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Abstract

We consider the solution of initial value problems
(IVPs) of large systems of ordinary differential equations
(ODEs) for which memory space requirements determine
the choice of the integration method. In particular, we
discuss the space-efficient sequential and parallel imple-
mentation of embedded Runge–Kutta (RK) methods. We
focus on the exploitation of a special structure of com-
monly appearing ODE systems, referred to as ‘limited ac-
cess distance’, to improve scalability and memory usage.
Such systems may arise, for example, from the semi-
discretization of partial differential equations (PDEs).
The storage space required by classical RK methods

is directly proportional to the dimension n of the ODE
system and the number of stages s of the method. We
propose an implementation strategy based on a pipelined
processing of the stages of the RK method and show how
the memory usage of this computation scheme can be
reduced to less than three storage registers by an over-
lapping of vectors without compromising the choice of
method coefficients or the potential for efficient stepsize
control. We analyze and compare the scalability of dif-
ferent parallel implementation strategies in detailed run-
time experiments on different parallel architectures.

1 Introduction

We consider the parallel solution of initial value prob-
lems (IVPs) of ordinary differential equations (ODEs)
defined by

y′(t) = f(t,y(t)) , y(t0) = y0 , (1)

where y : R → Rn and f : R × Rn → Rn. The numer-
ical solution of such problems can be highly computa-
tionally intensive, in particular if the dimension n of the
ODE system is large. Therefore, parallel solution meth-
ods have been proposed by many authors, for example,
extrapolation methods [15, 17, 26], waveform relaxation
techniques [10, 20, 33, 48], and iterated Runge–Kutta
methods [14, 38, 36, 45]. An overview is presented in
[10]. In this paper, we focus on low-storage implementa-
tions of RK methods suitable for large systems of ODEs
where storage space may be the determining factor in
the choice of method and implementation variant.

Starting with the initial value y0, numerical solu-
tion methods for ODE IVPs walk through the integra-
tion interval [t0, te] using a potentially large number of
time steps. The different solution methods are distin-
guished mainly by the computations performed at each
time step. The time step computations of classical ex-
plicit RK methods are arranged in s stages. Starting
with the approximation value ηκ ≈ y(tκ), at each stage
l = 1, . . . , s, an argument vector

wl = ηκ + hκ

l−1∑
i=1

alivi (2)

is computed that is used as input for the function eval-
uation f to compute a stage vector

vl = f(tκ + clhκ,wl) . (3)

Finally, a new approximation ηκ+1 ≈ y(tκ+1) is com-
puted by:

ηκ+1 = ηκ + hκ

s∑
l=1

blvl . (4)

The coefficients ali, ci, and bl define the particular RK
method. If the RK method provides an embedded solu-
tion, a second approximation η̂κ+1 ≈ y(tκ+1) of different
order,

η̂κ+1 = ηκ + hκ

s∑
l=1

b̂lvl , (5)

can be computed using different weights b̂l. Based on the
difference e = ηκ+1 − η̂κ+1, this second approximation
allows an inexpensive estimation of the local error and
the selection of an appropriate stepsize without addi-
tional function evaluations. If the local error lies within
a user-defined tolerance, the time step can be accepted;
otherwise it has to be repeated with a smaller stepsize.
Hence, RK methods with embedded solutions (referred
to as embedded RK methods) require less computational
effort to control the stepsize than other approaches such
as, e.g., Richardson extrapolation [21].

In the general case, where no assumptions about the
method coefficients or the access pattern of the function
evaluation can be made, an implementation of the clas-
sical RK scheme has to compute the stages one after the
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other. Since each stage depends on all previously com-
puted stages, classical RK schemes need to hold at least
s+ 1 vectors of size n (so called registers) in memory to
store ηκ, w2, . . . ,ws, and ηκ+1, where n is the dimen-
sion of the ODE system. The argument vector w1 is
identical to ηκ and does not require the use of an extra
register. One additional register (η̂κ+1 or the error esti-
mate e) is required for the implementation of a stepsize
controller which can reject and repeat steps.
In regard to storage space, on modern computer sys-

tems equipped with several GB of memory, the classi-
cal approach can be applied to ODE systems with tens
or even hundreds of millions of components, even if a
method of high order with a large number of stages is
required. Some ODE problems, however, require an even
larger number of components. These are, in particular,
ODE systems derived from systems of partial differen-
tial equations (PDEs) by a spatial discretization using
the method of lines. For example, a spatial resolution
of 1‰ leads to a system with at least nv · 106 compo-
nents for a 2D PDE system and nv · 109 components for
a 3D PDE system, where nv is the number of dependent
variables in the PDE system. Enhancing the spatial res-
olution by a factor of 10 increases the number of ODE
components by a factor of 102 for the 2D PDE system
and by a factor of 103 for the 3D PDE system.
Parallel implementations of embedded RK methods

which make no assumptions about the method coeffi-
cients or the coupling of the ODE system have to ex-
change the computed parts of the current argument vec-
tor between all participating processors at every stage.
The scalability of such general implementations is there-
fore often not satisfactory. To overcome the limitations
of general implementations, two possible approaches
take advantage of special properties of either the em-
bedded RK method [23] or the ODE system to be solved
[29, 31]. In the following, we follow the second approach
of taking advantage of special properties of the ODE
system and investigate the scalability of data-parallel
implementations of embedded RK methods. All imple-
mentation variants investigated in this paper have been
written in C and use POSIX Threads (Pthreads) [11] or
MPI [42] for synchronization.
In the following, after a discussion of related ap-

proaches to reduce the storage space of RK methods
in Section 2, Section 3 discusses optimizations of the
communication costs and the locality of memory refer-
ences based on a pipelined processing of the stages. This
pipelining approach is applicable to ODE systems with a
special access pattern as is typical for ODE systems de-
rived by the method of lines. In Section 4, we present a
new approach to reduce the storage space that builds on
the pipelining approach combined with an overlapped
memory layout of the data structures. It reduces the
storage space for a fixed-stepsize implementation to a
single register plus Θ

( 1
2s

2 · d(f)
)
vector elements, where

d(f) is the access distance of the right-hand-side func-
tion f (see Section 3.2), while preserving all degrees of
freedom in the choice of RK coefficients. Stepsize control
based on an embedded solution can be realized with only

one additional register. Further, it is possible to develop
a parallel implementation of the low-storage pipelining
scheme that can efficiently utilize parallel computing re-
sources and reduce the memory requirements of a single
computing node. An experimental evaluation of runtime
and scalability of the new implementation on five differ-
ent modern parallel computer systems is presented in
Section 5. Finally, Section 6 concludes the paper.

2 Related Work

On modern computer systems, which are equipped with
a complex memory hierarchy, the spatial and tempo-
ral locality of memory references can have a large in-
fluence on the execution time of a program. There-
fore, numerous optimizations to improve the locality of
memory references have been developed by several re-
search teams for many applications. Particular inter-
est has been given to the field of numerical linear al-
gebra, including factorization methods such as LU, QR
and Cholesky [13] and iterative methods like 2D Jacobi
[19] and multi-grid methods [32]. PHiPAC (Portable
High Performance ANSI C) [7] and ATLAS (Automat-
ically Tuned Linear Algebra Software) [47] aim at ef-
ficient implementations of BLAS (Basic Linear Algebra
Subprograms) [8] routines by automatic code generation.
Modern optimizing compilers try to achieve an efficient
exploitation of the memory hierarchy by reordering the
instructions of the source program [2, 49]. A lot of the
research in this area concentrates on computationally
intensive loops [24, 25, 35], and loop tiling [4, 44] is con-
sidered to be one of the most successful techniques.
In this paper, we consider the sequential and paral-

lel implementation of RK methods with embedded so-
lutions. Embedded RK methods are among the most
popular one-step methods for the numerical integration
of ODE IVPs because they combine low execution times
with good numerical properties [21]. Examples of popu-
lar embedded RK methods are the methods of Fehlberg
[18] and Dormand & Prince [16, 37]. Variants of these
methods are used in many software packages. Examples
are the subroutine DVERK [22], which is part of IMSL,
and the RK solver collection RKSUITE [9]. However,
classical RK schemes (with or without embedded solu-
tions) have the disadvantage that the storage space re-
quired grows linearly with the dimension of the ODE
system, n, and the number of stages, s.
A first approach to get along with low storage space

is the use of RK methods with a small number of stages.
This, however, means abandoning desirable properties
of the method, such as a high order. Therefore, several
authors, e.g., [5, 6, 12, 28, 40], propose special explicit
RK methods that can be implemented with low storage
space (e.g., 2 or 3 registers) even though they have a
larger number of stages and a higher order. This is pos-
sible by the construction of special coefficient sets such
that, at each stage, only the data stored in the available
registers are accessed, and the values computed at this
stage fit in the available registers. These approaches,
however, retain some deficiencies:
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1. The coefficient sets must conform to additional con-
straints. Hence, fewer degrees of freedom are avail-
able in the construction of the coefficients. As a re-
sult, the methods proposed have weaker numerical
properties than classical RK schemes with the same
number of stages. If stronger numerical properties
are required, one must resort to classical RK schemes
with higher memory usage.

2. Using a higher number of stages to reach a specific
order leads to higher computational costs and, as a
consequence, to a higher runtime.

3. Many of the low-storage RKmethods proposed do not
provide embedded solutions. Therefore, these meth-
ods are suitable only for fixed-stepsize integration,
unless additional computations and storage space are
invested into stepsize control (e.g., using Richardson
extrapolation).

4. Low-storage RK methods with embedded solutions
have been proposed in [27]. They, however, impose
additional constraints on the method coefficients,
thus further reducing the degrees of freedom in the
construction of the coefficients.

5. Stepsize control requires additional registers: One ad-
ditional register is needed to estimate the local error
(η̂κ+1 or, alternatively, e = η̂κ+1−ηκ+1). This regis-
ter may be omitted if the embedded solution η̂κ+1 is
computed at stage s− 1, so that it can be compared
with ηκ+1, which is computed at stage s, without ex-
plicitly storing it [27]. In order to be able to repeat
the time step in case that the error is too large, a
second additional register is needed that saves ηκ.

