Title data
Wehmann, Christoph ; Rieg, Frank:
Entwicklung und Anwendung von neuartigen plastischen Materialmodellen für die Finite-Elemente-Analyse.
In:
Rieg, Frank ; Brökel, Klaus ; Feldhusen, Jörg ; Grote, Karl-Heinrich ; Stelzer, Ralph (Hrsg.): Tagungsband 12. Gemeinsames Kolloquium Konstruktionstechnik 2014 : Methoden in der Produktentwicklung: Kopplung von Strategien und Werkzeugen im Produktentwicklungsprozess. -
Bayreuth
,
2014
. - pp. 371-384
ISBN 978-3-00-046544-4
|
|||||||||
Download (1MB)
|
Abstract
Die Materialmodellierung hat einen wesentlichen Einfluss auf die Genauigkeit von Finite-Elemente-Analysen. Insbesondere bei hohen Belastungen ist eine möglichst exakte Beschreibung des Materialverhaltens ausschlaggebend für die sichere Auslegung von Bauteilen und Maschinenelementen. Ein Großteil der in der Technik eingesetzten Werkstoffe verhält sich bei hohen Spannungen plastisch, d.h. es treten bleibende Deformationen auf. In dem vorliegenden Beitrag wird zunächst ein Überblick über die nach Stand der Technik vorhandenen plastischen Materialgesetze gegeben. Es erfolgt eine Erläuterung der Behandlung dieser Gesetze im Rahmen der Finite-Elemente-Analyse, wobei auf die erforderlichen Algorithmen und Elementtechniken eingegangen wird. Außerdem werden Anwendungsbeispiele beschrieben, bei denen der Einsatz plastischer Materialmodelle zu einer deutlichen Verbesserung der Abbildungsgenauigkeit führt. Anschließend werden neuartige Materialmodelle entwickelt, die eine veränderte Fließrichtung besitzen und dadurch eine entkoppelte Steuerung der plastischen Querkontraktion erlauben. Der Beitrag enthält auch eine Beschreibung der zur Lösung dieser neuartigen Materialgesetze erforderlichen Erweiterungen der Finite-Elemente-Analyse. Schließlich werden anhand eines TRIP-Stahls Anwendungsgebiete der neuartigen Plastizitätsmodelle vorgestellt.
Abstract in another language
The accuracy of finite element analyses is significantly influenced by the modeling of the material behavior. Especially at high loads, an exact description of the material behavior is crucial for the safe design of parts and machine elements. Most of the materials used in technical applications behave plastically at high stresses. This means that residual strains occur. The present contribution begins with an overview over the material models belonging to the state of the art. It is explained, how the finite element analysis has to be extended for being able to capture these material models. In this context, it is referred to the required algorithms and element technologies. Furthermore, examples of applications are described in which plastic material models lead to a significant improvement of the accuracy. Afterwards, new material models are developed which have a modified flow direction and therefore, allow a decoupled control of the plastic transverse contraction. The contribution also contains a description of the solution methods suitable for solving these new material models during finite element analyses. Finally, fields of application of these models are shown at the example of a TRIP steel.
Further data
Item Type: | Article in a book |
---|---|
Keywords: | Finite-Elemente-Analyse;Nichtlinear;Plastizität;TRIP-Stahl |
DDC Subjects: | 600 Technology, medicine, applied sciences > 620 Engineering |
Institutions of the University: | Faculties Faculties > Faculty of Engineering Science Faculties > Faculty of Engineering Science > Chair Engineering Design and CAD Faculties > Faculty of Engineering Science > Former Professors > Chair Engineering Design and CAD - Univ.-Prof. Dr.-Ing. Frank Rieg Faculties > Faculty of Engineering Science > Former Professors |
Language: | German |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-1792-9 |
Date Deposited: | 04 Dec 2014 10:28 |
Last Modified: | 14 Jan 2015 07:44 |
URI: | https://epub.uni-bayreuth.de/id/eprint/1792 |