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Zusammenfassung

In dieser Dissertation werden Resultate von numerischen und analytischen Untersuchungen
der Konvektion und ihrer Dynamowirkung in rotierenden fluiden Kugeln und Kugelschalen
dargestellt. Dieses Forschungsprogramm ist motiviert durch das geophysikalische Problem des
Ursprungs des Erdmagnetfeldes und seiner Eigenschaften.

Umfangreiche numerische Simulationen wurden durchgefiihrt, um das Verstandnis der
physikalischen Komponenten und Mechanismen zu férdern, von denen angenommen wird, dass
sie verantwortlich sind fiir die Erzeugung des geomagnetischen Feldes und seiner Variatio-
nen in der Zeit. Fragen wie die des linearen Finsetzens und der nichtlinearen Eigenschaften
bei endlicher Amplitude der Konvektion, der Erzeugung und der Aquilibrierung von Mag-
netfeldern in elektrisch leitenden Fliissigkeiten, der nichtlinearen Riickkopplungseffekte der
erzeugten Magnetfelder auf die Konvektion, der Oszillationen und kohédrenten Prozesse in den
turbulenten Bereichen und andere Fragen werden sowohl in Abhéingigkeit von allen funda-
mentalen Parametern des Problems als auch fiir verschiedene magnetische, thermische und
Geschwindigkeitsrandbedingungen und fiir einige sekundire Annahmen wie die des elektrisch
leitenden inneren Kerns und fiir verschiedene Temperaturprofile des Grundzustands unter-
sucht. Wegen der fehlenden Kenntnis der Eigenschaften des Erdkerns und der unsicheren
Details der Prozesse, die sich dort abspielen, ist diese Art der Forschung notwendig, damit
Hilfsmittel fiir die Extrapolation zu realistischen Modellen des Geodynamos zur Verfiigung
gestellt werden koénnen. Von besonderem Interesse sind die verschiedenen Arten der Oszillatio-
nen des Dipolfeldes. Im Gegensatz zu quadrupolaren und hemisphérischen Dynamos wurden
dipolare Dynamos urspriinglich als nicht-oszillatorisch angesehen. Aber die sechs verschiede-
nen Arten von dipolaren Ostzillationen, darunter die "unsichtbare”, die in dieser Dissertation
vorgestellt werden, haben diese Ansicht gedndert. Die Erzeugung von Magnetfeldern durch
Konvektion zeigt eine starke Abhéngigkeit von der Prandtlzahl des Fluids. Diese Tatsache
hat jedoch in der Vergangenheit wenig Aufmerksamkeit gefunden. Konvektionsgetriebene Dy-
namos flir Prandtlzahlen grofier als eins werden untersucht mit dem Ziel, die Giiltigkeit der
magnetostrophischen Approximation zu testen. Letztere stellt sich als nur schlecht giiltig her-
aus fiir P < 300. Dynamos in diesem Bereich erfordern magnetische Prandtlzahlen Pm, die
mit P anwachsen. Der gleiche Trend setzt sich fiir Werte von P unterhalb von eins fort. Fiir
Pm = P = 0.1 wird ein hemisphéarischer Dynamo gefunden im Fall des Rotationsparameters
7 = 10°. Eine weitere Verringerung von Pm fiihrt zum Abfall des Magnetfeldes unabhingig
von der benutzten Rayleighzahl.

Zusatzlich zu den numerischen Simulationen und Parameterstudien beinhaltet die Disser-
tation auch eine analytische Studie der inertiellen Konvektion in rotierenden Kugeln im Limes
kleiner Prandtlzahlen und hoher Rotationsraten. Explizite Ausdriicke fiir die Abhéngigkeit der
Rayleighzahl von der azimuthalen Wellenzahl und von dem Produkt 7P sind abgeleitet worden
und neue Resultate fiir den Fall des nahezu thermisch isolierenden Randes werden angegeben.
Beschrankte Vergleiche mit den beobachteten Eigenschaften des geomagnetischen Feldes wer-
den ebenfalls prasentiert. Ein Beispiel sind die torsionalen Alfvénwellen, die in den numerischen
Simulationen dieser Dissertation gefunden wurden und die geophysikalisch relevant sind als
moglicher Ursprung der beobachteten Impulse der Sdkularvariation des Erdmagnetfeldes. Das
Umklappen der Magnetfeldpolaritdt wurde ebenfalls in unseren Simulationen beobachtet. Die
Intermittenz des Dynamos und die Wechselwirkung zwischen dipolaren und quadrupolaren
Komponenten sind Voraussetzungen fiir ein aperiodisches Umklappen des Dipols in &hnlicher
Weise wie im Fall des Erdmagnetfeldes. Die Gelegenheiten fiir quantitative Vergleiche mit
geophysikalischen Beobachtungen sind jedoch ziemlich beschrankt wegen der Komplexitat des
selbst-konsistenten Dynamoproblems und wegen der beschrénkten Computerkapazitat fiir die
numerischen Simulationen.






Abstract

The dissertation reports results from numerical and analytical studies of convection and dy-
namo action in rotating fluid spheres and spherical shells. This research is motivated by the
geophysical problem of the origin and properties of the Earth’s magnetism.

Extensive numerical simulations are performed in order to advance the understanding of the
basic physical components and mechanisms believed to be responsible for the generation and the
variations in time of the main geomagnetic field. Questions such as linear onset and nonlinear
finite-amplitude properties of rotating convection, generation and equilibration of magnetic
fields in electrically conducting fluids, nonlinear feedback effects of the generated magnetic
fields on convection, spatio-temporal structures of magnetic and velocity fields, oscillations and
coherent processes in turbulent regimes and other questions are studied in dependence on all
basic parameters of the problem, as well as for various choices of the magnetic, thermal and
velocity boundary conditions and for some secondary assumptions such as a finitely-conducting
inner core and various basic temperature profiles. Because of the lack of knowledge of the
properties of the Earth’s core and the uncertain details of the processes that take place there,
this research is necessary in order to provide the tools for extrapolation to realistic models of the
geodynamo. Of particular interest are various types of oscillations of dipolar fields. In contrast
to quadrupolar and hemispherical dynamos dipolar dynamos have been originally considered
to be non-oscillatory. But the six different types of dipolar oscillations, among which is the
“invisible” one, reported in this dissertation alter this view. Generation of magnetic fields by
convection shows a strong dependence on the Prandtl number P of the fluid. But this fact has
received little attention in the past. Convection-driven dynamo action at Prandtl numbers larger
than unity is studied with the goal to test the validity of the magnetostrophic approximation.
The latter is found to be poorly satisfied for P < 300. Dynamos in this regime require magnetic
Prandtl numbers Pm which increase with P. The same trend continues to hold for values of
P less then unity and this regime thus seems to be best suited to reach the goal of minimal
values of Pm. For Pm = P = 0.1 a hemispherical dynamo is obtained in the case of a rotation
parameter 7 = 105. A further reduction of Pm leads to a decay of magnetic field irrespective
of the Rayleigh numbers used.

Apart from numerical simulations and parameter studies of basic physical mechanisms, the
dissertation includes an analytical study of inertial convection in rotating spheres in the limit
of small Prandtl numbers and large rotation rates. Explicit expressions for the dependence
of the Rayleigh number on the azimuthal wavenumber and on the product of Pr are derived
and new results for the case of a nearly thermally insulating boundary are obtained. Limited
comparisons with actually observed features of the geomagnetic field are also presented. An
example are the torsional Alfvén waves found in the numerical simulations of this dissertation.
They are geophysically relevant as a possible cause for the observed secular variation impulses
of the Earth’s magnetic field. Reversals of the magnetic field polarity have also been observed
in our simulations. Dynamo intermittency and interaction between dipolar and quadrupolar
components are preconditions for aperiodic dipolar reversals similar to those of the Earth’s
main field. However, the opportunities for quantitative comparisons with geophysical observa-
tions are rather limited by the complexity of the self-consistent dynamo problem and by the
computational restrictions of our numerical simulations.
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1. Introduction

1.1 Topic of dissertation

That the Earth is magnetic has been known for thousands of years [96], but the reasons for
this and for the many puzzling features of the Earth’s magnetic field have been explained
on sound physical grounds only during the last century. It is now widely accepted that the
main magnetic field of the Earth, as well as those of a great variety of cosmical objects, are
generated by dynamo processes [102]. According to dynamo theory, motions of a conducting
fluid may amplify an initial magnetic field from arbitrary small amplitudes and sustain it at
finite intensity against ohmic dissipation [389]. Seismological and other geophysical studies,
indeed, find that the outer core which is a significant part of the Earth’s deep interior is fluid
and mainly composed of electrically conducting molten iron [85]. Further estimations of the
material properties of the Earth indicate that the fluid outer core must be in a vigorously
convecting turbulent motion [115]. Thus, it is ideally suited to host a dynamo process which
could generate the main geomagnetic field. In mathematical terms dynamo theory seeks so-
lutions of a combination of the governing equations of fluid mechanics and electrodynamics
[1041] and in the case of the Earth also of those of thermodynamics and physical chemistry [9].
Because of the nonlinear nature of these equations which have no known analytical solutions
in their geophysically relevant form, the geodynamo problem is a challenging one which has
been in the focus of intensive research for more than half a century but is still far from being
fully understood [18]. Nonlinear numerical simulations represent a promising path of research
since they provide the only method to obtain self-consistent three-dimensional solutions and
model the geodynamo process from first principles without drastic over-simplifications [79].
The past decade has, indeed, seen significant advances in computational simulations of con-
vection and magnetic field generation in the Earth’s core with many workgroups taking part
in the effort [56, 76, 80, 30, 94, , 59, 71] and others. Although dynamically self-consistent
models of the geodynamo have simulated magnetic fields that appear in some ways quite
similar to the geomagnetic field, none are able to run in an Earth-like parameter regime
because of the considerable spatio-temporal resolution that is required [103].

The dissertation reports results from numerical and analytical studies of convection and
dynamo action in rotating fluid spheres and spherical shells. The research is motivated by one
of the fundamental problems of Geophysics — the problem of the origin and properties of the
Earth’s magnetic field. In order to overcome the deficiencies of computational methods and
technology and the uncertainties connected with the roughly estimated material properties
of the Earth’s deep interior, two strategies of numerical simulations have been pursued. On
the one hand detailed models that attempt to include as many secondary effects and to come
as close to geophysically realistic parameter values as possible have been attempted [56, 80].
However, this choice requires introduction of artificial assumptions such as hyperdiffusivities,
spurious symmetries etc., which might modify the very dynamics of the dynamo process and
lead to non-realistic effects [128, (1]. Those models still remain remote in their parameter
values from geophysical realism. This dissertation follows a second approach to the topic
advocated by [30, 59]. The basic equations are solved numerically without introduction of
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additional assumptions. The parameter range is more limited but the spatio-temporal prop-
erties of the convection and dynamo process, the mechanisms of magnetic field generation,
the nonlinear saturation of magnetic fields and their influence on convection may be studied
in detail. It is believed that the same basic processes operate not only at the parameter values
within reach but at those of the Earth as well. Thus, it is both of geophysical as well and of
more general dynamical interest to explore the parameter dependences of those phenomena
[23] in order to provide tools for extrapolation to realistic geodynamo models. Apart from
clarification and parameter studies of basic physical mechanisms, the dissertation includes an
analytical study of rotating convection in the limit of small Prandtl numbers and large rota-
tion rates as well as attempts some comparisons with actually observed geomagnetic features.
However, the opportunities for analytic studies and direct geophysical implications are rather
limited by the complexity of the self-consistent dynamo problem and by the computational
restrictions on the numerical simulations.

1.2 Structure of dissertation

The general structure of the dissertation is best reflected by its Table of Contents, while
the most important results and an outlook to future research objectives are presented in
the concluding chapter 9. Therefore, here we restrict to several notes. To compensate this
short introduction, the dissertation starts with the introductory chapter 2. It’s purpose is
not to provide a comprehensive description of dynamo theory but rather to outline the place
of the research topics reported in the dissertation among the other branches of the field, to
provide physical motivation, to list some open questions driving the research, and to jus-
tify the choices made. Chapters 3 and 4 provide a rigorous mathematical formulation of the
problems considered in the thesis and a description of the numerical methods used for their
solution. Two major subtopics of research are pursued in the dissertation — non-magnetic
rotating spherical convection and convection-driven dynamos. The non-magnetic convection
problem is essential for understanding the properties of the Earth’s magnetic field. Convec-
tion is responsible for the majority of features of dynamo solutions. In fact, self-sustained
magnetic fields may be considered as a bifurcation from a non-magnetic convective state [23].
For this reason a large part of the thesis is devoted to studies of convection in rotating fluid
spheres and spherical shells. The results of these studies are presented in chapters 5 and 6
which discuss linear and finite-amplitude properties of convection, respectively. Except near
onset of convection, the generated magnetic fields exhibit chaotic spatio-temporal behavior
which has no simple description. Extensive numerical simulations of convection-driven spher-
ical dynamos are performed, spanning the computationally accessible parameter space and
employing several possibilities for the magnetic and mechanical boundary conditions in order
to study this behavior. Thus, chapter 7 is necessary to provide a first account and typical
examples of the most characteristic features of the dynamo solutions reported in the disser-
tation and to outline those regions in the parameter space where our main computational
efforts have been concentrated. The spatio-temporal chaos of the magnetic solutions is then
most conveniently described in two parts. The time- and space-averaged properties of mag-
netic fields, and its effects on convection as functions of the parameters of the problem are
presented in chapter 8. The spatio-temporal structures of dynamo solutions, such as coherent
structures, oscillations, intermittency, reversals etc., are discussed in chapter 9. Reversals and
torsional oscillations are of special interest since they may be related to actual geomagnetic
observations. The last sections of chapter 9 are devoted to a discussion of those topics.
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2. Dynamo Theory of Geomagnetism

A fundamental goal of geophysics is to explain the origin and properties of the main magnetic
field of the Earth. The topic has long been a source of fascination for natural philosophers’,
but only in the last half a century with the emergence of dynamo theory a sound physical
theory of geomagnetism has been developed. Although a purely classical theory, geodynamo
theory is in the forefront of modern geophysical and applied mathematical research because
of the thrilling challenges if faces:

Lack of observational data. Measurements of the geomagnetic field are provided by a
dense network of magnetic observatories, by airborne and satellite surveys and by paleomag-
netic records extending to about 200 Ma ago [96]. Nevertheless, the collected data appears to
be incomplete because no direct observations of the conducting fluid outer core of the Earth
are possible. The nearly three thousand kilometer thick mantle renders inaccessible for mea-
surement the entire toroidal part of the field which probably accounts for about half of the
intensity in the Earth’s core as well as the small scale features of the poloidal part which
decay faster with distance than the large scale ones. The material properties, the composition
elements, the precise structure and dynamics of the core and lower mantle are poorly known
for the same reason [85]. Furthermore, even the detailed recent observations cover at best a
few centuries which is a minute period in comparison with the geological time scale and the
time scales of the variations of the main geomagnetic field.

General difficulty of relevant experiments. Self-excited magnetic fields have been
generated by dynamo action under laboratory conditions only very recently [91], [52]. The
technical challenges of attaining high magnetic Reynolds numbers make these experiments so
difficult that in the near future they are likely to provide only a confirmation of theoretical
ideas rather than an useful guidance and insight. The laboratory investigation of thermal
convection which is believed to be the main type of motion within the Earth’s core is more
feasible [27, 66]. Experimental studies of the material properties of the core and lower mantle
are difficult because of the extremely high pressures of about 130 — 330 GPa which would be
necessary to reproduce the real conditions in the deep interior of the planet.

Nonlinear nature of the governing partial differential equations. The geodynamo
is governed by the coupled equations of fluid mechanics, electrodynamics, thermodynamics
and physical chemistry [9]. They form a highly nonlinear and non-local system of partial dif-
ferential equations which are in general intractable in analytical form and even their partial
mathematical analysis is largely nontrivial. For instance, the Navier-Stokes equations [53]
which describe fluid motions of gases and liquids in both laminar and turbulent flows on
scales ranging from below a millimeter to astronomical lengths have been known and studied
already for about two hundred years. Nevertheless, they continue to pose formidable math-
ematical challenges such as resolving the mathematical questions of existence, uniqueness,

! For instance, W Gilbert, author of “De Magnete”, London, (1600). This text is regarded as one of the first
scientific texts written after the decline of the ancient Greeks and Romans. It is based on experimental ob-
servations and predates Galileo’s “Dialogues”, (1624) and Newton’s “Principia”, (1687).

C.F. Gauss provided the first mathematically consistent description of the geomagnetic field as a decomposi-
tion in spherical harmonics presented in his “Allgemeine Theorie des Erdmagnetismus”, Leipzig, (1839).
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and regularity of solutions, and the more physical questions of giving an effective mathemat-
ical description of turbulence, boundary-layer behavior and many others. The fact that the
geodynamo problem involves two further partial differential equations with a complicated
nonlinear feedback between magnetic and velocity fields certainly makes neither the problem
easier nor the dynamics simpler. In view of the principle inaccessibility of “explicit” analyt-
ical solutions, one has to resort to numerical and topological analysis of the problem.

In summary, huge but incomplete data, impossibility of conducting crucial experiments, im-
precise knowledge of key material values and lack of understanding of important physical
ingredients coupled with severe difficulties of treating nonlinear models make the description
of the geomagnetic field a highly nontrivial problem. These formidable challenges turn geo-
dynamo theory into a key to the successful clarification of a number of other problems:

Planetary and cosmical magnetic fields. Intrinsic magnetic fields are an important
property of virtually all types of celestial objects — meteorites, planets, stars, galaxies, clusters
of galaxies and extracluster formations [15], and it is widely believed that many of them could
be explained by some type of dynamo theory. Geodynamo theory is particularly relevant as
an explanation of the magnetic fields of the other planets in the Solar system.

Earth’s interior structure and dynamics. Geomagnetism is an integral part of geo-
physics. The terrestrial field is used as a diagnostic tool for probing the depth of the Earth
and study properties of the upper mantle and the crust such as conductivity, to look for
petroleum and mineral deposits, etc. But a well-developed dynamo theory could have a
much deeper contribution to Earth sciences. Because the main field is generated by motions
within the planet, forward and inverse modeling of the geomagnetic field based on a physical
theory would necessarily reveal most of the basic facts about the composition, structure and
dynamics of the Earth’s deep interior.

Novel physical, mathematical and computational methods. The severe challenges
due to the nonlinear nature of its governing equations place dynamo theory in the center of
exciting theoretical research. The dynamo problem is related to a number of topics in mag-
netohydrodynamics (MHD), geophysical fluid dynamics, turbulence, stability theory and nu-
merical methods. The research on the dynamics of rotating fluids and convection is of interest
to meteorology and oceanography. Since dynamo theory is essentially a study of nonlinear
partial differential equations, progress on this particular topic may have deep implications on
the studies of other processes described in similar mathematical terms. MHD itself could be
considered one notable example since the very idea of merging fluid dynamics and electro-
dynamics was born in the attempt to explain the Solar magnetic field. At present MHD is a
well-developed field with many applications in astrophysics, plasma physics, metallurgy and
a wealth of mathematical and computational techniques. Overviews of the methods used in
geodynamo theory are given in [38, , 18, 52].

The purpose of this chapter is threefold. First, in order to provide a physical motivation for
the study of the dynamo problem the large scale natural magnetic fields in the Universe and
on the Earth will be described in section 2.1. Second, dynamo theory will be briefly outlined
in section 2.2 in order to put the results presented in the dissertation in a wider context.
Third, the choice of research questions addressed in this report will be justified by presenting
some open questions of the theory in section 2.3.

2.1 Phenomenology and physical motivation

The electroweak interaction is one of the fundamental interactions in Nature along with the
gravitational and the strong ones. The fact that it acts at all distances ranging from 103

[ r. simitev ¢ dissertation ] 5
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m to 107 m determines its central role in a major part of physics. A manifestation of the
electromagnetic interaction is, for example, provided by the existence of large scale natural
magnetic fields in the Universe. Apart from being a thrilling subject of mathematical study,
these fields are thought to play a profound role in the cosmical evolution. The electric and
magnetic fields are, of course, manifestations of a more fundamental object — the electro-
magnetic field since at a deeper level Maxwell’s equations can be deduced from Coulomb’s
law plus Lorentz transformation of special relativity. Nevertheless, from a classical viewpoint
and in many practical situations the electric and magnetic phenomena can be considered
separately. Such is the case in MHD where the electric fields play only a secondary role as
shown in section 3.2.5.

2.1.1 Cosmical magnetic fields

Cosmical objects of virtually all types and scales — from the tiniest meteorites through planets
and stars to galaxies and clusters of galaxies possess magnetic fields [15]. These magnetic
fields exhibit a variety of spatial structures, time variations, intensity and origin and play
a major role in many astrophysical processes. Although they rarely contain more than a
tiny fraction of the total energy of the corresponding astronomical object they may have a
significant impact on the transport processes occurring in the interior and the surroundings of
the cosmical object. Magnetic fields are found to significantly influence convection, diffusion,
angular momentum distribution, accretion, cosmic ray distribution and other phenomena.
Thus they can modify, if not completely control, the evolution of cosmical objects and the
mutual interactions between them.

Solar and stellar magnetic fields. The most intense magnetic fields ever observed belong
to the stars. Because of the great astronomical distances, the finest details of the structure,
variation, and strength of the stellar magnetic fields can be resolved sufficiently well only in
the case of the solar magnetic field. The solar convection zone, photosphere and corona
are largely influenced, even dominated, by the solar magnetic field which consists of a global
field with an intensity of about 10~* T and very intense local fields associated with a variety
of small structures visible on the solar surface. At high latitudes the global field has a dipolar
structure while at lower latitudes it consists of four sectors of alternating polarity twisted in
spiral-like fashion away from the Sun due to its rotation. The most characteristic examples of
local magnetic fields are those associated with sunspots. The sunspots are darker regions on
the solar surface with typical diameters of about 103 to 10* km. They are highly magnetic with
intensities of about 0.1 T and appear dark because magnetic fields of such a strength suppress
convection and reduce heat transport. The solar field has a 22-year period in which the
number and polarity of sunspots show a cycle and the global dipole reverses. A variety of other
local magnetic structures such as coronal streamers, prominences, loops, solar flares, plages
etc. are also observed. The temperatures in the photosphere and the corona are sufficient
to supply kinetic energy to charged particles to escape the Sun’s gravitational attraction
and form a conducting solar wind. The influence of the solar magnetic field and the solar
wind are detected far beyond Saturn and probably Pluto. For instance, this interplanetary
magnetic field has an intensity of about 5 nT in the neighborhood of the Earth and is
responsible for the short term variations of the geomagnetic field.

Other main sequence stars also possess magnetic fields which are believed to share many
common features with the solar field. Starspots and magnetic field reversals are observed
although their detailed structure is difficult to resolve. Other types of stars are even more
magnetic. The Ap or peculiar stars have fields of the order of 1 T but a strange feature is that
they do not have convection zones where these fields might be generated. The neutron stars,
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the white dwarfs and the X-ray stars have magnetic fields of about 10* to 107 T. Most of
these objects are in the final stage of their evolution and represent extremely compact bodies
with immense mass. Their fields are believed to be so intense because of the compression of
the magnetic field of the progenitor stars to volumes as small as the volume of a neutron
star (~ 10 km?). Recently, magnetars which are believed to be the most magnetic objects
in Nature have been discovered. They represent a peculiar source of v- and X-rays with an
intensity of the magnetic field of about 10 T. They glow quietly in the X-ray region for
several years then suddenly become vigorously active for a period of a few weeks to months
and emit bursts of y-rays with luminosities billions of times higher than that of the Sun.
The explanation is that as magnetar’s colossal magnetic field drifts through the solid crust
of the star it might crack it and produce a starquake. Since the magnetar is very conductive,
the starquake will generate Alfvén waves which in turn accelerate clouds of particles with
immense energy into the interstellar space. At this field strength the magnetic confinement is
so strong that the space available to an electron becomes comparable to the smallest region
within which it can be localized quantum-mechanically.

Galactic and extragalactic fields. Magnetic fields of significant strength are detected on
yet larger scales. Most spiral galaxies have fields with intensity of about 10~ T. The energy
density of the magnetic fields is comparable with the energy densities of the other components
of the interstellar medium — the cosmic rays and the interstellar gas, an observation known
as equipartition of energies. Usually a pronounced regular and a fluctuating component of
the field may be distinguished. The regular component have length scales comparable with
the visible disk of spiral galaxies and consists of magnetic spiral arms analogous to the ma-
terial spiral arms but sometimes situated between them. The regular field strength increases
towards the center of galaxies. The intensity of the total magnetic field of our Galaxy, the
Milky way, is 62 x 10719 T locally and that of its local regular field is only 441 x 10710 T.
The Galactic field is particular in that it features reversals which have been rarely detected
for external galaxies. Elliptical, barred and irregular galaxies are also known to be mag-
netic but the available data is less detailed. In contrast to spirals their fields appear to be
more random and with lengths much smaller than the galactic scale.

