Publications by the same author
plus in the repository
plus in Google Scholar

Bibliografische Daten exportieren
 

Rapid Mathematical Programming for Cooperative Truck Networks

URN to cite this document: urn:nbn:de:bvb:703-epub-3437-3

Title data

Rambau, Jörg:
Rapid Mathematical Programming for Cooperative Truck Networks.
Universität Bayreuth
Bayreuth , 2017 . - 6 S.

[thumbnail of Rambau_OR2017.pdf]
Format: PDF
Name: Rambau_OR2017.pdf
Version: Preprint
Available under License Creative Commons BY-NC-ND 4.0: Attribution, Noncommercial, No Derivative Works
Download (236kB)

Abstract

We use exact mathematical modeling and optimization to evaluate various operational modes of a cooperative truck network for full-truckload transportation.

Further data

Item Type: Preprint, postprint
Additional notes (visible to public): erschienen in:
Kliewer, Natalie ; Ehmke, Jan Fabian ; Borndörfer, Ralf (Hrsg.): Operations Research Proceedings 2017. - Cham : Springer International Publishing , 2017 . - S. 317-324
ISBN 978-3-319-89920-6
Keywords: modeling; full-truckload; mixed-integer linear programming
DDC Subjects: 500 Science > 510 Mathematics
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics > Chair Mathematical Economics - Univ.-Prof. Dr. Jörg Rambau
Research Institutions > Central research institutes > Bayreuth Research Center for Modeling and Simulation - MODUS
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics
Research Institutions
Research Institutions > Central research institutes
Language: English
Originates at UBT: Yes
URN: urn:nbn:de:bvb:703-epub-3437-3
Date Deposited: 15 Nov 2017 06:37
Last Modified: 27 May 2021 10:02
URI: https://epub.uni-bayreuth.de/id/eprint/3437

Downloads

Downloads per month over past year