
Electrostatic Trapping as a Self-consistent Phenomenon

in Plasmas and Other Collective Systems

Von der Universität Bayreuth

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von

Alejandro Luque Estepa

geboren am 23. Oktober 1978 in Sevilla, Spanien

1. Gutachter: Prof. Dr. H. Schamel

2. Gutachter: Prof. L. Kramer PhD.

Tag der Einreichung: 22.10.2004

Tag des Kolloquiums: 17.2.2005





Deutsche Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit selbstkonsistenten elektrostatischen Strukturen in
Plasmen und verwandten kollektiven Systemen. Damit sind kohärente Strukturen gemeint,
für die der Einfang von Teilchen bzw. Pseudoteilchen im Potenzial der Welle verantwort-
lich ist. Die Phänomene, um die es geht, benötigen eine kinetische Beschreibung, d.h. eine
Beschreibung, in der die Geschwindigkeitsverteilung der Teilchen voll berücksichtigt wird.
Sie erweitern dadurch den Spielraum, den ein Plasma hat, um instabil zu werden.

Das zentrale Anliegen und Ergebnis der Arbeit, um es gleich vorweg zunehmen, ist
es, dass es Störungen eines Plasmagleichgewichtes der genannten Art gibt, die das Plas-
ma destabilisieren, obwohl eine lineare Stabilitätstheorie stabile Verhältnisse vorhersagt.
Der in der Plasmatheorie übliche Weg, die Stabilität eines Plasmas anhand linearisier-
ter Gleichungen zu charakterisieren, wird deshalb in Frage gestellt. Teilcheneinfang ist
ein grundsätzlich nichtlinearer Prozess, der auch dann vorliegt, wenn die Wellenanregung
schwach ist.

Der Einfluss des Teilcheneinfangs ist deshalb nicht an die Bedingung endlicher Am-
plitude, wie oft angenommen, geknüpft und muss deshalb von Anfang an berücksichtigt
werden, will man zu allgemein gültigen Aussagen über Stabilität und assozierten anoma-
len Transport gelangen. Es ist deshalb nicht verwunderlich, dass das Problem des an-
omalen Transports ein bisher nicht abgeschlossenes Kapitel der Plasmatheorie darstellt,
belegt durch viele Beispiele aus der Fusions- und Weltraumforschung, wo nahezu stoßfreie,
stromgetriebene Plasmen vorliegen.

Teilcheneinfang ist jedoch nicht beschränkt auf klassische Plasmen. Ein weiteres An-
liegen dieser Arbeit ist es, zu zeigen, dass der gewählte Formalismus auch auf andere
Systeme, die kollektives Verhalten zeigen, übertragen werden kann. Insbesondere ist eine
quantenmechanische Erweiterung möglich, die es uns gestattet, quanten-artige Systeme
zu untersuchen und eine Verbindung zwischen elektrostatischem Teilcheneinfang in Plas-
men und Enveloppe-Solitonen in nichtlinearen optischen Medien, wie z.B. in Glasfasern,
herzustellen. Das longitudinale Verhalten von Teilchenstrahlen in zirkularen Beschleuni-
gern und Speicherringen stellt ein weiteres Beispiel kollektiver Systeme dar, in denen das
Phänomen des Teilcheneinfangs eine wesentliche Komponente der Dynamik darstellt.

Die Arbeit besteht aus fünf Kapiteln. In der Einführung (Kapitel 1) präsentieren
wir eine Motivation zum Thema, geben einen kurzen Überblick über den theoretischen
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Hintergrund und stellen das Vlasov-Poisson System, die gültige nichtlineare kinetische
Beschreibung im Falle vernachlässigbarer Stöße, vor. In Kapitel 2 untersuchen wir die
Auswirkungen des Teilcheneinfangs auf klassische Plasmen, die wir in Kapitel 3 auf Quan-
tenplasmen und andere quanten-artige Systeme übertragen. In Kapitel 4 beschäftigen wir
uns mit der Beschreibung solitärer Strukturen, wie sie experimentell in Teilchenbeschleuni-
gern gefunden wurden. Zum Schluß, in Kapitel 5, geben wir eine kurze Zusammenfassung
und Schlussfolgerungen der Arbeit, nachdem eine ausführlichere Zusammenfassung der
Ergebnisse bereits am Ende eines jeden Kapitels vorgelegt wurde.

Klassische Plasmen

Dieser Abschnitt befasst sich mit dem Einfluss gefangener Teilchen auf die Dynamik eines
zweikomponentigen, stromführenden Plasmas. Wir stellen die von Schamel(1972) in das
Vlasov-Poisson System eingeführte Pseudo-Potenzialmethode vor, die gegenüber der in
der Literatur üblichen BGK (Bernstein-Greene-Kruskal)-Methode u.a. den Vorteil hat,
dass physikalisch nicht vertretbare Verteilungsfunktionen von vornherein ausgeschlossen
werden können. Danach beschäftigen wir uns mit einer systematischen Erforschung bis-
her unbekannter Strukturen und finden z.B. eine alternierende Kette von Elektronen-
und Ionenlöchern. Wir untersuchen dann die Energie solcher Strukturen und leiten dafür
eine analytische Formel her, sowie vereinfachte Ausdrücke für solitare Elektronen- und
Ionenlöcher und für harmonische Potenziale. Wir finden, dass es in einem großen Bereich
des Parameterraumes strukturierte Plasmen gibt, die eine niedrigere Energie aufweisen als
Plasmen ohne Struktur. Solche Strukturen werden der Kürze halber Strukturen mit nega-
tiver Energie genannt. Wir zeigen beispielsweise, dass Ionenlöcher negativer Energie für
jede ausgewählte Driftgeschwindigkeit zwischen Elektronen und Ionen und für jedes Tem-
peraturverhältnis existieren. Dies hat, wie sich später zeigen wird, wichtige Konsequenzen
für die Stabilität eines stromführenden Plasmas.

Wir beschreiben dann einen numerischen Code, mit dem wir die zeitliche Entwicklung
des Systems verfolgen können. Dieser Code basiert auf einer kinetischen Beschreibung bei-
der Teilchensorten, Elektronen und Ionen, und verwendet eine Fourier-Hermite-Zerlegung
der Verteilungsfunktionen, anhand derer das Vlasov-Poisson System aufintegriert werden
kann. Die Evolutionsgleichungen für die Koeffizienten dieser Zerlegungung werden mit-
tels eines Runge-Kutta Verfahrens vierter Ordnung gelöst. Auch schwache Stöße können
im Rahmen einer Fokker-Planck Gleichung berücksichtig werden. Dieser Code wird dann
benützt, um elektrostatische Strukturen in schwach dissipativen Plasmen aufzusuchen,
nachdem wir uns durch eine Reihe von Tests von der Zuverlässigkeit des Codes überzeugen
konnten. Wir finden, dass elektrostatische Gleichgewichtstrukturen mit gefangenen Teil-
chen auch bei schwachen Stößen dauerhaft existieren können, sobald ein äußeres homoge-
nes elektrisches Feld dazu geschaltet wird.