Observations on even larger scale show the existence of magnetic fields in clusters of
galaxies and even extracluster formations. Estimates of the intensity of their regular
components range from 2 x 107! to 3 x 10719 T. There are no detections of a purely cosmo-
logical magnetic field, i.e. a field which is not associated with any gravitationally bound or
collapsing structure or which has a length scale greater than the scale of the largest known
structures in the Universe (50 Mpc).

2.1.2 The geomagnetic field

The geomagnetic field has been among the very first subjects to provoke scientific interest.
It is central to the present report and we briefly touch on its phenomenology.

The Earth’s interior. The nature of the Earth’s deep interior is deduced from seismological,
geomagnetic and other geophysical observations (paths of earthquake waves traveling through
the Earth, experiments on surface minerals and rocks at high pressure and temperature,
motions of the Earth in the Solar System, its gravity and magnetic fields, heat flow from
inside the Earth etc.). Our planet consists concentrically of a solid inner core, a fluid outer
core, a solid rocky mantle and a thin crust on the very surface of the Earth. The fluid in
the outer core is believed to be well-mixed and therefore homogeneous and in an adiabatic
thermal state. However, there might be layers especially at the top which are stably stratified.
The seismic observations indicate that the inner core has a finite rigidity but perhaps is not
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Table 2.1. Main constituent fields and their properties.

Constituent | Location Intensity (max.) | Morphology Time variation
field source
1) Main field outer core 50000 nT mainly dipole secular variation
(70000 nT) ~ 10% yrs;
reversals ~ 10° yrs
2) Local field crust above mean 100 nT very irregular none
Curie point (as high as wave lengths
10° nT) as short as 1 m
3) Regular magnetosphere | 150 nT (500 nT) approx. uniform | 4 to 10 h; recovery
storm field external field — 2 to 3 days
4) Irregular ionosphere, 100 nT global but more | 5 to 100 min
storm field magnetosphere | (200 nT in intense near
Aurora) Aurora
5) Diurnal ionosphere 50 nT (200 nT) global; mainly periodic
variation P;, P? 24,12,8 h
harmonics
6) Pulsations magnetosphere | few nT quasi-global quasi-periodic
1 sec to 30 min
7) Induced crust, about % of global but same as
fields upper mantle, above four irregular above four
oceans fields in places fields

completely solid. Rather it might be a mushy semi-frozen mixture of solid and liquid phases
at a temperature close to the solidification temperature. The composition of the core is not
precisely known but cosmochemistry and high pressure studies show that it is composed
primarily of some iron-rich alloy with an admixture of less dense nonmetals. The most likely
other metal in the core is Ni, while Si, S, O and H have been proposed as possible nonmetallic
constituents. An important question is whether a sufficient amount of radioactive elements
are present in the core to produce significant heating which can serve as an energy source
driving the liquid core motions. Most likely candidates are 4°K, 232Th, 235U, and 238U.

The mantle itself consists of several layers with significant differences in structure, com-
position, and dynamics. Its properties especially in the lower part are not precisely known.
For our purposes the mantle can be considered a solid insulator which due to its thickness
contributes more to the obstruction of the magnetic field than to its generation. However,
above the core-mantle boundary an anomalous layer called D”-layer has been identified. It is
approximately 150 — 200 km thick and might play an important role in the geodynamic and
geothermal behavior. The D”-layer is the most probable source of mantle plumes of hot mate-
rial that emerge from the Earth’s deep interior and give rise to hot spots important in plate
tectonics. The thermal, electric, and topological properties of D” determine the degree of
thermal and dynamic coupling between the core and the mantle through a possible influence
on the outward transport of heat from the Earth’s core or introduction of electromagnetic or
viscous forces that could affect the process of field generation. The crust is the main source
of the anomalous or crustal magnetic field but has no role in the generation of the main field.

Further details of properties of the Earth’s interior and estimates for the values of its
material parameters are provided in references [85, ].

Constituent fields. The field measured at the surface of the Earth is a vector sum of a
number of constituent fields. They originate in different locations and have very different
spatio-temporal scales and dynamical behavior. Their superposition results in a complex
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field the variations of which range over many orders of magnitude: the time variations extend
from well over 10® Hz where they merge into the radioelectric noise spectrum to probably
more than 100 million years while the spatial variations range from meters to thousand
of kilometers. The various constituent fields may be classified by a number of criteria but
probably the most illuminating one is the classification based on their physical origin. Four
major parts may be identified: (1) the external field, (2) the induced field, (3) the local
(crustal) field and (4) the main field. A more precise account of the major constituent fields,
their place of origin, morphology, intensity and time variation is given in table 2.1. Since a
theory of the main field is the subject of the dissertation, we proceed to describe some of its
properties and abandon the other constituents which represent large subjects of their own.

The main field. The main field shows both temporal and spatial variations with typical
scales ranging from 0.1 yr to possibly more than 100 million yrs and from roughly about
3000 km to tens of thousands of kilometers, respectively. The shortest time variation with a
period of the order of 1 yr or less is the so called geomagnetic jerk and the shortest length
scale of a main field feature which can be measured at the surface of the Earth is about
3000 km. Observational methods for measuring the present day field as well as for extracting
information about it from archaeological or geological sources have been developed. Although
these methods have their difficulties and yield large error bars a number of large datasets of
reliable measurements of the elements describing the geomagnetic field are presently available.
The observations can be conveniently assigned to one of the three time records: recent (10 -
100 yrs), archaecomagnetic (102 — 10* yrs) and paleomagnetic record (> 10* yrs ago).

The morphology of the main field is well known only for the recent field. Figure 2.1
represents its total intensity at epoch 2000. Worthy of note is the maximum values of about
65000 nT in the north in Canada and Russia and in the south in Antarctica. The lowest value
of about 20000 nT occurs in South America and it is the reason why charged particles from the
ionosphere and magnetosphere penetrate down to very low altitudes in this region. Besides
the chart of the total intensity the magnetic field is traditionally represented by a number
of charts of other field elements such as the horizontal intensity H, the vertical component
Z of the magnetic field vector, the angles of declination D from the geographic North and
inclination I from the horizontal direction. Apart from the graphical representations the field
can be expressed in a convenient mathematical form by the geomagnetic potential,

I+1
VU= RZ (%) P"(cos0)(g;" cosmep + h]" sinmep), (2.1)
lm

where g/, hj" are called Gauss coefficients, R is the radius of the Earth and P/ are the
Legendre functions. If it is assumed that the mantle is an insulator this expression gives the
field everywhere outside the core as

B=-VU. (2.2)

Since detailed description of the phenomenology of the main field is outside the scope of the
thesis, we only enumerate some of its most interesting features and refer the reader to [412].

e The main magnetic field existed over at least 70% of the geological time.

e Dominance of the axial dipole. About 90% of the magnetic field energy at the surface
of the Earth is due to a dipole moment which is described by the ¢7* and A" coefficients
n (2.1). Its axis is called the geomagnetic azris and is inclined at about 11° to the Earth’s
rotation axis. The points where the geomagnetic axis intersects the surface are the ge-
omagnetic poles. They differ from the magnetic poles defined as the locations where the
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magnetic field vector B is perpendicular to the surface. Paleomagnetic studies show that
the axial dipole has dominated throughout geological past. This is the most characteristic
feature of the main geomagnetic field.

e Westward drift. The main magnetic field changes in time. This variation is called the
secular variation. One of the best known features of the secular variation is the westward
drift of some features of the main field at about 0.2° per year. Examples of such features
are the point of zero declination, the region of maximum declination, the nondipole field
etc. Features that do not exhibit a westward drift also exist.

e Other main characteristics of the recent secular variation. Apart from the westward
drift, other noticeable time variations are (1) decrease in the dipole moment, d:g1, dgi,
Oih}, and (2) northward shift of the axial dipole, 9;gs.

e Magnetic field polarity reversals. One of the most spectacular phenomena in geophysics
are the magnetic field polarity reversals [38] during which the north magnetic pole is
replaced by the south magnetic pole and vice versa. Although the details of the reversal
process are incompletely understood, the occurrence of reversals is well-documented in
volcanic rocks, sediments and oceanic magnetic anomalies. The main field has no preference
for one polarity over the other. The reversal frequency has not been constant through
geological time. In the last 20 Myrs it is about 5 per Myr but steadily decreases as we
go back in time. Between 85 and 125 Myrs ago there was a long interval without any
reversal known as the Cretaceous Long Normal (CLN) Interval (Superchron). The change
in polarity is estimated to take 2000 to 5000 years. The change in polarity is accompanied
by a preceding decrease in intensity of about 20% of its pre-reversal value and subsequent
increase after the change has been completed.

e Other time and space variations. Further observations some of which controversial are:
(1) geomagnetic impulses (jerks); (2) patches of intense magnetic field at high latitudes at
both hemispheres; (3) excursions during which the magnetic poles wander far away from
the geographic poles the field does not reverse its polarity; (4) reversals dominated by
nondipole components; (5) oscillations of the dipole moment and others.

2.2 Overview of dynamo theory

The marvels of the large scale natural magnetic fields and in particular the terrestrial mag-
netic field can hardly be described on few pages. But the most intriguing part of their study
still lies ahead — a theory that could explain the observed phenomena from first principles
has to be developed. In this section we will provide a brief overview of dynamo theory — the
modern theory aspiring to explain the magnetism of cosmical objects.
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2.2.1 The dynamo problem

It has been known for centuries that the Earth is magnetic but the reason for this and for
the many puzzling features of the Earth’s magnetic field have been convincingly explained
only during the last century. A key discovery was made by Oldham in 1906 that the Earth
possesses a fluid core. Further seismological and density considerations pointed out that the
liquid in the Earth’s deep interior is most probably molten iron with significant electrical
conductivity. In view of these facts the original idea proposed by Larmor [83] in 1919 that a
possible dynamo mechanism could explain the properties of the magnetic fields in sunspots
became very appropriate in terrestrial context and was later adopted by Elsasser [13] in
1946 and Bullard [10] in 1949 to solve the problem of geomagnetism. At present this idea
is generally accepted, widely studied and has a number of observational and mathematical
confirmations. However, many important questions still remain open such as those concerning
the energy source driving the fluid motions and the precise physical state of the Earth’s
interior.

According to the dynamo hypothesis, motions within the outer conducting liquid core
can amplify a magnetic field from arbitrary small amplitudes and sustain it at the observed
finite strength against ohmic dissipation. The mathematical formulation of this idea and
the notation are presented in detail in Chapter 3 of the dissertation. The evolution of the
magnetic field is governed by the induction equation (3.28). The fluid velocity appearing in
it is not an arbitrary field but must be subject to the constraints imposed by the general
equations of fluid dynamics, i.e. the conservation laws of mass (3.3), momentum (3.12) and
energy (3.19). Equations describing less important physical effects such as compositional
convection, conductivity of the inner core etc. may also be included. The general dynamo
problem requires solution of those basic equations under the relevant boundary conditions
and in the appropriate parameter regime. Even in simple approximations, this is clearly a
formidable task which is far from being achieved. Fortunately, progress can be made as the
problem is attacked at various levels of complication and below the traditional division of
the theory into Kinematic Theory and Fully Self-Consistent Theory will be briefly outlined.

2.2.2 Kinematic theory

The kinematic problem. A substantial simplification of the general dynamo problem can
be achieved if the fluid dynamical equations (3.3) and (3.12) are discarded and instead an
arbitrary velocity field w is prescribed. Then only the magnetic induction equation (3.28) need
to be considered. Such a reduction of the problem is called the kinematic dynamo problem
[104, 18, 19, 20]. Mathematically, it is a linear homogeneous problem for the magnetic field
B. Written in a non-dimensional form,

%B = RmV x (u x B) + V°B, (2.3)

it depends on a single parameter called the magnetic Reynolds number Rm = Ud/\ which
gives the ratio between the magnitude of the advective and diffusive terms where U and d
are typical velocity and length scales and d?/\ is a time scale.

Excluding irrelevant choices for the prescribed velocity w and situations such as fields
growing to infinity or magnetic solutions due to sources of the field (chemical EMF, perma-
nent magnetism, etc.) the main problem of the kinematic theory is to answer the questions:
Can a prescribed velocity field u of bounded kinetic energy in a fluid of finite conductivity
sustain a magnetic field B of non-vanishing enerqy as time increases to infinity? What should
the structure of the flow uw be? What will the structure of the solution B be? Can a physical
mechanism be identified?
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Antidynamo theorems. The first of these questions may sound rather surprising in view of
the well-known “bicycle” disk dynamo which can certainly sustain magnetic field if kept at
motion. The analogy is justified but misleading since the disk dynamo is multiply-connected
and highly asymmetric device with a very complex conductivity distribution which allows
generation of magnetic field by simple rotational motion. Just the opposite extreme is repre-
sented by the homogeneous fluid dynamo which is simply-connected with uniform conductiv-
ity distribution and thus requires very complex three-dimensional motions in order to support
self-excitation of magnetic fields. Indeed, early in the history of dynamo theory Cowling [13]
suggested his famous theorem stating that an axisymmetric (or two-dimensional) magnetic
field cannot be maintained by dynamo action. Since the observed terrestrial field is in first
approximation exactly of this kind the result cast severe doubts in the validity of the dy-
namo hypotheses. But because no other reasonable hypotheses seemed to exist, it became
imperative to either establish the existence of homogeneous dynamos or to rule them out
by a general anti-dynamo theorem. Fortunately Nature favors the first possibility. The ex-
istence of magnetic fields sustained by dynamo process in a singly connected volume of a
homogeneous fluid was rigorously proved by Backus [1] and Herzenberg [(67] in 1958. After
these decisive results the ongoing quest for anti-dynamo theorems did not stop but changed
its main objective from ruling out the general possibility of dynamo action to ruling out par-
ticular classes of magnetic and velocity fields. The main negative results may be summarized
as follows. Magnetic fields cannot be maintained by purely toroidal motions v = V x wr

if the diffusivity A is a function of |r| only [11], nor by purely radial motions [92], nor can
plane two-dimensional motions sustain a dynamo [39], nor can even time-dependent and
compressible flows of arbitrary A sustain axisymmetric poloidal fields [30], etc.

Necessary conditions for dynamo action. Even if a velocity field is not banned by any
anti-dynamo theorem,it may still not be able to give rise to a magnetic field. As already
mentioned, for a velocity of given structure and magnitude the solutions of (2.3) depend on
the non-dimensional parameter Rm and the generation of B may be regarded as a bifurcation
phenomenon. For Rm = 0 the induction equation reduces to a vector diffusion equation the
solutions of which decay in time. As Rm is increased from zero, the advection becomes
capable of counteracting diffusion and above some critical value of Rm > Rm, solutions of
(2.3) which are non-decaying and are of bounded magnetic energy emerge. Using the methods
of stability theory a variety of necessary conditions for dynamo action, i.e. lower bounds for
Rm at which bifurcation of a solution with non-decaying magnetic field occurs have been
derived. Comparing energy integrals, Backus [1] derived Rm' > 2. A general relationship
of particular utility to the Earth’s core is given by Busse [16]. It has to be emphasized that
these lower bounds represent only necessary but not sufficient conditions for dynamo action.
With a look towards the full self-consistent problem it would be particularly desirable to
obtain necessary conditions in terms of forces acting on the fluid or velocities prescribed at
the boundaries but this still poses a challenging mathematical problem.

Mechanisms of magnetic field generation. Having established the existence of singly-
connected homogeneous dynamos and restricted the class of eligible velocities, kinematic
theory turns to identifying possible mechanisms of magnetic field generation. Following [104]
we separate B and w into axisymmetric (denoted by - ) and asymmetric parts (denoted by
) and further divide the axisymmetric part into zonal and meridional parts:

B =B+ B' = B(s,2)é, + By + B, where By =V x A(s, 2)é, (2.4a)

u=u+u =u(s, z)é, +upy +u', where upy =V x £(s,2)é,. (2.4b)

Equation (2.3) can be similarly separated into axisymmetric and asymmetric parts and evo-
lution equations for A and B can be obtained from the axisymmetric one:
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HA+ s ups - V(sA) = NV — s HA + (u/ x B),, (2.5a)
OB+ sup - V(s 'B) = AV? = s 2B+ 5By - Vu+ (V x (u x BY)),. (2.5b)

If the axisymmetric part of the EMF w/ x B’ = 0 then the last terms in (2.5a) and (2.5b)
vanish. The equation (2.5a) contains no source term and so the vector potential A of the
axisymmetric meridional field is subject only to a form of diffusion and decays to zero as
time increases. Then the second term on the right-hand side of (2.5b) which is the only source
term in the absence of the last term vanishes too and so does the axisymmetric zonal field.
Apart from being the idea behind the proof of Cowling’s theorem such considerations provide
insight into the mechanisms of field generation. We notice that in the absence of w’ x B’ the
zonal field may be generated by sweeping of the field lines of Bj; by ujs known as w-effect.
Thus Bj; can maintain Bé, but Bé, cannot support Bjs. A source of u’ x B’ must be
found to maintain Bj;. Such a source always exists if B # 0 in the presence of asymmetric
flow, u' # 0, as can be seen by the asymmetric part of the induction equation (2.3)

OB —V x (@x B + (v x B')) = AV?B' =V x (¢ x B), (2.6)

which right-hand side represents a source term. Because of (2.6), B’ and uw’ x B’ are linear
functionals of B and therefore if the flow is isotropic but not mirror symmetric

u x B’ = aB. (2.7)

Equation (2.7) provides a non-zero EMF which generates both meridional and zonal compo-
nents of the axisymmetric magnetic field through the last terms in equations (2.5). The effect
is called a-effect after the symbol denoting the pseudo-tensor « in (2.7). In addition to the
insight of how magnetic field is generated, the o pseudo-tensor can be postulated on the basis
of additional considerations which makes possible to obtain simple solutions of the kinematic
problem. The a-effect was originally introduced [111] as an effect due to small-scale isotropic
turbulence and gave rise to the so called mean field electrodynamics.

In addition to its mathematical beauty, kinematic theory is useful since it provides rig-
orous proofs of the existence of homogeneous dynamos, necessary conditions for dynamo
action, insight into the magnetic field generation mechanisms, guidance and validity checks
for numerical models and experiments.

2.2.3 Dynamically self-consistent theory

The next level of complication of dynamo theory is the consideration of the complete self-
consistent set of equations (3.3), (3.12) and (3.28). Akin to other problems of such overwhelm-
ing complexity it has been separated to simpler subproblems which provide key insights to
its overall solution. One possible subdivision consists of the questions:

e Determine a non-magnetic flow realized in a rotating fluid shell under the action of Coriolis
and viscous forces, gravity and buoyancy, i.e. solve only the fluid-dynamical part of the
problem (3.12) and (3.19). The solution turns out to be convective flow.

e Study the influence of an imposed magnetic field on the preferred non-magnetic solution.
This is usually referred to as magnetoconvection.

e Attempt solution of the full self-consistent dynamo problem under various simplifying
assumptions or numerically.

To facilitate the discussion of those topics, we note that the governing equations may be
nondimensionalized. One possible way is presented in section 3.3.3 where the material prop-
erties of the system are combined in several nondimensional parameters, the most important
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Fig. 2.2. On the left: Qualitative sketch of
the preferred structure of convection near
onset at values of the Prandtl number close
to unity and high rotation rates (from [13]).
On the right: Isosurfaces of z-component of
vorticity of a convection solution at R =
3.8 x 10°, P =10 and 7 = 10*.

of which are the Rayleigh number R, the Coriolis number 7, the Prandtl number P, and the
magnetic Prandtl number Pm. A large part of the dissertation is devoted to studying the
effects of their variation.

Convection in rotating spherical shells. It is widely believed that the fluid motions in the
core are driven by buoyancy of thermal or chemical origin and thus represent convective flows.
Besides application in geomagnetism, convection is a key problem in hydrodynamic stability
theory, bifurcation theory, transitions to turbulence, pattern formation etc. , and is relevant to
many other geophysical and astrophysical systems. The geometrical configuration appropriate
for modeling the convection in the Earth’s core is that of a rotating self-gravitating sphere
or shell. Apart from nonlinear effects preventing analytical treatment of convection at finite
amplitudes, the rigorous analysis of the linear onset is hindered by the non-constant angle
between Coriolis and gravity forces throughout the volume of the shell. The polar regions
resemble a plane layer rotating about a vertical axis while the equatorial region is similar to a
rotating cylindrical annulus. These two geometries allow reduction to two dimensions and are
somewhat easier to address analytically but the results are not fully applicable to spherical
geometry. A sound basis for the study of the problem, though restricted to linear analysis in
terms of axisymmetric solutions was laid by Chandrasekhar [36]. Fundamental advances were
made by Roberts [100] and Busse [13] who recognized that the important modes in the rapidly
rotating system with Prandtl number of order unity are non-axisymmetric and found that
the convection is characterized by a “cartridge belt” pattern as illustrated in figure 2.2. Later
works [110, 74] have provided additional rigor and details to this basic picture. Experimental
studies [27] have confirmed the qualitative features predicted by the theories for the range of
Prandt]l numbers of the working fluids used. A fundamentally different equatorially-attached
convection regime has been found at sufficiently low values of the Prandtl number [121]
and interpreted as modified inertial oscillations [121]. Linear numerical studies [124, 3] have
found that the form of convection pattern is strongly dependent on almost all parameters
which enter the formulation of the problem and identified various regimes of convection. Due
to recent advances in numerical models the properties of finite amplitude convection have
been studied up to hundred times the critical Rayleigh number [114, 59]. It is surprising
that the remnants of the columnar structure discovered in the linear studies persist well into
the chaotic regime of convection. A particularly relevant recent review of the topic is [24]
and chapters 5 and 6 are also entirely devoted to studies of convection in rotating spherical
systems.

Magnetoconvection. The subproblem closest to the full MHD dynamo problem is that of
magnetoconvection in which the effects of imposed magnetic fields on convection are studied.
The basic phenomena can be easily understood if the Lorentz force is represented as

(VxB)xB=(B-V)B— V(%|B|2). (2.8)
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The second term on the right hand side can be absorbed into the modified pressure gradient
of (3.12) and therefore is of little importance while the first one is interpreted as magnetic
tension along the field lines. This tension has components parallel and perpendicular to the
field lines and the perpendicular component is of particular importance because it opposes
any distortion of the field lines making them behave like elastic strings. Since according to
the Alfvén theorem the field lines are “frozen” in a conducting fluid such a distortion may
be due to a flow perpendicular to the field lines. As a result in a perfectly conducting fluid
oscillations known as Alfvén waves occur alternatively if the fluid has a finite conductivity
the fluid motion is damped by imposed magnetic fields and convection is inhibited. It is also
of interest to consider the combined effect of rapid rotation and imposed magnetic fields
on convective flows. Since the viscous and inertial forces are negligible in the Earth’s core
(7 ~ 10'® and the ratio of inertial to Coriolis forces ~ 107°), the leading order steady balance
in (3.12) is the magnetostrophic balance

0=—-Vr+2ux22+0p(O,I"g + i(v x B) x B. (2.9)

A small B acts to relax the constraint of the rotation given by the geostrophic balance of the
first two terms in (2.9) rather than to inhibit convection and thus facilitates the flow. But for
a large B the inhibiting effect of the magnetic field is much stronger than its relaxing effect.
Thus at a particular value of the imposed magnetic field a minimum critical Rayleigh number
exists. It has been found that this minimum is reached at a value of the Elsasser number
A =~ 1where A = 2B?Pm /7 and consequently suggested that planetary dynamos may operate
near this value. However, this picture is true only for steady fields and some studies suggest
[127] that there is no optimal state of magnetoconvection. For a comprehensive review refer
to [129].

Solutions of the full nonlinear governing equations. Despite enormous difficulties a large
amount of literature is devoted to investigation of the full coupled set of MHD equations (3.3),
(3.12), (3.19) and (3.28), as discussed in the reviews [23, , 79]. Two approaches to the
problem can be identified: predominantly analytical and predominantly numerical.
Analytical solutions. The analytical approach can be further subdivided into weak and
strong field models. The first working MHD dynamos were produced by Busse in 1973 [14]
and Childress and Soward in 1972 [37] in rapidly rotating plane layers. A second model by
Busse [15] far more appropriate for the Earth considers a rotating annulus with inclined
top and bottom boundaries resembling a spherical shell. The analysis consists of four steps:
(1) Neglecting the Lorentz force and solving (3.12) and (3.19) to obtain the flow which
close to onset is similar to the one shown in figure 2.2; (2) Solving the kinematic problem
(3.28) for this flow; (3) Modification of step 1 to take into account the Lorentz force; (4)
Recalculation of B using the modified flow. Such models are “weak field” because B must be
small in order to be neglected in the first step and to allow expansion in powers of its small
amplitude. Moreover, according to Lenz’ rule B modifies u so as to remain small. The weak
field models are useful because they regard the dynamo problem as a stability problem and
allow a rigorous investigation of the first several bifurcations after onset of dynamo action
which is nearly impossible by other means.