6. Some of the 2-register low-storage RK schemes pro-
posed rely on a specific structure of the coupling be-
tween the equations in the ODE system such that, for
example, the argument vector of a function evaluation
can be overwritten by the result of the function eval-
uation. If right-hand-side functions with arbitrary
access patterns are to be supported, an additional
register must be used to store the result of the func-
tion evaluation temporarily [28].

It is, therefore, desirable to find new methods or algo-
rithms which overcome these deficiencies. In this paper,
we reconsider a pipelining approach suggested, initially,
to improve locality and scalability of embedded RK im-
plementations in [30] from this perspective. As we will
show in the following sections, for IVPs with a special
dependence pattern, the storage space can be reduced
by an overlapped memory layout of the data structures
such that only one enlarged register of dimension n can
be (re-)used for all stage computations.
A similar dependence pattern is exploited in [3] to

perform in-place stencil computations as they are typi-
cal for finite element, finite volume and finite difference
methods for the solution of PDEs. In contrast to this
paper, the computations performed at one time step do
not consist of several stages, and a constant stepsize is

assumed. Our approach allows for time-step computa-
tions based on high-order (embedded) RK methods with
a high number of stages and adaptive stepsize control.

3 Exploiting Limited Access Distance to
Reduce Working Space and Communi-
cation Overhead

Many sparse ODEs, in particular many discretized PDEs
derived by the method of lines, are described by a right-
hand-side function f = (f1, . . . , fn) where the compo-
nents of the argument vector accessed by each compo-
nent function fj lie within a bounded index range near
j. In the following, we review the pipelining approach
proposed in [29, 30, 31], which exploits this property of
the ODE system and supports arbitrary RK coefficients.

3.1 Motivation: Disadvantages of General Im-
plementations

General embedded RK implementations suitable for
ODE systems of arbitrary structure have to take into
account that the evaluation of each component function
fj(t,wl), j ∈ {1, . . . , n}, may access all components of
the argument vector wl. Therefore, the stages have to be
computed sequentially, i.e., within one time step the out-
ermost loop iterates over the stages l = 1, . . . , s. The two
inner loops iterate over the dimension of the ODE system
(j = 1, . . . , n) and over the preceding (i = 1, . . . , l − 1)
or the succeeding (i = l+1, . . . , s) stages and can be in-
terchanged. The influence of several different loop struc-
tures, which have been named (A)–(E), on the locality
behavior has been investigated in [29, 31, 39].

Since the outermost loop iterates over the stages and
one of the inner loops iterates over the system dimen-
sion, the resulting working space of the outermost loop
of the stage computation is Θ(s · n). Thus, assuming a
significantly large value of n, the working space of the
outermost loop often does not fit into the lower cache lev-
els. Moreover, if n is very large, the size of this working
space may even exceed the available amount of memory,
in particular if an RK method with a high number of
stages is used.

To exploit parallelism, the computation of the com-
ponents of the argument vectors (2) and the evaluations
of the component functions fj(t,wl) in (3) can be dis-
tributed equally among the processors, i.e., the loop over
the dimension of the ODE system is executed in paral-
lel. At every stage, global synchronization is required to
make the computed parts of the current argument vec-
tor available to all participating processors. In a shared-
address-space implementation, barrier operations can be
used after the computation of the argument vector to
synchronize the processors before they access the ar-
gument vector to evaluate the right-hand-side function.
In a distributed-address-space implementation, the com-
puted parts of the argument vector can be exchanged by
a multibroadcast operation (MPI_Allgather()). Usu-
ally, the execution time of multibroadcast operations in-
creases severely with the number of participating proces-
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sors. Therefore, general distributed-address-space em-
bedded RK implementations do not scale well with the
number of processors (cf. experimental evaluation in
Section 5).
All specialized implementation variants considered in

this papers have been derived from a general implemen-
tation variant named (D). (D) is an optimized implemen-
tation that aims at a high temporal locality by using the
stage vector components vl,j = fj(t,wl) as soon after
their computation as possible. This is achieved by up-
dating the corresponding components of the succeeding
argument vectors wl+1,j , . . . , ws,j in the innermost loop.
A more detailed description of this implementation can
be found in [29, 31].

3.2 Access Distance and Resulting Block De-
pendence Structure

Many ODEs are sparse, i.e., the evaluation of a compo-
nent function fj(t,w) uses only a small number of com-
ponents of w, and we can exploit this property to de-
vise parallel algorithms with higher scalability. In many
cases, the components accessed are located nearby the
index j. To measure this property of a function f , we
use the access distance d(f), which is the smallest value
b, such that all component functions fj(t,w) access only
the subset {wj−b, . . . , wj+b} of the components of their
argument vector w. We say the access distance of f is
limited if d(f)� n.
A limited access distance generally leads to a band-

structured Jacobian of f with bandwidth d(f). Usually,
one can choose between different orderings of the equa-
tions which may influence the bandwidth/access dis-
tance. Several heuristic and exact optimization algo-
rithms exist, e.g., [34, 46], which aim at a minimization
of the bandwidth of sparse symmetric matrices and thus
can be used for many ODE systems to find an ordering of
the equations which provides a limited access distance.
Given a function f with limited access distance d(f),

we can subdivide all n-vectors into nB = dn/Be blocks
of size B, where d(f) ≤ B � n. Then, the function
evaluation of a block J ∈ {1, . . . , nB} defined by

fJ(t,w) = (f(J−1)B+1(t,w), f(J−1)B+2(t,w), . . . ,
f(J−1)B+min{B,n−(J−1)B}(t,w))

uses only components of the blocks J − 1, J , and J + 1
of w if these blocks exist, i.e., if 1 < J < nB .

3.3 Replacing Global by Local Communication

A major drawback of general parallel implementations
suitable for ODE systems with arbitrary access struc-
ture is the necessity for global communication to make
the current argument vector available to all participating
processors. However, if the right-hand-side function has
a limited access distance, it is possible to avoid global
communication in the stage computation phase.
For that purpose, we consider a blockwise distribu-

tion of the blocks resulting from the subdivision of the
n-vectors described in the previous section. Using a

loop structure which is similar to that of the general
implementation (D), we can now reduce the commu-
nication costs by exchanging only required blocks be-
tween neighboring processors. Since the function eval-
uation of a block J , fJ(t,w), uses only components of
the blocks J − 1, J , and J + 1 of w, each processor
needs access to only one block stored in the preced-
ing processor and to one block stored in the succeed-
ing processor. Hence, in a distributed-address-space im-
plementation the multibroadcast operation can be re-
placed by two non-blocking single-transfer operations
(MPI_Isend()/MPI_Irecv()), which can be overlapped
with the computation of nB/p − 2 blocks. As a result,
the major communication costs no longer grow with the
number of processors, and the influence of the network
bandwidth on scalability is reduced significantly. In a
shared-address-space implementation, the barrier oper-
ations can be replaced by locks, which can be organized
such that usually no waiting times occur. The resulting
implementation variant is named (Dbc). Figure 1 illus-
trates the data distribution, the computation order of
the blocks, and the blocks which have to be exchanged
between neighboring processors. A more detailed de-
scription is given in [29, 31].

3.4 Reduction of the Working Space by Block-
Based Pipelining

In addition to the reduction of the communication costs,
right-hand-side functions with limited access distance
provide the possibility to improve the locality of mem-
ory references by a reduction of the working space of the
outermost loop.
The special dependence structure of such right-hand-

side functions leads to a decoupling of the stages that
enables the computation of the blocks of the argument
vectors w2, . . . ,ws, the vector ∆η = ηκ+1 − ηκ and
the error estimate e = η̂κ+1 − ηκ+1 as illustrated in
Fig. 2 (a). The computation starts with the first and the
second block of w2, which only requires components of
w1 = ηκ. Then the first block of w3 can be computed,
since it only uses components of the first two blocks of
w2. In the next step, the third block of w2 is computed,
which enables the computation of the second block of
w3, which again enables the computation of the first
block of w4. This is continued until the computation of
the first two blocks of ws has been completed and the
first block of ∆η and the first block of e have been com-
puted. Then the next block of ∆η and the next block of
e can be determined by computing only one additional
block of w2, . . . ,ws. This computation is repeated until
the last block of ∆η and the last block of e have been
computed.
An important advantage of the pipelining approach is

that only those blocks of the argument vectors are kept
in the cache which are needed for further computations
of the current step. One step of the pipelining computa-
tion scheme computes s argument blocks and one block
of ∆η and e. Since the function evaluation of one block
J accesses the blocks J − 1, J , and J + 1 of the cor-
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∆η, e
w4

w3

w2

ηκ = w1

P1 P2 P3 P4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

8 8 8 81 1 1 12 2 2 23 3 3 34 4 4 45 5 5 56 6 6 67 7 7 7

16 16 16 169 9 9 910 10 10 1011 11 11 1112 12 12 1213 13 13 1314 14 14 1415 15 15 15

24 24 24 2417 17 17 1718 18 18 1819 19 19 1920 20 20 2021 21 21 2122 22 22 2223 23 23 23

32 32 32 3225 25 25 2526 26 26 2627 27 27 2728 28 28 2829 29 29 2930 30 30 3031 31 31 31

Fig. 1: Illustration of the data-parallel implementation variant (Dbc), which exploits a limited access distance to replace
global by local communication. The numbers determine the computation order of the blocks. Blocks accessed during
initialization or finalization phases in which communication is required are displayed as filled boxes, and blocks required by
neighboring processors are emphasized by thick borders.

(a)

e
∆η
w4

w3

w2

ηκ = w1

1 2 3 4 5 6 7 8 9 nB

...

1 2 4 7 11 15 19 23

3 5 8 12 16 20 24

6 9 13 17 21 25

10

10

14

14

18

18

22

22

26

26

(b)

e
∆η
w4

w3

w2

ηκ = w1

1 J nB

......