Dann wenden wir uns dem Stabilitätsproblem des Plasmas zu und stellen die Hypothe-
se auf, dass eine nichtlineare Instabilität mit der Existenz und dem spontanen Auftreten
einer Struktur negativer Energie verknüpft ist. Wir zeigen, dass eine lineare Theorie die
Plasmastabilität nicht vollständig beschreiben kann, insbesondere dann nicht, wenn es
im linear stabilen Bereich zu einer Instabilität des Plasmas kommt. Wir zeigen dies nu-
merisch durch zwei verschiedene Läufe mit dem Code, beide im linear stabilen Bereich.
Einmal verwenden wir als Anfangsbedingung ein Ionenloch mit negativer Energie, ein
zweites Mal ein solches mit positiver Energie. In beiden Fällen erscheint spontan eine



iii

neue, ionenlochartige Struktur, die explosionsartig anwächst und sich schneller als das
ursprüngliche Ionenloch bewegt. Das System ist trotz linearer Stabilität nichtlinear in-
stabil. Es ist anzunehmen und wir haben erste Belege dafür, dass diese neue Struktur
eine solche negativer Energie ist. Wir kommen deshalb zu einem neuen Paradigma der
Plasmastabilität, in dessen Mittelpunkt Phasenraumstrukturen negativer Energie stehen.

Im Anhang A verwenden wir zusätzlich einen PIC (Particle-In-Cell) Code und zei-
gen auf eine zweite unabhängige Weise, dass sich kohärente elektrostatische Strukturen
auch aus dem thermischen Rauschen heraus entwickeln können, selbst im Bereich linearer
Stabilität.

Quantenplasmen

In Kapitel 3 der Arbeit wird die Theorie elektrostatischer Strukturen auf Quantenplas-
men erweitert. Aus diesem Grunde wählen wir die Wigner-Beschreibung der Quanten-
mechanik. Sie beruht auf Pseudo-Verteilungsfunktionen im Phasenraum, die sich gemäß
der von Neumann Gleichung zeitlich entwickeln. Wir bringen eine kurze Einführung in
diesen Formalismus und erwähnen die unterschiedliche Interpretation für reine und ge-
mischte Zustände. Danach berechnen wir analytisch die Quantenkorrekturen für nicht-
propagierende Elektronenlöcher und machen dabei Gebrauch von der Kleinheit des di-
mensionslosen Verhältnisses von de Broglie- und Debye-Wellenlänge. Das Ergebnis ist,
dass Quantenkorrekturen eine Annäherung des Systems an das thermische Gleichgewicht
bringen.

Diese Methode wird dann auf andere physikalische Systeme übertragen, die durch
eine nichtlineare Schrödinger Gleichung bzw. durch eine kinetische Gleichung für Pseudo-
teilchen, wie Photonen, beschrieben werden. So können wir durch eine Abwandlung der
Potenzialmethode eine Verbindung zwischen der Existenz von Solitonen in nichtlinearen
optischen Medien und dem Teilcheneinfang in Plasmen herstellen. Wir präsentieren eine
Näherungslösung zur exakt lösbaren kubischen Schrödinger Gleichung und erweitern sie
auf beliebige Nichtlinearitäten.

Teilchenstrahlen

Schließlich untersuchen wir in Kapitel 4 die Existenz kohärenter Strukturen in Strahlen
geladener Teilchen in zirkularen Beschleunigern und Speicherringen. Zuerst referieren wir
über die Existenz von lokalisierten Strukturen (

”
Solitonen“) in einem homogenen und

damit den gesamten Ring umfassenden Teilchenstrahl (coasting beam) und geben auch
eine verbesserte Fokussierungsbedingung für den Teilchenstrahl an. Dann beschäftigen
wir uns mit Teilchenpaketen (bunched beams) und erwähnen eine gängige Beschreibung,
die auf Vereinfachungen in der transversalen Strahlgeometrie und in den Feldern beruht.
Basierend auf diesem Modell, entwickeln wir ein iteratives Verfahren zur numerischen
Bestimmung zeitunabhängiger Lösungen und finden erstmalig Lösungen, die eine lokale,
dem Teilchenpaket aufgeprägte Verdichtung beschreiben im Einklang mit neueren Mes-
sungen. Auch Lösungen mit lokalen, den Löchern in Plasmen analogen Verdünnungen
werden gefunden, deren experimentelle Bestätigung jedoch noch aussteht.

Zusammenfassend können wir sagen, dass die Arbeit die hohe Bedeutung des Teilchen-
einfangs in der nichtlinearen Dynamik kollektiver Systeme belegt, für den wir eine, über
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das klassische Plasma hinausgehende Beschreibung vorgelegt und untersucht haben. Da-
mit wurde eine Basis gelegt zum verbesserten Verständnis von Plasmen und verwandten
Systemen insbesondere im Hinblick auf Stabilität und anomalen Transport.
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CHAPTER 1

Introduction

Little flower— but if I could understand

What you are, root and all, and all in all. . .

Lord Alfred Tennyson

This work investigates electrostatic trapping in plasmas and related systems. Plas-
mas are characterized by the non negligible presence of charged particles and commonly
estimated to compose up to 99% of the apparent universe. In a plasma, the long-range
Coulomb force exerted on the particles by the many distant ones is a factor in determin-
ing their statistical properties, usually much more important than the interaction with
near neighbors. Due to this character, collective phenomena, which are the main subject
of plasma physics, strongly influence the behavior of the system. The interior of stars
and gas planets, the magnetosphere and ionosphere layers of our atmosphere, the electric
discharges of lightnings and light arcs, large experimental setups like particle accelerators
and tokamaks and also a small flame are common examples of systems studied in plasma
physics. Needless to say, such a huge range of physical conditions can be modeled by
many different descriptions and choosing the appropriate one under each circumstance is
already an important and nontrivial issue in plasma physics.

The earliest theoretical developments were made from a macroscopic point of view
and by means of a fluid like (hydrodynamical) description which disregards the velocity
spread of particles at a given position. However, it became soon evident that there exists
an interesting spectrum of phenomena that can only be described if one takes also into
account the velocity distribution. A kinetic theory was hence developed by Vlasov [1] and
Landau [2] based on the Vlasov-Poisson or more generally the Vlasov-Maxwell system of
equations that introduced into the discipline a rich world of waves. Although initially
the theory was based on a linearization of the equations, it was later supplemented by
investigations on wave-particle resonances which brought nonlinearity into play.

The relevance of nonlinear kinetic models is also underlined by one of the most chal-
lenging practical applications of modern plasma physics, namely the development of a

1
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controlled fusion reactor. In order to sustain the high temperatures and densities needed
inside such a device, the importance of a deep understanding of transport processes and
current- and gradient-driven instabilities, which are the main obstacles for the desired in-
crease in confinement times, can be hardly overemphasized. However, since the fluid model
considers only average quantities in velocity space, it is not capable of properly describing
instabilities or damping phenomena. The kinetic model, on the other hand, provides an
accurate description of energy-exchange processes between particles and waves, which are
proved to be important especially in a collisionless plasma and which play important roles
in plasma heating by waves and in the mechanisms of instabilities.

Inside kinetic models, many of the studies on transport phenomena are based on a
linearization of the governing equations, from which anomalous transport models, such as
quasilinear theories and weak or strong plasma turbulence theories are developed ignoring
fundamental nonlinearities such as particle trapping. Among the observed phenomena
that essentially escape from a linear treatment are magnetic reconnection processes, found
in the solar dynamics as well as in the magnetotail in the Earth’s magnetosphere, in which
they are thought to be the precursors of auroral sub-storms. But also purely electrostatic
structures, which are the main topic of the present work, such as double layers and
phase space vortices are commonly observed nonlinear phenomena in the outer layers of
the atmosphere, in the ionosphere and in the magnetosphere. The nonlinear world of
collective trapping, hence, will be the focus of this thesis.

1.1 Theoretical background

In the following chapters we will deal with different systems from classical plasmas to
quantum plasmas to particle beams in accelerators. For all of them we will study phe-
nomena that require a kinetic description that will always be based on the Vlasov-Poisson
system of equations or an analogue thereof, which we may call Vlasov-Poisson-like system.
It is therefore appropriate to review some properties of such equations.

