Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Pulsed potential electrochemical CO2 reduction for enhanced stability and catalyst reactivation of copper electrodes

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00005608
URN to cite this document: urn:nbn:de:bvb:703-epub-5608-4

Title data

Jännsch, Yannick ; Leung, Jane J. ; Hämmerle, Martin ; Magori, Erhard ; Wiesner-Fleischer, Kerstin ; Simon, Elfriede ; Fleischer, Maximilian ; Moos, Ralf:
Pulsed potential electrochemical CO2 reduction for enhanced stability and catalyst reactivation of copper electrodes.
In: Electrochemistry Communications. Vol. 121 (2020) . - No. 106861.
ISSN 1388-2481
DOI der Verlagsversion: https://doi.org/10.1016/j.elecom.2020.106861

[img]
Format: PDF
Name: 1-s2.0-S1388248120302125-main.pdf
Version: Published Version
Available under License Creative Commons BY-NC-ND 4.0: Attribution, Noncommercial, No Derivative Works
Download (2MB)

Project information

Project title:
Project's official titleProject's id
Wertschöpfung durch elektrolytische Reduktion von CO2: Langzeitstabile, Ethen-selektive Prozessführung mit einem hochskalierbaren VerfahrenAZ-1391-19
Open Access PublizierenNo information

Project financing: Bayerische Forschungsstiftung

Abstract

The electrochemical conversion of CO2 is a promising route to fuels and feedstocks. One of the great challenges in employing copper-based electrodes towards the electrocatalytic reduction of CO2 is the unsustainable production of hydrocarbons over time. In this study, we show that by introducing a periodic pulsed operational mode during controlled potential electrolysis using low pulse frequencies in the range of Hz, the stability of ethylene production can be greatly increased from less than 8 h to at least 16 h. Furthermore, the method enables the reactivation of catalysts already deactivated for ethylene production. A duty cycle of >80%, deployment of a flow cell set-up, and a negligible loss of charge from the short anodic pulses as compared to the charge during the CO2 reducing cathodic pulses are important aspects of this pulsed electrolysis considering future application in real cell reactors.

Further data

Item Type: Article in a journal
Keywords: Electrochemical CO2 reduction; Pulsed potential electrolysis; Ethylene; Catalyst reactivation; Flow cell
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Research Institutions > Research Units > ZET - Zentrum für Energietechnik
Faculties
Faculties > Faculty of Engineering Science > Chair Functional Materials
Profile Fields
Profile Fields > Advanced Fields
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Units
Language: English
Originates at UBT: Yes
URN: urn:nbn:de:bvb:703-epub-5608-4
Date Deposited: 26 May 2021 05:14
Last Modified: 26 May 2021 05:15
URI: https://epub.uni-bayreuth.de/id/eprint/5608

Downloads

Downloads per month over past year