Fig. 2: (a) Illustration of the computation order of the pipelining computation scheme. After the blocks with index 4 of
∆η and e have been computed, the next pipelining step computes the blocks with index 5 of ∆η and e. (b) Illustration of
the working space of one pipelining step. Blocks required for function evaluations are marked by crosses. Blocks updated
using results of function evaluations are marked by squares.

responding argument vector, 3s argument vector blocks
must be accessed to compute one block of ∆η and e.
Additionally,

s∑
i=3

(i− 2) = 1
2(s− 1)(s− 2) = 1

2s
2 − 3

2s+ 1

blocks of argument vectors, s blocks of ∆η and s blocks
of e must be updated. Altogether, the working space of
one pipelining step consists of

1
2s

2 + 7
2s+ 1 = Θ

(
1
2s

2
)

(6)

blocks of size B, see Fig. 2 (b). Since B � n, this is
usually only a small part of the working space of Θ(s ·n)
adherent to general implementations suitable for arbi-
trary right-hand-side functions, which iterate over all s
argument vectors in the outermost loop.
Combining the pipelining scheme with the optimized

communication pattern described in Section 3.3 leads
to highly scalable and efficient parallel implementations.
In this paper, we consider four parallel implementation
variants which exploit a limited access distance to re-
duce communication costs and the working space but
still require Θ(s · n) storage.

The distributed-address-space implementations try to
overlap communication with computations by using non-
blocking single-transfer operations (MPI_Isend() and
MPI_Irecv()). The shared-address-space implementa-
tions use locks for synchronization and do not overlap
communication with computations.

The first two variants of the pipelining computation
scheme illustrated in Figs. 3 (a) and 3 (b), to which we
refer as (PipeD) and (PipeD2), cf. [29, 31], have in
common that they start by computing all inner blocks
in pipelining computation order (towards increasing in-
dices) which do not depend on blocks of neighboring
processors. To ensure that each processor computes at
least one block of ws in this phase, at least 2s blocks are
assigned to each processor.

In the second phase, the processors finalize the
pipelines. (PipeD) and (PipeD2) differ in the finaliza-
tion strategies used to compute the remaining blocks. In
implementation (PipeD), neighboring processors use a
different order to finalize the two ends of their pipelines.
Thus, when processor j finalizes the side of its pipeline
with higher index, processor j + 1 finalizes the side of
its pipeline with lower index simultaneously, and vice
versa. The resulting parallel computation order resem-
bles a zipper. One diagonal across the argument vectors
is computed between the time when processor j + 1 fin-
ishes its first block of wi−1 and the time when processor
j needs this block to process its last block of wi, and
vice versa. Thus, the transfer of the blocks can be over-
lapped with the computation of one diagonal. But the
fraction of the transfer times that can be overlapped by
computations is not as large as in (Dbc), because the
length of the diagonals decreases from s− 1 blocks to 1
block as the finalization phase proceeds.

By contrast, (PipeD2) minimizes the number of com-
munication operations and thus the communication
costs arising from startup times by letting each proces-
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(a)

∆η, e
w4

w3

w2

ηκ = w1

P1 P2 P3 P4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

13 131 12 23 35 57 710 1023 23

17 1714 144 46 68 811 1124 2427 27

20 2018 1815 159 912 1225 2528 2830 30

22 2221 2119 1916 1626 2629 2931 3132 32

23 231 12 23 35 57 710 1013 13

27 2724 244 46 68 811 1114 1417 17

30 3028 2825 259 912 1215 1518 1820 20

32 3231 3129 2926 2616 1619 1921 2122 22

(b)

∆η, e
w4

w3

w2

ηκ = w1

P4 P1 P2 P3 P4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

17 17 17 171 1 1 12 2 2 23 3 3 35 5 5 57 7 7 710 10 10 1013 13 13 13

21 21 21 2124 24 24 244 4 4 46 6 6 68 8 8 811 11 11 1114 14 14 1418 18 18 18

25 25 25 2527 27 27 2729 29 29 299 9 9 912 12 12 1215 15 15 1519 19 19 1922 22 22 22

28 28 28 2830 30 30 3031 31 31 3132 32 32 3216 16 16 1620 20 20 2023 23 23 2326 26 26 26

(c)

∆η, e
w4

w3

w2

ηκ = w1

P1 P2 P3 P4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 12 24 47 711 1115 1519 1923 23

3 35 58 812 1216 1620 2024 2427 27

6 69 913 1317 1721 2125 2528 2830 30

10 1014 1418 1822 2226 2629 2931 3132 32

23 2319 1915 1511 117 74 42 21 1

27 2724 2420 2016 1612 128 85 53 3

30 3028 2825 2521 2117 1713 139 96 6

32 3231 3129 2926 2622 2218 1814 1410 10

Fig. 3: Illustration of data-parallel implementation variants of embedded RK methods that exploit a limited access distance.
The numbers determine the computation order of the blocks. Blocks accessed during initialization or finalization phases in
which communication is required are displayed as filled boxes, and blocks required by neighboring processors are emphasized
by thick borders. (a) (PipeD), (b) (PipeD2), (c) (PipeD4) and (PipeD5).

sor finalize the higher end of its own pipeline and the
lower end of the pipeline of its cyclic successor. This fi-
nalization strategy requires only one non-blocking data
transfer from a processor to its cyclic predecessor, but
the complete working space of a pipelining step, which
consists of 2s+

∑s
i=2 (i− 1) = 1

2
(
s2 + 3s

)
blocks of ar-

gument vectors, s blocks of ∆η and s blocks of e, has to
be sent over the network. The transfer can be started
when the pipeline has been initialized, but the data are
not needed before the finalization starts. Hence, the
transfer can be conducted in parallel with the diago-
nal sweep across the argument vectors, which computes
(nB/p − 2s) · s blocks. During the finalization of the
pipelines, the processors compute parts of ∆η that are
required by their successors to compute ηκ+1 and to
start the next time step. Therefore, another communi-
cation operation is needed to send s blocks of ∆η to the
successor. (PipeD2) exploits the fact that this is only
necessary if the step is accepted by the error control,
because otherwise the step is repeated using ηκ and,
therefore, ηκ+1 is not needed.

In addition to (PipeD) and (PipeD2), we consider
two new parallel variants of the pipelining computation
scheme, to which we will refer as (PipeD4) and (PipeD5).
Both are covered by the illustration in Fig. 3 (c). In con-
trast to (PipeD) and (PipeD2), (PipeD4) and (PipeD5)

let processors with odd and even index iterate over the
dimension of the ODE system in opposite direction.
Both work in three phases: initialization phase, sweep
phase, and finalization phase.

The differences between (PipeD4) and (PipeD5) con-
cern the overlapping of communication with compu-
tation and are not relevant to the shared-address-
space implementations, which use blocking communica-
tion. Therefore, only one shared-address-space imple-
mentation called (PipeD4) that follows the computation
scheme illustrated in Fig. 3 (c) has been implemented.

In the distributed-address-space implementations
(PipeD4) and (PipeD5), non-blocking communication of
single blocks similar to (PipeD) is performed during the
initialization phase and during the finalization phase.

One disadvantage of the new computation order is
that the transfer of the blocks of ηκ = w1 which are
required to start the initialization phase cannot be over-
lapped by computations. Therefore, while (PipeD4)
does not overlap this transfer time, we devised the vari-
ant (PipeD5) which exchanges blocks of ∆η instead.
The transfer of the blocks of ∆η can be overlapped with
the computations performed during the sweep phase and
the finalization phase. The required blocks of ηκ are
then computed by adding the values of the blocks of ∆η
to the previous values of the blocks of ηκ. This compu-
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tation is redundant but may save communication costs.
Which implementation is faster depends on whether it
takes less time to transfer one block of size B through
the network or to perform B additions and the corre-
sponding local memory accesses.

4 Low-Storage Implementation of the
Pipelining Scheme

Classical implementations of embedded RK methods,
which make no assumptions about the method coeffi-
cients or the access pattern of the function evaluation,
need to hold at least s + 2 vectors of size n (so called
registers) in memory to store ηκ, w2, . . . ,ws, ηκ+1, and
η̂κ+1. If the dimension n of the ODE system is large,
the amount of storage space required to store all s + 2
registers may be larger than the main memory available
on the target platform.
In this section, we show how the pipelining approach

can be implemented with stepsize control using only ‘2+’
registers, i.e., 2 registers plus some small extra space that
vanishes asymptotically if the ODE system is very large.
Without stepsize control the storage space required can
even be reduced to ‘1+’ registers.

4.1 Motivation and Sequential Implementation

Reconsidering the pipelining computation scheme in
terms of storage space, we observe that the pipelining
computation scheme, by performing a diagonal sweep
across the argument vectors, delivers the blocks of el-
ements of ∆η and e one after the other as the sweep
proceeds along the dimension of the ODE system. The
computation of the next blocks of these vectors depends
only on those argument vector blocks that belong to the
working space of the corresponding pipelining step. Ar-
gument vector blocks behind the sweep line that is deter-
mined by the working space of the current pipelining step
are no longer required for computations in the current
time step. Argument vector blocks ahead of the sweep
line do not yet contain data computed in the current
time step and thus do not contribute to the computa-
tions performed in the current pipelining step. Hence, a
significant reduction of the storage space can be achieved
if only those argument vector blocks are kept in mem-
ory that are part of the working space of the current
pipelining step.
A second opportunity to save storage space lies in the

computation of the error estimate e. The error estimate
e is used in the decision whether to accept the current
time step or to reject it and repeat it with a smaller
stepsize. Most stepsize control algorithms make this de-
cision based on a scalar value that is an aggregate of the
elements of e, e.g., a vector norm. A common choice for
the aggregate (ε) is the maximum norm of e/σ divided
by some user defined tolerance TOL:

ε = 1
TOL

∥∥∥ e
σ

∥∥∥
∞

= 1
TOL max

j=1,...,n

∣∣∣∣ ejσj
∣∣∣∣ ,

where σ is a vector of scaling factors, e.g., σj =
max {|ηκ,j | , |ηκ+1,j |} for j = 1, . . . , n. But the com-
putation of aggregates of this kind does not require all
elements of e to be stored in memory. Rather, a sweep
approach can be applied which updates a scalar variable
as the elements of e are computed one after the other:1

1.) ε := 0 ,

2.) ε := max
{
ε,

∣∣∣∣ ejσj
∣∣∣∣} for j := 1, . . . , n ,

3.) ε := ε

TOL .

