URN to cite this document: urn:nbn:de:bvb:703-epub-4830-1
Title data
Benard, Pascal:
Microhydrological niches in soils : how mucilage and EPS alter soil hydraulic properties and water dynamics.
2020
. - XII, 105 P.
(
Doctoral thesis,
2019
, University of Bayreuth, Faculty of Biology, Chemistry and Earth Sciences)
|
|||||||
Download (4MB)
|
Project information
Project title: |
Project's official title Project's id A PORE-NETWORK MODEL OF SOIL WATER REPELLENCY: MODEL IMPLEMENTATION AND EXPERIMENTAL VALIDATION DFG CA921/4-1 Spatial organization of the liquid phase in the rhizosphere DFG CA921/8-1 Rhizosphere wettability and implications for water availability to plants ZN 3152 11-76251-99-4/16 |
---|---|
Project financing: |
Deutsche Forschungsgemeinschaft Niedersächsisches Ministerium für Wissenschaft und Kultur |
Abstract
The soil offers numerous challenges to life residing in its porous environment. One of these challenges are fluctuations in soil water content which are accompanied by shifts in soil hydraulic properties. In order to avoid undesirable alterations and optimise growth conditions, plants and bacteria engineer their local environment by release of mucilage and EPS (extracellular polymeric substances). So far, modifications of soil properties were mainly attributed to the intrinsic properties of these highly polymeric blends. In this work, we focused on deriving a mechanistic understanding of how mucilage and EPS interact with the soil pore space and how these interactions impact soil hydraulic properties and water dynamics in the rhizosphere and other biological hotspots in soils. Mucilage and EPS are capable of absorbing large volumes of water, increase the viscosity of the soil solution and decrease its surface tension. Upon drying, mucilage turns water repellent. Here, we proposed a conceptual model linking the intrinsic physical properties of mucilage to their impact on soil hydrology. The increase in viscosity is related to the high content of polymers which can form an interconnected network. As the soil dries, mucilage and EPS become increasingly concentrated, the viscosity of the soil solution locally increases and its surface tension decreases. When a critical viscosity is reached and parts of the polymer network are adsorbed to drying surfaces, the retreat of the liquid front is delayed and its break-up due to capillary forces is prevented. This concept is confirmed by microscopy imaging and high resolution X-ray CT, which revealed that mucilage and EPS form filaments and two-dimensional structures in this process. Upon drying in porous media, mucilage at low concentrations (mass of dry gel per mass of dry soil) resulted in the formation of filaments. With increase in initial mucilage concentration, two-dimensional surfaces formed when the water content was relatively high and the liquid phase connected. Complementary measurements of soil hydraulic properties of mucilage amended soils showed how the formation of these continuous two-dimensional structures impacts soil physical properties, such as soil hydraulic conductivity, soil water retention and vapour diffusion. The maintained liquid connectivity in drying soils, which is caused by the high viscosity, low surface tension and interaction of the polymer network with the soil porous matrix, explains why the hydraulic conductivity of a mucilage amended sandy loam was higher at low soil water content when compared to its control, as shown in evaporation experiments. Additionally, the delayed retreat of the liquid phase at a critical mucilage concentration creates an additional matric (capillary) potential and enhances soil water retention. To separate and quantify this matric (capillary) effect from the intrinsic property of the polymer network to absorb water remains an open task. Furthermore, upon severe soil drying, the network of two-dimensional structures reduces vapour diffusion and thus delays soil drying. This effect was illustrated using time series neutron radiography to visualise the drying of mucilage amended sandy loam and a water saturated control. Besides affecting soil hydraulic properties and evaporation rates during soil drying, mucilage impacts the rewetting kinetics. Mucilage amended soils showed water repellency. Precisely, a sharp decrease in wettability was observed near mucilage contents at which one-dimensional structures were replaced by two-dimensional continuous surfaces. Simulation of water drop infiltration experiments in mucilage amended soils showed that the creation of continuous clusters of non-wettable pores induced a substantial decrease in soil wettability, indicated by a transition of water drop penetration time from milliseconds to minutes. Although most experiments presented here were based on simplified systems, such as mucilage amended porous media, we propose that the release of highly polymeric blends into the soil pore space represents a universal strategy of soil organisms. Plants and bacteria engineer the physical properties of their local environment in very similar and astoundingly effective ways. The mechanisms discovered in this thesis lead to hydraulic decoupling of biological hotspots (e.g. the rhizosphere or biocrust) and buffer the erratic fluctuations experienced by soil organisms in these microhydrological niches.