1.1.1 The Vlasov equation

In classical plasmas, the Vlasov equation, which is sometimes also called collisionless
Boltzmann equation, can be easily derived if we think of a statistical system being de-
scribed by a distribution function in phase space f(x,p; t), in which every particle carries
with it the value of f or, to speak in a more formal way, the distribution function is
constant along the trajectory of any particle: df/dt = 0. The total derivative can be
decomposed in a local and a convective term:

d

dt
=

∂

∂t
+
dx

dt
· ∂
∂x

+
dp

dt
· ∂
∂p

. (1.1)

On the other hand, if the single-particle Hamiltonian of the system is H , the evolution
equations can be written as

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
. (1.2)

This leads to a Liouville equation for the evolution of the distribution function

∂f

∂t
+ {f,H} = 0, (1.3)
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where {·, ·} denotes the Poisson bracket defined by

{f, g} :=
∂f

∂x
· ∂g
∂p

− ∂g

∂x
· ∂f
∂p

. (1.4)

If we assume that each particle has charge q and mass m and is affected by an elec-
trostatic potential Φ(x; t), the Hamiltonian would read H = p2/2m + qΦ(x; t), where
p = mv, and (1.3) would be written as

∂f

∂t
+

p

m
· ∂f
∂x

− q∇Φ · ∂f
∂p

= 0. (1.5)

This is the most known form of the nonrelativistic Vlasov equation in electrostatic approx-
imation, which we use throughout this thesis, mainly in chapter 2. In principle, there will
exist one Vlasov equation for each species in the plasma. However, it is often appropriate
to use a mixed description of the system, which includes a kinetic treatment for one or
several species while the others are described by fluid equations or are even considered as
immobile.

In addition to (1.5), there are some other similar equations that may play a similar
role as the Vlasov equation in different systems. In section 2.4.1 we study how to include
the effects of weak collisions by means of the Fokker-Planck operator. In chapter 3 we
use the quantum analogue to the Vlasov equation, the von Neumann equation. This one
can also be applied to the study of systems very different from plasmas, namely nonlinear
optical fibers. Finally, in chapter 4 we retake the form of Vlasov equation represented by
(1.3) when dealing with the longitudinal dynamics of charged particle beams in particle
accelerators and storage rings. We call all these equations Vlasov-like equations.

1.1.2 The Poisson and Poisson-like equations

The electrostatic potential Φ(x; t) introduced in (1.5) may have several sources: (a) an ex-
ternal one, which the experimenter imposes and over which he has (supposedly) complete
control and (b) the field that the charged particles of the plasma create themselves. The
overall effect of external fields is usually a drift between species with different charges
(electron and ions), making the plasma carry a current. We concern ourselves with
current-carrying plasmas in chapter 2. The internal field, on the other hand, will be
called self-consistent field. The equation governing the self-consistent potential is Pois-
son’s equation:

∇2Φ(x; t) = −ρ(x; t)

ε0
, (1.6)

where ρ is the local charge density which is in turn determined by the distribution func-
tions. For a two-species plasma of electrons and single charged ions we can write it as

ρ(x; t) = eni − ene =

∫
d3p efi(x,p; t) −

∫
d3p efe(x,p; t). (1.7)

Equation (1.6), usually merged with (1.7), is the equation governing the formation of
a self-consistent field in classical plasmas and it is intensively studied in chapter 2. But
the phenomena we deal with in this thesis are by no means restricted to these equations.
In general, any equation that lets us determine the field Φ in (1.5) from the distribution
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Figure 1.1: Possible trajectories in phase space of free and trapped particles. The dashed
lines represent the separatrix, which is the boundary between the zones of trapped (inside) and
free (outside) particles. Due to its shape, this kind of separatrix is commonly called O-type
separatrix.

functions will be called Poisson-like equation. For example, in section 3.3 we study
systems in which Φ does not stand for an electrostatic potential but instead represents
the refractive index of a nonlinear optical medium and is coupled with the distribution
function through an equation quite different from (1.7).

Finally, note that though the Vlasov equation is linear if the electrostatic potential is
given, it forms a nonlinear system when it is coupled with (1.6) and (1.7). The nonlinearity
of our system plays a crucial role in the kind of phenomena that we treat in this work.

1.2 Trapping in Vlasov-Poisson-like systems

The concept of trapping in plasmas came out when the resonant interaction between waves
and particles was treated rigorously and nonlinearly. Trapping means that some of the
plasma particles are confined to a finite region of the phase space where they bounce forth
and back, describing closed trajectories. Figure 1.1 pictures a schematic phase space map
that corresponds to this kind of state in a one dimensional plasma. Another possibility
is that some particles come from far away and are reflected at some point, as shown in
Fig. 1.2.

The first analytical method to construct equilibrium electrostatic structures involving
particle trapping was given by Bernstein, Greene and Kruskal (BGK) [3]. Phase space
holes, a particular case of trapping, became first evident in numerical simulations [4, 5].
Then some analytical treatments were developed which at first were based on very simple
distributions such as waterbags [6, 7, 8]. A different method of constructing equilibrium
solutions, called pseudo-potential method was introduced by H. Schamel in Ref. 9 and
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Figure 1.2: Another possible configuration of the phase space. This kind of separatrix is called
X-type separatrix.

further developed in Refs. 10, 11, 12 (see also Ref. 13 for a review). The BGK approach
and the pseudo-potential method, on the latter of which this thesis heavily relies, are
explained with some detail in chapter 2.

1.3 Overview

The main aim of this thesis is to show the important role which self-consistent trapping
is playing in the description of many different physical systems.

Chapter 2 is devoted to the study of trapping in classical two-species current-carrying
plasmas. We perform an analytical study to systematically search for all kinds of struc-
tures involving trapping that can appear in such plasmas, thereby finding a nonlinear
spectrum of waves that complements the linear one. We will also rigorously calculate the
energies of electrostatic structures. Afterwards, by means of a numerical code developed
with this aim, we will show that trapping structures survive when small collisional effects
are introduced and that they play an essential role in the stability of current-carrying plas-
mas. This latter fact is also discussed in appendix A, in which we use another numerical
code to repeat some previous results that brought into light an important connection be-
tween trapping and nonlinear stability. Namely, they showed that electrostatic structures
can spontaneously develop out of thermal noise.

In the third chapter, trapping phenomena in weakly quantum systems are investigated.
There we develop an analytical procedure to correct some equilibrium solutions of classical
plasmas in order to include the effects of a finite de Broglie wavelength of the electrons.
We also point out the theoretical connections that exist between trapping in plasmas and
the propagation of solitons in nonlinear optical media. We show how the application of
the pseudo-potential method can be extended to the trapping of pseudo-particles in the
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framework of a Nonlinear Schrödinger Equation.
Finally, in chapter 4 we analyze trapping in charged particle beams in accelerators

and storage rings. We review some results concerning trapping in coasting beams and
then concentrate ourselves on the formation of solitons on the top of bunched beams, a
phenomenon which we study numerically by means of a code developed for this purpose.

Chapter 5 contains a summary of all the investigations presented in the preceding
chapters as well as some general conclusions we can extract from them.



CHAPTER 2

Trapping in classical plasmas

Let every student of nature take this as his rule that

whatever the mind seizes upon with particular

satisfaction is to be held in suspicion.

Francis Bacon

2.1 Description

In this section we will review some of the most widely used theories to describe trapped
particles in classical plasmas. Then we will focus on the pseudo-potential method which
we will use in the rest of this thesis.