This sweep approach to compute ε can easily be inte-
grated into the pipelining scheme, which delivers one
new block of e after each pipelining step.
All in all, it is sufficient to store the two n-vectors ηκ

and ∆η, the 1
2s

2 + 3
2s−2 blocks of w2, . . . ,ws belonging

to the working space of the current pipelining step and
s blocks of the error estimate e. This leads to a total
amount of

2n+
(

1
2s

2 + 5
2s− 2

)
B = 2n+ Θ

(
1
2s

2B

)
(7)

vector elements that have to be stored in memory. If
no stepsize control is used, ηκ can be overwritten by
ηκ+1 because the steps are always accepted and ηκ is
not needed to be able to repeat the time step. Thus, the
memory space required even reduces to

n+
(

1
2s

2 + 3
2s− 2

)
B = n+ Θ

(
1
2s

2B

)
(8)

vector elements, since no elements of ∆η and e have to
be stored.

One possibility to design an implementation of a low-
storage pipelining scheme which supports stepsize con-
trol by an embedded solution is the overlapping of ∆η
with the vectors e and w2, . . . ,ws as shown in Fig. 4 (a).
The sequential implementation requires two registers,
one of size n which stores the current approximation vec-
tor ηκ, and one of size n+

( 1
2s

2 + 5
2s− 2

)
B which stores

∆η and the elements of e and w2, . . . ,ws which belong
to the working space of the current pipelining step using
the displacements shown in Table 1. Using this over-
lapping, the pipelining scheme can be executed without
further changes as described in Section 3.4. As a result,
the working space of the pipelining steps is embedded
into the enlarged register holding ∆η as a compact, con-
secutive window such that the computation of the next
block of ∆η moves this window one block forward.

4.2 Parallel Implementation

A parallel low-storage implementation of the pipelining
scheme can easily be obtained with only a few adapta-
tions. Because in the low-storage implementation the
working space of the pipelining steps is embedded into

1A similar sweep approach is possible for other Lp norms

||x||p =
(∑n

j=1 |xj |
p

) 1
p

.
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(a)

w2
w3

w4

∆η
e

...

...

...

...

...

...

(b)

w2
w3

w4

∆η
e

...

...

...

...

...

...

Fig. 4: Illustration of the overlapping of the vectors ∆η, e and w2, . . . ,ws in the low-storage implementation. This over-
lapping allows us to embed ∆η and the working space of the pipelining steps into a single vector of size n + Θ

(
1
2s

2B
)
.

(a) Sequential implementation and parallel implementation without support for overlapping communication with computa-
tions. (b) Parallel implementation with support for overlapping communication with computations.

Vector: ∆η e w2 . . . wi . . . ws

Offset (blocking/sequential): 0 s s+ 3 . . . s+ 1
2 i

2 + 3
2 i− 2 . . . 1

2s
2 + 5

2s− 2
Offset (non-blocking): 0 s s+ 3 . . . s+ 1

2 i
2 + 5

2 i− 4 . . . 1
2s

2 + 7
2s− 4

Tab. 1: Offsets (in number of blocks) of the overlapping of ∆η with e and w2, . . . ,ws

the register holding ∆η and each processor must keep
the data of its working space in memory, it is not
possible to realize a shared-address-space implementa-
tion that uses only one global copy of this register to
which all participating processors have shared access.
Instead, each processor allocates a chunk of memory
of size dnBp e +

( 1
2s

2 + 5
2s− 1

)
B locally where it can

hold the working space of its partition of the outermost
loop and ghost cells copied from neighboring processors.
The local allocation can be advantageous on shared-
memory systems with non-uniform memory access times
(NUMA systems). It can, however, be a disadvantage
on shared-memory systems with uniform memory access
times (UMA systems), because blocks which are required
by neighboring processors have to be copied between the
local data structures of the threads and there is no gain
in faster access times to the elements of the local copy.
Since the embedded working space has to be moved

forward block by block, the computation order illus-
trated in Fig. 3 (a) can not be applied. Moreover, the
computation order illustrated in Fig. 3 (b) can not be
implemented efficiently because the data to be trans-
ferred are overwritten in subsequent pipelining steps
and, therefore, the data transfer can not be overlapped
with computations. However, parallel implementations
with reduced storage space can be realized using the
computation order illustrated in Fig. 3 (c), i.e., using
the same computation order as (PipeD4) or (PipeD5).
In the experimental evaluation in Section 5, we consider
a low-storage implementation derived from (PipeD4) re-
ferred to as (PipeD4ls).

Parallel implementations based on blocking commu-
nication, such as our shared-address-space implementa-
tions, can be realized using the same vector displace-
ments as the sequential implementation (Fig. 4 (a)). But
in order to support the overlapping of communication
with computations, the overlapping memory layout of
the argument vectors needs to be splayed by one block
as illustrated in Fig. 4 (b). This slightly enlarges the
register which stores ∆η and the elements of e and
w2, . . . ,ws which belong to the working space of the
current pipelining step to the size n+

( 1
2s

2 + 7
2s− 3

)
B.

The resulting new offsets are included in Table 1.

4.3 Comparison of Data Set Sizes of Semi-
discretized PDEs

The spatial discretization of a d-dimensional PDE sys-
tem by the method of lines [41] uses a d-dimensional
spatial grid. In the following, we assume that the same
number of grid points is used in each dimension, and re-
fer to it as N . The ODE system which results from this
semi-discretization consists of nv · Nd equations, where
nv is the number of dependent variables in the PDE
system. The spatial derivatives at the grid points are
approximated using difference operators which use grid
points in a bounded environment of the grid point con-
sidered. Hence, one spatial dimension can be selected for
a subdivision of the ODE system into blocks such that
each block represents an Nd−1-dimensional slice of the
grid and the ODE system has a limited access distance
d(f) = nv · r ·Nd−1, where r is the maximum distance in
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the selected dimension between the grid point to which
the discretization operator is applied and the grid points
used by the discretization operator.
Since the working space of the pipelining scheme

requires a storage space of only Θ
( 1

2s
2d(f)

)
=

Θ
( 1

2s
2 · nvrNd−1) while the system size n grows with

Θ
(
Nd
)
, the additional storage space needed to store the

working space becomes less significant whenN increases.
As an example for the case of sequential execution, Ta-
ble 2 shows a comparison of data set sizes for an ODE of
size n = 2N2 with access distance d(f) = 2N , as it may
result from a 2D PDE with two dependent variables dis-
cretized using a five-point stencil (e.g., BRUSS2D [10],
see also Section 5). The function S(x) used in this table
represents the space needed to store x vector elements
using double precision (8 bytes per vector element). PBs
is the number of vector elements in the working space of
the pipelining scheme that have to be stored in addition
to ηκ (and ∆η) if an s-stage method and blocksize B is
used, i.e.,

PBs =
(

1
2s

2 + 5
2s− 2

)
B . (9)

Column I shows the size of the working space S(PBs ) in
the case that a 7-stage method is used. We chose s = 7
because the popular embedded RK method DOPRI 5(4)
that we used in the runtime experiments presented in
Section 5 has 7 stages. Column II shows the size of a
single register holding n vector elements. Columns III
and V represent the total amount of memory needed
when using the low-storage pipelining implementation
with (V) and without (III) stepsize control. In compar-
ison to this, column IV shows the amount of memory
needed when using the most space-efficient RK methods
that have been proposed in related works, which make
use of special coefficient sets and require at least two n-
registers. Finally, column VI shows the storage space re-
quired when using a conventional embedded RK method
with 7 stages and stepsize control or a conventional RK
method with 8 stages without stepsize control.
Concerning data set sizes, the parallel implementation

requires a larger amount of memory than the sequential
implementation because every processor must provide
sufficient space to store the data accessed in one pipelin-
ing step. Thus, the total amount of memory required
increases with the number of processors and may even
exceed the total amount of memory required by other
implementations as the number of processors gets close
to the number of blocks nB = dn/Be, where nB = N in
the case of semi-discretized PDEs.
As an example, we consider the case of non-blocking

communication, where the working space of one pipelin-
ing step contains

QBs =
(

1
2s

2 + 7
2s− 3

)
B

vector elements. Including one additional register to per-
form stepsize control, our parallel low-storage implemen-
tation must store a total amount of 2n + p · QBs vector
elements. On the other hand, the conventional imple-

mentations must store (s + 2)n + 2s(p − 1)B vector el-
ements. Hence, the low-storage implementation justifies
its name if (assuming that n is an integer multiple of B)

2n+ p ·QBs < (s+ 2)n+ 2s(p− 1)B

2n+ p

(
1
2s

2 + 7
2s− 3

)
B < (s+ 2)n+ 2s(p− 1)B

2nB + p

(
1
2s

2 + 7
2s− 3

)
< (s+ 2)nB + 2s(p− 1)

p

(
1
2s

2 + 3
2s− 3

)
< s(nB − 2)

p <
nB − 2

1
2s+ 3

2 −
3
s

.

(10)
In other words, storage space can be saved if we choose
the number of blocks per processor, bnB/pc, such that⌊

nB
p

⌋
>

1
2s+ 3

2 −
3
s

+ 1 ≥ 1
2s+ 3

2 −
3
s

+ 2
p

(11)

for p ≥ 2, i.e., if we assign more than 1
2s + 3

2 −
3
s + 1

blocks to each processor. Table 3 shows the minimum
number of blocks to be assigned to each processor for
RK methods with up to 17 stages.

Table 4 continues Table 2 by showing exemplary data
set sizes for the case of a non-blocking parallel imple-
mentation with s = 7 (e.g., DOPRI 5(4)) and B = 2N
(e.g., BRUSS2D). For each grid size N , a number of pro-
cessors, p (VIII), has been chosen as an example, which
is high enough to benefit from parallelism, but small
enough to save a significant amount of storage space.
Column IX shows the size of the storage space required
for each processor to store the working space of one
pipelining step. In column X, this size has been mul-
tiplied by the number of processors, p, thus represent-
ing the total amount of storage space required to store
the working spaces of the pipelining steps on all proces-
sors. The total amount of storage space including the
two n-registers required by the non-blocking low-storage
implementation is shown in column XI. For comparison,
column XII shows the total amount of storage space re-
quired by the conventional parallel implementations that
exploit the limited access distance.

