URN to cite this document: urn:nbn:de:bvb:703-epub-4949-2
Title data
Hall, David ; Suresh, Subeesh Madayanad ; dos Santos, Paloma L. ; Duda, Eimantas ; Bagnich, Sergey ; Pershin, Anton ; Rajamalli, Pachaiyappan ; Cordes, David B. ; Slawin, Alexandra M. Z. ; Beljonne, David ; Köhler, Anna ; Samuel, Ifor D. W. ; Olivier, Yoann ; Zysman‐Colman, Eli:
Improving Processability and Efficiency of Resonant TADF Emitters : a Design Strategy.
In: Advanced Optical Materials.
(3 December 2019)
.
- No. 1901627.
ISSN 2195-1071
DOI der Verlagsversion: https://doi.org/10.1002/adom.201901627
|
|||||||||
Download (2MB)
|
Abstract
A new design strategy is introduced to address a persistent weakness with resonance thermally activated delayed fluorescence (R‐TADF) emitters to reduce aggregation‐caused quenching effects, which are identified as one of the key limiting factors. The emitter Mes3DiKTa shows an improved photoluminescence quantum yield of 80% compared to 75% for the reference DiKTa in 3.5 wt% 1,3‐bis(N‐carbazolyl)benzene. Importantly, emission from aggregates, even at high doping concentrations, is eliminated and aggregation‐caused quenching is strongly curtailed. For both molecules, triplets are almost quantitatively upconverted into singlets in electroluminescence, despite a significant (≈0.21 eV) singlet‐triplet energy gap (ΔEST), in line with correlated quantum‐chemical calculations, and a slow reverse intersystem crossing. It is speculated that the lattice stiffness responsible for the narrow fluorescence and phosphorescence emission spectra also protects the triplets against nonradiative decay. An improved maximum external quantum efficiencies (EQEmax) of 21.1% for Mes3DIKTa compared to the parent DiKTa (14.7%) and, importantly, reduced efficiency roll‐off compared to literature resonance TADF organic light‐emitting diodes (OLEDs), shows the promise of this design strategy for future design of R‐TADF emitters for OLED applications.
Further data
Item Type: | Article in a journal |
---|---|
DDC Subjects: | 500 Science > 530 Physics |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics II - Optoelectronics of Soft Matter Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics II - Optoelectronics of Soft Matter > Chair Experimental Physics II - Optoelectronics of Soft Matter - Univ.-Prof. Dr. Anna Köhler Faculties Faculties > Faculty of Mathematics, Physics und Computer Science |
Language: | English |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-4949-2 |
Date Deposited: | 21 Jul 2020 10:31 |
Last Modified: | 21 Jul 2020 10:46 |
URI: | https://epub.uni-bayreuth.de/id/eprint/4949 |