2.1.1 Collisionless plasmas

We deal with a one dimensional, globally quasi-neutral, two-species plasma formed by
electrons and single charged ions which eventually may also collide with a neutral back-
ground. We will also assume that the plasma is hot and dilute enough that the kinetic
approach must be used and therefore leave aside the hydrodynamical approach. Except
for Sect. 2.4, where a collision operator is taken into account, we also neglect second and
higher order correlations between particles. This leads us to a pair of Vlasov equations
as evolution equations for the electron and ion distribution functions, respectivley fe and
fi :

∂tfe + v∂xfe + ∂xΦ∂vfe = 0, (2.1a)

µ∂tfi + u∂xfi − θ∂xΦ∂ufi = 0. (2.1b)

In these equations electron (ion) velocities are normalized with the electron (ion) thermal

velocity vth =
√

kTe

me
(uth =

√
kTi

mi

) and lengths are normalized with the electron Debye

7
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length λD =
√

ε0kTe

n0e2 . Charges and masses are adimensionalized with respect to the

electron charge, e and mass, me. The temperature ratio between both species is denoted
by θ = Te/Ti. Finally, µ represents the ratio between the typical time scales of electrons
and ions, µ =

√
θ/δ, with δ being the mass ratio δ = mi/me.

But electrons and ions are affected by the electric field inside the plasma. In a one
dimensional system, and using our normalizations, the Poisson equation (1.6) reduces to

∂2
xΦ(x; t) = ne − ni =

∫
dv fe(x, v; t) −

∫
du fi(u, x; t). (2.2)

The joint system of equations comprising (2.1a), (2.1b) and (2.2) presents a full kinetic
treatment of both species and will be the main focus of this chapter.

2.1.2 Validity of the Vlasov-Poisson description

Before entering into the theoretical details of the Vlasov-Poisson system, let us shortly
review some of the systems in which this description is appropriate. The assumptions on
which the equations rely are

One-dimensionality. In (2.1) and (2.2) we assumed that only one dimension is relevant
in the description of our system. The main example of a situation that guarantees
the validity of this assumption is that a very strong homogeneous magnetic field
is immersed in the plasma. Under this condition, the particles gyrate around the
magnetic field lines with a small Larmor radius and we can apply the guiding-center
approximation, in which the particles are replaced by pseudo-particles located at
the center of the rotating orbits and which, to lowest order in ε, where ε is the ratio
between gyroradius and inhomogeneity length, move along the magnetic field lines.
Only in higher order in ε, guiding center drifts, such as E × B drift, ∇B drift and
magnetic curvature drift have to be taken into account, but this is neglected here,
assuming the absence of these drifts.

Negligible collisions. As already said, by completely disregarding the effect of collisions,
we assume the plasma is hot and dilute enough that second and higher order cor-
relation between the particles can be neglected. The validity of this assumption is
checked by the plasma parameter, that measures the inverse of the average number

of particles inside a Debye sphere, g :=
(

4
3
πnλ3

D

)−1
. The collisionless limit is valid

as long as g � 1. Later on, in section 2.4.1, we will investigate also weak collisional
effects.

These conditions are commonplace in the magnetosphere [14, 15] but are also relevant
in laboratories (see e.g. Ref. 16) and in high-tech machines such as fusion machines and
particle accelerators and storage rings.

2.1.3 Electrostatic modes

First we want to study equilibrium (∂t → 0) solutions of the Vlasov-Poisson system.
Equation (2.1a) is solved by any distribution function that depends only on the constants
of motion of a single particle. The simplest case is a distribution function that depends
only on the single particle energy E = v2/2−Φ(x). If in addition we set Φ(x) = 0 we find
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that any fe(x, v) = fe(v
2/2) will solve (2.1a) and (2.2). The physically most meaningful

(most probable) distribution is the one that maximizes Boltzmann’s H function H =∫
f log fd3xd3v. This is the familiar Maxwell distribution function, which for electrons

reads

fe0 =
1√
2π
e−v2/2. (2.3)

Similarly, for ions we have

fi0 =
1√
2π
e−u2/2. (2.4)

When we introduce a drift velocity vD between electrons and ions in the unperturbed

region and we select a frame moving at a velocity v0 in electron velocity space (u0 =
√

θ
δ
v0

in ion velocity space), the distribution functions appear as

fe0 =
1√
2π
e−

1
2
(v−ṽD)2 , (2.5a)

fi0 =
1√
2π
e−

1
2
(u+u0)2 , (2.5b)

where ṽD = vD−v0. The state described by distribution functions (2.5a) and (2.5b) along
with Φ(x) = 0 will be our homogeneous or unperturbed state in the wave frame, i.e. where
the wave we are looking for is at rest.

Of course, we are not very much interested in such a simple, almost-trivial state. We
are looking for electrostatic modes that may disturb the homogeneous state. The approach
most often taken in the literature is to look for distribution functions f = f0 + εf1 where
ε is a smallness parameter. This is inserted into (2.1a) and only terms of first order are
maintained. Then an in depth analysis of the Vlasov equation can be performed which
includes a wide spectrum of linear waves experiencing more or less Landau damping or
growth, depending on vD. It is often argued that the validity of this linearization relies
on the smallness of the perturbation (εf1) only and that for small enough amplitudes it
can always be done safely enough. However, we will deal in this thesis with modes that
even for infinitesimal amplitudes cannot be treated by a linearized Vlasov equation. The
reason is that when linearizing (2.1a) we are in fact neglecting terms that depend on ∂vf1.
This can be done only if not only the perturbation is small, but also its derivative (which
is of course not implied by the first). In general we will study modes with very large
(sometimes infinite) velocity derivatives, which render any linearization completely void.
We will treat this with more detail in section 2.4.3.

A first approach for finding electrostatic trapped-particle modes is the BGK method
(after Bernstein, Greene and Kruskal [3]). In this method one starts with a given potential
Φ(x) and the distribution function of free particles fef and from it one is able to find the
distribution function for trapped particles fet that satisfies the Vlasov-Poisson system.
The problem of this method is, however, that it does not guarantee that the obtained
distribution function will be physically meaningful. In fact it is often negative or has
undesired singularities. We therefore take a more suitable procedure, introduced in Ref. 9,
to solve our equations in a more physical way.



10 TRAPPING IN CLASSICAL PLASMAS

2.1.4 The pseudo-potential method

To overcome the difficulties of the BGK method we can proceed in an inverse way. We can
impose a physically meaningful distribution function from the beginning that solves Vlasov
equation (2.1a) letting it depend only on the constants of motion of a single particle. Then
we integrate it and insert it into Poisson equation to find a consistent potential. If we want
to allow a drift velocity we have to use distribution functions asymmetric in velocities.
Therefore we have to introduce a further constant of motion for free particles, apart from
the energy, on which fe will depend on. This new constant of motion will be

σ = sgn(v). (2.6)

We will use the following distribution functions [9, 12]:

fe(x, v) =
1 +K√

2π

{
exp

[
−1

2

(
σe

√
2Ee − ṽD

)2]
, Ee > 0,

exp (−ṽ2
D/2 − βEe) , Ee ≤ 0,

(2.7a)

fi(x, u) =
1 + A√

2π

{
exp

[
−1

2

(
σi

√
2Ei + u0

)2]
, Ei > 0,

exp (−u2
0/2 − αEi) , Ei ≤ 0,

(2.7b)

where K and A are normalization constants which allow us to find periodic waves and
which disappear in the limit of a vanishing amplitude of the perturbation. The coefficients
α and β are called trapping parameters, and set the relationship between the free and the
trapped particles distribution functions allowing to control the status of trapped particles.
When β < 0 (α < 0) the electron (ion) distribution function will have a superimposed
hole. Inversely, when β > 0 (α > 0), a hump will be present in the distribution function.
The energies in (2.7) are defined as

Ee =
v2

2
− Φ, (2.8a)

Ei =
u2

2
+ θ(Ψ − Φ). (2.8b)

Here Ψ is the amplitude of the potential (i.e. its maximum value). Later on in the
analytical part we will assume Ψ � 1 to simplify the analysis. Otherwise a numerical
evaluation of the expressions (namely the nonlinear dispersion relation and the pseudo-
potential; see below) would be neccesary. The form that the distribution functions (2.7)
take in velocity space is plotted in Fig. 2.1. The trajectories in phase space of the particles
are as already shown in the introduction, Figs. 1.1 and 1.2.