5 Experimental Evaluation

The implementation variants described in Section 3 and
4 have been evaluated using runtime experiments on
several modern parallel computer systems with differ-
ent architectures. The computer systems considered
are two off-the-shelf multi-processor servers equipped
with Intel Xeon and AMD Opteron quad-core proces-
sors, one commodity cluster system with three different
communication networks and two supercomputer sys-
tems, the Jülich Multiprocessor (JUMP) at the Jülich
Supercomputing Centre (JSC) and the High End System
in Bavaria 2 (HLRB 2) at the Leibniz Supercomputing
Centre (LRZ) in Munich. Table 5 summarizes the tar-
get platforms, the compilers and the MPI versions used.
Table 6 shows the implementation variants considered.
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I II III IV V VI
N n S

(
P 2N

7
)

S(n) S
(
n+ P 2N

7
)

S(2n) S
(
2n+ P 2N

7
)

S((7 + 2)n)
102 2 · 104 62.5KB 156.2KB 218.8KB 312.5KB 375.0KB 1.4MB
103 2 · 106 625.0KB 15.3MB 15.9MB 30.5MB 31.1MB 137.3MB
104 2 · 108 6.1MB 1.5GB 1.5GB 3.0GB 3.0GB 13.4GB
105 2 · 1010 61.0MB 149.0GB 149.1GB 298.0GB 298.1GB 1.3TB
106 2 · 1012 610.4MB 14.6TB 14.6TB 29.1TB 29.1TB 131.0TB

Tab. 2: Comparison of data set sizes of different RK integrators occurring in the solution of an ODE system of size n = 2N2

with access distance d(f) = 2N (sequential execution). See explanation in the text.

Stages (s): 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Blocks per processor: 3 4 4 5 6 6 7 7 8 8 9 9 10 10 11 11

Tab. 3: Minimum number of blocks to be assigned to each processors in an implementation with non-blocking communication
in order to save storage space according to (11).

As an example problem we use BRUSS2D [10], a typi-
cal example of a PDE discretized by the method of lines.
Using an interleaving of the two dependent variables re-
sulting in a mixed-row oriented ordering of the compo-
nents (BRUSS2D-MIX, cf. [29, 31]), this problem has a
limited access distance of d(f) = 2N , where the system
size is n = 2N2. As weight of the diffusion term we
use α = 2 · 10−3. The experiments presented in the fol-
lowing have been performed using the 3-stage embedded
RK method RKF2(3) [43, p. 64], the 7-stage embedded
RK method DOPRI 5(4) [16], and the 13-stage embed-
ded RK method DOPRI 8(7) [37].

5.1 Sequential Implementations

Figure 5 shows a comparison of the sequential runtimes
of the three sequential implementations (D), (PipeD)
and (PipeDls) on the five target systems. The runtimes
have been normalized with respect to the number of
steps and the number of ODE components, n. Thus,
if machine instructions had constant execution times,
the normalized runtime would be independent of n, ex-
cept for slight differences caused by a different number
of rejected steps. But, actually, the execution times of
machine instructions vary, in particular those of mem-
ory instructions, for which the execution times depend
on the location of the accessed data within the memory
hierarchy.
In the diagrams in Fig. 5, the normalized runtime is

plotted against the dimension of the ODE system, n,
thus making visible the changes of the execution times
of the memory instructions for increasing amounts of
data to be processed. Usually, the highest increase of
the normalized runtime occurs when relevant working
sets grow larger than the highest-level cache, which is
largest in size. In this case, the number of main memory
accesses increases, which take a multiple of the time of a
cache hit. Hence, for our application, it is often less sig-
nificant, which cache level is hit, but primary important
that the cache is hit.

5.1.1 4× 4 Xeon Server

The largest differences in the runtimes of the three im-
plementations have been observed on the Xeon proces-
sor (Hydra). If the system size is small, e.g., n ≤ 80 000,
several n-vectors can be stored in the 3MB L2 cache.
For RKF2(3), nearly the complete working set of one
time step fits in the L2 cache. When n or the num-
ber of stages, s, increases, more memory access opera-
tions lead to cache misses and the normalized runtime
increases. For n larger than approximately 106, the nor-
malized runtime stays relatively constant. Only in the
experiment using DOPRI 8(7) with 13 stages, the nor-
malized runtime of the two pipelining implementations
slowly increases. This behavior corresponds to the ra-
tio between the size of the working space of a pipelining
step and the size of the L2 cache. While this working set
occupies only at most 10% of the L2 cache in the exper-
iment with RKF2(3), it grows up to about half the size
of the L2 cache in the experiment with DOPRI 5(4) and
even grows larger than the L2 cache for n > 5.8 · 106 in
the experiment with DOPRI 8(7).
Since in our experiments n ranges from 8·105 to 8·106,

the diagrams showing the normalized runtime on Hydra
illustrate the situation where working sets representing
one or several n-vectors do not fit in the cache. Only
the loop performing the pipelining steps and the inner-
most loop over the succeeding stages can run inside the
cache. In this situation, the pipelining implementations
clearly outperform the general implementation (D). The
relation between the normalized runtimes of the pipelin-
ing implementation (PipeD) and its low-storage variant
(PipeDls) is unique on this machine. Here, (PipeDls)
is about 1.5 to 2 times faster than (PipeD). Such high
speedup had not been expected since the computation
order and the size of the working space are the same in
both implementations.
On the other hand, (PipeDls) stores the data accessed

in the pipelining steps in a very compact memory re-
gion. Even more important is the number of cache lines
that have to be replaced when the implementations ad-



5.1 Sequential Implementations 11

0 2 4 6 8

x 10
6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−7 Hydra, RKF 2(3)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−7 Hydra, DOPRI 5(4)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−6 Hydra, DOPRI 8(7)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95
x 10

−7 Hydrus, RKF 2(3)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

3.5

4

4.5

5

5.5

6
x 10

−7 Hydrus, DOPRI 5(4)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

−6 Hydrus, DOPRI 8(7)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

1.8

1.85

1.9

1.95

2

2.05

2.1
x 10

−7 Opteron cluster, RKF 2(3)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

−7 Opteron cluster, DOPRI 5(4)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x 10
−6 Opteron cluster, DOPRI 8(7)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

1.4

1.6

1.8

2

2.2

x 10
−7 JUMP, RKF 2(3)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−7 JUMP, DOPRI 5(4)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

−6 JUMP, DOPRI 8(7)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

3.4

3.6

3.8

4

4.2

4.4

4.6

x 10
−7 HLRB 2, RKF 2(3)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

−6 HLRB 2, DOPRI 5(4)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

0 2 4 6 8

x 10
6

2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

−6 HLRB 2, DOPRI 8(7)

n

R
u
n
ti
m

e
 p

e
r 

s
te

p
 a

n
d
 c

o
m

p
o
n
e
n
t 
in

 s

 

 

D

PipeD

PipeDls

Fig. 5: Sequential runtime per step and component in seconds.
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VIII IX X XI XII
N n p S

(
Q2N

7
)

S
(
p ·Q2N

7
)

S
(
2n+ p ·Q2N

7
)

S((7 + 2)n+ 2s(p− 1)2N)
102 2 · 104 5 71.9KB 359.4KB 671.9KB 1.5MB
103 2 · 106 25 718.8KB 17.5MB 48.1MB 142.5MB
104 2 · 108 100 7.0MB 701.9MB 3.7GB 13.6GB
105 2 · 1010 1000 70.2MB 68.5GB 366.6GB 1.3TB
106 2 · 1012 10000 701.9MB 6.7TB 35.8TB 133.0TB

Tab. 4: Comparison of data set sizes of different RK integrators occurring in the solution of an ODE system of size n = 2N2

with access distance d(f) = 2N (parallel execution with non-blocking communication). See explanation in the text.

vance to the next pipelining step. (PipeD) stores all
n-vectors (ηκ, w2, . . . ,ws, ∆η, and e) in separate n-
registers. Thus, assuming that the working space of a
pipelining step fits in the cache, s+ 2 blocks containing
B vector elements must be loaded into the cache, where
they replace s+2 other blocks of this size. Except for the
block of ηκ, all replaced blocks contain updated values
and have to be written back to main memory.
By contrast, (PipeDls) uses only one register of size n

to store ηκ and one larger register to store ∆η and the
working space of the pipelining steps. When (PipeDls)
moves on to the next pipelining step, only two blocks of
size B have to be loaded into the cache and one block
needs to be written back to main memory. The blocks
which are not needed in future pipelining steps, are over-
written and thus reused in the next pipelining step.
The storage size of a block containing B vector ele-

ments grows from 3.13KB to 31.25KB in our experi-
ments. Thus, in the worst case, (PipeDls) loads only
62.50KB in each pipelining step into the cache while
(PipeD) has to load 156.25KB in case of RKF2(3),
281.25KB in case of DOPRI 5(4), and 468.75KB in case
of DOPRI 8(7). Since the difference in normalized run-
time between (PipeD) and (PipeDls) is higher if the
number of stages is larger, this presumably is the reason
for the higher performance of (PipeDls) on Hydra.
However, the blocks of the s + 2 n-registers in im-

plementation (PipeD) which are required in the next
pipelining step could be prefetched in parallel to the
computation of the current pipelining step. But this
can only work if the prefetch logic of the processor rec-
ognizes the access pattern of the implementation and if
the memory-to-cache transfer is fast enough.

5.1.2 Opteron-based Systems

On the other target platforms the difference in the per-
formance of (PipeD) and (PipeDls) is not as large as
on Hydra. The two systems Hydrus and the Opteron
cluster are both equipped with AMD Opteron proces-
sors. Even though the processors of the two systems
represent different generations of the Opteron processor
(K8 and K10) our measurement results show many sim-
ilarities between the two systems. Differences between
the two systems mainly result from different cache sizes.
While the K8 processors in the Opteron cluster have
an L2 cache of 1024KB, the K10 processors of Hydrus

have a smaller L2 cache of only 512KB but possess an
additional shared L3 cache of 2MB L3 cache of 2MB
(non-inclusive victim cache [1]).

