URN to cite this document: urn:nbn:de:bvb:703-epub-7494-5
Title data
Walter, Stefanie ; Hagen, Gunter ; Koch, Daniel ; Geißelmann, Andreas ; Moos, Ralf:
On the Suitability of NOₓ-Storage-Catalysts for Hydrogen Internal Combustion Engines and a Radio Frequency-Based NOₓ Loading Monitoring.
In: Topics in Catalysis.
Vol. 66
(2023)
.
- pp. 964-972.
ISSN 1572-9028
DOI der Verlagsversion: https://doi.org/10.1007/s11244-022-01727-x
![]() |
|
||||||||
Download (1MB)
|
Abstract
Hydrogen combustion engines can contribute to CO2-free mobility. However, they produce NOx emissions, albeit only to an extremely small extent when operated very leanly. One approach to reduce these emissions even further is to use exhaust gas aftertreatment systems like NOx storage catalysts (NSC). So far, they have mainly been used in diesel or gasoline applications. This contribution shows that under conditions such as those prevailing in hydrogen engines, the NSC can achieve not only a higher storage capacity for nitrogen oxides (NOx) but also a higher conversion. To ensure permanently high conversion rates, the amount of stored NOx has to be monitored permanently to prevent NOx breakthroughs. Conventional NOx sensors may not be accurate enough due to the very low NOx emissions. The functionality of the radio frequency (RF) sensor, which enables a direct determination of the NOx loading, is demonstrated for operation under hydrogen conditions. Furthermore, the influence of rich exhaust gas on the RF signal, which is relevant for a correct NOx loading determination during regeneration, is analyzed.
Further data
Item Type: | Article in a journal |
---|---|
DDC Subjects: | 600 Technology, medicine, applied sciences > 620 Engineering |
Institutions of the University: | Faculties > Faculty of Engineering Science Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos Profile Fields > Advanced Fields > Advanced Materials Research Institutions > Central research institutes > Bayreuth Center for Material Science and Engineering - BayMAT Research Institutions > Research Units > BERC - Bayreuth Engine Research Center Faculties Faculties > Faculty of Engineering Science > Chair Functional Materials Profile Fields Profile Fields > Advanced Fields Research Institutions Research Institutions > Central research institutes Research Institutions > Research Units |
Language: | English |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-7494-5 |
Date Deposited: | 22 Feb 2024 10:15 |
Last Modified: | 22 Feb 2024 10:15 |
URI: | https://epub.uni-bayreuth.de/id/eprint/7494 |