Once we use this ansatz for the distribution functions and assume Ψ � 1 , we arrive at
the following expression for the electron and ion densities as functionals of the potential
Φ [12]:

ne(Φ) = (1 +K)

{
1 − 1

2
Z′

r

( ṽD√
2

)
Φ − 4

3
b(β, ṽD)Φ3/2 + . . .

}
, (2.9a)

ni(Φ) = (1 +A)

{
1 − 1

2
Z′

r

( u0√
2

)
θ(Ψ − Φ)

−4

3
b(α, u0) [θ(Ψ − Φ)]3/2 + . . .

}
,

(2.9b)
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Figure 2.1: Shape of the distribution functions given by (2.7) in velocity space. Note the
different scales for electron and ions.

where Z ′
r(x) represents the derivative of the real part of the plasma dispersion function

and b(β, v) is a function that in the most general case is defined as

b(β, v) =
1√
π

(
1 − β − v2

)
e−v2/2. (2.10)

Using expressions (2.9), the Poisson equation (2.2) yields

Φ′′ = ne(Φ) − ni(Φ) =: −V ′(Φ), (2.11)

with

−V (Φ) = (1 +K)

{
Φ − 1

4
Z′

r

( ṽD√
2

)
Φ2 − 8

15
b(β, ṽD)Φ5/2 + . . .

}

− (1 + A)

{
Φ − 1

4
Z′

r

( u0√
2

)
θ
[
Ψ2 − (Ψ − Φ)2

]

− 8

15
b(α, u0)θ

3/2
[
Ψ5/2 − (Ψ − Φ)5/2

]
+ . . .

}
.

(2.12)

To integrate (2.11) we multiply both sides by Φ′ and arrive at

Φ′2

2
+ V (Φ) = 0. (2.13)

This equation resembles strongly the energy conservation of a single classical particle;
accordingly, we will call V (Φ) also the classical potential.

Some conditions are imposed upon V (Φ) in order to achieve physical solutions. First
of all is clear that Φ′2(x) ≥ 0. This means

V (Φ) ≤ 0 if 0 ≤ Φ ≤ Ψ. (2.14)
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On the other side Φ = Ψ should correspond to a maximum in the potential, this is, Φ′ = 0.
This condition may be written as

V (Ψ) = 0. (2.15)

If we insert V (Ψ) (2.12) into (2.15), a relationship arises between amplitude and velocity
and that will be furtheron termed nonlinear dispersion relation (NDR).

As an example of how to solve equation (2.13) we can take the case of nonpropagating
(standing) solitary electron holes with immobile ions. Taking θ → 0 (i.e. infinitely hot
ions), A = K = 0, ṽD = 0, the distribution function for electrons reads

f(x, v) =
1√
2π

{
exp(−E) E > 0
exp(−βE) E ≤ 0

, (2.16)

and (2.12) simplifies to

−V (Φ) =
Φ2

2

(
1 − 16

15
b(β, 0)

√
Φ

)
+ . . . , (2.17)

Applying the NDR (2.15), we find

16

15
b
√

Ψ = 1, (2.18)

where we used b := b(β, 0) to simplify the notation. This lets us further simplify the
classical potential to yield

−V (Φ) =
Φ2

2

(
1 −

√
Φ

Ψ

)
. (2.19)

With this expression we can integrate (2.13) and arrive at a bell-shaped localized potential

Φ(x) = Ψsech4
(x

4

)
. (2.20)

The NDR together with the smallness condition Ψ � 1 implies

b =
1 − β√

π
=

15

16
√

Ψ
� 1. (2.21)

i.e. −β is a large positive number. Therefore, a noticeable notch appears in the distribu-
tion function for trapped electrons.

Note the following advantages of the pseudo-potential method:

1. The solution is determined completely in its shape and velocity.

2. A standing solitary electron hole requires a specific electron trapping parameter β.
Therefore, the family of solutions has only one parameter.

3. The ansatz (2.7) for the distributions functions guarantees that they will always
be continuous and positive and therefore physically meaningful. There exist, how-
ever, a nonphysical property of such distribution functions, namely that for finite
propagating velocities, an infinite jump in ∂vf is found at the separatrix.
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2.2 Different kinds of electrostatic structures

The pseudo-potential method can predict and explain a wide range of potential electro-
static structures. Now that we have sketched the main features of this method, we can
proceed to a systematic search for all those available structures. In doing this we will
closely follow Ref. 17.

For simplicity, we define a normalized potential as

φ :=
Φ

Ψ
, (2.22)

and a normalized classical potential as

V(φ) :=
V (Φ)

Ψ2
. (2.23)

Then, (2.13) appears as
φ′(x)2

2
+ V(φ) = 0, (2.24)

and V(φ) is given in the weak amplitude limit by [12, 18]

−2V(φ) := −2
V (Φ)

Ψ2
=

(
k2

0 −
Bi

2

)
φ(1 − φ)

+Beφ
2(1 −

√
φ) (2.25)

+Bi(1 − φ)2(1 −
√

1 − φ), (2.26)

where Be, Bi and k0 are defined [18] as

Be :=
16

15
b(β, ṽD)

√
Ψ, (2.27a)

Bi :=
16

15
b(α, u0)θ

3/2
√

Ψ, (2.27b)

k2
0 :=

2K

Ψ
. (2.27c)

Thus Be (Bi) is a measure of the status of trapped electrons (ions), as explained in more
detail in Refs. 12, 18, 19, while k0 gives us a measure of the curvature of the potential
as φ → 0 and is related with the actual wavenumber [9]. The parameter ṽD is again
defined by ṽD := vD − v0 where vD is the drift velocity between electrons and ions; v0

(u0) is the phase velocity of the structure in the electron (ion) phase space and it holds
u0 = v0

√
θmi/me, where θ = Tef/Tif , in which Tsf , s = e, i, is the temperature of species

s defined by the Maxwellian at the location in space where trapped particles of this species
are absent.

In the following, we shall search in the three-dimensional parameter space spanned by
k2

0, Be and Bi for areas where (2.26) gives physically meaningful solutions. Our aim is
to obtain a complete picture of the allowed potential structures. As a result, several new
structures will be detected.

In (2.26) φ is normalized by (2.22) in such a way that it is confined to the interval
0 ≤ φ ≤ 1. Therefore, we will start considering the behavior of V(φ) at both boundaries
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Figure 2.2: Existence region in parameter space for k2
0 = 0. The non-shaded area represents

the allowed region of the parameter space where the classical potential is meaningful. The solid
line is given by eq. (2.31) whereas the dashed line represents the limit given by (2.33) in the
text. Locations of three typical structures, denoted by A, B and C are pointed out. The two
dash-dotted lines bound the area permitted by the nonlinear dispersion relation (NDR) for the
particular value θ = 10.

of this interval. In the proximity of each of these points we are allowed to use a Taylor
expansion and, as long as the first derivative is nonzero, neglect terms of higher order:

V(δφ) ≈ −1

2
k2

0δφ, (2.28)

V(1 − δφ) ≈ 1

2

(
Bi −Be

2
− k2

0

)
δφ. (2.29)

As V(φ) must be negative for solutions φ(x) to exist, the first constraints in our parameter
space are, therefore,

k2
0 ≥ 0, (2.30)

k2
0 ≥ Bi − Be

2
. (2.31)

2.2.1 Generalized electron holes and double layers (k2
0 = 0)

If the equality holds in (2.30), i.e. if k2
0 = 0, we have to look into higher order terms of

the expansion:

V(δφ) ≈ 1

2

(
3

8
Bi − Be

)
δφ2 +

1

2
Beδφ

5/2, (2.32)

from which a new restriction arises:

Be ≥
3

8
Bi, (2.33)
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where the equality is admissible if and only if Be is negative. Along with (2.31), this
equation defines the region in the parameter space for k2

0 = 0 where physically meaningful
classical potentials exist (see Fig. 2.2).