The first similarity observed is that the normalized
runtime curves of (D) and (PipeD) show peaks while
the curve of (PipeDls) is significantly smoother. The
peaks are sharper if the number of stages is higher. The
implementations (D) and (PipeD) have in common that
the innermost loops iterate over the stages while the ar-
gument vectors are allocated separately. In contrast to
this, the innermost loop of (PipeDls) also iterates over
the stages, but the argument vectors are embedded into a
single register such that the vector elements accessed by
the innermost loop are located inside a small consecutive
memory region. Most importantly, the distance between
the memory locations of the elements of succeeding ar-
gument vectors accessed in the innermost loop is not a
constant amount.

Therefore, the innermost loops of (D) and (PipeD) are
more likely to provoke cache conflict misses than the in-
nermost loop of (PipeDls) if the associativity of the cache
is smaller than the number of vectors accessed in the
innermost loop. Since the L1 cache of the Opteron pro-
cessors is only 2-way associative, this leads to the con-
clusion that the peaks in the normalized runtime curves
of (D) and (PipeD) are caused by an increased number
of conflict misses due to an unfortunate alignment of the
argument vectors. Additional tests with a randomized
allocation policy support this conclusion as they led to
different shapes of the normalized runtime curves.

Comparing (D) and (PipeD), (PipeD) can outperform
(D) only if the working space of one pipelining step fits
in the L2 cache. This is the case in the experiment
with RKF2(3). In the experiment with DOPRI 5(4),
the working space of one pipelining step grows larger
than the cache for N & 1.3 · 106 on Hydrus and for
N & 5.4 · 106 on the Opteron cluster. In the experi-
ment with DOPRI 5(4), this happens for N & 1.6 · 105

on Hydrus and for N & 6.5 · 105 on the Opteron cluster.

The low-storage implementation (PipeDls) is clearly
faster than (PipeD) in nearly all experiments, but its
performance also depends on whether the working space
of one pipelining step fits in the L2 or L3 cache. There-
fore, (D) can be faster than (PipeDls) for large system
sizes such as n & 5.0 · 106 in the experiment with DO-
PRI 5(4) on Hydrus.
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Name Exploits Limited Pipe- Low Distr. Data Non-bl. Figures
Access Distance lining Storage Structures Comm.

Sequential Implementations
D – – – n/a n/a
PipeD X X – n/a n/a 2 (a), 2 (b)
PipeDls X X X n/a n/a 2 (a), 2 (b), 4 (a)
Pthreads Implementations for Shared Address Space
D – – – – –1

Dbc X – – – –2 1
PipeD X X – – –2 2 (b), 3 (a)
PipeD4 X X – X –2,3 2 (b), 3 (c)
PipeD4ls X X X X –2,3 2 (b), 3 (c), 4 (a)
MPI Implementations for Distributed Address Space
D – – – X –4

Dbc X – – X X5 1
PipeD X X – X X5 2 (b), 3 (a)
PipeD2 X X – X X5 2 (b), 3 (b)
PipeD4 X X – X X5 2 (b), 3 (c)
PipeD5 X X – X X5 2 (b), 3 (c)
PipeD4ls X X X X X5 2 (b), 3 (c), 4 (b)
1 The computation of the argument vector w and the function evaluation f(t,w) are separated by
barrier operations.

2 Blocks of the argument vectors accessed by multiple processors are protected by locks. At the
beginning of the time step, the locks are held by the processors which will compute the corre-
sponding block. The locks are released as soon as the computation of the corresponding block has
been completed.

3 Blocks are copied using memcpy().
4 The argument vector w is made available to all processors using a multibroadcast operation
(MPI_Allgather()).

5 Blocks are send to/received from neighboring processors by non-blocking single transfer operations
(MPI_Isend()/MPI_Irecv()).

Tab. 6: Overview of the implementation variants considered in the experimental evaluation.



5.2 Shared-Address-Space Implementations 15

5.1.3 IBM p6 575 Cluster

JUMP stands out by its huge 32MB L3 cache. Also
its 4MB L2 cache is the largest among the five target
systems considered. Thus, even in the experiment with
DOPRI 8(7) where s = 13, the working space of one
pipelining step fits in the L2 cache. For n = 80 000, the
entire working space of one time step fits in the L3 cache.
As n grows from 8 · 105 to 8 · 106, the working sets

corresponding to one or more n-vectors drop out of the
L3 cache and the normalized runtimes increase and sta-
bilize when the size of one n-vector becomes larger than
the L3 cache. This happens for n ≈ 4.2 · 106. Com-
paring the three RK methods, the scaling of the dia-
grams gives the visual impression that the slope of the
curves is steeper if the number of stages is smaller. In
fact, in the interval n = 8 · 105, . . . , 2.1 · 106, where the
number of n-vectors that fit in the L3 cache decreases
to 2, the normalized runtime grows by ≈ 57–67% for
RKF2(3), by ≈ 71–86% for DOPRI 5(4), and by ≈ 77–
115% for DOPRI 8(7). That means, in this interval,
the slopes are steeper if s is larger, what can be ex-
plained by the larger portion of the working space of
one time step that no longer fits in the L3 cache. In the
range n = 2.1 · 106, . . . , 4.2 · 106, where the number of
n-vectors that fit in the L3 cache decreases from 2 to 1,
a significant increase of the normalized runtime has been
observed only for DOPRI 8(7).

5.1.4 SGI Altix 4700

The Itanium2 processor used in the HLRB 2 system
contains a 9MB L3 cache, which is large enough to
store the working space of a pipelining step even in
the experiment with the 13-stage method DOPRI 8(7).
But for n ≥ 1.18 · 106 the storage space required for
one n-vector is larger than the L3 cache. Thus, for
n = 8 · 105, . . . , 1.28 · 106 we observe that the normal-
ized runtimes quickly increase and then stay almost con-
stant for n ≥ 1.28 · 106. The pipelining implementations
are considerably faster than the general implementation
(D). Moreover, due to its higher locality resulting from
the more compact storage of the working space, the low-
storage variant of the pipelining scheme, (PipeDls), runs
slightly faster than the conventional pipelining imple-
mentation (PipeD).

5.2 Shared-Address-Space Implementations

In this section, we compare the speedups and the ef-
ficiencies of the parallel Pthreads implementations for
the grid sizes N = 1000 (Figs. 6 and 7) and N = 2000
(Figs. 8 and 9) on the four target systems Hydra, Hy-
drus, JUMP and HLRB 2 described in Table 5.
Since our intention is to compare the new low-storage

implementation of the pipelining scheme with the pre-
existing pipelining implementation (PipeD), we use the
sequential execution time of (PipeD) as the reference for
the speedup and efficiency computation.

5.2.1 4× 4 Xeon Server

On Hydra, which is equipped with four quad-core Xeon
(Tigerton) processors, the scalability of the Pthreads im-
plementations is generally not as good as on the other
systems. Only the low-storage pipelining implementa-
tion (PipeD4ls) can obtain speedups above 7. While
all other shared-memory systems considered rely on a
NUMA architecture, where each processor can access its
local memory very fast without interfering with local
memory accesses of other processors, Hydra uses a cen-
tralized memory architecture. All processor chips access
the main memory through a central ‘Memory Controller
Hub’ (Northbridge), which turns out to be a bottleneck
for memory-intensive parallel applications.

The comparison of the sequential runtimes already
showed that the performance on this machine is sensitive
to changes of the locality behavior. The parallel execu-
tion amplifies these performance differences. Thus, the
scalability of the general implementation (D) and the
implementation (Dbc), which uses the same loop struc-
ture as (D), is very poor. Their speedups are below
4. The conventional pipelining implementations (PipeD)
and (PipeD4) obtain noticeably better speedups up to
≈ 7 but cannot take profit of all cores of the machine.
In our experiments, (PipeD4ls) is the only implemen-

tation which can exploit all cores of the machine, but
only if the amount of data to be processed is not too
large. The highest speedups with respect to the sequen-
tial execution time of (PipeD) observed for (PipeD4ls)
was 16.8 in the experiment using DOPRI 5(4) and N =
1000. However, the self-reflexive speedup in this case is
only 10.4. If the number of stages or the size of the ODE
system is increased, the maximum speedup is reached on
less than 16 cores (see experiments with DOPRI 8(7),
N = 1000 and DOPRI 5(4), N = 2000).

5.2.2 4× 4 Opteron Server

On the second system equipped with four quad-core pro-
cessors, Hydrus, all Pthreads implementations – the spe-
cialized implementations, but also the general implemen-
tation (D) – scale well and can exploit all cores of the
machine. In contrast to Hydra, the Opteron processors
of Hydrus have local memories and are connected by
point-to-point links (‘HyperTransport’).

The speedups measured on this machine using 16
threads range from 10.2 to 18.3. The sequential run-
times of the different implementations already were very
similar, and the same applies to the parallel speedups.
The only exception is the experiment with DOPRI 8(7)
and N = 2000, where (PipeD4ls) is significantly faster
than the other implementations.

