Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus im Publikationsserver
plus bei Google Scholar


Parallel Low-Storage Runge-Kutta Solvers for ODE Systems with Limited Access Distance

URN zum Zitieren dieses Dokuments: urn:nbn:de:bvb:703-opus-7136


Korch, Matthias ; Rauber, Thomas:
Parallel Low-Storage Runge-Kutta Solvers for ODE Systems with Limited Access Distance.
Bayreuth , 2010 . - (Bayreuth Reports on Parallel and Distributed Systems ; 1 )


[img] PDF
techrep.pdf - Veröffentlichte Version
Available under License Creative Commons BY 3.0: Namensnennung .

Download (2156Kb)


We consider the solution of initial value problems (IVPs) of large systems of ordinary differential equations (ODEs) for which memory space requirements determine the choice of the integration method. In particular, we discuss the space-efficient sequential and parallel implementation of embedded Runge-Kutta (RK) methods. We focus on the exploitation of a special structure of commonly appearing ODE systems, referred to as "limited access distance", to improve scalability and memory usage. Such systems may arise, for example, from the semi-discretization of partial differential equations (PDEs). The storage space required by classical RK methods is directly proportional to the dimension n of the ODE system and the number of stages s of the method. We propose an implementation strategy based on a pipelined processing of the stages of the RK method and show how the memory usage of this computation scheme can be reduced to less than three storage registers by an overlapping of vectors without compromising the choice of method coefficients or the potential for efficient stepsize control. We analyze and compare the scalability of different parallel implementation strategies in detailed runtime experiments on different parallel architectures.

Weitere Angaben

Publikationsform: Projektbericht, Forschungsbericht, Gutachten
Keywords: Gewöhnliche Differentialgleichung; Runge-Kutta-Verfahren; Parallelverarbeitung; Lokalität <Informatik>; Speicherbedarf; Ordinary Differential Equations; Runge-Kutta Methods; Parallel Computing; Locality; Storage Space
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-opus-7136
Eingestellt am: 25 Apr 2014 09:36
Letzte Änderung: 25 Apr 2014 09:36
URI: https://epub.uni-bayreuth.de/id/eprint/428