URN to cite this document: urn:nbn:de:bvb:703-epub-4778-1
Title data
Kaiser, Julian ; Leppert, Linn ; Welz, Hannes ; Polzer, Frank ; Wunder, Stefanie ; Wanderka, Nelia ; Albrecht, Martin ; Lunkenbein, Thomas ; Breu, Josef ; Kümmel, Stephan ; Lu, Yan ; Ballauff, Matthias:
Catalytic activity of nanoalloys from gold and palladium.
In: Physical Chemistry Chemical Physics.
Vol. 14
(2012)
Issue 18
.
- pp. 6487-6495.
ISSN 1463-9076
DOI der Verlagsversion: https://doi.org/10.1039/c2cp23974d
Project information
Project financing: |
Deutsche Forschungsgemeinschaft |
---|
Abstract
We present a quantitative study of the catalytic activity of well-defined faceted gold–palladium nanoalloys which are immobilized on cationic spherical polyelectrolyte brushes. The spherical polyelectrolyte brush particles used as carriers for the nanoalloys consist of a solid polystyrene core onto which cationic polyelectrolyte chains of 2-aminoethyl methacrylate are attached. Au/Pd nanoalloy particles with sizes in the range from 1 to 3 nm have been generated which are homogeneously distributed on the surface of the spherical polyelectrolyte brushes. The reduction of 4-nitrophenol has been chosen as a well-controlled model reaction allowing us to determine the catalytic activity of the nanoalloys as a function of the Au/Pd composition. The adsorption behavior was studied by Langmuir–Hinshelwood kinetics. We find a pronounced maximum of the catalytic activity at 75 molar % Au. A comparison of gold, platinum, palladium and gold–palladium alloy nanoparticles is made in terms of Langmuir–Hinshelwood kinetics. Density functional calculations for Au/Pd clusters with up to 38 atoms show that the density of states at the Fermi level increases with increasing Pd content, and that the highest occupied orbitals are associated with Pd atoms. The calculations confirm that small changes in the atomic arrangement can lead to pronounced changes in the particles’ electronic properties, indicating that the known importance of surface effects is further enhanced in nanoalloys.
Further data
Item Type: | Article in a journal |
---|---|
Additional notes (visible to public): | ISI:000302951500041 |
DDC Subjects: | 500 Science > 540 Chemistry |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Theoretical Physics IV > Chair Theoretical Physics IV - Univ.-Prof. Dr. Stephan Kümmel Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Inorganic Colloids for Electrochemical Energy storage > Chair Chair Inorganic Colloids for Electrochemical Energy storage - Univ.-Prof. Dr. Josef Breu Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP B 1 Faculties Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Theoretical Physics IV Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Inorganic Colloids for Electrochemical Energy storage Research Institutions Research Institutions > Collaborative Research Centers, Research Unit Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie |
Language: | English |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-4778-1 |
Date Deposited: | 07 Sep 2020 10:34 |
Last Modified: | 07 Sep 2020 10:34 |
URI: | https://epub.uni-bayreuth.de/id/eprint/4778 |