Though they are beautiful examples of applied mathematics, the weak field dynamos are
irrelevant as an explanation of the geomagnetism and thus models producing strong magnetic
fields come into consideration. The main idea is due to Taylor [112] who suggested that in view
of the conditions in the Earth’s core the inertial and viscous forces should be negligible and
the magnetostrophic balance (2.9) must hold. Using such a force balance and the boundary
condition u, = 0, he derived the so called Taylor’s constraint
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Fig. 2.3. On the left: Radial magnetic field at Earth’s surface calculated using data from the
CHAMP and Orsted magnetic field satellites (from [70]). Values range between —0.1 mT and
0.1 mT. On the right: Radial magnetic field at r = r,4 1.6 of a dynamo solution with R = 109,
P =5, 7=5x103 Pm = 10. Values range between —0.0816 mT and 0.0512 mT.

/ [(V x B) x B],dS =0, (2.10)
C(s)

where C(s) is an an arbitrary coaxial cylinder intersecting the contained fluid. Then the
reverse considerations imply that if (2.10) is satisfied the magnetostrophic balance (2.9)
with the boundary condition u, = 0 has solutions. Since this balance is much simpler than
the original Navier-Stokes equation a procedure to find the solutions may be developed as
described in [101]. The integrations of the magnetostrophic balance following these ideas have
so far not provided a satisfactory converged solutions.

Numerical solutions. Though possibly less appealing than neat analytical results, numer-
ical solutions are often more revealing and in cases as difficult as the MHD dynamo problem
probably the only possible solutions suffering no over-simplifications. Numerical modeling is
not new and has assisted dynamo theory in any stage. It can be traced back to 1954 when
Bullard and Gellman [11] made a first attempt to solve the kinematic problem. Later exam-
ples including linear and nonlinear studies of convection in various geometries, integrations
of strong field models, magnetoconvection, not fully three dimensional or time dependent
models etc., are much too numerous to be cited here. The computational approach applied
to the fully self-consistent problem has brought almost revolutionary advances during the
last decade. For the first time in the long history of geomagnetism the terrestrial magnetic
field is being modeled from first principles without any drastic ad hoc assumptions.

The most popular technique for solving the dynamo equations numerically is the pseudo-
spectral method recently described by Tilgner [113] and first applied to the geodynamo by
Glatzmaier and Roberts [56]. The vector fields w and B are expanded into toroidal and
poloidal parts and these scalar fields together with the © (and I') field are expanded in
spherical harmonics. In the radial direction either a finite difference scheme or expansion in
Chebishev polynomials is used. These expansions are inserted into the governing equations
(3.3), (3.12), (3.19) and (3.28) and time dependent equations for the coefficients are obtained.
The linear diffusion operators are handled by an implicit scheme such as the Crank-Nicholson
method while the nonlinear terms are handled explicitly by converting from spectral to
physical space so that the required operations can be treated easily.However, it requires large
computing resources since in addition to the need of computing three-dimensional fields in a
large domain further problems such as the lack of an efficient fast Legendre transform and
the need of small time steps at high 7 make the execution times very long.

Following a similar procedure a number of geodynamo models [56, 76, 80, 30, 94, 59],
among others have been reported in the literature. They employ various nondimensionali-
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sations, boundary conditions, parameter regimes, energy sources and distributions, density
approximations and many of them include some less important physical ingredients such as
conducting inner core, inhomogeneous heat flux, various models of the core-mantle coupling
and topology etc. Despite long computation times these simulations are not restricted to
single runs and rather extensive parameter and model studies have already been conducted
[68, 76, , 10, 62, 82] Most models routinely simulate several magnetic diffusion times and
produce self-excited magnetic fields which at the surface of the Earth have an intensity, an
axial dipole dominated structure and a westward drift of the nondipole features that are
all qualitatively similar to those of the geomagnetic field. As an illustration of the quality
and detail of the fully self-consistent simulations, figure 2.3 represents a snapshot of the ra-
dial magnetic field of one of our recent runs compared to the observed radial geomagnetic
field. The apparent similarity of the features indicates that such models capture the essential
physics but one should not be tempted to believe that the problem of geomagnetism has been
solved and such comparisons must always be supplemented with an outline of the deficiencies
of the numerical models.

The primary dynamics of the core is controlled by (1) rapid rotation, (2) small viscosity,
(3) buoyancy (4) self-generated magnetic fields and the difficulties are rooted in this partic-
ular combination of main effects. To see this we need to estimate the values of the Coriolis
parameter 7 and a further nondimensional number — the Reynolds number Re = Ud/v. Us-
ing the value 3 x 10™* m/s for U obtained from the observed westward drift of nondipole
features of the main field and the often-quoted value 1076 m?/s for the molecular viscosity
v, we find that Re ~ 10° and 7 ~ 10'°. These extremely large values are due to the small
viscosity and the high rotation rate characteristic for the Earth. The Reynolds number gives
the ratio between the inertial and viscous forces and its large value means that the Earth’s
core is in a highly turbulent state where a large number of scales are present. The viscous
forces are negligible everywhere except in the boundary layers and in the smallest eddies at
the end of the turbulent energy cascade where they become capable of dissipating the energy
transfered from the large scale fluid motions. The Kolmogorov microscales, i.e. the time and
length scales of the smallest dynamically significant flow structures which appear in such
a turbulent regime can be estimated in terms of the Reynolds number and the large-scale
parameters U and d of the flow. Using the formulas:

d =dRe™?*, ' = %Re‘l/z. (2.11)

we obtain 2.3 x 10° s and 0.4 m for the time and length scales of the smallest turbulent
eddies. It is beyond hope to resolve such tiny scales with the aid of the present of near-
future computing resources in which a high numerical resolution case normally deals with
length scales larger than 10* m. Because of the impossibility to resolve small turbulent scales
any numerical model represents a large eddy simulation where the viscous forces are much
stronger than in the fluid core of the Earth and have a significant dynamical effect. Thus
numerical dynamo models simply operate in the wrong dynamical regime which might well
have qualitative differences compared to the real state of the Earth where the main balance
must be between the Lorentz and Coriolis forces and the viscous force must be negligible.

2.3 Open problems
Many open questions remain in almost any branch of dynamo theory. Below we restrict the

attention to those of numerical nature most relevant to the thesis. As noted, the current
numerical simulations of the geodynamo can be regarded as modeling from first principles,
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i.e. without employing any drastic ad hoc assumptions. However, simulations face a number
of paramount difficulties. First, the values of many of the material properties of the core and
lower mantle are unknown. Additional uncertainties concerning the structure of the deep
Earth’s interior and the phenomena taking place there also exist. These facts restrict the
accuracy to which the exact Earth-like parameter values are known to very rough estimates.
Second, these roughly estimated values correspond to an extremely turbulent state with
huge range of significant time and length scales which are impossible to resolve with the
present day computing power. Two main methods have been used to approach an Earth-like
parameter regime within the current computational constraints: the concept of hyperdiffusion
[56, 80, 105] and the so called “21-dimensional dynamos”, [73]. However it has been found
that both methods introduce unphysical effects [128], [(1]. On the other hand simulations of
dynamos without the use of hyperdiffusivities are restricted to relatively low Rayleigh and
Coriolis numbers but at least no artificial effects are introduced. Since it is of a more general
physical interest to study the parameter dependence of rotating spherical dynamos, several
groups have performed simulations on this basis ([08, 706, , 10, 62] and others).

This current state of matters suggests the directions of future research in the field. The
numerical geodynamo modeling should solve simultaneously the forward and the inverse
problem with two main goals. On the one hand it should help to study the convection and
magnetic field generation and enhance the understanding of their mechanisms. On the other
hand it should provide comparisons with the observations of the actual geomagnetic records
and test various hypotheses suggested about the dynamical regime and structure in the
Earth’s core. In particular several main tasks may be identified as described below.

Systematic investigation of parameter dependences. The influence of the control pa-
rameters should be explored systematically wherever possible instead of relying on a single
computation. Indeed cases with two attractors have been found (see Chapter 9) suggesting
that results should be checked for stability and robustness. Furthermore, any particular set
of parameters even the hypothetic Earth-like values is too specific and might fail to provide
insight to important physical processes. And still, there will certainly be phenomena which
appear at other parameter values but not at the particular set under investigation. A further
important reason to study the influence of parameters is that it provides the possibility to
extrapolate results towards realistic dynamo regimes which is impossible by other means.

Although a considerable region of the parameter space has been explored further efforts
are needed in order to address more geophysically interesting cases. It has not been possible,
for instance, to reach magnetic Prandtl numbers Pm considerably lower than 0.1 and to
simulate dynamos for which viscous dissipation is small compared to Ohmic dissipation as
is typical for the Earth’s core. The range of accessible Rayleigh numbers R appears to be
sufficient since at the order of 20 times its critical value R, strong magnetic flux expulsion
and dominance of convection in the polar regions are found which are not typical for the
geodynamo. But it is desirable to increase the Coriolis parameter 7 which is dimensionless
measure of the rotation rate §2. The currently accessible value of 7 ~ 10° is many orders
of magnitude lower than the estimated value of 10'° for the Earth. While there is little
doubt that values of Pm as low as possible should be reached, there is more uncertainty
about the most appropriate value of the Prandtl number P. The traditionally used value
P =1 ([10, 62, 80, 82, 59]) may not be appropriate for the Earth’s core. From experimental
measurements [2] as well as from theoretical considerations [19] it is evident that even in
highly turbulent systems diffusivity ratios such as the Prandtl number are not necessarily
equal to unity. The value P = 0.05 based on molecular diffusivities is preferred by Braginsky
and Roberts [9]. But values much higher than unity cannot be dismissed in view of the fact
that concentration gradients are probably a very significant source of buoyancy.
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Introduction of second order physical effects. Another important direction of research
where much remains to be done is the introduction of second order physical effects in dynamo
simulations. The main purposes of such complication is to develop more realistic numerical
models as well as to test whether the additional effects in question do actually exist or are
hypothetical and clarify their role and importance.

In many previous studies the inner core has been assumed electrically insulating which
has been justified with the facts that it has a relatively small volume and does not participate
in the generation of the magnetic field because of its rigidity. However it certainly has a
conductivity similar to that of the outer fluid core and can have significant effects [69] on
the time evolution of the convection flow and the magnetic field. Two possible influences of
a conducting inner core may be expected: (1) a dynamic effect of changing the fluid flow
through the viscous coupling with the outer core and thus the dynamo process and (2) a
magnetic effect due to a slower time scale of the magnetic field variations in the inner core.

In the basic models the mantle has also been assumed to be electrically insulating im-
penetrable region with no influence on the generation of the magnetic field or convection
flow other than through the boundary conditions. However, this is much too simplistic. The
lowermost layers of the mantle probably have some finite conductivity and are not com-
pletely spherical and rigid [51, 8]. Such layers could form when the heat flow through the
core-mantle boundary were subadiabatic which is a distinct possibility [$4]. The layer could
also consist of accumulated light material set free as the inner core grows. In a stable layer
the fluid flow would be almost entirely toroidal [115] and large differences in the detailed field
structure at the CMB are therefore expected between cases where up/downwellings reach the
boundary and cases where they are blocked by a stable layer.

Another physical effect due to the mantle is the inhomogeneous heat transport through
the core-mantle boundary. Among the features of the geomagnetic field that most clearly
demonstrate the influence of lateral inhomogeneities are the persistent regions of high mag-
netic flux under Siberia and Arctic Canada [63]. There is general agreement that lateral
inhomogeneities in the lowermost mantle are responsible for the property of apparent lock-
ing between the dynamo process in the core and the mantle. Since there is evidence that
some cold slabs penetrate all the way from the upper mantle to the core-mantle boundary,
inhomogeneities in the heat transport could lead to a locking between convection flows in
the core and mantle. Another cause for such a locking could be topographic features of the
core mantle boundaries. Bumps of the order of a few km have been proposed by [90] on the
basis of seismic evidence.

The well established seismic anisotropy of the inner core suggests that the conditions at
the inner core-outer core boundary are also not homogeneous. It has been proposed [78]
that a slow flow of material driven by Lorentz forces occurs throughout the inner core from
the poles to the equator such that solidification occurs only near the poles while melting
takes place near the equator.

A further effect is the gravitational coupling between the mantle and the core proposed
by Jault and LeMouél [72]. Mantle heterogeneity causes a perturbation of the gravity po-
tential that departs from azimuthal symmetry. A fixed inner core would deform viscously
until its surface coincides with an equipotential surface. If the inner core is rotated out of
phase relative to the gravity perturbation by Lorentz or viscous torques, a counteracting
gravitational torque develops that may be as large as 102! Nm. Simultaneously the viscous
inner core deforms to readjust to the equipotential surface thus reducing the gravitational
torque. Such a strong torque can effectively lock inner core and mantle and therefore inhibit
any relative rotation. Incorporating the exchange of angular momentum between inner core,
outer core, and mantle into a numerical dynamo model allows to compute inner core and
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mantle rotation rates. These results can be compared with seismic estimates of inner core
rotation and changes in length of day.

Most geophysicists agree that two sources of buoyancy, one due to the gradient of the
concentration of light elements and a second one due to a superadiabatic gradient of the
temperature play a role in the dynamics of the Earth’s outer core [9]. Lister and Buffett [$1]
have estimated that compositional convection provides 80% and thermal convection 20% of
the power for the geodynamo. For convection driven solely by a concentration gradient the
effective Prandtl number would be large compared to unity while the opposite relationship is
obtained in the case when the thermal diffusivity is most relevant; thus it seems appropriate
to include both as competing buoyancy sources. The problem of the onset of convection in
a rotating layer with two sources of buoyancy associated with different diffusivities has been
analyzed by Pearlstein [97]. The most dramatic effect is the fingering instability that occurs
in the case of stabilizing thermal stratification which may exist in the outer part of the
fluid core [115]. The possibility of other new dynamical phenomena associated with double
buoyancy has also been pointed out by Busse [25].

Another second order effect which should receive more attention in numerical simulations
is the modeling of the density variations in the core. Most models have so far adopted the
convenient but not quite appropriate Boussinesq approximation. The anelastic approximation
[58] has also been used in simulations [57] but has not been found to yield any drastic
differences. Chapter 3 reports an simplified pseudo-anelastic approximation in order to
account for the density variations in the Earth’s core.

Comparisons between numerical simulations and geomagnetic observations. Dy-
namo modeling is approaching a state where it becomes possible to compare results from the
numerical simulations with geomagnetic observations [16]. Some of the features of the main
field were already discussed in subsection 2.1.2 and here we comment on those which could
provide validity tests for the numerical models.

The most important dynamical feature of the geodynamo are its reversals and excur-
sions. Robust characteristics of reversals are described in references [16] and [38]. Several
reversing dynamo models ([55, 54, , 75, 82, 69, |) have been compared with some
aspects of the reversal process but the results are inconclusive and often contradictory. No
generally accepted simple explanation of the reversal mechanism is available to date and more
efforts are needed to understand this basic geomagnetic phenomenon. For this reason section
9.4 of the dissertation is devoted to a numerical study of geomagnetic polarity transitions
and provides further details and original results on the topic.

Another convenient opportunity to test numerical results against observations is provided
by secular variation impulses or jerks. These are rather abrupt changes in the time
derivatives of the spherical harmonic coefficients of the geomagnetic field which is observed
on a global scale [11]. Because of their global nature jerks are most likely to be caused by
a coherent phenomenon in the core and torsional oscillations seem to provide a reasonable
explanation as proposed by Braginsky [7]. Section 9.5 of the dissertation reports a first
observation of torsional oscillations in three dimensional numerical simulations.
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3. Mathematical Modeling of the Self-Consistent
Dynamo Problem in Rotating Spherical Fluid

Shells

The great diversity of processes which contribute to the formation of the geomagnetic field,
leaves no hope of constructing a single model encompassing the whole of geomagnetism.
Fortunately, the first order physical effects responsible for the generation of the main field
may be considered on the basis of the general laws of conservation of mass, momentum and
energy plus a reduced set of Maxwell’s equations, which are applied to a conducting fluid
in a bounded domain. The chapter introduces the assumptions and equations on which the
research presented in the thesis is based. Additional notes on technical details and notation
are given in appendix A.

3.1 Setting of the problem

Geometrical configuration. In order to approximate the structure of the Earth’s core
we set a spherical polar coordinate system (r,6, ) and consider an idealized geometrical
configuration as shown in figure 3.1. It consists of two concentric spherical surfaces the
centers of which coincide with the origin of the coordinate system and with radii r; and r,,
respectively. The surfaces form a spherical shell which may be alternatively defined by the
thickness of the shell d and the ratio between its inner and outer radii, . The following
transformations between these pairs of parameters hold:

d
d=1r,—r1; 7’1‘217’_—77
o =1,

The inner and the outer spherical surfaces mimic the inner—outer core and the core-mantle
boundaries, respectively. However, any deviations of the inner or outer core from the spherical
shape, i.e. their ellipticities due to rotation, the anisotropic growth of the inner core, surface
bumps, as well as other effects such as the existence of mushy or transient layers etc., are
neglected but may be subsequently included by additional considerations. The spherical shell
rotates with a constant angular velocity {2 about the z-axis.

Physical ingredients. The region inside the shell, r; < r < r,, is entirely filled with fluid.
It represents the liquid outer core of the Earth and is assumed to be a binary mixture of a
principal heavy and a secondary light element. The fluid satisfies the continuum hypothesis,
i.e. it is assumed that all macroscopic length and time scales of interest are considerably
larger than the largest molecular length and time scales. Furthermore, the fluid moves at
non-relativistic velocities and has a finite electrical conductivity. Under such assumptions the
laws of Fluid Dynamics and Magnetohydrodynamics (MHD) apply and a solution supporting
a self-sustained magnetic field is a distinct possibility.

The regions r < r; and r > r,, external to the spherical shell are assumed to be impervious
to the fluid. They can be either both electrically insulating or the inner one can be conducting
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Fig. 3.1. Geometrical configuration of the
problem. The two spherical surfaces with radii
r; and r, are dark-shaded. A part of the outer
surface is removed to expose the interior of the
shell (light-shaded), where the fluid is confined.

while the outer one is always insulating. In either case they are penetrated by magnetic field
lines but play only a passive role in magnetic field generation.

In view of the inaccuracies of our knowledge of the Earth’s deep interior, no further
specifications of material properties or structural details are necessary at this stage. This
simplified setting is believed to encompass the most relevant features of the structure and
composition of the core and lower mantle. Moreover, it is general enough to serve, with minor
modifications, for modeling of other planetary cores.

3.2 Primitive governing equations

A thorough account of Fluid Dynamics is provided in [5] and in the first chapter of [36]. The
basics of MHD and dynamo theory are presented in [14, 89] and [102] and of convection in
[22]. A particularly relevant discussion of these topics may be found in [64].

3.2.1 Reynolds’ transport theorem and its applications

Reynolds’ transport theorem. A basic kinematic relation in Fluid Mechanics, leading to
a general formulation of conservation laws, is the Reynolds’ transport theorem for a fluid
moving with velocity w,

d
- | Zdc= / (DiZ + ZV - u) dC. (32)

¢(t) ¢(t)
The theorem governs the rate of change of the integral of any material property Z(r,t) of the
fluid (scalar, vector, etc.) over a material volume ((t). A material volume is one that consists
of the same fluid particles as they evolve in time, i.e. it is locked into the fluid. A derivation
of the theorem is given in appendix A.2.

Equation of continuity. An immediate consequence of the Reynolds’ transport theorem
is the equation of mass conservation. Substituting Z in (3.2) by the density p(r,t) of the
fluid, taking into account that the mass of a material volume | P d¢ cannot change since such
a volume consists always of the same particles, and dropping the integral signs, we obtain

Op+ V- (pu) = 0. (3.3)

This is the equation of continuity and the first of our governing equations.
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Conservation laws. Upon replacement of Z by pZ and simplification of the right-hand side
of (3.2) with the help of the equation of continuity (3.3), we obtain the identity

%/ ng:/thng. (3.4)

¢ ¢

The left-hand side of (3.4) represents the rate of change of any extensive property of the fluid
(kinetic energy, momentum, entropy etc.). Since the total amount of such quantities change
due to sources or external influences (e.g. forces, fluxes, etc.) with effective strength @ at a
rate given by [ @Qd(, a general conservation law for Z takes the form

pDiZ = Q. (3.5)

The momentum, energy and concentration equations considered in the following sections
provide examples of (3.5).

3.2.2 Equation of motion

The momentum [ pud¢ of a material volume changes due to the forces acting on the fluid
particles. Two types of forces may be distinguished — long range and short range forces. The
long range forces with density F' (e.g. gravity) penetrate the volume of the fluid and act on
all fluid particles, thus their alternative name - volume forces. The short range forces are
usually of molecular origin and act only between neighboring fluid particles. They can be
described by a stress tensor 8 and modeled as surface forces, J S-ndA, acting on the surface
element n dA. Then the momentum conservation may be written in the form of (3.5)

pDyu = pF +V - 8S. (3.6)

Rotating reference frame. Since the setting of the problem involves rotation with constant
angular velocity £2, it is convenient to transform (3.6) into a reference frame rotating with this
angular velocity. Applying the rotation operator R D;p = (Dy + 2x)p’, derived in appendix
A3, to the velocity Dyr and dropping primes we obtain in the rotating reference frame

pDiu = 2pu x 2 — p2 x (2 x7)+pF+V- 8§, (3.7)

where the Coriolis term 2p§2 x u and the centrifugal term p§2 x (£2 x r) may be regarded as
additional volume forces emerging in the non-inertial reference frame. The Poincaré force,
p(0:82) x r vanishes since we consider a constant angular velocity 2.

Forces. We proceed to specify the surface and volume forces. The stress tensor describing the
surface forces depends in general on the properties of the fluid. We consider simple isotropic
Newtonian fluids with kinematic viscosity v for which the stress tensor has the form [5]:

Sl'j = —pdij + Sz{j, Sz,j = 2pl/(€ij — %&jekk), €ij = %(&u] + ajui), (3.8)
where p is the thermodynamic pressure and S ;s the part of the stress tensor which accounts
for viscous friction and further dissipative effects, e;; is the rate-of-strain tensor, d;; is the
Kronecker symbol and u; is the i-th component of the velocity. A constant dynamic viscosity
pv and a vanishing bulk viscosity is assumed in (3.8).

Besides the fictitious Coriolis and centrifugal forces, two other volume forces appear,
namely the Lorenz force and the gravitational force. The Lorentz force Fy, is due to the
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conductivity of the moving fluid and the presence of magnetic fields and will be considered
in section 3.2.5.

The gravitational force is conservative and may be written as the gradient of a potential,
which satisfies the Poisson’s equation

V2 = —47Gp ~ —4AnGpo (1), (3.9)
where G' = 6.673m?/(kg.s?) is the gravitational constant, and it is assumed that the density
does not vary much from a basic static radial profile po(r). Hence

1 T
Fy(r)=V¥ = — 47TGT—2 /,50(7“’)7“'2 dr’
0

=40 (3.10)

The centrifugal force may also be written as the gradient of a scalar potential with the
help of the vector identity
1 2
N2x(2xr)=-V E(Qx'r) . (3.11)
In this form it may always be combined with the gravitational potential, i.e. ¥ = ¥ —
(£2 x r)?/2. However, at constant density it is even more convenient to add this term to the

pressure gradient, i.e. 7 = p — po(£2 x 7)2/2. In both cases the centrifugal term does not play
an important dynamical role other than modifying the equipotential surfaces in the core.

Equation of motion. Plugging the force terms into (3.7), the equation of motion becomes
p(Or+u-V)u= (3.12)

1
— Vp+2pu x 2+ gV(.Q x )2 — pAr + prViu + ngV(V -u)+ Fp.

This equation is also known as the Navier-Stokes equation. It governs the dynamics of the
fluid flow in the rotating spherical shell.

3.2.3 Energy conservation equation

The third fundamental conservation law, which any fluid system has to obey, is the law of
energy conservation. The total energy of a material volume of fluid, ¢, is the sum of its
kinetic energy and internal energy, e. It changes due to the work done and the heat delivered
to the fluid in this volume. Therefore equation (3.5) acquires the form

2
pDyse = pDy(e + “’7) —pu-F+V-(u-8)+ V- (VD) + pq. (3.13)

The first and second term on the right-hand side represent the rate at which work is done
by the volume and surface forces, respectively. The third term gives the rate at which heat is
transfered to the material volume from the outside, where Fourier’s law of heat conduction is
used. Gauss’ theorem has been applied to the second and third terms in order to transform
them into volume integrals. pq represents the heat source density. Equation (3.13) reduces to
a balance of the internal energy if we take the divergence of the second term, use (3.6) and
cancel the terms corresponding to the kinetic energy,

pDe = Sijﬁjui + GI(K’T@T) + pq. (3.14)
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The term S;;0;u; may be separated into reversible and dissipative parts using (3.8)
2 1
Sijdjui = Sijeji = —pejj + 2pv(e)” = 5pr(ejj)’ = —ppDi_ + p. (3.15)

The terms quadratic in the rate-of-strain tensor correspond to irreversible viscous dissipation
and have been denoted by p® while pe;; has been transformed with the help of the continuity
equation (3.3). Hence equation (3.14) becomes

1 1
Die + pDi— = TDys = =V - (k7 VT) + q + D, (3.16)
P p

where it has been further expressed as an entropy balance, since de = T'ds — pd(.

