Publications by the same author
plus in the repository
plus in Google Scholar

Bibliografische Daten exportieren
 

Catalytic activity of nanoalloys from gold and palladium

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00004778
URN to cite this document: urn:nbn:de:bvb:703-epub-4778-1

Title data

Kaiser, Julian ; Leppert, Linn ; Welz, Hannes ; Polzer, Frank ; Wunder, Stefanie ; Wanderka, Nelia ; Albrecht, Martin ; Lunkenbein, Thomas ; Breu, Josef ; Kümmel, Stephan ; Lu, Yan ; Ballauff, Matthias:
Catalytic activity of nanoalloys from gold and palladium.
In: Physical Chemistry Chemical Physics. Vol. 14 (2012) Issue 18 . - pp. 6487-6495.
ISSN 1463-9076
DOI der Verlagsversion: https://doi.org/10.1039/c2cp23974d

Project information

Project financing: Deutsche Forschungsgemeinschaft

Abstract

We present a quantitative study of the catalytic activity of well-defined faceted gold–palladium nanoalloys which are immobilized on cationic spherical polyelectrolyte brushes. The spherical polyelectrolyte brush particles used as carriers for the nanoalloys consist of a solid polystyrene core onto which cationic polyelectrolyte chains of 2-aminoethyl methacrylate are attached. Au/Pd nanoalloy particles with sizes in the range from 1 to 3 nm have been generated which are homogeneously distributed on the surface of the spherical polyelectrolyte brushes. The reduction of 4-nitrophenol has been chosen as a well-controlled model reaction allowing us to determine the catalytic activity of the nanoalloys as a function of the Au/Pd composition. The adsorption behavior was studied by Langmuir–Hinshelwood kinetics. We find a pronounced maximum of the catalytic activity at 75 molar % Au. A comparison of gold, platinum, palladium and gold–palladium alloy nanoparticles is made in terms of Langmuir–Hinshelwood kinetics. Density functional calculations for Au/Pd clusters with up to 38 atoms show that the density of states at the Fermi level increases with increasing Pd content, and that the highest occupied orbitals are associated with Pd atoms. The calculations confirm that small changes in the atomic arrangement can lead to pronounced changes in the particles’ electronic properties, indicating that the known importance of surface effects is further enhanced in nanoalloys.

Further data

Item Type: Article in a journal
Additional notes (visible to public): ISI:000302951500041
DDC Subjects: 500 Science > 540 Chemistry
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Theoretical Physics IV > Chair Theoretical Physics IV - Univ.-Prof. Dr. Stephan Kümmel
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Inorganic Colloids for Electrochemical Energy storage > Chair Chair Inorganic Colloids for Electrochemical Energy storage - Univ.-Prof. Dr. Josef Breu
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP B 1
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Theoretical Physics IV
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Inorganic Colloids for Electrochemical Energy storage
Research Institutions
Research Institutions > Collaborative Research Centers, Research Unit
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie
Language: English
Originates at UBT: Yes
URN: urn:nbn:de:bvb:703-epub-4778-1
Date Deposited: 07 Sep 2020 10:34
Last Modified: 07 Sep 2020 10:34
URI: https://epub.uni-bayreuth.de/id/eprint/4778

Downloads

Downloads per month over past year