulloch G, Vittorio D, Skryabin I (2001) Titania solar cells: new photovoltaic technology. 458 
Renewable Energy 22 (1):303-309. doi:10.1016/S0960-1481(00)00059-8 459 
9. Fu LJ, Zhang T, Cao Q, Zhang HP, Wu YP (2007) Preparation and characterization of three-460 
dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery. 461 
Electrochem Commun 9 (8):2140-2144. doi:10.1016/j.elecom.2007.06.009 462 
10. Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P (2009) Alternative Li-Ion Battery 463 
Electrode Based on Self-Organized Titania Nanotubes. Chem Mat 21 (1):63-67. 464 
doi:10.1021/cm801670u 465 



17 
 

11. Kim K-T, Ali G, Chung KY, Yoon CS, Yashiro H, Sun Y-K, Lu J, Amine K, Myung S-T (2014) Anatase 466 
Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Lett 14 467 
(2):416-422. doi:10.1021/nl402747x 468 
12. Chen X, Mao SS (2007) Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and 469 
Applications. Chem Rev 107 (7):2891-2959. doi:10.1021/cr0500535 470 
13. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G 471 
(2008) Phase-pure TiO(2) nanoparticles: anatase, brookite and rutile. Nanotech 19 (14):145605. 472 
doi:10.1088/0957-4484/19/14/145605 473 
14. Zaban A, Aruna ST, Tirosh S, Gregg BA, Mastai Y (2000) The Effect of the Preparation Condition of 474 
TiO2 Colloids on Their Surface Structures. J Phys Chem B 104 (17):4130-4133. doi:10.1021/jp993198m 475 
15. Banfield JF, Bischoff BL, Anderson MA (1993) TiO2 accessory minerals: coarsening, and 476 
transformation kinetics in pure and doped synthetic nanocrystalline materials. Chem Geol 110 (1):211-477 
231. doi:10.1016/0009-2541(93)90255-H 478 
16. Yanagisawa K, Ovenstone J (1999) Crystallization of Anatase from Amorphous Titania Using the 479 
Hydrothermal Technique:  Effects of Starting Material and Temperature. J Phys Chem B 103 (37):7781-480 
7787. doi:10.1021/jp990521c 481 
17. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) Hydrothermal 482 
synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J Mater Chem 11 483 
(6):1694-1703. doi:10.1039/B008974P 484 
18. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, LaTempa TJ, Thelakkat M, 485 
Grimes CA (2008) Highly Efficient Solar Cells using TiO2 Nanotube Arrays Sensitized with a Donor-486 
Antenna Dye. Nano Lett 8 (6):1654-1659. doi:10.1021/nl080421v 487 
19. Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-488 
sensitized solar cells based on titania nanotube array electrodes. Nanotech 17 (5):1446-1448. 489 
doi:10.1088/0957-4484/17/5/046 490 
20. Zukalová M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M (2005) Organized Mesoporous 491 
TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells. Nano Lett 5 492 
(9):1789-1792. doi:10.1021/nl051401l 493 
21. Somani PR, Dionigi C, Murgia M, Palles D, Nozar P, Ruani G (2005) Solid-state dye PV cells using 494 
inverse opal TiO2 films. Solar Energy Materials and Solar Cells 87 (1):513-519. 495 
doi:10.1016/j.solmat.2004.07.037 496 
22. Adachi M, Murata Y, Okada I, Yoshikawa S (2003) Formation of Titania Nanotubes and Applications 497 
for Dye-Sensitized Solar Cells. J Electrochem Soc 150 (8):G488-G493. doi:10.1149/1.1589763 498 
23. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Dye-499 
sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. PCCP 7 (24):4157-500 
4163. doi:10.1039/B511016E 501 
24. Lim SH, Luo J, Zhong Z, Ji W, Lin J (2005) Room-Temperature Hydrogen Uptake by TiO2 Nanotubes. 502 
Inorg Chem 44 (12):4124-4126. doi:10.1021/ic0501723 503 
25. Schroden RC, Al-Daous M, Blanford CF, Stein A (2002) Optical Properties of Inverse Opal Photonic 504 
Crystals. Chem Mat 14 (8):3305-3315. doi:10.1021/cm020100z 505 
26. Retsch M, Jonas U (2013) Hierarchically Structured, Double-Periodic Inverse Composite Opals. Adv 506 
Funct Mater 23 (43):5381-5389. doi:10.1002/adfm.201300803 507 
27. Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated 508 
materials--chemical applications of inverse opals. Chem Soc Rev 42 (7):2763-2803. 509 
doi:10.1039/c2cs35317b 510 
28. Noman MT, Ashraf MA, Ali A (2019) Synthesis and applications of nano-TiO2: a review. 511 
Environmental Science and Pollution Research 26 (4):3262-3291. doi:10.1007/s11356-018-3884-z 512 
29. Rabenau A (1985) The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte 513 
Chemie International Edition in English 24 (12):1026-1040. doi:10.1002/anie.198510261 514 
30. Cho C-Y, Moon JH (2012) Hierarchical Twin-Scale Inverse Opal TiO2 Electrodes for Dye-Sensitized 515 
Solar Cells. Langmuir 28 (25):9372-9377. doi:10.1021/la3014656 516 



