Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Generation of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes

URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-4314-6

Titelangaben

Mickoleit, Frank ; Schüler, Dirk:
Generation of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes.
Bayreuth, Germany , 2019 . - 43 S.

Volltext

[thumbnail of jbibn.18.00005.pdf]
Format: PDF
Name: jbibn.18.00005.pdf
Version: Angenommene Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (1MB)

Weitere URLs

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
DFG Schwerpunktprogramm SPP 1569 "Generation of multifunctional inorganic materials by molecular bionics"
DFG SPP Schu1080/15-1, 15-2 and 15-3
ERC AdG Syntomagx
692637

Projektfinanzierung: Deutsche Forschungsgemeinschaft
European Research Council (ERC)

Abstract

Magnetosomes are magnetic nanoparticles biomineralized by magnetotactic bacteria. They consist of a monocrystalline magnetite core enveloped by the magnetosome membrane, which harbors a set of specialized proteins. For the alphaproteobacterium Magnetospirillum gryphiswaldense genetic techniques were developed for engineering both crystal morphology and the enveloping membrane, thereby generating building blocks for magnetic organic–inorganic hybrid materials. Genetic manipulation of magnetite biomineralization enabled the generation of core-engineered nanoparticles with adjusted magnetic and physicochemical properties. Functionalization of the particle surface was achieved by genetic expression of enzymes and peptides genetically fused to abundant magnetosome anchor proteins. High-level expression allowed the generation of multifunctional nanoparticles with maximized protein-to-particle ratios. This allowed for the tuning of surface properties (charge and hydrodynamic diameter), and the colloidal and enzymatic stability was improved by coating with inorganic and organic shells. The expression of molecular connectors might serve as scaffolds for the introduction of further functionalities. Overall, this demonstrates that the ‘synthetic biology’ approach enables the generation of multifunctional, magnetic hybrid materials with a tuned property spectrum exceeding those of conventional materials, and the combination of different biogenic materials generates fully genetically encoded biocomposites with enhanced potential for various biotechnological and biomedical applications.

Weitere Angaben

Publikationsform: Preprint, Postprint
Zusätzliche Informationen (öffentlich sichtbar): In: Bioinspired, Biomimetic and Nanobiomaterials, Bd. 8 (2018) Heft1, S. 86-98, ISSN 2045-9858, E-ISSN 2045-9866
This project has received funding from the Deutsche Forschungsgemeinschaft (grants DFG SPP Schu1080/15-1, 15-2 and 15-3) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC AdG Syntomagx to D.S.; grant agreement No 692637).
Keywords: Nanobiomaterial; nanoparticles; functional nanomaterials; magnetic materials
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie > Lehrstuhl Mikrobiologie > Lehrstuhl Mikrobiologie - Univ.-Prof. Dr. Dirk Schüler
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie > Lehrstuhl Mikrobiologie
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-4314-6
Eingestellt am: 23 Mai 2019 08:32
Letzte Änderung: 23 Mai 2019 08:32
URI: https://epub.uni-bayreuth.de/id/eprint/4314

Downloads

Downloads pro Monat im letzten Jahr