5.2.3 IBM p6 575 Cluster

The nodes of JUMP are equipped with 32 Power 6 cores.
Each core can execute two threads in hardware (two-way
SMT). Among the systems considered, JUMP has the
fastest processor clock (4.7GHz) and the largest cache
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Fig. 6: Parallel speedup of the shared-address-space implementations (N = 1000).
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Fig. 7: Parallel efficiency of the shared-address-space implementations (N = 1000).
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Fig. 8: Parallel speedup of the shared-address-space implementations (N = 2000).
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Fig. 9: Parallel efficiency of the shared-address-space implementations (N = 2000).
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(32MB). In the experiments with N = 2000, the scala-
bility of all implementations is very good. The speedups
for 32 threads (ST mode) lie between 22.2 and 27.4 for
RKF2(3), between 23.1 and 27.5 for DOPRI 5(4), and
between 24.5 and 28.5 for DOPRI 8(7).
It is particularly remarkable that in SMT mode (i.e.,

using more than 32 threads) the efficiency with respect
to the number of threads decreases only slightly, and
with respect to the number of physical cores it nearly
doubles. Apparently, the two threads of instructions ex-
ecuted on each Power 6 core, which mainly consist of
floating-point instructions, can be scheduled to the two
binary floating-point units available on each core such
that the two threads are not significantly delayed by con-
tention for processor resources, and the memory hierar-
chy can satisfy the higher rate of data requests generated
by the second thread without delaying the data required
by the first thread. Thus, for N = 2000, speedups be-
tween 41.0 and 45.5 have been obtained for RKF2(3),
between 43.9 and 50.6 for DOPRI 5(4), and between
47.1 and 54.7 for DOPRI 8(7). In the experiments with
N = 1000, speedups and efficiencies are lower, but the
implementations can still exploit all cores of the machine
and even take profit of the SMT capability.
Comparing the implementation variants, the differ-

ences are not very large. We observe, however, that
(PipeD), (Dbc) and (D) are often noticeably faster than
(PipeD4) and (PipeD4ls). (PipeD4) and (PipeD4ls) use
the same computation order but a different memory lay-
out of the data structures. Both use distributed data
structures and copy blocks between neighboring threads
using memcpy(). By contrast, (PipeD), (Dbc) and (D)
use shared (central) data structures and do not need to
copy blocks. Thus, it seems likely that the overhead re-
sulting from the copying of blocks has a negative effect
on the overall performance. Further, the direction of the
iteration over the dimension of the ODE system has an
influence on the performance, c.f. Section 5.3.3.

5.2.4 SGI Altix 4700

HLRB 2 has a globally shared address space based on
a NUMAlink network with a dual fat tree topology.
Parallel thread-based jobs can use up to 510 Itanium2
cores. Our Pthreads implementations, however, run ef-
ficiently only on small numbers of cores. The highest
speedups have been measured using DOPRI 8(7) and
N = 2000. In this experiment, the speedups on 96
cores are in the range from 73.3 to 88.0. The highest
speedups of 198.3 and 194.7 are reached by the imple-
mentations (PipeD4ls) and (PipeD4) using 448 threads.
Both implementations, (PipeD4) and (PipeD4ls), deliver
very similar parallel runtimes, which means that the
low-storage variant neither improves nor deteriorates the
performances.
Also in most other experiments these two implemen-

tations deliver the highest speedups. This means that
on this system the higher locality of the distributed data
structures appears to be an advantage even though it en-
tails the overhead of block transfers. However, for large

numbers of threads, (PipeD4) and (PipeD4ls) can only
be compared to (Dbc) and (D) since (PipeD) supports
at most bnB/(2s)e threads. But the comparison with
(PipeD) for small numbers of threads already confirms
that on this machine, where memory access times are sig-
nificantly more non-uniform than on the other systems,
distributed data structures lead to better performance.
The reason is that, to access a shared data structure,
all threads which run on processors not directly con-
nected to the memory section in which the data struc-
ture resides have to perform expensive remote memory
accesses.
(D) and (Dbc) differ in the synchronization mecha-

nisms employed, but both use the same loop structure.
For small numbers of threads, the influence of the syn-
chronization mechanisms is less important, and the per-
formance of (D) and (Dbc) does not differ significantly.
In this situation, the loop structure of (D) and (Dbc)
is not competitive to the pipelining scheme. But as the
number of threads increases, the amount of data to be
processed by the individual processors decreases and a
larger part of this data fits in the L3 cache. Thus, the
number of main memory accesses is reduced and the per-
formance improves. The best efficiency is obtained if the
amount of data to be processed by each processor has
approximately the size of the L3 cache. If the number of
threads is increased further, this behavior stops taking
effect since all data fit in the local caches and no more
main memory accesses are saved. Consequently, the in-
creasing synchronization overhead of the larger number
of threads leads to a decreasing efficiency as it is not com-
pensated by sufficiently strong positive cache effects. Re-
garding the influence of the synchronization operations,
the comparison of (D) and (Dbc) for large numbers of
threads shows that the lock-based synchronization strat-
egy of (Dbc), which makes use of the limited access dis-
tance of the test problem, leads to a better scalability
than the barrier-based general strategy of (D) in most
experiments.
Compared to the MPI implementations (see Sec-

tion 5.3.4), the general scalability of the Pthreads im-
plementations is far below the potential of the machine.
As our comparison shows, scalable implementations re-
quire the use of distributed data structures because only
they can reflect the physically distributed organization
of the globally addressable main memory. We assume
that for the Pthreads implementations which use dis-
tributed data structures, (PipeD4) and (PipeD4ls), the
overhead of the block transfers limits the scalability since
the Pthreads implementations – unlike the MPI imple-
mentations – do not overlap the block transfers by com-
putations.

5.3 Distributed-Address-Space Implementa-
tions

In this section, we compare the speedups and the effi-
ciencies of the MPI implementations for the grid sizes
N = 1000 (Figs. 10 and 11) and N = 2000 (Figs. 12
and 13) on the five target systems described in Table 5.
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As in Section 5.2 where we considered the Pthreads
implementations, we use the sequential execution time
of (PipeD) as the reference for the speedup and effi-
ciency computation. In addition to the MPI variants
of (D), (Dbc), (PipeD), (PipeD4) and (PipeD4ls), we
also consider the implementation variants (PipeD2) and
(PipeD5) (cf. Section 3.4).

5.3.1 4× 4 Servers

In general, on both 4×4 servers the speedups and the ef-
ficiency of the MPI implementations are similar to those
of the Pthreads implementations. The exchange of mes-
sages between processes via the MPI library does not
lead to a high overhead compared to the performance of
the Pthreads implementations, which can communicate
using shared variables. Instead, the performance on Hy-
dra is determined by the locality of the implementations
and their ability to save main memory accesses. Thus,
the low-storage pipelining implementation, (PipeD4ls),
clearly outperforms the other implementations. On Hy-
drus almost all implementations scale well, and their per-
formance does not differ significantly. Only in the exper-
iment with DOPRI 8(7) and N = 2000 the low-storage
implementation (PipeD4ls) shows a significantly higher
efficiency than the other specialized implementations.
The only MPI implementation which delivers an evi-

dently worse performance than its Pthreads counterpart
is the general implementation (D), because it requires
global communication. While the Pthreads version of
(D) makes use of shared data structures and can syn-
chronize the threads by executing one barrier operation
at each stage, the MPI version requires the execution of
a multibroadcast operation (MPI_Allgather()) at each
stage, which assembles the current argument vector from
its locally computed parts and makes it available to all
participating MPI processes. This communication oper-
ation is very expensive; its costs increase with the num-
ber of participating processes. The MPI version of im-
plementation (D) therefore shows a poor scalability in all
experiments performed – not only on Hydra and Hydrus,
but also on the other systems considered. Its speedup
grows slowly or even decreases when the number of pro-
cesses is increased, and its efficiency declines rapidly.
The two implementations (PipeD2) and (PipeD5),

which have not been included in the comparison of
the Pthreads implementations, deliver a similar perfor-
mance like the other two conventional pipelining imple-
mentations, (PipeD) and (PipeD4). The performance
of (PipeD5) is nearly identical to that of (PipeD4).
(PipeD2) has approximately the same performance as
(PipeD) or is slightly slower.

5.3.2 Opteron Cluster

The Opteron cluster consists of 32 dual-processor nodes
connected by three separate communication networks at
different speeds. This allows us to investigate the influ-
ence of the communication speed on the performance of
the RK implementations.

Figures 10–13 show the parallel speedups and efficien-
cies measured using the fastest network, an Infiniband
network with a nominal bandwidth of 10Gbit/s. Using
this network, all specialized implementations scale well,
but the rate at which the efficiency decreases as more
processors are used varies depending on the grid size N .
The efficiency of the specialized implementations is 0.6
or better in the experiments with N = 1000, and it is 0.8
or better in the experiments with N = 2000. In contrast
to this, the general implementation (D) hardly profits
from a parallel execution because it requires expensive
global communication.

Taking a closer look at the efficiency curves of the
specialized implementations for the Infiniband network,
we first notice a sharp drop of the efficiencies of some
implementations from ≈ 0.9 to ≈ 0.7 in the experi-
ment with DOPRI 8(7) and N = 1000 when the number
of processes reaches 24 or 32, respectively. A similar
but smaller drop of the efficiencies of these implemen-
tations occurs in the experiment with DOPRI 5(4) and
N = 1000. The only specialized implementation not
affected is (PipeD4ls), whose efficiency is 0.94 or bet-
ter. No such drops of the efficiencies have been observed
in the experiment with RKF2(3) and N = 1000 and
in all experiments with N = 2000. We conclude that
this effect is caused by an increased number of con-
flict misses, because its magnitude increases with the
number of stages and the innermost loops of our im-
plementations iterate over the stages, thus touching el-
ements of each of the s argument vectors which have
the same index. (PipeD4ls) is the only implementation
which does not store the argument vectors separately.
Instead, (PipeD4ls) contracts the data which are part
of the working space of the outermost loop into a small
consecutive memory region, and the access patterns of
the inner loops are less likely to produce conflict misses.
However, no similar effect has been observed using the
Gigabit Ethernet or Fast Ethernet network. This sug-
gests that the way data are stored and managed by the
network protocol (OpenIB or TCP/IP) influences the
cache access pattern and the data layout in the cache,
and this leads to a worse cache performance of some im-
plementations when OpenIB is used instead of TCP/IP.

Even though this sharp drop of the efficiencies makes
an evaluation of the experiment with N = 1000 and
DOPRI 8(7) difficult, a clearer comparison of the imple-
mentations is possible for the other experiments. Us-
ing the Infiniband network, N = 1000 and RKF2(3) or
DOPRI 5(4), (PipeD4ls) obtains the highest efficiency.
(PipeD4) and (PipeD5) are slightly slower, but there
is no significant difference in the performance of these
two implementations. Similarly, (PipeD) and (Dbc)
show an equal performance, and both are slightly slower
than (PipeD4) and (PipeD5), but clearly faster than
(PipeD2). Thus, the most successful implementations in
these experiments are those which use distributed data
structures. Using the Infiniband network and N = 2000,
the performance improvement of (PipeD4ls) over the
other implementations is larger than for N = 1000, par-
ticularly if DOPRI 8(7) is used, but the differences of the
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Fig. 10: Parallel speedup of the distributed-address-space implementations (N = 1000).