For all the possible classical potentials with k2
0 = 0, the derivative V ′(φ) is zero at

φ = 0. This implies that φ(x) goes asymptotically to zero for x → ∞, for x → −∞ or
for both. It hence represents a localized solution. Three characteristic types of localized
solutions can be distinguished, labeled by A, B, and C (see Fig. 2.2).

A: Bi = 0, Be > 0. In this case one has

−2V(φ) = Beφ
2(1 −

√
φ), (2.34)

and therefore, by solving (2.24), we obtain

φ(x) = sech4

(√
Be

4
x

)
, (2.35)

which is a bell-shaped solitary pulse, whose width scales like B
1/2
e . This is the ordi-

nary solitary electron hole, found earlier [12, 13, 20], being essentially characterized
by electron trapping.

B: Bi = Be, Be > 0. For these values we obtain

−2V(φ) = Be

[
φ2(1 −

√
φ) + (1 − φ)2

(
1 −

√
1 − φ

)

−1

2
φ(1 − φ)

]
,

(2.36)

which is symmetric with respect to φ = 1/2. Its behavior near φ = 0 (or φ = 1) is
given by −2V(φ) ≈ 5

8
Beφ

2 (resp. 5
8
Be(1 − φ)2). As V ′(φ) = 0 for φ = 0 and φ = 1

this is a new type of a double layer solution representing therefore a monotonic
potential φ(x). It supplements the three double layer solutions described in the
literature [13, 21, 22, 23, 24], namely the strong double layer, the slow electron
acoustic and the slow ion acoustic double layer.

C: Be = 3
8
Bi, Bi < 0. Now we find

−2V(φ) = −Bi

[
1

2
φ(1 − φ) − 3

8
φ2
(
1 −

√
φ
)

−(1 − φ)2
(
1 −

√
1 − φ

)]
.

(2.37)

Near φ = 0 we get

−2V(δφ) = −3

8
Biδφ

5/2 + . . . , (2.38)

whereas near φ = 1 we find

−2V(1 − δφ) = − 5

16
Biδφ+ . . . , (2.39)

which is again a solitary wave, however one with a larger width in comparison with
that of A. To the best of our knowledge also this solitary wave solution is new. It
needs both the effect of trapped ions and electrons for its existence.

Note that near the origin of Fig. 2.2, these solutions cease to be valid, as higher order
effects become important.
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Figure 2.3: Existence region of the parameter space for k2
0 > 0. As in Fig. 2.2, the lightly

shaded area represents the region where physical solutions do not exist. The solid line represents
the constraint imposed by (2.42); as can be seen, below the point marked with F, the forbidden
area is further extended. Besides F, four characteristic structures are discussed in the text,
whose locations are labeled by D, E, G and H. The dark shaded area marks the region where
the classical potential has an intermediate maximum and, therefore, corresponds to two-shoulder
structures (see text). The two dash-dotted lines bound the area allowed by the NDR for the
particular value θ̃ = 11 (see text).

2.2.2 Periodic solutions and generalized ion holes (k2
0 > 0)

Now we turn to the case k2
0 > 0. In this case it is convenient to rescale our equations once

more. We define the new dimensionless quantities

be :=
Be

2k2
0

, (2.40a)

bi :=
Bi

2k2
0

, (2.40b)

Ṽ(φ) :=
V(φ)

k2
0

, (2.40c)

and rewrite the classical potential (2.26) and the constraint (2.31) respectively as

−2Ṽ(φ) =(1 − bi)φ(1 − φ) + 2beφ
2
(
1 −

√
φ
)

+ 2bi(1 − φ)2
(
1 −

√
1 − φ

)
,

(2.41)

1 ≥ bi − be. (2.42)

Fig. 2.3 shows the allowed area of solutions (non-shaded region) in the be,bi plane. In the
upper part this area is restricted by the solid line which represents (2.42) with the equality
sign. In the lower part (more precisely, below the point F) a new constraint enters, which
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will be discussed below. Again, several typical structures are pointed out, labeled by D,
E, F, G and H.

D: bi = 0, be > −1. In this case we get

−2Ṽ(φ) = φ(1 − φ) + 2beφ
2
(
1 −

√
φ
)
, (2.43)

which near the boundaries behaves as

−2Ṽ(δφ) ≈ δφ, (2.44)

for φ = δφ� 1, and
−2Ṽ(1 − δφ) ≈ (1 + be)δφ (2.45)

for δφ = 1−φ� 1. As Ṽ ′(φ) is negative for φ = 0 and φ = 1 it represents, therefore,
a periodic solution, which is mainly controlled by electron trapping.

E: be = bi − 1, bi > −3/5. Here we obtain

−2Ṽ(φ) =(1 − bi)
[
φ(1 − φ) − 2φ2

(
1 −

√
φ
)]

+ 2bi(1 − φ)2
(
1 −

√
1 − φ

)
.

(2.46)

Near φ = 0 and φ = 1 we find

−2Ṽ(δφ) ≈ δφ, (2.47)

when φ = δφ� 1, and

−2Ṽ(δφ) ≈ 1

4
(3 + 5bi)δφ

2 − 2biδφ
5/2, (2.48)

if δφ = 1−φ� 1. This represents a generalized solitary ion hole being characterized
by an inverted bell-shaped potential. For bi = 1, Ṽ(φ) is especially simple, becoming

−Ṽ(φ) = (1 − φ)2(1 −
√

1 − φ). (2.49)

This represents the classical solitary ion hole (Refs. 25, 12 and references therein)

φ(x) = 1 − sech4

(
x

2
√

2

)
, (2.50)

in which x is rescaled and stands for k0x.

This solution, which is predominantly determined by ion trapping, has a limit
marked by F in Fig. 2.3.

F: be = −8/5, bi = −3/5. Inserting these values into (2.41) we get the corresponding clas-
sical potential Ṽ(φ). From (2.48) we learn that the first term on the rhs vanishes
such that near φ = 1 we obtain

−2Ṽ(1 − δφ) ≈ 6

5
δφ5/2, (2.51)

similar to the previous case C. This represents a solitary potential structure that
shows a larger width in comparison with (2.50), but still having the same inverted
bell-shaped form. Again we have found a new kind of structure, namely a new
solitary ion hole.
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Ṽ
(φ

)

φ∗

10.90.80.70.60.50.40.30.20.10

-0.03

0

(b)

x

φ
(x

)

4035302520151050

φ∗

1

0

(c)

x

E
(x

)

4035302520151050

-0.2

0.2

0

Figure 2.4: Classical potential Ṽ(φ) (a), potential φ(x) (b) and electric field E(x) (c) for a
typical example of the structure referred as G in the text and in Fig. 2.3 (be = −8.640,bi = −10).