It is useful to to express (3.16) in terms of temperature and pressure since in applications
these are the most readily known thermodynamic variables. Using the definitions of the heat
capacity ¢, and of the expansion coefficient a7 and a Maxwell relation

ds 1[0p 0s oC ar
aT v p |OT » op|p oT » P
we write the total differential of the entropy s in T and p,
Js ds
ds = [—] dT + [—} dp, (3.18)
oT v op|
and upon substituting it in equation (3.16) we obtain
T 1
;DT — Q%Dtp =V (KpVT) + q + . (3.19)

Equations (3.16) and (3.19) provide convenient formulations of the law of conservation of
energy in a moving fluid.

3.2.4 Equation of concentration of light component

In order to model compositional convection, we assume that the fluid in the shell is a mixture
of a heavy and a light component. The inner core is a result of solidification of the fluid
core. The light alloying element is released as the heavy element freezes onto the inner-
outer core boundary and then rise buoyantly stirring the entire fluid core. In general, the
presence of two constituents with different chemical potentials contributes to the internal
energy balance considered in the preceding section. However, one may argue that this effect
is not of first order importance and focus only on the buoyancy force due to the release of the
light component. Then the concentration C' of light element may be regarded as an extensive
quantity satisfying a conservation law of the type (3.5)

1

Here the flux of light component is proportional to the gradient VC, as given by Fick’s law,
and k¢ is the diffusion coefficient of the light component.

3.2.5 Magnetic induction equation

Next, we focus on the electromagnetic part of the dynamo problem. We consider a moving
electrically conducting fluid, the velocity of which is small compared to the velocity of light
¢, i.e. |lu| < ¢ and d/t < ¢, where d and t are a length and a time scale, respectively. The
objectives of this section are to demonstrate the secondary importance of the electric field
and to derive a governing equation for the magnetic fields.
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MHD approximation. The Maxwell’s equations for continuous media state

V E= VxE=-0B, V-B=0, VxB=uJ+udE, (32la,b,c,d)
€0
where the inductions D and B and the intensities E and H of the electric and magnetic
field are assumed related by the simple constitutive relations H = B/ug and D = o E. This
is a reasonable assumption, since melted iron under high pressure and temperature cannot
be permanently magnetized or polarized. The set of equations is closed by Ohm’s law

J =0E' + peu, (3.22)

where o is the electrical conductivity. E’ is the electric field measured in a reference frame
moving with the fluid and it is given by the Lorentz transformation

'E
E =(1- 71)%72)“ +71(E +u x B), (3.23a)
u- Bu
B = (1 - ’yl)(u2) + 71(B — Moo X E), (3.23b)

where y1 = /1 — u?/c?. Estimating the relative magnitude of terms in (3.21) and (3.23b)

|E| ltoco O E| u_2 lwocou x E| _ u?

d
Ll IR IROZ0%t =1 1 ~— <, 3.24
BT~ xBTSt T Tacs (324
we may obtain the pre-Mazwell equations,
V E=" VxE=-9B, V.B=0, VxB-=pul, (3.25a, b, ¢, d)

€0

which are Galilei invariant, i.e. E' = E +u x B, B’ = B, and thus Ohm’s law becomes
J=0(E+ux B). (3.26)

The Lorentz force acting on the conductor due to electromagnetic fields may also be
approximated

F,=p.E+JxB=~JxB=yu,'(VxB)x B, (3.27)

since |peE|/|J x B| ~ u%/c* < 1 and the force due to the electric field acting on the charge
distribution can be neglected. The last relation follows from equation (3.25d).

The MHD equations (3.25) represent a self consistent approximation to the order (u/c)?
of the full Maxwell’s equations, where the displacement current pgeg0;E is neglected. To
the same order the electric force p.E in (3.27) due to charge distribution is negligible and
the Lorentz transformations reduce to the Galilei transformations, which result in (3.26) for
the current density. The pre-Maxwell equations (3.25) do not describe the phenomenon of
electromagnetic radiation which, however, plays no role in geomagnetism.

Induction equation. A major consequence of the MHD approximation is that the electric
and magnetic fields are not equally important in (3.25). Indeed an evolution equation involv-
ing B alone may be readily obtained. To eliminate E, we take the curl of Ohm’s law (3.26)
and substitute (3.25b) and (3.25d) in the resulting expression. Using (3.25¢) we arrive at the
induction equation

B =V x (ux B)+ AV’B, A = (o)L (3.28)
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Thus, B is of central importance in MHD, since once it is obtained from (3.28) for a given
u, the electric field can be extracted from the Ohm’s law

E=(\V—u)x B. (3.29)

Then, E serves only to determine the charge density p. from the Gauss’ law (3.25a), which
in turn plays a negligible role in view of the approximation (3.27) to the Lorentz force.
The induction equation (3.28), with the first term on the right-hand side rewritten as

(O +u-V)B=B-Vu— BV -u+\V’B, A = (o)L, (3.30)

has a simple physical interpretation. Its left-hand side is the material derivative which gives
the rate of change of the field moving with the fluid velocity. The first term on the right-hand
side represents stretching of the field lines by w, the second one accounts for the change due
to compression of the fluid, while the last one is the change due to electric diffusion.

Finally we note that B and J are invariant under rotation and therefore the induction
equation (3.28) is valid in the rotating reference frame discussed in section 3.2.2.

3.2.6 Boundary conditions

Velocity boundary conditions. The fluid is confined to the spherical shell, r; < r < r,, the
boundaries of which are impenetrable and solid. It is natural to choose the no-slip boundary
conditions which require that all components of the velocity vanish on the boundaries

u=0 at =i, (3.31)

In the presence of rotation these boundary conditions lead to the development of so-called
Ekman layers. A significant feature of the Ekman layer is the effect of suction of fluid from
below or pumping it downwards, depending on whether the radial component of the vorticity
of the flow beneath the layer is positive or negative. Thus the Ekman layer can play an
important dynamical role because it is capable of controlling the flow far from the boundaries
through the effects of suction or pumping.

On the other hand the Ekman layer has a thickness of about /v/2 ~ d/+/7, where v is
the kinematic viscosity and 7 is the Coriolis parameter defined by (3.3.3). But the value of
7, discussed in section 2.2.3, is as large as 10'°, which leads to a layer thickness of the order
of centimeters. It is hard to believe that a layer with negligible thickness can influence the
dynamo process significantly. The numerical difficulties of resolving such a thin layer are also
significant. These arguments lead to the consideration of the stress-free velocity boundary
conditions. Since the boundaries are impenetrable to the fluid the normal component of the
velocity still vanishes

u, =0 at  r=r;1, (3.32)

just as in the case of no-slip boundaries, but in contrast to the latter the stress-free conditions
require vanishing of the tangential components of the stress tensor on the boundaries
Sro = Srp =0 at  r=r;1,. (3.33)
Using the explicit expressions for the components of the stress tensor in spherical polars [5]
and (3.32) this reduces to
U, U
r_e =0,—2 =0 at  r=r;,r,. (3.34)
r r

The majority of results reported in the thesis make use of the stress-free boundary condi-
tions. Nevertheless many cases were computed under the assumption of no-slip boundaries,
notably those including a conducting inner core. If the opposite has not been specified ex-
plicitly we assume the use of stress-free boundary conditions for the velocity field.
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Thermal boundary conditions. Since the total volume of the shell is fixed, no work can
be done on the fluid. The only way in which the total energy of the fluid may vary is by
exchange of heat with its environment. The change of heat at fixed volume is proportional
to the change of the temperature in the volume, which in turn is determined by specification
either of the heat flux through the boundary, the temperature on the boundary or a linear
combination of them. Neither of these choices is well-established because of lack of precise
knowledge of the thermal properties of the mantle and the inner core.

In the vast majority of the cases reported in the thesis fixed temperature on the boundaries
have been assumed

O=T-T,=0 at =110, (3.35)

where T is a basic static temperature state. However, fixed-flux boundary conditions have
also been used to study non-magnetic convection as reported in chapter 5.

Concentration boundary conditions. The flux of light material in equation (3.12) plays a
role analogous to the flux of heat. Moreover, we assume that the light component is released
only during the solidification process taking place at the inner-outer core boundary and is
accumulated on the core-mantle boundary. Thus it is convenient to require fixed values of
the concentration on the boundaries of the shell

I'=C-C;=0 at  r =170, (3.36)

where I" is the deviation from a basic static state of concentration distribution C,.

Magnetic field boundary conditions. In contrast to the velocity the magnetic field is
not confined to the spherical shell but extends into the inner and outer regions. The field
in the external regions needs to be determined and matched to the field in the shell. Two
possibilities for the electrical conductivities of the external regions are employed in the thesis,
namely when both regions are insulating, and when the outer region is insulating but the
inner one has a finite conductivity equal to that of the fluid.

Matching conditions. We first consider the matching conditions at the boundary between
insulating and conducting media. We select a cylindrical volume intersecting the boundary so
that its axis is normal to the bounding surface. Integrating the solenoidal condition (3.25¢)
over this volume, transforming to a surface integral with the help of Gauss’ theorem and
taking the cylindrical surface to be so small that the integrals over the side walls are negligible,
we find the marching condition for the normal components of the fields in the two regions

lim (B; - &,) — lim (B, - &,) = 0, (3.37)
r—7Tp T—Tp
r<ry r>Th

where the normal to the surface coincides with the unit vector é,, r, is the radius of the
spherical boundary and B; and B, are the fields in the conducting and the external insulating
regions, respectively. Similarly, using (3.25d) and taking into account that the current density
J on an insulating boundary must vanish, the condition for the tangential components is

lim B; x &, — lim B, x &. = 0. (3.38)
r—ry r—Tp
r<ry r>1y

Therefore in the case when both external regions are insulating the magnetic field B must
remain continuous through the boundaries.

In the case of a finitely conducting inner core no real jump in the electromagnetic prop-
erties of the medium actually occurs. Therefore B must once again remain continuous on
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the boundary with the conducting inner core. The significant difference to the case of the
insulating inner core consists of the nature of the field in these regions in the two cases, which
we discuss below.

The field in the external regions. Since there is no electric current, J = 0, in an
insulator, one can use (3.25¢) and (3.25d) to find that the field in the case of insulating
external regions is derivable from a scalar potential U which satisfies the Laplace equation,

B, =-VU, V32U = 0. (3.39)

The general solution of equation (3.39) in terms of spherical harmonics is given by

o 1 > a{”rlYlm(G, ®) at r <y,
U= (a1 + b~ Y, 0) = (3.40)
zzgmzzz l;nbf‘r HDY™(9,0)  at > 1.

Taking in consideration that B, must vanish when r — oo, while the U must have no
singularity when r — 0 we obtain that B, is described only by the terms proportional to 7
in the region r < r;, and only by the terms proportional to r~(¢+1) in r > r,.

The field in an inner core of finite conductivity is governed by the induction equation
(3.28) in which the velocity is assumed to be one of a rigid body rotating about the z-axis,
i.e. uy, = f2;cr;sin(f), where §2;. is determined by the balance of the viscous and magnetic
torques on the inner core

082 o (0 1
= = V}{ r— <—> u,T; sin 0| dS| + —?{ B,B,r;sinf|dS 3.41
ot p 1CB or \ Or . ® | | to Jion ® | | ( )

Here C is the moment of inertia of the inner core and IC B denotes the surface of the inner-
outer core boundary. In order for the viscous torque to exist no-slip boundary conditions for
the velocity field must be assumed on the ICB.

3.3 Pseudo-anelastic approximation

The equations derived in the preceding section apply to almost any fluid-dynamical system.
In this form, however, they are too general to be useful in modeling the dynamics of the
core. Further simplifications are required, which will both reduce the primitive equations to
a more easily tractable form and will exclude physical effects of no interest with respect to
the geodynamo problem.

Most models of the geodynamo have so far adopted the Boussinesq approzimation of the
governing equations, [30, 22]. Its main assumption is that the density of the fluid in the shell
is uniform and constant except in the gravity term of the momentum equation, where it de-
pends weakly on temperature thus accounting for the buoyancy effect. This approximation is
mathematically convenient and, due to its simplicity, well-suited for theoretical and numeri-
cal analysis. Moreover, it gives reasonably accurate description of the main processes within
the core without obscuring the picture by effects of secondary importance. The Boussinesq
approximation is extensively employed in the present report as well. However, it neglects
the effects of compressibility and density stratification which may have a significant role in
the core dynamics. The situation may be rectified by employing the more general anelastic

approzimation, originally introduced in meteorological studies [55] and discussed in the geo-
dynamo context in [9] and [64]. The anelastic equations are rather complicated but when
solved numerically [57] no drastic differences to the Boussinesq equations are encountered.
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In this section we shall formulate a generalization of the Boussinesq approximation, which
however, is still short of the full anelastic approximation. We assume that the fluid is com-
pressible but only in the basic reference state of the core and introduce static density variation
in radial direction. Thus, we retain the relative simplicity of the Boussinesq equations.

3.3.1 Assumptions

To justify the assumptions on which our pseudo-anelastic approximation rests, we illustrate
how the density profile in the core is usually estimated. If a uniform composition of the core
is assumed, so that the density p is a function of only two state variables, say pressure and
entropy, the density gradient is given by

d _|9p] dp dp| ds
drp(r) B [5)}9}5 ar " [&SL dr’ (342)

Since the entropy in the Earth’s core is well mixed by convection, the second term is zero.
Defining the compressibility at constant entropy as xs = p(9p/9dp)s and using the equation
of hydrostatic equilibrium in the basic state, Vp = pg, one arrives at
d r’g
EP(T) =- Xs
The compressibility xs may be estimated from measurements of velocities of seismic waves,
and once a reliable value is available the Adams-Williamson equation (3.43) may be solved
to obtain the radial density profile p(r). However, the assumptions of a homogeneous and
uniform composition are not well satisfied especially near the core boundaries and y; is not
well known and as a result various density profiles may be suggested. Motivated by these
arguments we modify the Boussinesq approximation to include a density stratified basic state.
The primitive equations (3.3), (3.12), (3.19), (3.20), (3.25¢) and (3.28) governing the dy-
namics in the rotating spherical shell are simplified subject to the following assumptions:

(3.43)

(1) The density p is assumed equal to an empirical basic static profile, py(r), depending on
the distance from the center. p is replaced by po(r) in all terms of the primitive equations
except in the gravity term, which accounts for the buoyancy effect.

(2) In the gravity term the dependence of the density variations on pressure is neglected in
comparison with the dependence on temperature and concentration. Furthermore, these
dependences are assumed to be weak.

(3) All material properties of the fluid, e.g. the coefficient of thermal expansion ar and a¢,
the heat capacity ¢y, the viscosity v etc. are assumed to be constant. The heat produced
by viscous and ohmic dissipation @ is considered negligible.

Mathematically assumptions (1) and (2) can be written as
p(r,t) = po(r)[l —ar(T —Ts) — ac(C — Cy)], (3.44)
where ap, ac — 0, ¢g— 00, but arg, acg are finite.
The conditions for validity of our assumptions are similar to those of the Boussinesq approx-
imation. i.e.

d
ar@ <1, acl<1, 22«1 (3.45)

XT

The first two inequalities express the weak dependence of the density on temperature ©
and concentration variations I" from a reference value, while the last one is the condition of
negligible dependence on pressure.
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However, the assumption of a basic density profile, po(r), relaxes an important constraint
on the Boussinesq approximation, namely the typical length of the convective region, d, need
not be much smaller than the density scale height, i.e. the distance over which an isentropic
density distribution varies by a factor e. The introduction of a basic density profile in the
model accounts for compressibility at least in the basic reference state.

3.3.2 Basic reference state

The governing equations are most conveniently treated in terms of deviations from a basic
static equilibrium state. Technically one may view the equations describing the reference
state and the deviations from it as the zeroth and the first order equations in a perturbation
scheme about equilibrium.

We choose the reference state to be one of no motion u = 0, no magnetic field B = 0,
and with static temperature Ts(r), concentration Cy(r), and pressure p,(r) distributions. The
primitive equations (3.3), (3.12), (3.19), (3.20), (3.25¢) and (3.28) reduce to

0= Vps + %V(Q x )2 + o, (3.464)

0= ke V2T, + g (3.46b)
P

0= ko V3Cs, (3.46¢)

where k7 = K/1/(pocp) is the coefficient of thermal diffusivity.

The equation (3.46a) does not actually need to be solved, since under our assumptions
the pressure loses its thermodynamical significance in the sense that it does not determine
the temperature or density variations. Therefore we need merely to subtract (3.46a) from
the primitive momentum equation (3.12) in order to obtain the equations for the deviations
from equilibrium.

The general solution of the heat equation (3.46b) for the static temperature is given by

1
T(r) = b0~ 907+ B, (3.47)
where 3 = q/(3krcp)=const. The other two constants of integration are determined from the

conditions of fixed temperatures on the boundaries

Ts(ry) =14 By =T — 1A_T
Ty(ro) = Tb — - (3.48)
B= 1 Ar
AT =T, - T} 17(1_77)2
The solution of (3.46¢) is obtained in a similar fashion,
AC nd 1
Cs(r) = [Cl — 1 77] + e AC’;. (3.49)

3.3.3 Equations for the deviations from equilibrium

Once the equilibrium basic state is defined we proceed to obtain equations for the deviations
of the dependent variables from it. We use the assumption of constant material parameters
and the equation of state (3.44) to simplify the primitive equations (3.3), (3.12), (3.19), (3.20),
(3.25¢) and (3.28). Taking the limits ap, ac — 0 is effectively equal to substituting p by po
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in all terms except in the gravity term, where the products gar and gac remain finite. In
addition this procedure eliminates the apTD;p term in the left-hand side of the energy con-
servation equation (3.19) which reduces to a heat diffusion equation. Further simplifications
are obtained by subtracting the basic equilibrium balances (3.46) and plugging in the explicit
basic state solutions for the temperature (3.47) and the concentration (3.49).

The perturbation equations obtained in this fashion may be further simplified by scaling
and introduction of nondimensional parameters. The scaling reduces the number of parame-
ters in the model and facilitates comparisons with experimental observations and estimation
of the relative magnitudes of the various terms. Any choice of scaling is arbitrary and is
chosen to suit the problem in question. Here the thickness of the shell d is used as a length
scale, d?/v as a time scale, 2 /(Jard?*) as a temperature scale, v2/(Jacd*) as a concentration
scale, p as a density scale and vy/jgp/d as a magnetic induction scale, i.e.

d2 2 2
r=dd, ="t po=ppp, T = i Y

V0P 1
Vo= C' B- B 3.50
yard? Facd?t (3:50)

d

where p and 4 are the mean values of the density and gravity acceleration in the shell and
the primes denote nondimensional variables. Substituting (3.50) in the primitive equations
simplified by the outlined procedure and dropping the primes we obtain the nondimensional
equations for the deviations from the basic state in the pseudo-anelastic approximation,

V-m=0, (3.51a)
m d? A -
om+m-V—=——=Vp +m™m x é, + ppy(0 + I')r (3.51Db)
Po pov?
1
+ VIR £ Z5V(V - 2) 4+ (V x B) x B, (3.51¢)
po 3 Po
1 1 1
P(at+~mv>@:~—v2@+~_ (RZ+R3L2—3>T’ITL, (351d)
Po po Po (L=mn)*r
1 1 1
L (at + 2. v) I'=—VT+—Rr—"——r-m, (3.51e)
Po Po po  (1—m)*r
V.-B=0, (3.51f)
B =V x <pﬂ x B) + Pm V2B, (3.51g)
0

where the momentum vector m = py(r)u has been used.

The seven nondimensional parameters, which appear in equations (3.51), are the internal
and external thermal Rayleigh numbers R; and R., the compositional Rayleigh number R,
the Coriolis number 7, the Prandtl number P, the Lewis number L, and the magnetic Prandtl
number Pm, which are defined as follows:

aTﬁﬁdG R OzT’j/ATd4 R ac’7ACd4

Ri = ) e — ) I = )
VK VKR VK
202d?
T = s P: L, L:L, ]3771:z (352)
v KT Ko A

The various Rayleigh numbers measure the energy input into the system, i.e. R, is propor-
tional to the heat exchange due to the fixed temperatures of the boundaries, R; accounts
for the heat generated by internally distributed heat sources and Rp is the compositional
analogue of R,. The Prandtl number P, the Lewis number L, and the magnetic Prandtl num-
ber Pm describe the relative importance of the diffusive processes involved and the Coriolis
number 7 is the ratio of the Coriolis to the viscous force.
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3.3.4 Scalar equations

Equations (3.51) are written in terms of the momentum vector m = po(r)u instead the
velocity vector w. The reason for this choice is that the momentum vector is divergence-free
and thus allows a decomposition in toroidal and poloidal components. This property is of
great utility because it allows to substitute the four vector equations of (3.51) (i.e. total of
twelve scalar equations) by four scalar ones.

Poloidal-toroidal decomposition. Any solenoidal vector may be represented as a sum of
poloidal and toroidal components [1]. Since both the momentum, m, and the magnetic field
vector, B, are solenoidal by equations (3.51a) and (3.51f) they may be represented as

m=V xrw+V x (Vxrov), (3.53a)
B =V xrg+V x(V xrh). (3.53b)

The poloidal and toroidal scalar functions v and w (h and g) are uniquely determined when
the condition holds that the averages of v and w (h and g) over surfaces of r = const. vanish.
Additional details on the poloidal-toroidal representation are given in appendix A.4.

Scalar equations. Operating with -V x and r-V x Vx on the momentum equation (3.51b)
results in two scalar equations. A second pair of scalar equations is obtained by operating
with r- and r -V x on the induction equation (3.51g). The heat (3.51d) and the concentration
equations (3.51e) are already scalar. Hence equations (3.51) acquire the form

[(V2 — ) Lo + 7'0@] w— 7170V =

r-Vx[m-V(py'm)—(VxB)x B-FI5], (3.54a)

(V= 0) Lo+ 70,] Vv +7Qu — po7L2(0 + T') =
—7-VxVx[m-V(g'm)-(VxB)xB-—FMH] (3.54b)
V20 + [R; 4+ Ren(1 — n) 2r~?|Lav = Ppol0s + py 'm - V16O, (3.54c)
V2 + Rrn(1 —n)"2r 3 Lov = Ljo[0s + py 'm - VT, (3.54d)
V2Loh = Pm[0yLoh — 1 -V x ((py 'm) x B)], (3.54¢)
V2Log = Pm[0iLag — 1 -V x V x ((pg'm) x B)]. (3.54f)

Here the negative Laplacian Lo, the Q operator, and the FfH s part of the viscous force are
defined by
Ly = (rxV)*= 0120, —1r*V? = —(sin ) 19y sin 9y — (sin 9)_262, (3.55a)
Q =rcosOV? — (La +70,)(cos 00, — ' sin 00y), (3.55b)
FEHS = 5 2(0,p5 1) (0,m) + (r 20,720, )m + 1/3V(V - 5y 'm)] . (3.55¢)

One may note that equations (3.51a) and (3.51f) are automatically satisfied when the poloidal-
toroidal representation (3.53) is used. The pressure gradient also vanishes when we take the
curl of the momentum equation. The nonlinear terms on the right-hand side of the scalar
equations (3.54) are not explicitly evaluated in terms of poloidal and toroidal scalars. Al-
though possible in general such explicit evaluation will result in lengthy expressions. How-
ever, the explicit form of these terms is of no significant importance. Indeed in a numerical
integration of (3.54) it is much more convenient and computationally efficient to implement
the terms in their compact vector form. On the other hand an analytical analysis is usually
possible in linear or weakly nonlinear cases only, where these nonlinear terms will normally
be neglected. One exception is the diffusion part of the viscous force which is a linear term
and has already been separated from FIHS,
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3.3.5 Boundary conditions

It is convenient to use the representation (3.53) and formulate the boundary conditions in
terms of the poloidal and toroidal scalars of the velocity and magnetic fields.

Velocity field. To obtain the velocity boundary conditions in scalar form we substitute
u = po(r)"tm in (3.31), (3.32) and (3.34) and use the fact that the momentum vector m is
solenoidal.