18 
 

31. Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, Properties, and Applications of Hollow Micro-517 
/Nanostructures. Chem Rev 116 (18):10983-11060. doi:10.1021/acs.chemrev.5b00731 518 
32. Chen M, Ye C, Zhou S, Wu L (2013) Recent Advances in Applications and Performance of Inorganic 519 
Hollow Spheres in Devices. Adv Mater 25 (37):5343-5351. doi:10.1002/adma.201301911 520 
33. Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L (2017) Intricate Hollow Structures: Controlled 521 
Synthesis and Applications in Energy Storage and Conversion. Adv Mater 29 (20):1602914. 522 
doi:10.1002/adma.201602914 523 
34. Arshady R (1992) Suspension, emulsion, and dispersion polymerization: A methodological survey. 524 
Colloid Polym Sci 270 (8):717-732. doi:10.1007/bf00776142 525 
35. Barrett KEJ (1973) Dispersion polymerisation in organic media. Br Polym J 5 (4):259-271. 526 
doi:doi:10.1002/pi.4980050403 527 
36. Cheng X, Chen M, Wu L, Gu G (2006) Novel and Facile Method for the Preparation of 528 
Monodispersed Titania Hollow Spheres. Langmuir 22 (8):3858-3863. doi:10.1021/la0534221 529 
37. Kawaguchi S, Ito K (2005) Advances in Polymer Science. In:  Polymer Particles, vol 175. Advances in 530 
Polymer Science. pp 299-328. doi:10.1007/b100118 531 
38. Paine AJ, Luymes W, McNulty J (1990) Dispersion polymerization of styrene in polar solvents. 6. 532 
Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-533 
stabilized reactions. Macromolecules 23 (12):3104-3109. doi:10.1021/ma00214a012 534 
39. Barlier V, Bounor-Legaré V, Boiteux G, Davenas J, Léonard D (2008) Hydrolysis–condensation 535 
reactions of titanium alkoxides in thin films: A study of the steric hindrance effect by X-ray 536 
photoelectron spectroscopy. Appl Surf Sci 254 (17):5408-5412. doi:10.1016/j.apsusc.2008.02.076 537 
40. Imhof A (2001) Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow 538 
Titania Shells. Langmuir 17 (12):3579-3585. doi:10.1021/la001604j 539 
41. Agrawal M, Pich A, Zafeiropoulos NE, Stamm M (2008) Fabrication of hollow titania microspheres 540 
with tailored shell thickness. Colloid Polym Sci 286 (5):593-601. doi:10.1007/s00396-007-1833-3 541 
42. Taniguchi T, Murakami F, Kasuya M, Kojima T, Kohri M, Saito K, Nakahira T (2013) Preparation of 542 
titania hollow particles with independently controlled void size and shell thickness by catalytic 543 
templating core–shell polymer particles. Colloid Polym Sci 291 (1):215-222. doi:10.1007/s00396-012-544 
2658-2 545 
43. Wang P, Chen D, Tang F-Q (2006) Preparation of Titania-Coated Polystyrene Particles in Mixed 546 
Solvents by Ammonia Catalysis. Langmuir 22 (10):4832-4835. doi:10.1021/la060112p 547 
44. Yelamanchili RS, Lu Y, Lunkenbein T, Miyajima N, Yan L-T, Ballauff M, Breu J (2009) Shaping Colloidal 548 
Rutile into Thermally Stable and Porous Mesoscopic Titania Balls. Small 5 (11):1326-1333. 549 
doi:10.1002/smll.200801298 550 
45. Ruckdeschel P (2017) Transport Phenomena in Silica Hollow Spheres and Hybrid Materials. 551 
University of Bayreuth, Bayreuth 552 
46. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 553 
Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: 554 
an open-source platform for biological-image analysis. Nature Methods 9 (7):676-682. 555 
doi:10.1038/nmeth.2019 556 
47. Bressler I, Kohlbrecher J, Thunemann AF (2015) SASfit: a tool for small-angle scattering data 557 
analysis using a library of analytical expressions. J Appl Crystallogr 48 (5):1587-1598. 558 
doi:10.1107/S1600576715016544 559 
48. Doucet M, Cho, Jae Hie, Alina, Gervaise, Bakker, Jurrian, Bouwman, Wim, Butler, Paul, Washington, 560 
Adam (2019) SasView version 4.2.2. Zenodo.  561 
49. Förster S, Fischer S, Zielske K, Schellbach C, Sztucki M, Lindner P, Perlich J (2011) Calculation of 562 
scattering-patterns of ordered nano- and mesoscale materials. Adv Colloid Interface Sci 163 (1):53-83. 563 
doi:10.1016/j.cis.2010.12.003 564 
50. Ruckdeschel P, Dulle M, Honold T, Förster S, Karg M, Retsch M (2016) Monodisperse hollow silica 565 
spheres: An in-depth scattering analysis. Nano Research 9 (5):1366-1376. doi:10.1007/s12274-016-566 
1032-y 567 



