Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus im Publikationsserver
plus bei Google Scholar

 

Comparing the dry season in-situ leaf area index (lai) derived from high-resolution rapideye imagery with MODIS LAI in a Namibian savanna

Titelangaben

Mayr, Manuel J. ; Samimi, Cyrus:
Comparing the dry season in-situ leaf area index (lai) derived from high-resolution rapideye imagery with MODIS LAI in a Namibian savanna.
In: Remote Sensing. Bd. 7 (2015) Heft 4 . - S. 4834-4857.
ISSN 2072-4292
DOI: 10.3390/rs70404834

Volltext

[img] PDF
remotesensing-07-04834-v2.pdf - Veröffentlichte Version
Available under License Creative Commons BY 4.0: Namensnennung .

Download (1599Kb)

Angaben zu Projekten

Projekttitel:
Offizieller ProjekttitelProjekt-ID
Open Access PublizierenOhne Angabe

Abstract

The Leaf Area Index (LAI) is one of the most frequently applied measures to characterize vegetation and its dynamics and functions with remote sensing. Satellite missions, such as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) operationally produce global datasets of LAI. Due to their role as an input to large-scale modeling activities, evaluation and verification of such datasets are of high importance. In this context, savannas appear to be underrepresented with regards to their heterogeneous appearance (e.g., tree/grass-ratio, seasonality). Here, we aim to examine the LAI in a heterogeneous savanna ecosystem located in Namibia's Owamboland during the dry season. Ground measurements of LAI are used to derive a high-resolution LAI model with RapidEye satellite data. This model is related to the corresponding MODIS LAI/FPAR (Fraction of Absorbed Photosynthetically Active Radiation) scene (MOD15A2) in order to evaluate its performance at the intended annual minimum during the dry season. Based on a field survey we first assessed vegetation patterns from species composition and elevation for 109 sites. Secondly, we measured in situ LAI to quantitatively estimate the available vegetation (mean = 0.28). Green LAI samples were then empirically modeled (LAI<inf>model</inf>) with high resolution RapidEye imagery derived Difference Vegetation Index (DVI) using a linear regression (R2 = 0.71). As indicated by several measures of model performance, the comparison with MOD15A2 revealed moderate consistency mostly due to overestimation by the aggregated LAI<inf>model</inf>. Model constraints aside, this study may point to important issues for MOD15A2 in savannas concerning the underlying MODIS Land Cover product (MCD12Q1) and a potential adjustment by means of the MODIS Burned Area product (MCD45A1). © 2015 by the authors; licensee MDPI, Basel, Switzerland.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: dry season; savanna; Leaf Area Index; vegetation pattern; RapidEye; MOD15A2; empirical modeling; Namibia
DOI der Veröffentlichung: 10.3390/rs70404834
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Klimatologie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Klimatologie > Professur Klimatologie - Univ.-Prof. Dr. Cyrus Samimi
Profilfelder > Advanced Fields > Afrikastudien
Profilfelder > Advanced Fields > Ökologie und Umweltwissenschaften
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Profilfelder
Profilfelder > Advanced Fields
Sprache: Englisch
Titel an der UBT entstanden: Ja
Eingestellt am: 30 Mai 2016 07:44
Letzte Änderung: 08 Feb 2017 10:44
URI: https://epub.uni-bayreuth.de/id/eprint/3123