No-slip boundary conditions. According to condition (3.31),

1
1| 1 “Lov
— _ 1 1 _
riTo % me = % 891;877"2 -+ m@,w =0 (356)
mey risro m&p;&«rv - 8011) S

must be satisfied for all values of # and ¢. The vanishing of the r-component of m requires
that v = 0 at the boundaries. Using the requirements Jg sin 6(mg) +0,(m,) = 0 and 9, (me) —
Ogsin@(m,) = 0 we obtain the full set of no-slip boundary conditions:

v=0w=w=0 at T =T To. (3.57)

Stress-free boundary conditions. With the help of an analogous procedure we trans-
form the stress-free boundary conditions (3.32) and (3.34) into

o my =0 o tmy =0
Orfg tme = 0 — Do sin 0(0ypy ' mg) + 0p(Orpy 'my) =0 (3.58)
Orfg my =0 05 (8rpy 'my) — O sin 0(9,py ' mg) = 0

which results in:
w
por

1
v=0,—0v =0, =0 at T =TT, (3.59)
Po

Temperature and concentration fields. The temperature and the concentration boundary
conditions (3.35) and (3.36) do not need to be changed in order to be valid with the scalar
system of equations (3.54).

Magpnetic fields. The matching conditions (3.37) and (3.38) require that both the poloidal
and toroidal scalars of the magnetic field are continuous through the boundaries. The poloidal
and toroidal scalars h. and g. of the external fields may be obtained using the formulas

he = (L)' Be,  ge= (Lo)7'r-(V x B.) =0, (3.60)

where the external field is given by (3.40) in the case when the inner core region is assumed
insulating. Since the external field is curl-free because it is potential, its toroidal component
will vanish on the boundaries. Thus in the case of an insulating inner core region the magnetic
field matching conditions may be summarized as:

g=h—he=0,(h—he)=0 at rT="rT,. (3.61)

In the case of a finitely conducting inner core, the induction equation must be simultane-
ously solved in the inner core in order to obtain the magnetic field in this region. However
the toroidal scalar in the inner core will not vanish in general, hence:

9g—9e=0-(9—9ge) =h—he=0-(h —he) =0 at r=r;, (3.62a)
g=h—he=0.,(h—he)=0 at r=r,. (3.62b)

34 [ r. simitev ¢ dissertation ]



o 3.4 Boussinesq approximation

3.4 Boussinesq approximation

A considerable part of the results presented in the dissertation is based on the more widely-
used Boussinesq approximation. In this approximation the assumption of a basic static den-
sity profile which varies with the distance from the center of the shell is replaced by the
assumption of a uniform and constant density in the basic static state, i.e.

po(r) — po = const. (3.63)

Assumptions (2) and (3) of section 3.3.1 still hold. The governing equations may be simpli-
fied by either using derivations similar to those utilized in the case of the pseudo-anelastic
approximation or simply taking the limit (3.63). Here we only summarize the main results.

Boussinesq equations. In the case of constant static density po in the reference state the
nondimensional governing equations (3.51) reduce to

V-u=0, (3.64a)
2
(Or+u-V)u= %V% +Tuxé,+(O©+1)r (3.64b)
+V?u+ (V x B) x B, (3.64c)
1
P(@t+UV)@:V2@+ (RZ—I—ReﬁT—?))ru, (364d)
1
L(at+u.V)F=v2F+Rpﬁr—3r-u, (3.64e)
V-B=0, (3.64f)
OB =V x (u x B) + Pm~'V’B. (3.64g)

Several important simplifications may already be noticed. The equations become truly in-
compressible even in the basic reference state. The velocity vector in addition to than the
momentum vector is solenoidal. Upon division of both sides of the momentum equation by
po the density is eliminated from the equation. It still appears in the pressure gradient term
which vanishes when the curl of the equation is taken. In the case of constant density the
gravity becomes proportional to the distance from the center by virtue of equation (3.10).
Similar simplification occurs in the viscous force the second term, %,uV(V - u), of which
vanishes since u is divergence-free.

Scalar equations. The scalar equations resulting from (3.64) (or equivalently from rewriting
(3.54)) are significantly simpler as well. Notably 7 - V x Vx of the viscous force, which was
left in implicit form in equation (3.54b) may now be easily evaluated, since it consists of only
one term where no additional derivatives due to the radial dependence of pg appear. The
scalar equations are:

(V2= 0)Ly+70,)w—7TQu=7r -V x[u-Vu—(V x B) x B, (3.65a)
(V2= 0) Lo+ 70,] VPu+7Quw — Lo(O + I') =

—r-VxVx[u-Vu—(VxB)x B], (3.65b)
V20 + [R; + Ren(1 — n) %173 Lov = P[0; + u - V]O, (3.65¢)
V2@ + Rrn(1 —n) 203 Lyv = L[0; + u - VT, (3.65d)
V2Loh = Pm[0;Loh — 1 -V x (u x B)], (3.65¢)
V2Log = Pm[diLog — 7 -V x V x (u x B)]. (3.65f)
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However, one should keep in mind that the these equations are formulated in terms of the
poloidal and toroidal scalars of the velocity field rather than the momentum vector as was

the case with equations (3.54).

Boundary conditions. Only the boundary conditions for the velocity field differ from the
conditions required by the pseudo-anelastic . The full set of boundary conditions is:

no-slip boundary conditions:
v=0w=w=0,
stress-free boundary conditions:
u:afvzaﬂ:o,
r
=0
=0
in the case of an insulating inner core:
g=h—he=0.,(h—he)=0 at r="riT
in the case of a finitely conducting inner core:
g_gezar(g_ge) :h_hezar(h_he):()
g=h—he=0.(h—he) =0 at r=",,
in the case of a perfectly conducting inner core:
org=h=0 at r="r
g=h—he=0.,(h—he)=0 at r=r,.

at

(3.66a)

(3.66b)

(3.66¢)
(3.66d)

(3.66¢)

=T,

(3.66f)

(3.66g)

And the rain descended, and the floods came, and the wind blew and

beat upon that house; and it fell not: for it was founded on rock.

36

Matthew, vii:24-25
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Various approaches to the self-consistent dynamo problem have been discussed in section
2.2.3 of chapter 2. The analytical methods described there rely, however, either on drastic
oversimplifications of the problem or on assumptions which cannot be easily justified. The
solutions obtained by such methods are usually irrelevant for comparisons with the real
geomagnetic field. The same assertions hold for the problem of finite amplitude convection.
An important simplification in this case is that the essential nonlinearity due to the magnetic
field no longer appears, and the governing equations may be linearized to study the onset of
convection. But then difficulties due to the geometry of the spherical shell restrict analytical
linear results to particular regions in the parameter space or asymptotic regimes. Even less
may be achieved analytically in studies of nonlinear convection.

Probably the only satisfactory approach to the dynamo problem involves numerical sim-
ulations based on some reasonable approximation of the first principles similar to those
formulated in chapter 3. A great part of the research presented in this thesis also relies heav-
ily on computational methods. This chapter describes the numerical scheme used to simulate
the equations of the pseudo-anelastic (3.54) and of the Boussinesq approximation (3.65), as
well as some auxiliary numerical techniques.

4.1 Method of solution

The factors, determining the choice of a particular numerical method are its accuracy, sta-
bility, memory requirements and efficiency. The estimation of the last two criteria follows in
a straightforward manner from the definition of the method and the nature of the equations
to be solved. Methods for numerical accuracy and stability analysis exist [17] and in general
these quantities depend on the truncation errors and on the structure of the equations solved.
However, estimation of these criteria are not easy or even possible except for simple model
equations and experiments with various numerical methods are often necessary.

There are several numerical approaches to the spatial discretization of the dynamo prob-
lem in spherical geometry. The most obvious is a straightforward finite-difference method
which, however, is never used in practice. The main problem with finite-differencing is the
uneven distribution of grid points which accumulate near the poles on a spherical surface.
It seems more intuitive to use an evenly distributed grid on the sphere and to discretize the
equations with a finite-element or finite-volume method. Spectral methods, however, turn
out to be most suitable for a number of reasons. In the first place, they provide a very high
accuracy, since the error of a spectral method is O(N~") and decreases with increasing reso-
lution, N, faster than any polynomial. This is due to the fact that an expansion in orthogonal
functions provide information everywhere instead of only at the grid points. In addition, all
spatial derivatives can be computed exactly in spectral space. For this reason, the spectral
methods require only about half the resolution of finite difference or finite element methods
in each spatial direction to achieve the same accuracy. This, in turn, results in a considerable
reduction of memory and computational time, especially for a three-dimensional problem
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such as the present one. Secondly, one of the major advantages of the finite-element meth-
ods, namely their easy applicability to complex geometries is of no big use here, because the
spherical geometry is already pretty simple. Even, on the contrary, natural expansion func-
tions exist for a spherical shell problem, namely the spherical harmonics. Among their many
nice properties when used as basis functions they eliminate the “pole problem”. A drawback
of of the spectral methods, concerning the dynamo problem, is the lack of an efficient fast
Legendre transform to be used in the frequent transformations between spectral and physical
space. This fact poses some difficulties, especially for the effective use of massively parallel
architectures.

In contrast to the discretization in space, spectral decomposition in time is not possible
and more conventional finite-difference methods have to be employed. The reason is that
while the functions which need to be discretized are well-known in the entire spatial domain
at some moment t¥, their values at future moments t**! are not available. A large number of
consistent temporal finite-difference schemes may be constructed and one is faced with the
task to select a suitable scheme. For the dynamo problem, or indeed for the Navier-Stokes,
or an advection-diffusion equation, a very popular scheme uses a combination of Adams-
Bashforth explicit and Crank-Nicolson implicit method [35]. The implicit part is especially
well-suited to terms of diffusion type and for which its unconditional stability may be shown
and large time step may be used while still following the physical solution. In addition it
provides numerical accuracy but requires the solution of a set of matrix equations at each
time step. However, when one treats the Coriolis, the advection and the other nonlinear
terms explicitly the remaining linear terms including the diffusion term decouple in spherical
harmonic degree and order and the implicit operations are relatively easy to perform. A
readable introduction to the variety of finite-differencing time schemes and analysis of their
accuracy and stability, is given in [17], while a detailed experimental comparison of the
performance of various methods for computing the convection part of the dynamo problem
is the paper of Tilgner [113].

Based on these arguments we choose to simulate the scalar equations (3.54) of the pseudo-
anelastic or (3.65) of the Boussinesq approximation using a pseudo-spectral method [113].
Such a method was first applied to the geodynamo problem by Glatzmaier and Roberts [56].

The chapter discusses the numerics of the more general pseudo-anelastic equations (3.54).
The the Boussinesq case (3.65) is analogous and may be obtained by reduction.

4.1.1 Spatial discretization of the scalar equations

Spectral decomposition of the unknown functions. Basic to the method is the decom-
position of the unknown functions in spherical harmonics in the angular directions and in
Chebyshev polynomials in the radial direction.

Angular decomposition. The spherical harmonics expansions of the poloidal and toroidal
scalars (3.53) of the momentum vector m and the magnetic field B as well as of the temper-
ature and concentration deviations are

l

00 00 l
v = Z Z V™ (r, t) P (cos9) e™?,  w =1 Z Z W (r,t) P (cos¥) ™%, (4.1a)

=0 m=—I =0 m=—1
9] l oo l
1 } 1 .
g==>_Y GI(rt)P"(cos?)e™?, h=-)" H™(r, t) P (cos ¥)e™?, (4.1b)
=0 m=-—1 " =0 m=-1
00 l ‘ 00 l '
O = Z Z O (r,t) P/"(cosv) e™?, I' = Z Z " (r,t) P (cos 9) ™%, (4.1¢)
1=0 m=—1 1=0 m=-1
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where P denotes the associated Legendre functions some details about which may be
found in section 4.1.3. The factors » and r~! in (4.1a) and (4.1b) are not essential but
contribute to the numerical stability of the method. A convenient simplification is that
F™ = (=1)™(F™)*, where I]" is the coefficient in any of the expansions (4.1). The symme-
try holds because all fields must be real, for example v = v*, etc. Thus only the coefficients
with m > 0 need to be stored, which reduces the memory requirements of the method.
Radial decomposition. Chebychev polynomials 75, (r), defined on the interval [0, 1], are
used for the discretization in the radial direction. The expansions are identical for all coeffi-
cients F;™ in (4.1) and are given by

N-1
F(r,t) = Y [ @®)To(r). (4.2)
n=0

Definition of the Chebyshev polynomials 7),(r) is provided in appendix A.5.

Spatial derivatives and operators. Apart from the time derivative relevant in in tempo-
ral discretization, the Laplacian V2, its angular part Lo, the radial derivative 0,, and the
longitudinal derivative 0, appear in the left-hand sides of (3.54).

A major advantage of the Chebyshev expansion is that it provides a very convenient
method of computing the radial derivatives 0, of a function in spectral space. Consider the
expansions of a function f(z) = Zg:() a, T, (z) and of its derivative

d N d N-1
S0 = Y a0 = X o) (49
n=1 n=0

To relate the coeflicients b,, of the derivative to the coefficients a,, of the function we substitute
the recurrence relation

1 d 1 d

Th=——"——Thy1— ————Th1. 4.4
2n+1) dz " 2(n—1) da ! (4.4)

into (4.3) and equate the coefficients in front of the corresponding Chebyshev functions. This
results in a set of equations involving b, and a,, which when solved yields the recurrence
relation

bN—l =2N anN
by—2 =2(N —1)an_1
bp =2(n+ 1) ant1 + bpta, 1<n<N-3 (4.5)
bo=a1 + %dQ.
In a similar fashion the expansion in spherical harmonics facilitates the computation

of the angular derivatives. In spectral space the angular momentum operator Lo, and the
longitudinal derivative d, are simply replaced by their eigenvalues, i.e.

Ly [P"(cos) ™) =1(1+ 1) [P"(cosf) e™?] (4.6a)

D, ™ = im m? (4.6b)

With the help of the relation, V2 = r~20,720, — r~2Ls, the Laplacian is then computed
by taking radial derivatives 0, and operating with L.
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Evaluation of the nonlinear terms. Because of their complexity, the nonlinear terms, the
Coriolis force and parts of the viscous force are evaluated in physical space. Furthermore,
this allows for efficient application of the implicit Crank-Nicolson method to the diffusive
part of the equations (3.54). The following types of expressions need to be calculated.
Vectors, curls and cross products in spherical polars. The momentum m and the
magnetic field B as well as their cross products and curls appear in the right-hand side
of (3.54). To compute these expressions we make use of formula (A.13) for the components
of poloidal and toroidal vectors and the expansions (4.1) and (4.2). As an example, the
components of the momentum vector are

i DY () Py (cos ) e
Z Z [2e2] 20,7V (r)0p P™ (cos 0)e™™¢ + W™ (1) P/ (cos 0)e™?
me
[2ex]my, =0 m=-1 9, Vi (r) P (cos 0) €™ — W™ (r)9g P (cos 0)e™?

(4.7)

The cross product of two vectors and the curl of a vector may be obtained in a similar way
using the familiar rules in spherical polars. The results will not be listed here.

The terms m - VO and m - VI'. Taking advantage of the fact that m is solenoidal,
these terms are equivalent to V- (@ m) and V- (I"m), respectively, and are computed by the
method outlined above.

The advection term F',. This term is most convenient to use when written as

<VX%> x%+2v (poﬂ. (4.8)

Both terms in the square brackets can now be evaluated as described above. An additional
simplification is that the gradient term vanishes when r - Vx of (4.8) is taken. However,
r-V x Vx of the gradient term is nonzero and must be computed.

Viscous force. The viscous force in equations (3.54a) and (3.54b) has been already sepa-
rated in two parts,

1
Fo—m. Vim = [ﬂ.vﬁ] .
Po Po £0

oV (pgtm) +1/350V(V - oy tm) = V2m + FEITS — (4.9)
V2m + fo [2(0,55 ) (0ym) + (r20,7%0,55 )ym + 1/3V(V - jy'm)] .

The first term may be efficiently treated with the Crank-Nicolson method while the second
one is more easily computed in physical space at the right-hand side of the equations. The
gradient term in (4.9) vanishes in the toroidal equation (3.54a).

Applying r - Vx and r - V x Vx on the nonlinear terms. After the terms at
the right-hand side of (3.54) are completely evaluated we are left with vectors in physical
space on which the operators r - Vx and r - V x Vx must be applied. In order to avoid
an additional transformation between physical and spectral spaces the auxiliary quantities
P. = 5,, Pp= Sp(rsinf)~! and P, = S,(rsinf)~! are defined. Expressions for the desired
derivatives may then be written directly in spectral space:

. m l—m m l+m+1 m , m
[PV xS =1+ 1)m[P90]l—1 - W[Pw]l—i-l — im[By]] (4.10a)
[V x V x S = 11+ 1) [P+ (4.10b)

S (P DGR~ S R 4 il )

Special care must be given to the points with I equal to the truncation parameter L.
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Transformations between spectral and physical space. Of a paramount importance to
the computational scheme are the methods of transformation between (r, 8, ¢)- and (n, 1, m)-
spaces. Conversions need to be performed in order to treat efficiently the nonlinear terms as
well as to compute derivatives which is most conveniently done in spectral space.

Radial transformation. The Chebyshev polynomials are defined as

T, (z") = cos (narccos(z')) , 2 e[-1, 1], (4.11)

(see also appendix A.5). However, the grid points r; need to be situated in the volume of
the spherical shell, i.e. between r; = 0 and r, = 1, which may be achieved by the change
of variable 2’ = 2(r — r;) — 1. The transformation between direct and Chebyshev space is
facilitated by the special choice of the collocation points’

1
rj:ri+§(1+cos7r]‘<f_1)7 j=1..N, (4.12)
-1

In this case (4.11) gives T,(r;) = cos(nm{—

) and the sum (4.2) becomes

N—1 .
—1
' (rjst) = > f(t) cos(n 2
n=0

). (4.13)

This, however, is precisely a cosine transform and we may greatly benefit from the existence
of very efficient FFT (Fast-Fourier Transform) algorithms in order to perform the conversion
between radial and Chebyshev spaces.

Angular transformations. In general, a function f(r,0, ) is transformed into its coeffi-
cients F;"(r) and back with the transformations:

l o)
0,0 = 3 e S Pr(cos ) F(r) (4.14a)

m=—1 =0

1 2m
m m 2l+1 —m —im
F"(r)=(-1) 1 de P7™(x) [ dpe "™ f(r,arccosz,p), x = cosf (4.14Db)
T
-1 0

The transformation (4.14a) (I, m) — (0, ) requires a weighted sum of associated Legendre
functions (a matrix-vector multiplication) followed by an FFT over the index m. The inverse
transformation (4.14b) starts with the FFT and then needs to compute the projection inte-
gral. This is done with a Gauss quadrature which approximates the integral over x by the
sum:

1 L
[ s@de =3 wigte) (4.15)
- =0

The Gauss-Legendre weights w; and the abscissas z; are computed with the procedures
of ref. [99]. The latitudinal transformation [ <> 0 represents the narrowest bottleneck of the
numerical scheme, since no fast Legendre transform is presently known. It is however possible
to optimize the matrix-vector multiplication used to compute (4.14a) by taking into account
the symmetry properties of the Legendre functions.

! When the induction equation is solved for a conducting inner core grid points need to be placed in the inner

core as well. The relevant change of variable is x' = 1/d1[2(r — rs) — d1], and the location of grid points is
r; =71s+di/2[1+ cos W%] Here 75 is the radius of a negligibly small insulating sphere placed at the origin

in order to prevent singularities and d; is the thickness of the inner core.
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Spatially discretized equations. As a summary of the methods of spatial discretization
we present the complete system of scalar equations in spectral space,

W™ — <,4l + 72‘) W = 0"~ (4.16a)
— I+ 1)) [PV (Fo—(VxB)x B-FM—rmxeé.)]" r
Dy(0r — DYVI™ = —po[O + I']]"+ (4.16b)
1 m
+m[T~VXVX (Fo— (VxB)xB-F" —rmxé.)]",
1 1 2
O — —AO" = —=0,0]"— 4.16
ey PﬁoAl I Pior ! ( )
= Ao L[V - (@m)]" + (Ppo) ™ [Ri + Ren(1 —n)~*r~*| L2V,
1 1 2
" — — AL = — =0, 1" 4.16d
o1 LﬁoAl 1 Lﬁora ! (4.16d)

~ o L[V - (Pm)J[" + (Lpo) " Rra(1 —n) *r > LaV/™,
1 m
OH" — 5 AH[" = (Il + D) [r-Vx (5'mx B)];", (4.16¢)
1 m
QG = 5 AGT =r(I(l+ D)) [r-VxVx(p'mxB)|". (4.16f)
The advection term, F, and the FR7S part of the viscous force evaluated in direct space

are inserted in the form of expressions (4.8) and (4.9), respectively. The spectral Laplacian
D; and the operator A; are defined as

Dy =02 +2r710, —1(1+1)/r*, A =09*—1(1+1)/r. (4.17)

The boundary conditions described in section 3.3.5 need to be transformed into spectral
space as well. The detail worth mentioning here is how an explicit boundary condition in-
volving only the poloidal scalar of the internal magnetic field is obtained. One expands the
-, 6-, and p-components of the external potential field given by formulas (3.39) and (3.40) in
spherical harmonics, and the internal field by an expansion analogous to (4.7). Taking into
account that the toroidal field vanishes on the boundaries, one matches the expansions of
the radial components as well as the expansions of any one of the angular components of
the external and internal fields. These two equations allow to eliminate all unknowns related
to the external field and provide the boundary condition for the poloidal magnetic scalar in
spectral form,

[(ar - ”rl) Hﬁ(r)]w 0, [<ar + i) H;n(r)]wo 0. (4.18)

The rest of the boundary conditions are easily transformed into spectral space

V=0V =w" no-slip,

m ~—1 m ~—1 m (419)
V™ = 0rpy Op V™ = 0ppy W™ stress-free

r=Ti,To

4.1.2 Integration in time

Combination of Crank-Nicolson and Adams-Bashforth schemes. To introduce the
temporal discretization schemes in use we consider the model equation,
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Oy(t) = f(y,1), (4.20)

which needs to be integrated in time for the unknown function y(t). Here the right-hand side
f(y,t) represents any functional relationship involving the unknown function and the inde-
pendent variable ¢, which is discretized with a step of At. A large variety of finite difference
formulas approximating the real solution may be constructed. We introduce the two of them
which have been shown to be best suited to simulate equations (4.16) on the basis of their
accuracy, stability, efficiency and storage requirements [113, 35].

Crank-Nicolson method. This is an implicit method, i.e. it approximates the time deriva-
tive 0; with the help of the values of the unknown function at a time when this value is still
not known. In order for this to be done a system of algebraic equations must be solved at
each time step. In spite of that it may be demonstrated that the method is very efficient
when terms of diffusion type are treated. Furthermore, it is unconditionally stable for such
terms, which allows for larger time steps. The Crank-Nicolson formula of second order is

JEHyE = A2 [f’f“ n f’f} . (4.21)

Here the value of a function at the k-th time step is denoted by a superscript k.
Adams-Bashforth method. This is an explicit method, i.e. it approximates the time
derivative 9; with the help of the values of the unknown function which are already available
from the previous time steps. Therefore it is conceptually simpler especially for right-hand
side functions f(y,t) which are complicated to evaluate (e.g. nonlinear terms) and for advec-
tive terms. The Adams-Bashforth formula second order is

YLk = At/2 [3 L. f’H} . (4.22)

Combined scheme. Very often the structure of the terms in the equation to be solved is
such that different schemes are appropriate for the different terms. Let us consider a right-
hand side of (4.19) with the structure f(y,t) = fon(y,t)+ fap(y,t), where fon is well suited
to the Crank-Nicolson scheme, while f4p to the Adams-Bashforth scheme. To take advantage
of both we construct the combined formula

Y=yt = A2 [JER + S|+ A2 (355 - £ (4.23)

For the first time step the Adams-Bashforth scheme must be replaced by the Euler first order
scheme, since no previous values are available at this point

y't =0 = At)2 [fin + fon] + At fip. (4.24)

Application to equations (4.16). The structure of equations (4.16) may be schematically
represented by an equation of the type

OuF"(r,t) — LF["(r,t) = N["(F,r,1). (4.25)

Here the operator £ represents the linear terms of diffusion type treated with the help of
the Crank-Nicolson method, while N;” stands for the nonlinear, Coriolis and the part of the
viscous term which are better suited to the Adams-Bashforth scheme and F}"(r,t) are the
coefficients in the angular expansion of any of the unknown scalar quantities (4.1). Making
use of the combined formula (4.23) we obtain

(1-5e) s = { (e Se) i+ 5 (o0 - )b
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for the unknowns F;"(r,t) at the k + 1-th time step. Because of the implicit Crank-Nicolson
scheme equation (4.26) is in fact a matrix equation representing a system of N linear equations
for every pair [, m ie. M"f" = b", after F]"(r,t) and the right-hand side b} have been
expanded by (4.2). The first and the last rows of the matrices M. /" correspond to the dynamic
equations at the inner and outermost collocation points and are replaced by the boundary
conditions. The matrices M;" are LU decomposed, inverted and stored during initialization.
The inverted matrices multiply the right-hand side b}, of (4.26) at each time step in order
to obtain [ f[’}l]k*l. The procedure may be illustrated by the schematic equation

_ {fﬁérﬂ _ I b.c.q 17" [ e
[fﬁ:| k+1 4‘
: = [(1 = SL)Tu(r) . [bfjnr : (4.27)
|:fm :|k+1 7
[fl;nN? k+1 | b.c.o ] | b.co |
|| Ji,N—1

where b.c. denotes the corresponding boundary conditions.