19 
 

51. Kannan P, Biernacki JJ, Visco DP, Lambert W (2009) Kinetics of thermal decomposition of 568 
expandable polystyrene in different gaseous environments. J Anal Appl Pyrolysis 84 (2):139-144. 569 
doi:10.1016/j.jaap.2009.01.003 570 
52. Malhotra SL, Hesse J, Blanchard L-P (1975) Thermal decomposition of polystyrene. Polymer 16 571 
(2):81-93. doi:10.1016/0032-3861(75)90133-0 572 
53. Xie H, Zhang Q, Xi T, Wang J, Liu Y (2002) Thermal analysis on nanosized TiO2 prepared by 573 
hydrolysis. Thermochim Acta 381 (1):45-48. doi:10.1016/S0040-6031(01)00642-6 574 
54. Li D, Chen S, Wang D, Li Y, Shao W, Long Y, Liu Z, Ringer SP (2010) Thermo-analysis of nanocrystalline 575 
TiO2 ceramics during the whole sintering process using differential scanning calorimetry. Ceram Int 36 576 
(2):827-829. doi:10.1016/j.ceramint.2009.10.004 577 
55. Balmer JA, Mykhaylyk OO, Schmid A, Armes SP, Fairclough JPA, Ryan AJ (2011) Characterization of 578 
Polymer-Silica Nanocomposite Particles with Core–Shell Morphologies using Monte Carlo Simulations 579 
and Small Angle X-ray Scattering. Langmuir 27 (13):8075-8089. doi:10.1021/la201319h 580 
56. Fielding LA, Mykhaylyk OO, Schmid A, Pontoni D, Armes SP, Fowler PW (2014) Visible Mie Scattering 581 
from Hollow Silica Particles with Particulate Shells. Chem Mat 26 (2):1270-1277. 582 
doi:10.1021/cm4039347 583 
57. Yin J, Retsch M, Lee J-H, Thomas EL, Boyce MC (2011) Mechanics of Nanoindentation on a 584 
Monolayer of Colloidal Hollow Nanoparticles. Langmuir 27 (17):10492-10500. doi:10.1021/la2018117 585 

 586 