5.3 Distributed-Address-Space Implementations 23

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Hydra, RKF 2(3), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Hydra, DOPRI 5(4), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Hydra, DOPRI 8(7), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Hydrus, RKF 2(3), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Hydrus, DOPRI 5(4), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Hydrus, DOPRI 8(7), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Opteron cluster (Infiniband), RKF 2(3), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Opteron cluster (Infiniband), DOPRI 5(4), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Opteron cluster (Infiniband), DOPRI 8(7), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

JUMP (ST mode), RKF 2(3), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

JUMP (ST mode), DOPRI 5(4), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

JUMP (ST mode), DOPRI 8(7), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

HLRB 2, RKF 2(3), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

HLRB 2, DOPRI 5(4), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

HLRB 2, DOPRI 8(7), N=1000

Number of MPI processes

E
ff
ic

ie
n
c
y

 

 

D

Dbc

PipeD

PipeD2

PipeD4

PipeD5

PipeD4ls

Fig. 11: Parallel efficiency of the distributed-address-space implementations (N = 1000).
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Fig. 12: Parallel speedup of the distributed-address-space implementations (N = 2000).
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Fig. 13: Parallel efficiency of the distributed-address-space implementations (N = 2000).
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Fig. 14: Comparison of the parallel efficiency of the distributed-address-space implementations on the Opteron cluster
using different networks (FE = Fast Ethernet, GE = Gigabit Ethernet, IB = Infiniband).

performances of the other specialized implementations
compared with each other are smaller. Only (PipeD2)
can always be identified as the slowest specialized im-
plementation. Thus, for this larger system dimension,
which requires more data and larger working sets to be
processed, the reduction of the storage space and the si-
multaneous increase of spatial locality achieved by the
low-storage implementation, (PipeD4ls), has a signifi-
cantly larger influence on the execution time than the
variations of the computation and communication pat-
tern developed for the other implementations.

Figure 14 shows a comparison of the parallel effi-
ciencies of the implementations (Dbc), (PipeD), and
(PipeD4ls) on the three different interconnection net-
works. The speed of the interconnection network has
a deciding influence on the scalability of our implemen-
tations. As one expects, the scalability generally im-
proves with the network speed because communication
costs decrease. Thus, usually the performance on the
Gigabit Ethernet network (1Gbit/s) is better than the
performance on the Fast Ethernet network (100Mbit/s),
and the best performance can be obtain on the Infini-
band network (10Gbit/s). Exceptions are the experi-
ments with N = 1000 and DOPRI 5(4) or DOPRI 8(7)
where the efficiency curves of some implementations on
the Infiniband network show a sharp drop when the num-
ber of processors exceeds some value as discussed above.
However, the impact of the network speed on the per-
formance depends on the dimension of the ODE system
and the number of stages of the RK method. When
the number of processors is increased on the Infinband

network, the efficiencies stay nearly constant, i.e., they
decrease only slowly. Compared to this, the efficiencies
on the other networks degrade relatively quickly. Us-
ing N = 2000, i.e., the larger system dimension, the
difference in the performance of the Fast Ethernet net-
work and the Gigabit Ethernet network is only small.
Using N = 1000, the difference in the performance of
the networks depends to a greater extent on the num-
ber of stages of the RK method. Thus, while both the
Fast Ethernet network and the Gigabit Ethernet net-
work are significantly slower than the Infiniband network
for RKF2(3), for DOPRI 8(7) the performance of the Gi-
gabit Ethernet network gets closer to the performance
of the Infiniband network, whereas the performance of
the Fast Ethernet network does not improve noticeably
when the number of stages is increased.

5.3.3 IBM p6 575 Cluster

While the Pthreads implementations are confined to the
shared address space of a single cluster node, the MPI
implementations can communicate across node bound-
aries. We can choose ST or SMT mode by running up
to or more than 32 MPI processes per node. Figures 10–
13 show the speedups and the efficiencies observed in ST
mode for up to 256 MPI processes.
The performance of the general implementation (D)

is as bad as on the other systems considered because
it requires global communication. This behavior can al-
ready be observed using small numbers of processes. We
therefore took measurements with this implementation
using only at most 32 processes on a single node.
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In both ST and SMT mode, the specialized imple-
mentations fall into two groups. The group which ob-
tains a higher efficiency consists of (Dbc), (PipeD) and
(PipeD2). These implementations have in common that
all processors process the pipelines towards increasing
array indices. The second group consists of the imple-
mentations (PipeD4), (PipeD5) and (PipeD4ls), which
apply the computation order illustrated in Fig. 3 (c). A
comparison with an additional implementation variant
of (PipeD) which iterates over the system dimension in
opposite direction, i.e., towards decreasing array indices,
indicates that the iteration direction is the deciding fac-
tor why the implementations in the second group show
a lower efficiency.

All in all, the efficiency observed on JUMP is lower
than on Hydrus and on the Opteron cluster using the
Infiniband network. In our experiments with up to 256
processors, the efficiency does, however, remain almost
constant or decreases only slowly if the number of pro-
cessors is increased, which represents a high scalabil-
ity. The different strategies of (PipeD4) and (PipeD5)
to handle the blocks of ηκ that are required to start
the initialization of the pipelines are not reflected in
significant runtime differences. But the alternative fi-
nalization strategy used by (PipeD2) shows a tendency
to result in worse runtimes than the finalization strat-
egy of (PipeD). In most of the experiments performed
on JUMP, the low-storage implementation (PipeD4ls)
is competitive with its base implementation (PipeD4).
Only in the experiments using DOPRI 5(4) and DO-
PRI 8(7) with N = 1000 the performance of (PipeD4ls)
is slightly worse than that of (PipeD4).
Figure 15 compares the performance of the special-

ized implementations (Dbc), (PipeD), (PipeD4) and
(PipeD4ls) in ST and SMT mode. In Section 5.2.3, we
saw that the performance of the Pthreads implementa-
tions can nearly be doubled by executing two threads
on each physical core. We observe a similar improve-
ment for the MPI implementations. But while the job
size of the Pthreads implementations was limited to one
node, i.e., 32 threads in ST mode and 64 threads in SMT
mode, MPI jobs can span multiple nodes. In our exper-
iments with up to 256 processes (8 nodes/256 cores in
ST mode, 4 nodes/128 cores in SMT mode), the per-
formance of SMT jobs nearly matches the performance
of the corresponding ST jobs with the same number of
processes but twice the number of physical cores. That
means, the performance our implementations gain from
using SMT mode can be sustained for multi-node jobs.

5.3.4 SGI Altix 4700

Among the target systems considered, HLRB 2 has the
largest number of processor cores. On this system we
could investigate the scalability of our implementations
with up to nB/2 = N/2 processor cores, which is the
maximum number of processes supported by our current
implementations.2

2Using nB/2 processors, the data range assigned to each pro-
cessor spans two blocks. It is possible to modify (Dbc) such that

On HLRB 2 the performance of the specialized imple-
mentations is not influenced by the direction of the itera-
tion over the dimension of the ODE system. Due to their
higher locality, the pipelining implementations clearly
outperform (Dbc) if the number of processors is small.
But as the number of processors grows, (Dbc) becomes
more competitive in the experiments using RKF2(3) or
DOPRI 5(4) and may even outperform the pipelining im-
plementations in some experiments because (Dbc) can
overlap a larger part of the communication time and the
share of the overall data set to be processed by the in-
dividual processors decreases reciprocally proportional
with the number of processors p and, thus, locality as-
pects become less significant. However, if the number of
processors is increased further such that nB/p − 2 ≈ s
the advantage of (Dbc) being able to overlap a larger
part of the communication time is no longer applicable
and the performance is no longer better than that of the
pipelining implementations.

As on JUMP, (PipeD4) and (PipeD5) show similar
execution times. The alternative finalization strategy of
(PipeD2) is not successful on HLRB 2. But the other
implementations obtain a high efficiency above 0.6 even
for large numbers of processors. Using DOPRI 8(7) and
N = 2000, speedups between 870 and 933 have been
measured on 1000 processor cores. Steps observed in
the speedup curves and the corresponding saw teeth ob-
served in the efficiency curves reflect load imbalances
resulting from the block-based blockwise data distribu-
tion. For example, when 896 MPI processes are started
using N = 2000 as parameter, the data range of 208
processes consists of 3 blocks while the data range of
688 processors consists of only 2 blocks. In most exper-
iments, the performance of the low-storage implementa-
tion (PipeD4ls) is slightly lower than that of the corre-
sponding conventional implementation (PipeD4). The
general implementation (D), which requires global com-
munication, shows a similarly poor performance as on
the other systems.

6 Conclusions

In this paper, we have proposed an implementation
strategy for RK methods which is based on a pipelined
processing of the stages of the method. This implemen-
tation strategy is suitable for ODE systems with limited
access distance. It has been derived from the pipelining
scheme presented in [29, 30, 31] by an overlapping of vec-
tors. The implementation strategy proposed herein pro-
vides a higher locality of memory references and requires
less storage space than our previous implementations
and other implementations proposed in related works.
If no stepsize control is required, only n + Θ

( 1
2s

2d(f)
)

vector elements need to be stored. Efficient stepsize con-
trol based on an embedded solution is possible using
only one additional n-vector. In contrast to low-storage

the data range of each processor can be reduced to one block, but
no pipelining of the RK stages is possible with a data range of only
one block since at least two pipeline stages are required to build a
feasible pipeline.
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Fig. 15: Comparison of the parallel efficiency of the distributed-address-space implementations on the IBM p6 575 Cluster
using SMT and ST mode.

RK algorithms proposed by other authors, the presented
implementation strategy does not impose restrictions on
the choice of coefficients of the RK method and can thus
be used with popular embedded RK method such as the
methods of Dormand and Prince, Verner, Fehlberg and
others. Moreover, parallel implementations of the pro-
posed strategy for shared as well as distributed address
space have been described, and an experimental evalua-
tion has shown a high scalability on five different parallel
computer systems.

Download

The implementations investigated in this paper are avail-
able for download from our project website http://www.
ai2.uni-bayreuth.de/ode-adaptivity/.
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