The poloidal velocity equation. The equation (4.16b) is more complicated in that it
is forth order and involves two boundary conditions. The above method may, nevertheless,
be applied but this would waist total of four collocation points near the boundaries. The
so-called influence matrix method is used instead. It replaces the inhomogeneous poloidal
velocity problem by two problems and splits the pair of boundary conditions between them
so no extra collocation points are waisted. The first problem is inhomogeneous and is given
by the system

Dy = —poy[© + I']"+

1 . A \1™m
—l—m[T-VXVX (Fo—py ' (VxB)x B—FM5 —rm xeé.)]|",
)" (ri) = uq"(ro) = 0, (4.28a)

(Or — Dy = uj", ut (ri,t) = )" (re,t) = 0. (4.28b)

The second equation (4.28b) is introduced merely to reduce the order of the original equation.
The second problem is

Dyuyy =0, (i) =1, d1(ra) =0, (4.29a)
Dy iz = 0, tgg(r;) = 0, tg(ra) = 1, (4.29b)
(0r — Di) ujy = Ujy, wji(ri,t) = uji(re,t) = ujy(r,t=0)=0, j=1,2. (4.29¢)

The equations (4.29a) and (4.29b) are precomputed during initialization since they are time
independent. The equations (4.28) and (4.29¢) are already in a form which may be stepped
with the method used for the rest of the spectral equations. The actual poloidal field is finally
obtained as a sum of the solutions of the two subproblems

Vi = T ey [un)® + aB) [uza)”. (4.30)

The coefficients a"; and ay'; are uniquely determined by the second boundary condition for
the poloidal field (4.19).

44 [ r. simitev ¢ dissertation ]



o 4.1 Method of solution

4.1.3 Algorithm of implementation

In order to put together the details of the numerical methods we describe the general scheme
of the code used to simulate the geodynamo problem. The sequence of operations executed
by the program is as follows:

(1) Read the parameters of the run (resolution N, L, M, dimensionless parameters etc.).
Allocate the necessary memory space. With all auxiliary variables, the total storage
requirement adds up to about 20 x N x L x 2M real numbers, depending on details of the
implementation. Complex numbers occur at intermediate stages of the algorithm. These
are stored in real arrays with real and imaginary parts alternating between adjacent
entries of the arrays.

(2) Compute and invert all the matrices required in the implicit time step, equations (4.26),
(4.28) and (4.29). Fill tables of values of associated Legendre functions, their derivative,
and functions with negative index m. These numbers will be needed when computing
m and V X m and during the transformations from (I, m) to (6, ) space and back. The
P™ are computed with a recursion over [

(. =m)P"(x) = z(2l = )Py (x) = (I + m — 1) P%y(x), (4.31a)

P™z) = (=1)™-1-3-5-...(2m —1)(1 — 2%)™/2, (4.31Db)

P (x) =x(2m + 1) P (x). (4.31c)
The derivative is obtained from

(1= @) PP"(@) = —La P (@) + L+ m) Pf" (2). (4.32)
The functions with negative m are calculated as

—m o m (l B m)' m
P w) = (1) mpl (@), (4.33)

and occur in the orthogonality relation

1
2
P (x)P" de = (-1)™ Oy 4.34
| Pr@rr@) de = 0m g (434)

(3) Load the initial f;” -fields in spectral space and compute their first and second deriva-
tives, equations (47.6a).

(4) Evaluate the explicit terms in the right-hand sides of equations (4.16), using formu-
las (4.7) to (4.15). This step may be performed in parallel over the radial index on a
multiprocessor platform.

(5) Start the main time stepping loop in which the implicit Crank-Nicolson method is cou-
pled to an explicit Adams-Bashforth step for the non-linear terms as given by (4.26). For
the very first time step replace the Adams-Bashforth which needs to know the results
from the previous time step by the Euler formula as in (4.24). Matrix-vector multipli-
cations need to be performed which may run in parallel over the azimuthal index m.
Load balancing is a problem here, because there is a different number of matrix-vector
multiplications to be computed for each m. At the end of the time step, compute the
radial derivatives of f]7, and save the right hand sides of (4.16).

(6) Same as (4).

(7) At regular intervals, call a routine which saves various quantities of interest, such as the

instantaneous kinetic and magnetic energy of the flow. The reconstruction of the various
observables from the solution of equations (4.16) will be addressed in the next section.
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(8) End of time stepping loop. Save the final state. End of program.

The CPU intensive procedures are those involving matrix multiplications, i.e. the implicit
time step and the [ — 6§ transformations.

4.2 Observables and visualization

The three-dimensional numerical simulations of the geodynamo easily produce massive giga-
byte sets of data. Scientific visualization, which transforms this raw numbers into vivid 2D
or 3D images, is an essential if not the major way to understand the large-scale datasets.

4.2.1 Velocity and magnetic field visualization

Being four-dimensional vector fields (three spatial coordinates and time), the u— and B—fields
pose a major challenge to represent. Expressions (4.7) for the components of w and B have
already been given. Although very often 3D images of a scalar quantity (see figures 2.2, 5.1,
6.20, 7.7) or of field lines, as well as animations in time have been created, by far the most
efficient spatial visualization of u and B is the method of stream functions. It can be shown
that these vector fields can be represented as a superposition of three stream functions, the
contour lines of which are streamlines on the meridional planes, the cones of constant latitude
and the spherical surface of constant radius,

Uy 0 —(r?sin? 9) 710, Fy —(r?sin0)"1OpF,
u= |ug| = [sin0'O,F, | + 0 + | (rsind)7'0,F, |, (4.35a)
U —0gF, (rsin@)=10,Fy 0

where the stream functions are given by

0 0
F.=w, Fy= T‘%U and F, = rsin 9%1}. (4.35D)

There is no convenient and short method for representing the solution fields in time on paper
and one simply resorts to plotting selected sequences of the data as is often done in this
report.

4.2.2 Some global quantities

Averages. Various averages (f(r)) = X! fOX dz f(z) are used in the dissertation, for which
we adopt the notation: e X — azimuthal average, ® (X)g , — average over a spherical surface
with radius r, e (X) — volume average e (X); — time average.

Energy densities. To assess conveniently the role of various flow and magnetic field com-
ponents, the total kinetic and magnetic energy densities,

1 — . 1 -
EE<§u2>:Ep+Et+Ep+Et, ME<§B2>:Mp+Mt+Mp+Mt7 (4.36)

are separated in parts, where - indicates an axisymmetric component, * indicates a non-
axisymmetric (fluctuating) component and the indexes p and ¢ — poloidal and toroidal parts.
The definitions of these densities are given by

— 1 — 1
By= 5 Vx (Voxr) B, Bi=(VaoxrP),
B, =

%q Vx (Voxr) ), b= %<| Vi x v [2), (4.37)

46 [ r. simitev ¢ dissertation ]



o 4.2 Observables and visualization

and analogously for M. For numerical purposes we list the equivalent spectral expressions

£ _31-n" —n)? l+1 03+ 1)[VOP +T_V0+V0 (4.380)
T2l
= _ 30 77)/ l(l+1)4 02
4.38b
R drzl: o1 I (4.38D)
l
- 3(1—n)? I(I+1) (14 m)! L. S,
Ep_prﬁ/del:; 21 (l_m)![l(Hl)lVl P+ V" VL (4.38¢)
l
: _3(1—?7)/ 41D +m)! 4o
Et—l_—ns drzl:mgl A1 (I—m) W™ " (4.38d)

Ohmic and viscous dissipations, O = (|J|?) and V = (2(e;j2—1/3e;5%)), are decomposed
in a similar way, and for example

:<|V2V><m7)\2), V, = (|V x (erw)\Z),
V, = (IV2V x r0)[%), Vi = (|V x (V x rw)|?). (4.39)

Nusselt number is the ratio of the convective heat transport to the conductive heat
transport in the basic state through a spherical surface with radius r, and thus it is defined
as

(-P"'VWT+uT)y, - (—P7'VO+uT)g,

= 4.40
(=P~1VTs)g. (—P~'VT)g, ( )

Nu =

Helicity, which plays an important role in some mean-field dynamo models, is given by

H= (Vxu)- udV. (4.41)

hemisphere
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5. Linear Onset of Convection in Rotating Fluid
Spheres and Shells

5.1 Introduction

Topic and motivation. The present chapter focuses the attention on the properties of
the linear onset of convection in rotating fluid spheres and shells. The topic may seem not
too relevant in view of the fact that linear convection has not yet been observed to generate
magnetic fields. However, the properties of convection at onset provide much insight to finite-
amplitude convection. Indeed, it is remarkable how many of the features and mechanisms
of convection at onset can still be recognized even in a highly turbulent state. The linear
solutions of the governing equations thus provide a firm foundation on which the nonlinear
results reported in the dissertation may be understood. The present chapter is essentially a
revised and extended version of references [107, , 34, 32].

The introductory discussion 2.2.3 has already outlined the role of convection in modern
theory of geomagnetism and its relations to other branches. However, the importance of con-
vection is not restricted to geomagnetism. Convection provides a relatively simple dynamical
system where transition to turbulence and other aspects of the Navier-Stokes equations may
be studied analytically, numerically and experimentally under controlled conditions. Rotat-
ing convection represents one of the fundamental systems on which a considerable part of
the understanding of many observed geophysical, planetary and astrophysical phenomena
is based. Examples include mantle and solar convection, ocean circulation, cloud patterns,
differential rotation on the surface of the major planets and others [20].

Basic results. Difficulties. Rotating thermal convection has attracted much attention in
the last half a century following the famous monograph of Chandrasekhar [36] who presented
a rigorous formulation, a summary and an extension of the early results on both non-rotating
and rotating plane layer and spherical systems. Innumerable research papers, a large number
of review articles as well as several monographs have been published since. A brief summary
of the principal results and further references have already been provided in section 2.2.3.

Although a large number of properties of rotating thermal convection have been investi-
gated [24, |, many difficulties and open questions still remain. The nonlinear governing
equations do not possess general analytical solutions at finite amplitudes. The rigorous anal-
ysis of the linear onset is also difficult because of the varying angle between the Coriolis
and gravity forces throughout the volume of the spherical shell which renders the problem
truly three-dimensional. The preferred mode of convection is usually non-axisymmetric and
strongly time dependent even at onset. On the numerical side the investigation of the problem
is hindered by the large number of parameters including the Rayleigh and Prandtl numbers,
the Coriolis parameter 7 as well as the radius ratio of the spherical shell 7. In addition, various
choices of the boundary conditions, heating model and variation of gravity, concentration of
light elements, density distribution etc. must also be addressed. Because a radially directed
buoyancy force cannot be easily realized in an Earth-bound laboratory, one has to resort to
the use of centrifugal acceleration [27] or even spacecrafts [00] for an experimental study.
Thus, it is not surprising that place for new developments in the field of rotating thermal
convection in spherical geometries still exists.



o 5.1 Introduction

Fig. 5.1. The major types of convection near onset: inertial convection at P = 0.025, T = 10°
and R = 3.1 x 10° (left part) and columnar convection at P = 1, 7 = 10* and R = 2.8 x 10°
(right part). Blue and red surfaces in the left and right plots correspond to negative and positive
values of u,. The middle plot shows equatorial streamlines r d,v = const.

Types of convective flows. The behavior of convection in a rapidly rotating system differs
fundamentally from that in a non-rotating one. The Coriolis force exerts a dominant control
on the dynamics of the flow and provides a constraint that must be broken before convection
can occur. Once convection sets in, this constraint must be surmounted for an efficient heat
transfer to exist. In the case when a magnetic field is not present, it is the Prandtl number
P that mainly controls how the rotation constraint is broken and opposed. The various
convection modes may conveniently be classified according to the magnitude of P. Two
fundamentally different forms of convection may be distinguished (see figure 5.1):

e columnar convection [I3] has rolls aligning with the axis of rotation and intercepting
the outer spherical surface at mid-latitudes; the azimuthal length scale of the roll is much
shorter than the radial scale; it is observed at moderate and large values of P,

e inertial convection [1241] exhibits rolls trapped near the outer spherical surface in the
equatorial region and large azimuthal length scale compatible to the radial scale; it is
realized at small values of P.

Contents. A large range of values of P extending from 10~7 to 10? will be considered and
new results on columnar, inertial and intermediate types of convection will be reported.

In section 5.2 we outline the reduction of the basic equations (3.64) and (3.65) to the
linear case of non-magnetic convection. In section 5.3 we briefly describe a Galerkin method
used to perform the numerical studies reported in the chapter.

In section 5.4 the linear onset of columnar convection is investigated. We extend the studies
reported in references [1241] and [3] to the case of fixed-flux thermal boundary conditions.
We return to the case of fixed-temperature conditions and construct a surface representing
the critical Rayleigh number R, in P—7 space. The numerical values are compared with the
asymptotic expressions derived by Busse [13] on the basis of the annulus model. These results
have proved to be very valuable in our simulations of nonlinear convection and dynamo action
since they facilitate the correct estimation of the values of R necessary to generate magnetic
field or to enter a particular finite-amplitude convection regime thus reducing the number of
trial computational runs and providing insight into the dynamics of the flow.

In section 5.5 the onset of inertial convection as well as the patterns intermediate to
the non-rotating regime and to asymptotically high rotation rates r at very small values of
P are investigated numerically. Results with both fixed-temperature and fixed-flux thermal
boundary conditions are reported. Convection at small values of P seems to support magnetic
field generation even at very low values of the magnetic Prandtl number Pm. Reaching values
of Pm as small as possible is an important goal of geodynamo simulations since the actual
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value of this parameter in the case of the Earth is estimated to be as low as 1076 [23].
Following this path values as small as Pm = 0.1 has been reached in our simulations as will
be reported in chapter 7. Additional motivation for the study of inertial convection is that
previous works reach neither very low values of P nor very high values of 7. For example,
both papers of Zhang & Busse [121] and Ardes et al. [3] which are the closest in scope to
the present analysis discuss only cases in the ranges 0.1 < P < 102 and 10 < 7 < 106 while
it is found that many interesting features occur outside this domain as shall be reported in
section 5.5. Some particular goals are to outline the border between regions of retrograde and
prograde drifting modes in P—r—n space to verify the prediction that in the regime of inertial
convection the ratio between the frequency w and the rotation rate must remain constant for
a broad range of rotation rates and has little radial dependence. A study of the dependences
of R. and w on the radius ratio has also not yet been investigated in previous studies.

Motivated by the numerical results, we report an analytical theory for the onset of inertial
convection in section 5.6. Inertial convection is a form of fluid motion which is a combination
of inertial oscillations and thermal convection. Inertial oscillations represent the simplest
time-dependent motion in a rotating fluid system. Just like the Taylor-Proudman theorem
they describe the motion of a uniform inviscid rotating fluid in the absence of magnetic
forces but in contrast the time-dependence of the flow is retained, i.e. all terms except 0;u,
the pressure and the Coriolis term in the primitive Navier-Stokes equations (3.3) and (3.12)
are neglected. The reduced equations are then equivalent to the Poincaré equation

OPV2m + 40 0% = 0, (5.1)

where 7 is the pressure and (2 is the angular velocity. General solutions of (5.1) for a sphere are
given in [126]. The connection between inertial waves and thermal convection at vanishing P
in a rapidly rotating fluid layer was first noticed by Chandrasekhar [36]. At sufficiently small
values of P inertial oscillations are weakly influenced by convection. Following this idea more
systematic studies for various convection systems were undertaken by Zhang [120, , ].
The buoyancy term and viscous dissipation are introduced in the equation of motion as
perturbations of inviscid inertial waves and the balance of the two terms is used to determine
the critical value of the Rayleigh number. In section 5.6 we extend this approach to the case
of a spherical boundary of low thermal conductivity on the one hand and to an alternative
method of analysis on the other hand which allows us to obtain explicit expressions for the
dependence of the Rayleigh number and frequency on the azimuthal wave number and the
product 7P. The analytical results are compared with direct numerical solutions.

5.2 Reduction of the governing equations to the linear case

The scope of the present chapter does not require the use of the full set of primitive governing
nonlinear equations (3.3), (3.12), (3.19), (3.20), (3.25¢) and (3.28) derived in chapter 3. Here
we present a reduced set of equations forming the mathematical basis for the linear analysis,
reported in this chapter.

We restrict the attention to non-magnetic convection driven only by thermal buoyancy.
The appropriate starting point are the Boussinesq equations (3.64) of chapter 3. We drop
entirely the equations for the magnetic field (3.64f) and (3.64g) and for the concentration of
light material (3.64¢) and therefore also the Lorentz force (V x B) x B and the compositional
buoyancy force I'r from the momentum equation (3.64b). Furthermore, we assume a simple
gravity field and basic temperature distribution

g=—"r, Ts = By — ﬁr2/2. (5.2)
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Such temperature distribution is due to a homogeneous distribution of internal heat sources.
Thus, we drop the term R.n(1—7)"2r"3r-u from the temperature equation (3.64d). Since only
the Rayleigh number due to heat sources R; is left in the problem we shall omit the subscript
“” and denote it simply by R. We neglect the nonlinear terms v - Vu and u - VO in the
remaining equations since we consider the problem of the onset of convection in the form of
small disturbances. Using the scalings and the definitions of the nondimensional parameters

introduced in sections 3.3.3 and 3.4, we arrive at the reduced set of linear equations,

V-u=0, (5.3a)
du + e, x u — Vr = Or + Vu, (5.3b)
Rer-u+ V6 — P90 =0, (5.3¢)

where 7 denotes a modified pressure.

Using a poloidal-toroidal representation of the solenoidal velocity field of the type (A.11)
and applying the operators r - Vx and r -V x Vx on the momentum equation (5.3b), it is
written in terms of scalar fields

[(0r — V) Lo — 70,] Vv — T7Quw = 0, (5.4a)
[(0r — V) L2 — TOpw + 7Qu = 0, (5.4b

where the operators Lo and Q are defined by (3.55a) and (3.55D).

To complete the mathematical formulation we need to specify appropriate boundary con-
ditions. We shall assume stress-free conditions for the velocity field with either a fixed tem-
perature (case A) or a fixed flux on the boundaries (case B),

022}:827):81”

w
" r

at r; and 7. (5.5)
0,0, case B

B {@, case A
Further more specific details on the mathematical formulation will be given in section 5.6
where we will report analytical results on inertial convection in a rotating fluid sphere.

5.3 Numerical method of linear analysis

The onset of convection is, of course, only a part of the general self-consistent dynamo process
driven by thermal and compositional convection. Therefore, it may be investigated with the
help of the general numerical methods described in chapter 4. However, these methods are
not well-suited for treating the linear problem. In particular, no assumptions for the form
of the time dependence of solutions can be made since in the general nonlinear case such
dependence is not known and it is the aim of the numerical integration to find it. In contrast,
the form of the time dependence of the solution is well-known in the linear case — because
the equations are autonomous, an exponential ansatz for the time dependence can be used.
Equations (5.4) and (5.3c) then form a linear eigenvalue problem for the critical Rayleigh
number R, and frequency w. The linear problem of the onset of convection thus becomes
considerably less demanding in terms of computational resources and time.

Galerkin spectral methods. In order to realize this idea we use a Galerkin spectral method.
In general, the method reduces a partial differential equation M y = 0 for the unknown y(x, t)
to a set of N ordinary differential equations in time by posing a truncated expansion for y(x, t)
in terms of some basis functions f,,
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N P = 1%7? T= 14067 P = Odli T= 1(313, P = 0(-]14 T= %5, Table 5.1. Dependence of the
n=uheme n=ueme n=usm critical Rayleigh number R,
R w Re w Re w and frequency w on the trun-

3| 18016.3 127520.6 18016.3 108.2 134883.58865.17 cation parameter N in the

10| 18851.7 130446.6 | 18851.7 106.1 | 910277.11 1767.1 case A of fixed-temperature

20| 18853.3 130588.1 18853.3 106.0 1297336.2 1813.5 b d diti

26| 18857.6 130601.1 | 18857.6 104.9 | 1266116.9 1831.8 oundary conditions.

N
§(,t) =Y an(t) ful@) (5.6)
n=1
and by requiring that the residual My is orthogonal to this set of basis functions,
/ dz gn(z) Mi =0, n=1.N (5.7)

where g, satisfies [ dz gn(z)fu(z) = 65, The Galerkin projection, as the integral in (5.7)
is called, yields N equations for the N unknown expansion coefficients a,,.

Particular realization. In the particular case the dependent variables of equations (5.4) and
(5.3¢) are expanded in a basis of functions satisfying the boundary conditions (5.5),

v = Z any exp{i(my + wt)} P" (cos 0) sinnm(r — r;) (5.8a)
In
w = Z ¢ i expli(me + wtt) } P (cos 0) cos(n — 1)m(r — ;) (5.8b)
Iin
> bprexp{i(mep + wrt) } P (cos 0) sinnw(r — r;), case A
=1 (5.8¢)

> b, pexpli(mep — th)}PZm(cos ) cos(n — 1)m(r —r;), case B’

I,n

This representation has been chosen in such a way that solutions in the form of drifting waves

which are m-periodic in the azimuthal direction are described by constant coefficients a;,,
etc. The method is not restricted to linear problems and more complex nonlinear solutions
can be described by time-dependent coefficients a;,(t), etc. In both cases the conditions

— ot _ g+ _ .+
ap =a’,, , bp=0b", , Cjp, =5 s (5.9)

must be satisfied for the expressions (5.8) to be real, where the superscript “+” indicates the
complex conjugate. Of particular interest are solutions that are symmetric with respect to
the equatorial plane in which case the subscript [ runs through m+2j for j = 0,1,2... while
the subscript { runs through m+2j + 1 for the same j. The associated Legendre polynomials
will be assumed in such a form that the average of [P/"]? over the unit sphere is unity, i.e.

(1—m)!(20 + 1) m

Ut m)l (> -1 (5.10)

A = | |2t oma - ey ]

dgl+m
In the case of the linear problem the projection (5.7) of the basic equations (5.4) and
(5.3c) onto the space of the expansion functions used in (5.8) gives rise to a linear system of
algebraic equations for the coefficients a;, etc. This system contains the frequency w as an
eigenvalue. For given values of m, 7 and P the Rayleigh number R is increased until the lowest
imaginary part of the eigenvalue w becomes negative indicating the onset of convection. The
corresponding R., w, and set of coefficients ay,, by, ¢, constitute the linear solution sought.
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Fig. 5.2. The critical Rayleigh num-
ber R. (upper plot) and wavenumber
m (lower plot) as functions of T in the
L = case 1 = 0.4 for values of the Prandtl

R number P = 0.2 (red, circles), P = 2

s s (blue, triangles), P = 20 (green, dia-
@xiﬁz‘*“:‘_ﬂ@ monds) and thermal boundary condi-
10 - 20ttt Aﬁ“;:‘:ﬁéeg’“-m . tions of case A (thick broken lines, filled
meot . Ol ] symbols) and case B (thin lines, empty
oM e L black symbols).
1 TWA‘Q mw | | | R
10 10 10* 10°

Truncation scheme and accuracy of results. The numerical accuracy and convergence
of the solution depends mainly on the truncation parameter N to which the series (5.8) must
be truncated in a numerical implementation. We assume a triangular truncation condition
that all coefficients and corresponding equations are neglected whose subscripts satisfy

2n+l—|v|m+2]|v|>3+2N. (5.11)

The same condition applies for [. In order to obtain an idea about the rate of convergence
and the reliability of the results we present table 5.1 which shows values of R, and w as
functions of N for several sets of typical parameter values. The value of N = 16 with a total
of 816 coefficients has most often been used in the computations since it provides a reasonable
compromise between accuracy and computational time.

The numerical methods of linear analysis have been adopted from [3] with modifications
concerning the introduction of the fixed-flux thermal boundary conditions of Case B.

5.4 Onset of convection at moderate and high values of the
Prandtl number

In this section we focus the attention on the onset of convection in rotating spherical fluid
shells at moderate (0.1 < P < 1) and high values (P > 1) of the Prandtl number P.
The regions of “moderate” and “high” values of P are, of course, only roughly determined
according to the criterion that predominantly columnar convection should be observed there.
The values of the Coriolis number 7 are restricted only by computational constraints.

Basic physical mechanisms. Before discussion of numerical results, it is useful to recall
qualitatively the basic physical mechanisms which drive convective motions at those values of
the parameters. Because analytical solutions of the governing equations (5.3) do not exist in
spherical geometry an useful approach has been to investigate simpler systems approximating
various aspects of convection in rotating spherical fluid shells. For example, the polar regions
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Fig. 5.3. Sequence of
plots of the equato-
rial streamlines r0,v =
const. for increasing val-
ues of T as indicated in
the figure and for val-
ues of P = 0.2 (left col-
umn), P = 2 (middle
column), P = 20 (right
column), n = 0.4 and
thermal boundary con-
ditions of type B.

may be considered as plane layers rotating about vertical axes while the equatorial region
may be approximated by a rotating cylindrical annulus.

