Titelangaben
Mickoleit, Frank ; Schüler, Dirk:
Generation of multifunctional magnetic nanoparticles with amplified catalytic activities by genetic expression of enzyme arrays on bacterial magnetosomes.
Bayreuth, Germany
,
2017
. - 32 S.
Volltext
|
|||||||||
Download (5MB)
|
Weitere URLs
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID DFG Schwerpunktprogramm SPP 1569 "Generation of multifunctional inorganic materials by molecular bionics" Schu 1080/15-3 ERC AdG Syntomagx 692637 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft European Research Council (ERC) Advanced Grants |
Abstract
Owing to their highly regulated biosynthesis, magnetosomes biomineralized by magnetotactic bacteria represent natural magnetic nanoparticles with unique physical and chemical properties. They consist of a magnetite core that is surrounded by a biological membrane, and are therefore reminiscent to magnetic “core-shell” nanoparticles. Their usability in many nanotechnological and biomedical applications would be further improved by the introduction of additional catalytic and imaging modalities. Here, a new in vivo strategy is explored for magnetosome display of foreign polypeptides with maximized protein-to-particle ratios. Arrays of up to five monomers of the model enzyme glucuronidase GusA plus the additional fluorophore mEGFP are genetically fused as single large hybrid proteins to highly expressed magnetosome protein anchors. In total, about 190 GusA monomers are covalently attached to individual particles. Assuming layers of GusA rows surrounding the particles, the monomers would thus cover up to 90% of the magnetosome surface. Our approach generates nanoparticles that exhibit magnetism, fluorescence and stable catalytic activities, which were step-wise increased with the number of GusA monomers. In summary, multi-copy expression of arrayed foreign proteins represents a powerful methodology for the biosynthesis of tailored biohybrid magnetic nanoparticles with several genetically encoded and tunable functionalities.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen (öffentlich sichtbar): | erschienen in:
Advanced Biosystems, Bd. 2 (2018) Heft 1. - No. 1700109. doi: https://doi.org/10.1002/adbi.201700109 This project has received funding from the Deutsche Forschungsgemeinschaft (grant DFG SPP SCHU 1080/15-3) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC AdG Syntomagx to D.S.; grant agreement No 692637) |
Keywords: | bacterial nanoparticles; magnetosome expression; surface functionalization; glucuronidase; enzyme kinetics |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie > Lehrstuhl Mikrobiologie Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Biologie > Lehrstuhl Mikrobiologie > Lehrstuhl Mikrobiologie - Univ.-Prof. Dr. Dirk Schüler Fakultäten |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-4311-0 |
Eingestellt am: | 12 Apr 2019 09:31 |
Letzte Änderung: | 27 Mai 2021 06:21 |
URI: | https://epub.uni-bayreuth.de/id/eprint/4311 |