Going below bi = −3/5 along the line be = bi − 1 (dashed line in Fig. 2.3) we see
from (2.48) that Ṽ(φ) behaves wrongly near φ = 1 since it becomes positive. This can be
avoided at fixed bi < −3/5 by increasing be starting from be = bi − 1. At a certain value
of be, denoted by b∗e, Ṽ(φ) is again nonpositive but assumes a third zero at some φ∗ in the
interval 0 < φ∗ < 1 where Ṽ(φ) touches the Ṽ = 0 axis from below.

G: bi < −3/5, be & b∗e > −8/5. Very close to this point, where the classical potential de-
viates only slightly from being tangential to the zero axis, the corresponding po-
tential φ(x) is periodic but with an intermediate plateau of arbitrary large size at
φ = φ∗ < 1, as seen in Fig. 2.4 for bi = −10 and be = −8.640. This structure may
be viewed as an alternating train of electron and ion holes.

H: bi < −3/5, be > b∗e > −8/5. If we further increase be the new maximum detaches from
the zero line and becomes more negative. This gives rise to a periodic structure
having now two shoulders in each period replacing the two plateaus. A typical
example of this new type of periodic structure with imposed shoulders is shown in
Fig. 2.5 for bi = −10, be = −8.600. Fig. 2.5a shows the classical potential Ṽ(φ)
and Figs. 2.5b,c the corresponding potential φ(x) and the electric field E(x). It is
noteworthy to point out that near b∗e a small change of either be or bi (such as the
variation between G and H may dramatically change the period of the structure).
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Figure 2.5: Classical potential Ṽ(φ) (a), potential φ(x) (b) and electric field E(x) (c) for a
typical example of the structure referred as H in the text and in Fig. 2.3 (be = −8.600, bi = −10).
Note that although the points G and H are very close in Fig. 2.3, the period of the potential in
G is almost double of that in H.

Again, structures G and H have not been discussed before in the literature.

2.2.3 Nonlinear dispersion relation

But not every set of parameters that produces a physically meaningful classical potential
is valid. The nonlinear dispersion relation (2.15) has also to be fulfilled. In Ref. 12 it was
shown that the NDR can be written as:

−1

2
Z ′

r

(
ṽD√

2

)
− θ

2
Z ′

r

(
u0√
2

)
= Be +

3

2
Bi − k2

0. (2.52)

The real part of the plasma dispersion function, Zr(x), satisfies −0.285 ≤ −1
2
Z ′

r

(
x√
2

)
≤ 1.

Hence, solutions for (2.52) will exist as long as

−0.285(1 + θ) ≤ Be +
3

2
Bi − k2

0 ≤ (1 + θ). (2.53)

For k0 = 0, the equality sign in this expression gives us two straight lines in Fig. 2.2, drawn
for θ = 10. They generally depend on θ and further restrict the area of the parameter
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space where our structures are allowed. Only in the limit θ → ∞, when the two lines
tend to ±∞, respectively, the whole non-shaded area of Fig. 2.2 becomes available for
solutions.

For k2
0 > 0, we use the rescaled form of (2.53)

−0.285
1 + θ

k2
0

≤ 2be + 3bi − 1 ≤ 1 + θ

k2
0

. (2.54)

This time the location of the two restricting lines (given by the equality sign in (2.54))
depends on the parameter θ̃ = (1 + θ)/k2

0, which is determined by two parameters now.
In Fig. 2.3 the two limiting lines are drawn for θ̃ = 11. As in the previous case, the whole
non-shaded area becomes available if θ̃ → ∞ (θ → ∞).

In summary, in this section, a systematic evaluation of the classical potential and
of the nonlinear dispersion relation has brought to light several new electrostatic equilib-
rium structures obeying the Vlasov-Poisson system for a two-component, current-carrying
plasma. As described earlier [12, 18, 19], these equilibria have to supplement the linear
wave spectrum of the Vlasov-Poisson system to arrive at a more complete description of
low amplitude electrostatic plasma dynamics and turbulence.

We would also like to point out the possibility of finding two structures simultaneously
in a current-carrying plasma, as seen e.g. by the FAST (Fast Auroral SnapshoT) satellite
observations in the downward current regime [26]. For instance, a solitary electron hole
A (BA

e 6= 0, BA
i = 0) and a double layer B (BB

e = BB
i ) may both satisfy the same

nonlinear dispersion relation and thus have the same phase velocity, namely when BA
e =

5
2
BB

e . Within our approach, such a coincidence in the measured wave spectrum comes
out maturally, giving us confidence on the underlying model.

2.3 Energy deficit and negative energy structures

2.3.1 Renormalization of the solutions

An important issue that, as was suggested in Refs. 19, 18 and will be discussed later,
may be related with the stability of a current-carrying plasma, is the total energy of the
structured plasma compared with that of the homogeneous, unstructured system. In this
section we will perform such a calculation and leave the stability problem to be further
investigated by means of a numerical code in Sec. 2.6. At this point it suffices to say that
strong evidences exist that link the presence of negative energy structures with unstable
regimes.

However, before calculating the perturbed state energies, we must take into account
that the average particle density that arises from (2.7) may differ from the unperturbed
Maxwellian and therefore it would make no sense to directly compare the energies of both
states. This problem can be overcome by a slight modification of the solution. For this
purpose we define the average density of the electrons before modification as

M =
1

2L

∫ +L

−L

ne dx, (2.55)

where L is the spatial periodicity of the solution, while for localized (solitary) solutions
we take the limit L→ ∞.
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For the homogeneous plasma ne is independent of x and one has M = ne = 1. In
the inhomogeneous case, the dimensional distribution functions have to be multiplied by
an additional factor 1/M . Poisson’s equation then allows us to find the new dimensional
spatial coordinate: it is equal to the old one multiplied by

√
M . To be able to keep the

distribution functions (2.7) and all results calculated from these, the corrected dimensional
quantities are renormalized in such a way that the dimensionless quantities (fe and x) are
exactly as those given above. This is the case if the spatial coordinate is renormalized
using the new Debye length λ

(n)
D and the distribution function is renormalized by the new

average density n
(n)
e0 given by

λ
(n)
D = λD

√
M (2.56)

n
(n)
e0 =

ne0

M
. (2.57)

Due to charge neutrality fi can be treated exactly as fe. Thus it is now possible to
keep all results obtained above. It has to be kept in mind, however, that for different
wave structures the same dimensionless quantity can have a different physical meaning,
depending on the value of M .

2.3.2 Energy density of the plasma

Now we want to examine how large the energy density associated with the plasma struc-
tures presented in Sec. 2.1.4 is. This energy density will then be compared to the energy
density of the corresponding homogeneous plasma. The following calculation is based
on that of Ref. 12, but it takes into account the facts that the perturbed state has to
be renormalized before it can be compared to the homogeneous state and that it has to
be calculated in a new frame of reference. The result obtained in this section was first
presented in Refs. 19 and 18.

When the energy density is calculated in the frame of reference in which the homoge-
neous state has minimum energy, the Vlasov-Poisson system is said to possess potentially
usable free energy if the perturbed state has an energy which is lower than that of the
uniform state. The homogeneous state has minimum energy in the frame moving with the
center of mass velocity vCM = δ

1+δ
vD. However, for the sake of simplicity, we will prefer

the laboratory frame in which the ions are assumed to be at rest, thus ignoring effects of
order O(δ).

To find the energy density w of a plasma wave in the laboratory frame we now assume
a stationary wave with periodicity 2L and phase velocity v0:

w =
1

4L

∫ +L

−L

dx′
[∫ +∞

−∞
dv v2fe(x

′, v)

+
1

θ

∫ +∞

−∞
du u2fi(x

′, u) + Φ′(x′)2

]
,

(2.58)

where x′ ≡ x−v0t. L is infinity for the solitary limits. The distribution functions fe(x
′, v)

and fi(x
′, u) in (2.58) when transformed to wave frame coincide with (2.7) renormalized by

(2.56), (2.57). This means that w is equal to the dimensional energy density, normalized

by kTen
(n)
e0 , where n

(n)
e0 is given by (2.57).
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In the unperturbed homogeneous state w in (2.58) is found to be

wH =
1

2

(
1 + v2

D +
1

θ

)
(2.59)

which follows simply from the Maxwellian distribution functions. There is no contribution
from the electric field.

