Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Integral point sets over Z_n^m

URN to cite this document: urn:nbn:de:bvb:703-opus-4248

Title data

Kohnert, Axel ; Kurz, Sascha:
Integral point sets over Z_n^m.
Bayreuth , 2007

[img] PDF
ipozn_revised.pdf - Published Version
Available under License Creative Commons BY 3.0: Attribution .

Download (263kB)

Abstract

There are many papers studying properties of point sets in the Euclidean space or on integer grids, with pairwise integral or rational distances. In this article we consider the distances or coordinates of the point sets which instead of being integers are elements of Z_n, and study the properties of the resulting combinatorial structures.

Abstract in another language

In einigen Arbeiten werden die Eigenschaften von ganzzahligen Punktmengen in Euklidischen Räumen oder auf ganzzahligen Gittern betrachtet. In diesem Artikel untersuchen wir ganzzahlige Punktmengen in Z_n^m.

Further data

Item Type: Preprint, postprint
Additional notes (visible to public): msc: 52C10
Keywords: Durchmesser; Kombinatorik; ganzzahlige Abstände; erschöpfende Suche; ordnungstreues Erzeugen; integral distances; exhaustive search; finite rings; orderly generation
DDC Subjects: 500 Science > 510 Mathematics
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics in Economy
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics in Economy > Chair Mathematics in Economy - Univ.-Prof. Dr. Jörg Rambau
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Language: English
Originates at UBT: Yes
URN: urn:nbn:de:bvb:703-opus-4248
Date Deposited: 25 Apr 2014 11:23
Last Modified: 27 Mar 2019 13:23
URI: https://epub.uni-bayreuth.de/id/eprint/648

Downloads

Downloads per month over past year