Titelangaben
Exner, Jörg ; Albrecht, Gaby ; Schönauer-Kamin, Daniela ; Kita, Jaroslaw ; Moos, Ralf:
Pulsed Polarization-Based NOₓ Sensors of YSZ Films Produced by the Aerosol Deposition Method and by Screen-Printing.
In: Sensors.
(Juli 2017)
.
- Article number: 1715.
ISSN 1424-8220
DOI der Verlagsversion: https://doi.org/10.3390/s17081715
Volltext
|
|||||||||
Download (7MB)
|
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Open Access Publizieren Ohne Angabe |
---|
Abstract
The pulsed polarization technique on solid electrolytes is based on alternating potential pulses interrupted by self-discharge pauses. Since even small concentrations of nitrogen oxides (NOₓ) in the ppm range significantly change the polarization and discharge behavior, pulsed polarization sensors are well suited to measure low amounts of NOₓ. In contrast to all previous investigations, planar pulsed polarization sensors were built using an electrolyte thick film and platinum interdigital electrodes on alumina substrates. Two different sensor layouts were investigated, the first with buried Pt electrodes under the electrolyte and the second one with conventional overlying Pt electrodes. Electrolyte thick films were either formed by aerosol deposition or by screen-printing, therefore exhibiting a dense or porous microstructure, respectively. For screen-printed electrolytes, the influence of the electrolyte resistance on the NOₓ sensing ability was investigated as well. Sensors with buried electrodes showed little to no response even at higher NOₓ concentrations, in good agreement with the intended sensor mechanism. Electrolyte films with overlying electrodes, however, allowed the quantitative detection of NOₓ. In particular, aerosol deposited electrolytes exhibited high sensitivities with a sensor output signal ΔU of 50 mV and 75 mV for 3 ppm of NO and NO₂, respectively. For screen-printed electrolytes, a clear trend indicated a decrease in sensitivity with increased electrolyte resistance.