The most essential effect due to rotation with angular velocity &2 of a fluid system is the
preference for two-dimensional motions, resulting from the Taylor-Proudman theorem

2 Vu =0. (5.12)

This result is obtained when all terms in the momentum equation except the Coriolis force
and the pressure gradient are neglected in order to isolate the effect of rotation in its simplest
form. Because of the constraint (5.12), the velocity of rotating fluids is preferably oriented in a
direction perpendicular to the axis of rotation. Therefore, convective motions in a plane layer
rotating about a vertical axis are suppressed because the fluid needs to carry heat vertically
against the constraint (5.12). For this reason, convection in a rotating layer occurs at higher
values of R, than in a non-rotating one. Similar arguments hold for the polar region of the

54 [ r. simitev ¢ dissertation ]



Rl

o 5.4 Onset of convection at moderate and high values of the Prandtl number

g
690 |- g
6
5
590 - B
490 - B
390 - B
290 - B
(a) (b) |
28 L | L | L | L | 190 L | L | L | L |
2000 6000 10000 14000 18000 2000 6000 10000 14000 18000
T T

Fig. 5.4. The critical Rayleigh numbers R, (in (a)) and frequencies w (in (b)) corresponding
to various values of the wavenumber m (indicated in the plots) as well as the preferred value
of m (circles, plot (a), right ordinate) as functions of 7. The Prandtl number is P = 0.1, the
radius ratio is n = 0.4 and fixed-flux thermal boundary conditions of case B are used.

rotating spherical shell where convection sets in long after the other parts of the shell have
started to convect. Another simpler model which has been very successful in describing the
properties of convection in the equatorial region is the rotating cylindrical annulus shown in
figure 1 of reference [21]. An important ingredient of this geometrical configuration are the
conical boundaries at top and bottom which cause a variation in height with distance from
the axis of rotation. Without this variation in height, steady two-dimensional convection
rolls aligned with the axis of rotation will be realized since they obey the Proudman-Taylor
condition. The Coriolis force is entirely balanced by the pressure gradient in this case and
the value of R. in the small gap limit is given by the Rayleigh-Bénard value for a non-
rotating layer. As soon as the height changes in the radial direction any flow involving a
radial velocity component can no longer satisfy the geostrophic balance (5.12). Instead, a
weak time dependence is required and the flow assumes the character of Rossby waves. The
dynamics of Rossby waves can be visualized if the action of the vorticity acquired by the fluid
columns displaced radially from the middle of the gap is considered. As indicated in figure 2
of [24] columns shifted inward acquire cyclonic vorticity because they are stretched owing to
the increasing height. The opposite sign of vorticity is exhibited by columns moving outward.
Since their moments of inertia are increased they must rotate anti-cyclonically relative to the
rotating system in order to conserve angular momentum. The action of the acquired motion
of sinusoidally displaced columns on their neighbors results in the propagation of a wave as
shown in figure 2 of [24]. The phase velocity is in the prograde (retrograde) direction when
the height decreases (increases) with distance from the axis.

The annulus model provides insight to another important aspect of rotating convection,
namely the generation of differential rotation in which the outer fluid rotates faster/slower
than the inner one. When curved cones instead of straight cones are used as upper and lower
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Fig. 5.5. The critical Rayleigh numbers R, (in (a)) and frequencies w (in (b)) corresponding
to various values of the wavenumber m (indicated in the plots) as well as the preferred value of
m (circles, plot (a), right ordinate) as functions of 7. The Prandtl number is P = 1, the radius
ratio is n = 0.4 and fixed-flux thermal boundary conditions of case B are used.

boundaries the slope near the outer cylinder is larger/smaller than the slope near the inner
cylinder (convex/concave case). In the convex case, for instance, as a result of the variable
slope the thermal Rossby wave will propagate faster on the outside than on the inside. This
leads to a tilt in the convection columns. When the columns are tilted in the prograde sense
towards the outside, prograde momentum is carried outwards and retrograde momentum is
transported inwards leading to differential rotation. The differential rotation could not be a
very strong effect if a feedback process did not come in as well. Indeed, the steady differential
rotation created by the balance of Reynolds and viscous stresses tends to increase the tilt of
the convection cells and thus enhances its own source.

The analytical theory of the cylindrical annulus is favored by the fact that the problem
may be reduced from three to two spatial dimensions [13, 21]. Further features and references
for convection in the cylindrical case are given in [24] and [32].

Onset of convection in the case of fixed-flux thermal boundary conditions and
comparison with the case of fixed-temperature boundary conditions. Detailed com-
putations addressing the onset of convection with fixed-temperature boundary conditions at
moderate and high Prandtl numbers have been performed in the past by Zhang & Busse
[124] and Ardes et al. [3]. Their studies provide a comprehensive picture of the flow regimes
and the various types of mode competition. Here we extend their analysis to higher values
of the Coriolis parameter 7 and to the case of fixed-flux thermal boundary conditions.

In figure 5.2 an overview of the numerical results is given for n = 0.4. The critical R, and
m are plotted for three different values of P as functions of 7. The case with the lowest value
of the Prandtl number P = 0.2 is, in fact, a marginal one since inertial convection is already
observed for the smaller values of 7 as will be discussed in connection with figure 5.3. The
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cases P = 2 and P = 20 are not very different, suggesting that those values of P are sufficient
for observing the typical phenomena of columnar convection. Asymptotic scaling is used to
plot R. in figure 5.2 in order to test the validity of the asymptotic relations (5.13). Indeed,
for high values of 7 the scaled Rayleigh number R.7—%/3 tends to approach a constant value
in the average. As discovered in the work of Ardes et al. [3], the preferred wavenumber m
does not always increase monotonically. Non-monotonic behavior of m is observed in the case
P = 0.2 and is more pronounced in the case of fixed-flux conditions. As can be seen in figure
5.3 this is due to a change in the style of convection. The most significant difference between
the cases of fixed-flux and fixed-temperature thermal boundary conditions appears in the
value of the preferred wavenumber and is especially strong for P = 2 and P = 20. For these
values of P, m = 1 is the preferred wavenumber of convection with fixed-flux conditions as
7 is increased from values of the order unity up to 8 x 10% while m = 1 is never exhibited
except for very low values of 7 and n in the fixed-temperature case. The transition of m
from unity to higher values in case B may be observed in the lower panel of figure 5.2. It
occurs abruptly and is followed by a fast monotonic increase of m. This transition results in
a well-defined sharp peak in the critical Rayleigh number as seen in the upper panel of figure
5.2 near 7 = 7 x 10% as well as in significantly lower values of R, in the case of fixed-flux
conditions compared to the case of fixed-temperature ones at lower values of 7. This result is
important because those are exactly the values of P and 7 genuinely accessible for nonlinear
finite-amplitude convection and dynamo simulations. It indicates that a simple variation in
the thermal boundary conditions may result in a totally different scale of convection and
magnetic fields of drastically different dynamical behavior. Similar effect has been suggested
in [25] due to a second source of buoyancy with sufficiently different diffusivity. For values of
7 larger than 2 x 10* the two cases show little difference.

Additional insight into those features may be gained from figures 5.3, 5.4 and 5.5. Figure
5.3 exhibits a collection of flow patterns of convection with fixed-flux thermal boundary
conditions. The three columns in the figure correspond to the three values of the Prandtl
number used in figure 5.2. Two main tendencies may be observed, namely that the number of
convection columns increases with increasing 7 while their spiralling decreases with increasing
P so that the columns are much more radially oriented at P = 20 than at P = 0.2. The
flow patterns, however, exhibit a number of finer details. The P = 0.2 case is the richest
in structure. In particular the transition from equatorially-attached inertial convection to
columnar convection may be observed here. At sufficiently low values of 7 a large-scale
m = 1 pattern is preferred. As 7 is increased above few hundreds, higher wavenumbers enter
and the flow assumes the form of cells attached to the outer surface of the shell near its
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Fig. 5.7. The critical Rayleigh number R, as a function of the Prandtl number P and the
Coriolis number T in the case of fixed-temperature boundary conditions (case A) and n =
0.4. The upper surface shown with a thin blue wireframe is a result of numerical solution of
equations (5.4) and (5.3c), while the lower surface shown with thick red wireframe corresponds
to expression (5.13). Also shown are isolines R, = const. in the P — T — plane (right plot).

equator as is typical for inertial convection. Examples of this type of flow are provided by the
second (7 =5 x 10%) and third (7 = 2 x 103) plots of the first column in figure 5.3. Beyond
these values of 7 the transition to columnar convection occurs in a manner very similar to
the one reported by Ardes et al. [3] in the case of fixed-temperature boundary conditions.
The equatorially attached cells are replaced by double-humped cells the centers of which
gradually displace from the outer towards the inner spherical surface. Simultaneously the
cells extend in vertical direction. The forth (7 = 2.7 x 10%), fifth (7 = 3 x 103) and sixth
(1 = 4 x 103) plots corresponding to P = 0.2, provide examples of double-humped rolls. The
humped pattern gradually transforms to typical columnar rolls as 7 is increased further.

It is of particular interest to investigate the mode competition mechanism behind the
transition from inertial to columnar convection. In figure 5.4 the neighborhood of the region
of non-monotonic dependence of m where this transition occurs is shown in detail. Fixed-flux
conditions and a slightly lower value of P = 0.1 than those of the previous figures are used.
The figure may be readily compared with the similar figure 4 of Ardes et al. [3] for case A
thermal boundary conditions. The most notable features of the plot are the many kinks in the
R —curves for the various wavenumbers m. Those kinks represent transitions between different
eigenvectors of the solution for a fixed value of m. In other words, for a fixed number of rolls
at given set of parameter values, P, 7, 1, etc. the governing equations (5.3) allow various
types of convection modes, e.g. inertial, columnar, etc. Of all these eigenvectors, one has the
lowest value of R, and is the actually realized solution. However, with changes in the values of
the parameters a different mode for the same number of rolls may have a lower R, and at the
point in the parameter space where this happens a kink in the critical Rayleigh number curve
for the given m is observed. The transition between competing mode is especially evident
in the discontinuity of the corresponding frequencies as shown in figure 5.4b. Examples of
the flow patterns corresponding to such a transition appear as already discussed in the first
column of figure 5.3 for 7 = 2 x 103 and 7 = 2.7 x 10%. These two plots exhibit the same
number of rolls m = 7 but the first of them shows equatorially attached convection while the
second one shows a double-humped mode which occurs after a kink in R.. In the process of
mode competition R. exhibits a complicated dependence on 7. As a consequence not only
the various modes belonging to some fixed m compete but the various wavenumbers m also
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compete with each other as is evident from the numerous intersections of the R.-curves in
figure 5.4a. This leads to a change in the preferred wavenumber and eventually to recurrence
of the same or even lower values of m and thus to its non-monotonic behavior.

A different scenario of mode competition occurs at higher values of P and is illustrated
in figure 5.5 for fixed-flux thermal boundary conditions. The figure also helps to clarify the
preference for the m = 1 mode of convection at low values of 7 for this type of boundary
conditions. In contrast to convection at lower values of P no kinks in the R.-curves and no
discontinuities in the corresponding frequencies w are observed. The R. depends smoothly
on 7. This is an indication that modes competing with the critical one always have higher
values of R.. Thus the 7-dependence of R, is determined only by the competition of various
wavenumbers. For a large range of values of 7 between 10 and 900 for the set of parameter
values used in figure 5.5, m = 1 remains the preferred wavenumber. At 7 = 900 a jump to
m = 5 occurs which results in a sharp peak in the critical Rayleigh number. For a short
range of values of 7, immediately following the jump a coexistence of m = 5 and m = 6
patterns is possible after which m rapidly assumes increasing values. The R.- and w-curves
corresponding to the various values of m > 5 are rather similar and their envelopes determine
the actual critical Rayleigh number and frequency. Examples of flow patterns corresponding
to this situation are shown in the second and third columns of figure 5.3. The large m = 1
patterns are abruptly replaced by patterns having higher wavenumbers. However, the rolls
remain always attached to the inner spherical boundary of the shell as is typical for columnar
convection. The columns become less spiralling and more radially oriented as P is increased.

Dependence on the radius ratio n of the spherical shell. The parameter dependence
of the onset of convection becomes more complex as spherical shells of finite radius ratio n
are considered. Fortunately, the influence of n is relatively weak if the Coriolis parameter is
sufficiently high and n does not approach unity too closely. Moreover, the definition of R is
based on the gap width d of the shell rather than the radius ratio n. A radius ratio n = 0.4
has been traditionally used in linear studies [124, 3] as well as in finite amplitude convection
and dynamo simulations [114, 30, 62]. A ratio n = 0.4 will also be preferred in the major part
of this report. However, dependence of the linear as well as the finite-amplitude properties of
convection on 7 certainly exists. For example, a very thin spherical shell may be approximated
by locally by plane layers rotating about inclined axes while n = 0 corresponds to a full
sphere. This two cases are fundamentally different and exhibit fundamentally different types
of flow. Since the complete investigation of the n-dependence constitutes an enormous task,
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here we only present figure 5.6. It shows decrease in the values of R. and w as the spherical
shell becomes thinner. The two different types of thermal boundary conditions (A and B) do
no cause much difference. The values of all other parameters have been kept fixed to typical
values in order to diminish the amount of computation. Additional results on the dependence
of the onset of convection on the radius ratio appear in section 5.5.

R.-surface in P — 7 space in the case of fixed-temperature boundary conditions
and comparison with analytical expressions. Finally, we present some results which may
serve as a summary of the properties of the onset of convection at moderate and high Prandtl
numbers reported above. Extensive numerical computations have been performed in order
to obtain the critical Rayleigh number R. and frequency w for the onset of convection as
functions of the Prandtl and Coriolis numbers and an entire surface in P — 7 space have been
constructed. A strong motivation is the need of a reference point for finite-amplitude con-
vection and dynamo simulations. Having reliable values of the R, helps to prevent computer
runs which could have decaying solutions because of insufficient energy input and facilitates
the comparisons between various runs. Fixed-temperature boundary conditions have been
assumed and the radius ratio of the shell has been set to n = 0.4 since these assumptions
have most often been employed in our finite-amplitude convection and dynamo calculations.
A further motivation has been to test the approximate analytical expressions

4
P 3 _1

R.=3 <1 +TP> (tanf,,)3rm3 273, (5.13a)

1

P 3
m = (1 +TP> (rm tan Hm)%2_é, (5.13b)

1
1 3.5, 9 2

w= <7(1 —|—P)27'P> 276 (tan” 0, /1) 3, (5.13c)
derived on the basis the annulus model by Busse [13, 21]. Here r, refers to the mean radius of

the fluid shell r,,, = (r;+7,)/2, and 6,, to the corresponding colatitude 6,,, = arcsin(r,,(1—n7)).
Those expressions do not take into account the radial dependence of the convection columns
at onset. In fact, it is the property that the onset of convection in the rotating cylindrical
annulus becomes independent of the gap width in the asymptotic limit of high 7 which make
relationships of this kind applicable to spherical shells and other axisymmetric containers.
For a rigorous asymptotic analysis including the radial dependence we refer to [74]. In figure
5.7 the expression (5.13a) is compared with accurate numerical values of R, in the P-r-plane
which indicates that the general trend is well represented by the analytical expressions. The
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analytical expressions give values of R, and w lower than the numerical. Although the three-
dimensional plot demonstrates well the global form of the dependence of R. on P and 7, it is
not well-suited for a precise comparison with expressions (5.13). Thus, we present figure 5.8
which provides a closer look to several cuts through the surface. Both the critical Rayleigh
number R.— and frequency w-curves in figure 5.8 change their slope and noticeably start
to deviate rather rapidly from the analytical expressions below Prandtl numbers of about
0.2. This is not surprising since in this region convection changes its type from columnar to
inertial type and the analytical expressions are no longer valid. We address this question and
develop an analytical theory of the low Prandtl number convection in section 5.6

A rule of thumb stating that when the Prandtl number P is increased, one should decrease
the Coriolis number 7 by some amount in order to observe similar effects is often used in
simulations of finite-amplitude convection and dynamo action. In fact it may be rigorously
shown that only the single parameter 7P is significant in inertial convection (see section 5.6).
Similar facts are suggested by expressions (5.13) where, for instance, R. does not change
when P = 0.5 instead of P = 1 is used while 7 is increased by 50%. More generally (5.13a)
and (5.13b) state that R.(1+ P)%3 and m(1+ P)'/3, respectively should depend only on 7P.
Figure 5.9 tests the numerical results against this prediction and shows that they deviate
especially for small values of P. This is not very surprising since at small P the inertial effects
become increasingly important. A more precise guideline of how P and 7 should be varied
in order to keep the Rayleigh number fixed may, of course, be obtained by the plot of the
isolines of R. in the P — 7 plane shown in the right part of figure 5.7.

5.5 Onset of convection at low values of the Prandtl number

Results of the numerical investigation of the onset of convection at low values of the Prandtl
number P are reported in this section. A slightly different approach than the one used in
the preceding section is adopted here. Instead of determining the preferred wavenumber
m as a part of the solution, its value is prescribed. The reason is that the competition of
various wavenumbers is expected to be very similar to the one already reported for high
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Fig. 5.11. Isolines of the
streamfunction rd,v=const.
in the equatorial plane illus-
trating the sequence of transi-
tions for the same parameters
as in figure 5.10 and values
of T =5, 950, 1500, 6 x 107,
8 x 10°, 3.5 x 107.

and moderate Prandtl numbers in the previous section. Thus the attention is focused on the
mechanisms of mode competition for a single fixed wavenumber. The parameter exploration
includes a large number of points in the ranges of 1077 < P < 1,0 < 7 and 0.1 <7 < 0.8.
This region is roughly determined by the expectation that inertial convection should be
predominant here. Of course, the scenario of the evolution of the onset of convection with
increasing rotation parameter 7 as will be described below is valid for a smaller region of
approximately 10~7 < P < 1072, Fixed-temperature (Case A) thermal boundary conditions
are used throughout this section, except in figure 5.17 where comparison with the fixed-flux
(Case B) conditions is presented.

Modes of inertial convection with increasing rotation rate. Ideally, the way to investi-
gate a given parameter region is to keep the values of all parameters of the problem fixed and
vary in a continuous way only one of them. When the dependence on this parameter is well
understood the process is repeated for all remaining parameters. Practically, this is rarely
possible. In an experimental situation, for example, the variation of the Prandtl number is
limited to the set of available working fluids. In a numerical study one has much weaker
restrictions and we have found the rotation rate to be relatively easy to vary in a wide
range. Furthermore, any non-monotonic behavior is an indication of a well-defined transition
between different states.

Following this approach, numerous cases in the low Prandtl number region have been

investigated. Figures 5.10 and 5.11 represent typical examples of the results obtained in this
region and provide an overview of most of the various regimes of convection which occur here.
Figure 5.10 shows the Rayleigh number R, and the corresponding frequency w as functions
of 7. The w— curve is particularly instructive and several different states of the preferred
mode can be immediately identified from its discontinuities. Figure 5.11 provides view of the
flow patterns corresponding to these different states. The values of the parameters P = 1074,
m = 8 n = 0.3 are kept fixed. However, their variation within the region of interest leads
only to qualitative changes in the figures but preserves their general features.
Submode Al. At very low rotation rates 7 of order unity the convection cells form near the
outer surface in the equatorial region of the spherical shell as can be seen in the first plot of
figure 5.11. At this values of the rotation parameter 7 the values of the Rayleigh number are
still rather small. The preferred mode indicated by Al in figure 5.10 has a positive frequency
which indicates a retrograde drift with time. The solution has a relatively small toroidal
component which vanishes in the limit 7 — 0, indicating that this state is marginal to the
states of non-rotating convection.
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Fig. 5.12. Graphs in the center show the critical Rayleigh numbers R. of the competing
prograde (red line) and retrograde (black line) modes as well as the actual critical value (thick
lines) and the corresponding frequencies w as functions of T for P = 0.00001, m = 6, n = 0.2.
Contours of u, = const. (lower plots) and w = const. (upper plots) on the spherical surface
r=r;+0.9 for 7 = 10 and 107 are shown on the left- and right-hand sides, respectively.

Submode A2. A new mode which does not exist at 7 = 0 enters and a switch-over phe-
nomenon similar to the one first described by Zhang & Busse [124] and illustrated in figure 6
of their paper is observed. The two competing modes approach each other but do not cross.
As a result the R.— and w—curves of the two modes exhibit smooth bends but for some time
the initial mode is still preferred. The modified initial mode is denoted by A2 in figure 5.10
in order to be distinguished from the same state Al when it is in its pure form. During the
gradual transition the pattern of convection also changes gradually. The rolls are no longer
straight and strictly radially oriented as they are near 7 = 0 but change their shape and
become inclined as illustrated in the second plot of figure 5.11. The frequency still keeps its
positive sign and the pattern exhibits a retrograde drift.

Mode B. Past a particular value of the Coriolis number 7 the value of the critical Rayleigh
number R. of the competing mode becomes lower than that of the initially preferred mode
A such that an abrupt jump occurs. This is especially obvious from the discontinuity of the
w—curve in figure 5.10. During this transition the frequency changes sign. The change of
sign indicates a change in the direction of the drift of the pattern which now drifts in the
prograde direction. Because the new state denoted by B in figure 5.10 is still affected by the
switch-over competition the corresponding R.— and w—curves continue to bend and the flow
pattern exhibits spiraling rolls as can be noticed in the third plot of figure 5.11.

Modes C and D. In a completely analogous way a second transition occurs and the pre-
ferred mode changes back to a retrograde drift. This next transition occurs at about 7 = 8000
for the values of the parameters used in figure 5.10 and takes the flow in the region where
inertial (equatorially-attached) convection in its pure form is observed. The equatorially at-
tached mode was first found by Zhang & Busse [124] and is quite distinct from the columnar
modes discussed in the preceding section 5.4. A detailed numerical study together with some
analytical approximations can be found in the paper of Ardes et al. [3]. The results of their
efforts have turned out to be rather complex since the preferred inertial modes travel in the
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Fig. 5.13. Graphs in the center show the critical Rayleigh numbers R. of the competing
prograde single-cellular (red lines) and multi-cellular (blue lines) drifting modes as well as the
actual critical value (thick lines) and the corresponding frequencies w as functions of T for
P = 0.001, m = 6, n = 0.2. Isolines of the equatorial streamfunction rd,v = const. (upper
plots) as well as contours of u, = const. (lower plots) on the spherical surface r = r; + 0.9 for
T =3.4x 10% and 7 = 3.5 x 105 are shown on the left- and right-hand sides, respectively.

prograde as well in the retrograde directions depending on the parameters of the problem.
Moreover, the azimuthal wavenumber m of convection does not increase monotonically with
the Coriolis parameter 7 as is usually found for the columnar mode at higher values of P.
Whenever 7 is sufficiently large the frequency w is closely approximated by the frequency of
the corresponding inertial modes which is given by the analytical expression [121, 3],

W= mLHu 4 [(1+ m(m +2)(2m + )]

(SIS

). (5.14)

The positive (negative) sign applies for modes drifting in the retrograde (prograde) direction.
Explicit values of expression (5.14) are given in figure 5.10 for comparisons with the numeri-
cally determined values. The close agreement between them exhibited for the modes denoted
by C and D is a strong indication that these are indeed examples of the retrograde and the
prograde drifting modes of inertial convection. The two modes differ little in their form. The
most characteristic difference is the opposite phase between the toroidal and poloidal com-
ponents of motion as indicated in figure 5.12. This figure also provides a closer look to the
process of transition from the retrograde to the prograde drifting mode. At lower values of
the rotation parameter 7 the retrograde mode has a lower value of the critical Rayleigh num-
ber and therefore is preferred to the prograde mode. As 7 is increased the critical Rayleigh
number R, of the retrograde mode grows faster than that of the competing prograde mode
and at some critical value of 7 eventually becomes larger. At this point the transition from
retrograde to prograde mode occurs. The frequency exhibits a discontinuity, changes sign and
the whole pattern starts drifting in the opposite direction. The corresponding flow patterns
in the equatorial plane are, in fact, identical except for their drift velocity and direction and
are given in the fifth and sixth plot of figure 5.11. The analytical theory developed in section
5.6 applies to these two modes C and D and is capable of predicting all of the properties of
the two inertial modes as reported here.
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Modes E and F. In addition to the simple single-cellular inertial modes, multi-cellular
modes have been found in the rotating annulus problem both analytically [1158] and numeri-
cally [98]. Such multi-cellular solutions in the case of a spherical shell are observed here for
the first time and are indicated by E and F in figure 5.10. Examining the plots of the Rayleigh
numbers R, and frequencies w of the competing modes in figure 5.13, the same mechanism of
transition as the one just described in connection with the retrograde - prograde transition
is identified. But in all other aspects this mode is rather different from the previous ones.
Although the frequency again exhibits a finite discontinuity, it does not change sign and
the pattern continues to drift in the prograde direction. A major change in the structure
of the convection solution can be observed. The wall-attached cells are replaced by several
concentric layers of convection cells. The whole pattern resembles a chess play-board in the
sense that the streamlines of any given cell are directed in the opposite direction with respect
to the streamlines of all neighboring cells. This multi-cellular solution seems to emerge as a
result of the extremely high values of the rotation parameter. As might be seen from the plots
of w in figures 5.13 and 5.10, this transition does not occur in a gradual manner but rather
sharply at a well-determined value of 7. The multi-cellular modes are found to replace the
single-cellular inertial modes at sufficiently high values of 7 and low values of P. Although
the precise border between the two regimes is not investigated in the present report, the
transition to multi-cellular convection has been found in all examined cases regardless of the
radius ratio n and for all Prandtl numbers P < 1072. In contrast to the multi-hump and
spiraling columnar solutions described in the preceding section 5.4 the multi-cellular solu-
tion is oriented strictly in the radial direction. The sharp border between the single-cellular
and the multi-cellular modes as well as the radial orientation of the multi-cellular structures
suggest that this mode is not connected with the transition to columnar convection. It is, in
fact, believed that this is a pure inertial mode, corresponding to a different class of solutions
of the Poincaré equation (5.1) with a more complicated structure as reported in [126]. This
suggestion might be tested by using an approach analogous to the one developed in section
5.6 for the single-cellular solutions. However, this has yet to be done.

