Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Enabling Inter-organizational Analytics in Business Networks Through Meta Machine Learning

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00007461
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7461-7

Titelangaben

Hirt, Robin ; Kühl, Niklas ; Martin, Dominik ; Satzger, Gerhard:
Enabling Inter-organizational Analytics in Business Networks Through Meta Machine Learning.
In: Information Technology & Management. (2023) .
ISSN 1573-7667
DOI der Verlagsversion: https://doi.org/10.1007/s10799-023-00399-7

Volltext

[thumbnail of s10799-023-00399-7.pdf]
Format: PDF
Name: s10799-023-00399-7.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (1MB)

Abstract

Successful analytics solutions that provide valuable insights often hinge on the connection of various data sources. While it is often feasible to generate larger data pools within organizations, the application of analytics within (inter-organizational) business networks is still severely constrained. As data is distributed across several legal units, potentially even across countries, the fear of disclosing sensitive information as well as the sheer volume of the data that would need to be exchanged are key inhibitors for the creation of effective system-wide solutions—all while still reaching superior prediction performance. In this work, we propose a meta machine learning method that deals with these obstacles to enable comprehensive analyses within a business network. We follow a design science research approach and evaluate our method with respect to feasibility and performance in an industrial use case. First, we show that it is feasible to perform network-wide analyses that preserve data confidentiality as well as limit data transfer volume. Second, we demonstrate that our method outperforms a conventional isolated analysis and even gets close to a (hypothetical) scenario where all data could be shared within the network. Thus, we provide a fundamental contribution for making business networks more effective, as we remove a key obstacle to tap the huge potential of learning from data that is scattered throughout the network.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Meta machine learning; Data confidentiality; Business network; Distributed analytics
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Wirtschaftsinformatik und humanzentrische Künstliche Intelligenz > Lehrstuhl Wirtschaftsinformatik und humanzentrische Künstliche Intelligenz - Univ.-Prof. Dr.-Ing. Niklas Kühl
Fakultäten
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Wirtschaftsinformatik und humanzentrische Künstliche Intelligenz
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-7461-7
Eingestellt am: 14 Feb 2024 09:13
Letzte Änderung: 14 Feb 2024 09:14
URI: https://epub.uni-bayreuth.de/id/eprint/7461

Downloads

Downloads pro Monat im letzten Jahr