Abstract in another language
Die poröse Struktur des Bodens stellt das Leben vor zahlreiche Herausforderungen. Eine dieser Herausforderungen sind Schwankungen des Bodenwassergehaltes welche von Veränderungen der hydraulischen Bodeneigenschaften begleitet werden. Um unliebsame Veränderungen zu vermeiden und Wachstumsbedingungen zu optimieren, modifizieren Pflanzen und Bakterien ihre lokale Umgebung durch die Freisetzung von Mucilage und EPS (Extrazelluläre Polymere Substanzen). Daraus resultierende Veränderungen der Bodeneigenschaften wurden bislang haupt-sächlich den intrinsischen Eigenschaften dieser polymeren Substanzen zugeschrieben. In dieser Arbeit galt es ein Verständnis für die Mechanismen der Interaktion von Mucilage und EPS mit dem Porenraum zu erlangen und den Einfluss dieser Wechsel-wirkungen auf die hydraulischen Bodeneigenschaften und die Wasserdynamik in der Rhizosphäre und anderen biologischen Hotspots des Bodens zu ergründen. Mucilage und EPS sind in der Lage große Mengen Wasser aufzunehmen, die Viskosität der Bodenlösung zu erhöhen und deren Oberflächenspannung zu verringern. Mucilage wird wasserabweisend, wenn sie trocknet. In dieser Arbeit präsentieren wir ein konzeptionelles Modell, welches die intrinsischen physikalischen Eigenschaften von Mucilage mit ihrem Einfluss auf die Bodenhydrologie verbindet. Die Erhöhung der Viskosität ist durch den hohen Gehalt an Polymeren begründet, welche ein verzweigtes Netzwerk formen können. Wenn der Boden trocknet, werden Mucilage und EPS konzentriert, die lokale Viskosität der Bodenlösung nimmt zu und die Oberflächen-spannung nimmt ab. Bei Erreichen einer kritischen Konzentration und wenn Teile des Netzwerks an trocknenden Oberflächen adsorbieren wird die zurückweichende Bodenlösung verlangsamt während ein Zerreißen der flüssigen Phase durch Kapillar-kräfte verhindert wird. Mikroskopische Aufnahmen und hochauflösende Röntgen Computertomographie haben gezeigt, dass Mucilage und EPS in diesem Prozess Filamente und zwei-dimensionale Strukturen bilden. Diese Beobachtungen sind ein Beleg für die beschriebene Konzeption. Die Zugabe geringer Konzentrationen von Mucilage (Masse trockenen Gels pro Masse trockenen Bodens) zu einem porösen Medium führt bei Trocknung zur Formation von Filamenten. Bei höheren Konzentrationen entstehen zweidimensionale Oberflächen bei relativ hohem Wassergehalt, während die Kontinuität der flüssigen Phase erhalten bleibt. Komplementäre Messungen bodenhydraulischer Eigenschaften von mit Mucilage versetzten Böden haben gezeigt, dass die Bildung dieser durchgängigen zwei-dimensionalen Strukturen die physikalischen Bodeneigenschaften wie hydraulische Leitfähigkeit, Wasserhaltekapazität und Gasdiffusion beeinflusst. Der Erhalt der Kontinuität der flüssigen Phase im trocknenden Boden wird durch die erhöhte Viskosität, reduzierte Oberflächenspannung und die Interaktion des Polymernetzwerks mit der porösen Matrix hervorgerufen. Dieser Effekt erklärt die Ergebnisse aus Verdunstungsexperimenten, welche eine erhöhte hydraulische Leitfähigkeit von mit Mucilage versetztem sandigem Lehm bei geringem Wassergehalt im Vergleich zu einer unversetzten Kontrolle zeigten. Zusätzlich zu diesem Effekt führt der verzögerte Rückzug der flüssigen Phase ab einer kritischen Mucilage Konzentration zur Entstehung eines zusätzlichen Matrixpotentials (kapillar) und erhöhter Wasserhaltekapazität des Bodens. Die Quantifizierung dieses Effekts und seine Abgrenzung gegenüber der intrinsischen Eigenschaft des Polymernetzwerkes, Wasser zu absorbieren, steht aus. Bei starker Austrocknung eines Bodens kann das Netzwerk aus zweidimensionalen Strukturen die Gasdiffusion reduzieren und somit das weitere Austrocknen verlang-samen. Mit Hilfe von Zeitreihen-Neutronenradiographie konnte dieser Effekt in einem trocknenden sandigen Lehm und einer wassergesättigten Kontrolle verdeutlicht werden. Neben einer Beeinflussung der hydraulischen Eigenschaften und der Verdunstungsrate beim Austrocknen eines Bodens, beeinflusst Mucilage die Rückfeuchtung des Bodens. Mit Mucilage versetzter Boden wurde wasserabweisend, wenn mit steigendem Mucilagegehalt eindimensionale Filamente durch zweidimensionale Ober¬flächen ersetzt wurden. Die Simulation von Wassertopfeninfiltrationsexperimenten mit Mucilage versetzter Böden hat gezeigt, dass die Entstehung von zusammenhängenden nicht benetzbaren Poren eine substantielle Reduzierung der Bodenbenetzbarkeit zur Folge hat. Dieser Übergang von eindimensionalen zu zweidimensionalen Strukturen spiegelte sich in einer Zunahme der Infiltrationszeit von Millisekunden auf Minuten wider. Obwohl ein Großteil der hier gezeigten Experimente in vereinfachten Systemen wie mit Mucilage versetzten porösen Medien durchgeführt wurden postulieren wir auf Grundlage der Ergebnisse dieser Arbeit, dass die Abgabe von hochpolymeren Substanzen in die poröse Umgebung des Bodens eine universelle Strategie von Bodenorganismen darstellt. Pflanzen und Bakterien modifizieren die physikalischen Eigenschaften ihrer lokalen Umgebung auf sehr ähnliche und erstaunlich effektive Art und Weise. Die in dieser Arbeit untersuchten Mechanismen führen zur hydraulischen Entkopplung von biologischen Hotspots (z.B. der Rhizosphäre oder Biokruste) und puffern die von Bodenorganismen erfahrenen wiederkehrenden Fluktuationen in diesen mikrohydrologischen Nischen.
Further data
Item Type: | Doctoral thesis (No information) |
---|---|
Keywords: | Soil Biophysics; Rhizosphere; Root-Soil Interface; Hydrophobicity; Mucilage; Liquid Conncetivity; Pore-network Model |
DDC Subjects: | 500 Science |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Physics Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Former Professors > Chair Soil Physics - Univ.-Prof. Dr. Andrea Carminati Faculties Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Former Professors |
Language: | English |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-4830-1 |
Date Deposited: | 23 Apr 2020 09:00 |
Last Modified: | 23 Apr 2020 09:00 |
URI: | https://epub.uni-bayreuth.de/id/eprint/4830 |