Some properties of the inertial modes of convection. Figure 5.14 represents an attempt
of an approximate determination of the border between the retrograde and the prograde
drifting modes of inertial convection in P — 7 — n space. The surface is smoother towards
lower values of the radius ratio n < 0.5. This is not surprising since at higher values of 7
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Fig. 5.15. The frequency w of the retrograde Fig. 5.16. The frequency w as a function of T
(w > 0) and the prograde (w < 0) drifting form = 4,n = 0.2 and different values of P as
modes as a function of n for P = 107> and indicated in the plot. Values corresponding to
wavenumbers as indicated in the plot. expression 5.14 are plotted with dashed lines.

the inner spherical boundary of the shell has a significant effect on the structures of the flow
which start to show similarities to the case of plane layer convection and are much better
described by the small-gap limit approximation. The availability of the border between the
two modes opens a new possibility for tests of various analytical theories which aspire to
predict the preferred mode of inertial convection.

The expression (5.14) for the frequency w is independent of the radius. It is of interest to
test whether this requirement is fulfilled by the numerical results. For this reason in figure
5.15 the numerically determined values of w are plotted as functions of the radius ratio n and
compared with those obtained from expression (5.14). For values of the radius ratio n < 0.5
a perfect agreement can be observed. For values higher than that neither a good agreement
nor a well-established dependency on the radius ratio n is obvious. The discrepancy is due
to the significant change of the geometry of the system which leads to significant changes in
the type of convective flow.

The question of the transition between columnar and inertial convection is of particular
interest. Some details of the dependence of this transition on the Coriolis parameter 7 have
been already discussed in the preceding section 5.4 where the transition from inertial to
double-humped and finally to columnar convection was highlighted. Figure 5.16 demonstrates
that this transition is gradual rather than abrupt not only for the variation of 7 but for the
variation of the Prandtl number P as well. The figure shows the w-curve plotted against 7 for
fixed values of the wavenumber m = 4 and the radius ratio n = 0.2 and for several different
values of the Prandtl number P. The theoretical prediction (5.14) for w is also plotted with
dashed lines. At 107° < P < 1072 the theoretical and the numerical values almost coincide
which indicates that these points are well in the regime of inertial convection. At higher values
of P > 107! they are in the marginal region of the regime and the analytical prediction is only
approached. The gradual transition between the two modes is due to the fact that the two
types of convection result from different dynamical balances rather than from a direct mode
competition mechanism. However, if the wavenumber m is allowed to vary sudden jumps
between competing wavenumbers might occur. A detailed plot of the region where inertial
convection is expected to occur is presented in figure 5 of the work of Ardes et al. [3].

The effect of fixed-flux thermal boundary conditions on the onset of convection
at low values of P. The results reported so far in the present section are obtained for
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04 Fig. 5.17. The critical
Rayleigh number R, (left
ordinate) and frequency w

0.2 (right ordinate) as func-
tions of T for P = 107%,

“ m=8,n=0.3 and fixed-flux
(thick solid lines) and fixed-

0.0 temperature (thin-solid lines)

thermal boundary conditions.

The dashed lines correspond

to expression (5.14) for w.

10t 102 103 104 10° 106 107 108

fixed-temperature (Case A) thermal boundary conditions. Only minor quantitative changes
are observed when fixed-flux (Case B) boundary conditions are used. To illustrate this we
present figure 5.17 where the results for the two types of boundary conditions are directly
compared for a set of fixed parameters. The figure is analogous to figure 5.10 and the same
number and type of modes and transitions may be observed.The main differences between
the two types of boundary conditions are that the fixed-flux case has a lower value of the
Rayleigh number R, for the mode drifting in the retrograde direction while a higher value of
R, is obtained for the mode drifting in the prograde direction. Furthermore, the transition
between these two states occurs at lower values of 7 in the fixed-flux case. The frequencies
of the two modes are nearly identical. A transitions to multi-cellular modes is also found
for high values of 7 in the case of fixed-flux thermal boundary conditions. For a more detail
explanation of these differences we refer once again to the following section 5.6.

5.6 Analytical theory of inertial convection in rotating fluid
spheres

This section reports an analytical theory of inertial convection in rotating fluid spheres and
more precisely of the modes denoted by C and D in figure 5.10 of the preceding section. It
provides explicit expressions for the Rayleigh number R, as a function of the wavenumber, the
Prandtl and the Coriolis numbers. Both fixed-temperature and fixed-flux thermal boundary
conditions are considered. Using the explicit expressions for R, we are able to determine
precisely the border between the retrograde and the prograde drifting modes and the value
of the preferred wavenumber at fixed values of the other parameters. The theory is tested
against direct numerical results and excellent agreement is found. The numerically observed
phenomena reported in the preceding section 5.5 can now be understood much better.

Below we attach our! article [34] in which the analytical theory was recently published?.
The article is short, contains all relevant analytical results and is self-contained which makes
its inclusion in the section appropriate. There is only a minor overlap with section 5.2. A
small number of additional details which have been too lengthy or descriptive to be included
in the published version can be provided at several points. They appear in the form of notes
at the end of the present section.

! Prof. Dr. F.H. Busse is the doctoral adviser of the second author.
2 In the article R. is denoted simply by R.
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The onset of convection in the form of inertial waves in a rotating fliid sphere is
studied through a perturbation analysis in an extension of earlier work by Zhang
(1994). Explicit expressions for the dependence of the Rayleigh number on the
azimuthal wavenumber are derived and new results for the case of a nearly thermally
insulating boundary are obtained.

1. Introduction

Convection in the form of slightly modifed inertial waves is a well-known
phenomenon in geophysical fiiid dynamics. The analysis of the onset of convection
in a horizontal fhid layer heated from below and rotating about a vertical axis
was frst done by Chandrasekhar more than 50 years ago. For an account of this
early work we refer to his famous monograph (Chandrasekhar 1961). He found that
convection sets in at high rotation rates in the form of modifed inertial waves when
the Prandtl number is less than about 0.6 depending on the boundary conditions.
Another important case in which convection in the form of modifed inertial waves
occurs is the rotating fliid sphere heated from within and subject to a spherically
symmetric gravity feld. The transition from convection in the form of columns
aligned with the axis of rotation to inertial convection in the form of equatorially
attached modes has been demonstrated by Zhang & Busse (1987). In a later series
of papers Zhang (1993, 1994, 1995) developed an analytical theory for the critical
parameter values for the onset of convection based on a perturbation approach. The
buoyancy term and viscous dissipation are introduced in the equation of motion as
small perturbations of inviscid inertial waves and the balance of the two terms is then
used for the determination of the critical value of the Rayleigh number. In this paper
we extend this approach to case of a spherical boundary of low thermal conductivity
on the one hand and to an alternative method of analysis on the other hand which
will allow us to obtain explicit expressions for the dependence of the Rayleigh number
on the azimuthal wavenumber.

2. Mathematical formulation of the problem

We consider a homogeneously heated, self-gravitating fthid sphere rotating with the
constant angular velocity §£2 about an axis fxed in space. A static state thus exists
with the temperature distribution Ty = Ty — Brgr?/2 and the gravity feld given by
g = —yror where r is the position vector with respect to the centre of the sphere
and r is its length measured in fractions of the radius r¢ of the sphere. In addition to
the length ry, the time /v and the temperature v?/yary are used as scales for the
dimensionless description of the problem where v denotes the kinematic viscosity of
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the fhid and « is its thermal diffusivity. The density is assumed to be constant except
in the gravity term where its temperature dependence given by o =(do/dT)/o=
const. is taken into account. The basic equations of motion and the heat equation for
the deviation ® from the static temperature distribution are thus given by

du-+thk xu+Vre=0Or+ Vu, (2.1a)
Veu=0, (2.1b)
Rr-u+ V0 — P30 =0, (2.1¢)

where the Rayleigh number R, the Coriolis parameter ¢ and the Prandtl number P
are defned by
ayprd 29Qr8 v

R = , T = s P = —. (22)
VK \% K

We have neglected the nonlinear terms u+Vu and u-V® in equations (2.1) since
we restrict the attention to the problem of the onset of convection in the form of
small disturbances. In the limit of high 7 the right-hand side of equation (2.1a) can
be neglected and the equation for inertial waves is obtained. For the description of
inertial wave solutions u, we use the general representation in terms of poloidal and
toroidal components for the solenoidal feld u,,

up=Vx(Voxr)+Vw xr. (2.3)

By multiplying the (curl)? and the curl of the inertial wave equation by r we obtain
two equations for v and w,

[0, %2 — 10,]Vv — 12w =0, (2.4a)
[0, L — 10,]w + 120 =0, (2.4b)
where 9, and 9, denote the partial derivatives with respect to time ¢ and with respect

to the angle ¢ of a spherical system of coordinates r, 8, ¢ and where the operators
¥, and 2 are defned by

Py =—r’V? 4+ 0,(r%9,), (2.5a)
2 =rcosOV?> — (L2 +7rd,)(cos0d, —r 'sinhdy). (2.5b)

General solutions in explicit form for inertial waves in rotating spheres have recently
been obtained by Zhang et al. (2001). Here only solutions of equations (2.4) for which
v is symmetric with respect to the equatorial plane and does not possess a zero in its
f-dependence are of interest since only those are connected with the preferred modes
for the onset of convection (Zhang 1994). These modes are given by

vo = P,'(cosf)explimp +iwtt} f(r), wy= P, (cosf)explimp+iwtt}g(r), (2.6)

with
_om L m+2 _omtl 2im(m + 2)
Sy = ) = G a2+ Im v 2=y 27
wy = Lu + (1 +m(m +2)2m + 3)~H1/2). (2.7b)
m+2

Before considering the full problem (2.1) we have to specify the boundary conditions.
We shall assume a stress-free boundary with either a fked temperature (case A) or a
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thermally insulating boundary (case B),

. ) ® =0 (case A) _
r-u=r-V(r xu)/r-=0 and 5,0 =0 (case B) at r=1. (2.8)

Following Zhang (1994) we use a perturbation approach for solving equations (2.1),
u=uo+u +..., w=wy+w;+.... (29)

The perturbation u; consists of two parts, u; = u; + u,, where u; denotes the
perturbation of the interior fow, while u, is the Ekman boundary fow which is
required since u, satisfes the frst of conditions (2.8), but not the second.

After the ansatz (2.9) has been inserted into equations (2.1a) and (2.1b) we obtain
the solvability condition for equation (2.1a) for u; by multiplying it with u; and
averaging it over the flid sphere,

i ([uol?) = (Or - ug) + (ug- V2(uo +us)), (2.10)

where the brackets (...) indicate the average over the fiid sphere and * indicates
the complex conjugate. The evaluation of the second term on the right-hand side of
(2.10) yields

(ug - Vi(uo+uy)) = (Vxug) (VX up))) + % %[u(’; “Vu, —ug (r-Vu,]d*s, (2.11)
since V?u, vanishes (Zhang 1994). Since u,, is of the order 7=!/? and vanishes outside
a boundary layer of thickness ='/2, only the term involving a radial derivative of
u, makes a contribution of order one on the right-hand side of equation (2.11). This
term can easily be evaluated because of the condition r + Vr x (ug +u,)/r> = 0 at the
surface of the sphere. Using expressions (2.6) and (2.7a) we thus obtain

(uy - Viu,) = / \P’"\ d(cos @) m(m + 1)(2m + 1) |4 + (m +2)M
2m +3
2m+ 1) =2 ? 212)
(2m + 1)(wo(m + 1)(m + 2) — m) '
where the relationship
i
/1 }Pﬁ“\zdcose = (22m —:_13 / ‘Pm| dcosf (2.13)

has been used.

3. Explicit expressions in the limit P71 < 1

The equation (2.1¢) for ® can most easily be solved in the limit of vanishing 7 Pwy.
In this limit we obtain for ©@,

® = Pl(cosf)expl{imy + iwtt }h(r), (3.1)
with
rm+4 rm+2 "
hr) :m(m+1)R<(m—{—5)(m—|—4)—(m+1)m T mt3)m+2)—m+im )
(32)
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where the coefficient ¢ is given by
1 1
— A
) S H = D n 4 3)0m +2) — o + D (case A), a3
(m+4)/m B (m+2)/m (case B).

m+5S)(m+4)—m+1m m+3)m+2)—m+1)m

Since ® is real w; must vanish according to the solvability condition (2.10) and we
obtain for R the fnal result

R, = m?(m + 2)*
5\ @m + 3)[m + 1)1+ /(2 + 4m + 3)/2m + 3)) — m]
X (2m +9)(2m + 7)(2m + 5)*(2m + 3)*/b, (3.4)

where the two possibilities for the sign originate from the two possibilities for the
sign in the expression (2.7b) for wy. The coefficient b takes the values

b (m + 1)m(10m + 27) (case A),
| (m + 1)(14m® + 59m + 63) (case B).

2-|-2m-|—1>

(3.5)

Obviously, the lowest value of R is reached for m = 1 and the value R, for convection
waves travelling in the retrograde direction is always lower than the value R for the
prograde waves. Expression (3.4) is also of interest, however, in the case of spherical
fhid shells when the (m = 1)-mode is affected most strongly by the presence of the
inner boundary. Convection modes corresponding to higher values of m may then
become preferred at onset since their r-dependence decays more rapidly with distance
from the outer boundary according to relationships (2.7).

4. Solution of the heat equation in the general case

For the solution of equation (2.1c) in the general case it is convenient to use the
Green’s function method. The Green’s function G(r, a) is obtained as solution of the

equation
[0,r°8, + (—iwoT P r* — m(m + 1))]G(r, a) = 8(r — a), (4.1)
which can be solved in terms of the spherical Bessel functions j,(ur) and y,,(ur),
_ [Gi(r,a) = Ay jm(pr) for0<r <a,
o= {Gz(r,a) = Ajulur) + By,(ur)  fora <r <1, (42
where
p=+/—iwtP, A =p <ym(ua) - j’”(“a);mEZ;) , (4.3, b)
. m\ .
A= —ujn(uay ™) B = i, (na). (@3c.d)
Jm(pe)

A solution of equation (2.1¢) can be obtained in the form

1
h(r) = —/0 G(r,a)m(m + 1)(a™ — a"**)a* da

r 1
= —/ Go(r, a)m(m + 1)(@™ — a"*)a* da — / Gi(r, a)m(m + 1)(@™ — a™*)a* da.
0 r
(4.4)
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Evaluation of these integrals for m = 1 yields the expressions

10(ur cos(ur) — Sin(/H)))
r2(jcos p — sin j1)

r(pn? + 10) — p?r’ — (case A),

2R
(CL)()‘L'P)2 <
h(r) = 2R (12 — 10)(per cos(pur) — sin(ur)
2 2.3 no— ur Ur) — ur
(woT P)? <r(,u +10) — pu'r’ — P22 cos it — (2 — ;i) sin ) ) (case B).

(4.5)

Slightly more complex expressions are obtained for m > 1. Expressions (4.5) can now
be used to calculate R and w; on the basis of equation (2.1). In the case m = 1 we
obtain

R = 21(6001’1))2 (1 + 5(6%#)

35002 si -
[2 — 1050, — Re {COS“—SIS‘:: H (case A),
x JLEOS K H (4.6)

~ (T2 — 70 + 1750~ sinpn )]
9+ 525u~4 — R B
[ RRaele © { 2ucos e+ (u? —2)sinp (case B),

where Re{} indicates the real part of the term enclosed by {}. Expressions (4.6)
have been plotted together with the expressions obtained for higher values of m in
fgures 1( a) and 1(b) for the cases A and B, respectively. We also show by broken lines
numerical values which have been obtained through the use of a modifed version
of the Galerkin method of Ardes, Busse & Wicht (1997). Because the numerical
computations have been done for the fnite value 10° of 7 the results differ slightly
from those of the analytical theory. Since there are two values of wy for each m,
two functions R(t P) have been plotted for each m. For values T P of order unity or
lower, expressions (3.4) are approached well and the retrograde mode corresponding
to the positive sign in (2.7b) yields always the lower value of R. But the prograde
mode corresponding to the negative sign in (2.7b) becomes the preferred mode as 7 P
becomes of order 10 or larger depending on the particular value of m. This transition
can be understood on the basis of the increasing difference in phase between @ and u,
with increasing T P. While the mode with the largest absolute value of wy is preferred
as long as ® and u, are in phase, the mode with the minimum absolute value of
becomes preferred as the phase difference increases since the latter is detrimental to
the work done by the buoyancy force. The frequency perturbation w; usually makes
only a small contribution to w, which tends to decrease the absolute value of w.

For very large values of tP the Rayleigh number R increases in proportion to
(zP)? for fxed m. In spite of this strong increase ® remains of order TP on the
right-hand side of equation (2.1a). The perturbation approach thus continues to be
valid for t — o0 as long as P < 1 can be assumed. For any fxed low Prandtl
number, however, with increasing t the onset of convection in the form of prograde
inertial modes will be replaced at some point by onset in the form of columnar
convection because the latter obeys an approximate asymptotic relationship for R of
the form (z P)*? (see, for example, Busse 1970). This second transition depends on
the value of P and will occur at higher values of 7 and R for lower values of P.
There is little chance that inertial convection occurs in the Earth’s core, for instance,
since P is of the order 0.03 while the usual estimate for 7 is 10'5.
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FiGUre 1. The Rayleigh number R as a function of tP for m = 1,2,3,4,6 and 8. Results
based on explicit expressions such as (4.6) in the case of m = 1 (solid lines) are shown in
comparison with the results obtained with a Galerkin numerical scheme (dotted lines for
retrograde mode, dashed lines for prograde mode). (a) Case A, fxed temperature boundary
conditions. (b) Case B, insulating thermal boundary conditions.

5. Discussion

Since the curves R(t P, m) intersect at values of TP of order 10° in fgures 1(a)
and 1(b), a different way of plotting the results has been adopted in fgure 2. Here
the preferred value of m has been indicated by a filed circle in the case of the
prograde inertial mode. The results of fgure 2( a) agree well with those of fgure 4
of Zhang (1994) even though only an approximate method had been used for the
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FIGURE 2. The Rayleigh number R as a function of m for 2 x 10° < P < 10* (from bottom
to top). The lines are equidistant with a step of A(rP) = 400. The filed circles indicate the
preferred values of m. The open circles correspond to the preferred value of m in the case when
m = 1 is not included in the competition. (a) Case A, fxed temperature boundary conditions.
(b) Case B, insulating thermal boundary conditions.

determination of the Rayleigh number. Zhang neglected the (m = 1)-mode and thus
arrived at a different criterion for the preferred mode. His preferred values of m are
indicated by open circles in fgure 2. The (m = 1)-mode could indeed be suppressed
by the presence of an inner concentric spherical boundary. A rough estimate indicates
that inertial convection with azimuthal wavenumber m will be affected signifcantly
when the radius n of the inner boundary exceeds a value of the order (1 —m™!).
Unfortunately, an analytical theory of inertial waves in rotating spherical flid shells
does not exist and it is thus not possible to extend the analysis of this paper to the case
when an inner boundary is present. For a numerical study of inertial convection in
rotating spherical fhiid shells and its fnite-amplitude properties we refer to Simitev &
Busse (2003).

The two transitions between modes of different types mentioned in the preceding
section illuminate some of the puzzling fndings of Zhang & Busse (1987) and Ardes
et al. (1997). The transition labeled I in fgure 17 of Zhang & Busse (1987) can
now be clearly identifed with the transition from retrograde to prograde inertial
convection. The main result of our analysis is that this transition depends primarily
on the parameter combination t P with only a minor dependence on the wavenumber
m. The second transition (1997). The second transition from inertial to columnar
convection cannot be pinned down equally well because of the lack of a sufficiently
accurate analytical theory for thermal Rossby waves in the low Prandtl number
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regime. According to the numerical results of Ardes et al. (1997) (see their fgures 4
and 5) there exists a broad transition range involving perhaps several transitions where
the onset of convection occurs in the form of multi-cellular modes. An illumination
of this regime should be the goal of future research.

The research reported in this paper has been performed in parts by the authors
during their stay at the Woods Hole Summer Program in Geophysical Fluid Dynamics
2002. The research has also been supported by the Deutsche Forschungsgemeinschaft
under Grant Bu589/10-2.
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Additional comments.

page 25, line 5 from bottom: The heat equation (2.1c) in the limit 7 Pwy — 0 can alter-
natively be solved with the help of the more general Green’s function method presented

in section 4 of the article.

page 27, line 1 from top: Evaluations of the integrals (4.4) for an arbitrary wavenumber

[ r.

m yields,
h(T) = —m(m + 1)(F1 + Fy + Fg),

where, in case A,

F = (ym(l“") _ jm(l“")?hn(ﬂ)) \/%T‘m [(/1«37'3 o (,“3 + (6 + 4m)M)T)Jm—1/2(NT)

2 Jm (1)
+(((—2m —3)r° +2m +1)p® + 8m® + 16 m + 6)Jm+1/2(,u7“))] p 772
V2 )
Fy = nym(M)Jm(/M“)((lﬁm +8m® = 2u% + 6)r° T y1/2(1) — (6 + 4m)r® 1 2 (1)

+(2m 4 3)prM? 4 (=1 = 2m)p® — 16m — 8m> — 6)r /2™ Ty o ()
™ (0D (4 (6 Am) e ) () (1T o))

Fa = Sim(ur)VER(~ (=) (a2 o (i = i = 6)r T/ T o r)
+(=D)™r™((=2m — 3)p*r? + (8m? + 16m + 6 + 2mp® + /12)7“(5/2))J,m,1/2 (pr)

(4 O)ur* (—1)™ T2 () + (—8m® — 6 — 16m + 20%)r2(~1)™ T ja () /02,
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A similar expression exists for case B but will not be listed here. This general solution
of the heat equation (2.1c) might be useful in attempts to derive approximate analytical
expressions for R. for an arbitrary value of m (see below). The expression (5.15) reduces
o (4.5) for m = 1.

page 27, line 6 from top: No exact general expression for R, for arbitrary wavenumbers m
was found. However, for any fixed value of m = 1,2, ... an exact expression for R. may be
obtained. Expressions (4.6) for m = 1 are the shortest examples of these. Using the general
solution (5.15) of the heat equation various approximations of R, for arbitrary values of m
might be obtained. For example the spherical and the ordinary Bessel functions j,(2), yn(z),
Jn(z), Yn(2), can be approximated by ascending series in z using formulas (10.1.2) and
(10.1.3) of [1]. The solution (5.15) of the heat equation then transforms into a polynomial
in  and may be easily integrated as required by the solvability condition (2.10) to obtain
an approximation of R.. Using this approach,

ROPP™ = TYR{Ty + T3} 1, (5.17)
_ A(m+2)(5+42m) (1+m)? —1)? i
T Y (1 T o+ m)m+2) —m)G + 2m>> (kHO(Q’“ * ”)

Ty = 16(—1)3+™ <u6(9+2m)(7+2m)2(5+2m)(3+2m) ( ﬁ (2k+1)>)

k=—m

.((4m +6)p” + (160m + 72 + 32m>)u® — 32m° — 304m™* — 880m® — 680m> + 222m + 189)
Ty = V2ru ™2 (21" T 12 () + 212 0) g (1) (1) ™
=2y (1) (1)~ 1 /2(1) + (=) T m12) (47 + 8m = i + 3)((3 4 2m)) )

if only the first term in the ascending series has been used. Despite the availability of
approximations of R. for an arbitrary value of m we