Title data
Kiermaier, Michael:
Geometrische Konstruktionen linearer Codes über Galois-Ringen der Charakteristik 4 von hoher homogener Minimaldistanz.
Bayreuth
,
2012
. - 103 S. P.
(
Doctoral thesis,
2012
, University of Bayreuth, Faculty of Mathematics, Physics and Computer Sciences)
![]() |
|
||||||||
Download (813kB)
|
Abstract
In dieser Arbeit werden vier neue unendliche Serien von linearen Codes über Galois-Ringen der Charakteristik 4 konstruiert. Hinsichtlich der Minimaldistanz übertreffen die Gray-Bilder der konstruierten Codes alle bekannten vergleichbaren linearen Codes. In den Konstruktionen wird die Theorie der projektiven Hjelmslev-Geometrien, der Assoziationsschemata sowie der symmetrischen Bilinearformen in endlichdimensionalen GF(2)-Vektorräumen benutzt.
Abstract in another language
In this thesis, four new infinite series of linear codes over Galois rings of characteristic 4 are constructed. In terms of the minimum distance, the Gray images of the constructed codes outperform all known comparable linear codes. For the constructions, the theory of projective Hjelmslev geometries, of association schemes and of symmetric bilinear forms in finite-dimensional GF(2)-vector spaces are used.
Further data
Item Type: | Doctoral thesis (No information) |
---|---|
Additional notes (visible to public): | msc: 05-XX; msc: 51-XX; msc: 94-XX; RVK: SK 170 |
Keywords: | endliche Geometrie; Ring <Mathematik>; Projektiver Hjelmslev-Raum; Hamming-Abstand; Assoziationsschema; ringlinearer Code; Galois-Ring; Kerdock-Code; Gray-Abbildung; homogenes Gewicht |
DDC Subjects: | 500 Science |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics Faculties Faculties > Faculty of Mathematics, Physics und Computer Science |
Language: | German |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-opus4-10320 |
Date Deposited: | 25 Apr 2014 06:13 |
Last Modified: | 25 Apr 2014 06:14 |
URI: | https://epub.uni-bayreuth.de/id/eprint/195 |