If a hole structure is present, the distribution functions in the laboratory frame fe(x
′, v)

and fi(x
′, u), which are related to the ones in the wave frame (2.7) by a Galilean trans-

formation, have to be considered. The energy density can then be calculated as follows.
First, we calculate the quantity

we(Φ) =

∫ +∞

−∞
dv v2fe(v) (2.60)

which is twice the kinetic energy density of the electrons in the laboratory frame (we
dropped the x′-dependence). Next, we is written in terms of ṽ = v − v0, the velocity in
the wave frame:

we(Φ) =

∫ +∞

−∞
dṽ ṽ2fe(ṽ) + 2v0

∫ +∞

−∞
dṽ ṽfe(ṽ)

+ v2
0

∫ +∞

−∞
dṽ fe(ṽ)

=:ŵe(Φ) + 2v0

∫ +∞

−∞
dṽ ṽfe(ṽ) + v2

0 ne(Φ)

(2.61)

The quantity ŵe introduced in Eq. (2.61) is again twice the kinetic energy density of the
electrons, this time measured in the wave frame. To find we we differentiate Eq. (2.61) by
Φ, simplify and then integrate again. The differentiation yields

d

dΦ
we(Φ) =

d

dΦ
ŵe(Φ) + 2v0

d

dΦ

∫ +∞

−∞
dṽ ṽfe(ṽ) + v2

0 n
′
e(Φ). (2.62)

The first term on the rhs of (2.62) is found in Ref. 12 to be ne(Φ). The second term
can be obtained by integrating the stationary Vlasov equation in the wave frame over the
velocity ṽ:

∂x

∫ +∞

−∞
dṽ ṽfe(ṽ) = −Φ′(x)

∫ +∞

−∞
dṽ ∂ṽfe(ṽ) = −Φ′(x) fe(ṽ)

∣∣∣
+∞

−∞
= 0 (2.63)

On the left hand side of Eq. (2.63) the differentiation ∂x is replaced by dΦ(x)
dx

d
dΦ

. Eq. (2.63)
then reads

Φ′(x)
d

dΦ

∫ +∞

−∞
dṽ ṽfe(ṽ) = 0. (2.64)

As Φ′(x) is not generally zero, this implies that d
dΦ

∫
dṽ ṽfe(ṽ) = 0, i.e. the second term of

the rhs of (2.62) vanishes.
Eq. (2.62) can therefore be simplified to the following expression:

d

dΦ
we(Φ) = ne(Φ) + v2

0 n
′
e(Φ). (2.65)
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Integration of (2.65) over Φ yields we:

we(Φ) =

∫ Φ

0

ne(Φ) dΦ + v2
0 [ne(Φ) − ne(0)] + we(0) (2.66)

The only quantity which remains to be determined is we(0). It is calculated using the
definition (2.60), setting Φ = 0 in (5a) of Ref. 12. The result is

we(0) = (1 +K)
(
1 + v2

D

)
, (2.67)

where K = k2
0Ψ/2. The ionic term wi can be calculated using similar arguments. In

analogy to (2.65) one finds:

d

dΦ
wi(Φ) = −ni(Φ) +

u2
0

θ
n′

i(Φ), (2.68)

where wi refers to the second integral in (2.58), including the factor 1/θ (note that wi was
defined without this factor in Ref. 12).

In this case, however, it is easier to calculate wi(Ψ) than wi(0). For this reason the
limits of integration are chosen as follows:

wi(Φ) =

∫ Ψ

Φ

ni(Φ) dΦ +
u2

0

θ
[ni(Φ) − ni(Ψ)] + wi(Ψ). (2.69)

wi(Ψ) is again found from the definition analogous to (2.60), setting Φ = Ψ in the distri-
bution function (5b) of Ref. 12:

wi(Ψ) =
(1 + A)

θ
, (2.70)

where A is given by (21) in Ref. 12. Thus the contribution of the kinetic energy terms to
the total energy density is known.

We now insert the contribution of the kinetic energy of the electrons, given by (2.66)
and (2.67), as well as the contribution of the kinetic energy of the ions, given by (2.69)
and (2.70) into the expression for the total energy density (2.58). The contribution of the
field energy is rewritten by replacing Φ′(x)2 by the classical potential V (Φ). Also, in the

contribution of the ion kinetic energy, the integral
∫ Ψ

Φ
is replaced by

∫ Ψ

0
−
∫ Φ

0
. This allows

us to use Poisson’s equation ne − ni = Φ′′(x), which in turn can be expressed by −V ′(Φ).
After performing the (trivial) integration over Φ this contribution can be combined with
the one from the field energy. Finally, the integration over x is performed for those terms
not depending on space, and one gets an exact expression for the total energy density:

w =
1

2

[
(1 +K)

(
1 + v2

D

)
+

∫ Ψ

0

ni(Φ) dΦ +
(1 +A)

θ

]

+
1

4L

∫ +L

−L

{
v2
0 [ne(Φ) − ne(0)] +

u2
0

θ
[ni(Φ) − ni(Ψ)]

}
dx

− 3

4L

∫ +L

−L

V (Φ) dx. (2.71)

Before the energy density (2.71) can be compared to the energy density of a homoge-
nous plasma as given by (2.59), one has to make sure both expressions are given in the
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same normalization. We remember that w is equal to the dimensional energy density,
normalized by kTen

(n)
e0 , with n

(n)
e0 given by (2.57). If the same standardized normalization

kTene0 is to be used instead, w has to be divided by M (2.55). It is found by inspection
that M can be written as

M =: 1 + ε (2.72)

with ε of order O(Ψ). As we will consider only the small amplitude limit we make use
of 1/(1 + ε) ≈ 1 − ε. Thus the total energy density of a structured plasma in the same
normalization as was used for the homogeneous plasma is given by

wS ≈ 1 − ε

2

[
(1 +K)

(
1 + v2

D

)
+

∫ Ψ

0

ni(Φ) dΦ +
(1 +A)

θ

]

+
1 − ε

4L

∫ +L

−L

{
v2
0 [ne(Φ) − ne(0)] +

u2
0

θ
[ni(Φ) − ni(Ψ)]

}
dx

− 3(1 − ε)

4L

∫ +L

−L

V (Φ) dx. (2.73)

Note that this renormalization was not taken into account in Ref. 12.
We now introduce the difference in the energy density, ∆w̃ by

∆w̃ := wS − wH . (2.74)

We will show later that it is possible to find situations where ∆w̃ is negative, which means
that the perturbed state is then energetically lower than the unperturbed state. This is
what we will call a negative energy state.

After insertion of (2.59) and (2.73) into the definition of ∆w̃ the small amplitude limit,
Ψ � 1, is taken, neglecting all contributions of order O(Ψ2) and higher. The third part
of Eq. (2.73) can be transformed using

∫ +L

−L

V (Φ) dx = −
∫ Ψ

0

√
−2V (Φ) dΦ. (2.75)

By inspection it can be seen that the contribution of (2.75) to (2.73) is of order O(Ψ2) and
can be neglected. Note that this implies that the contribution of the electrostatic energy
is of higher order than that of the nonlinear trapping effect. Thus particle trapping
obviously is not a small correction, but the dominant effect even at infinitesimal wave
amplitude!

Note that A, K and ε are of order O(Ψ). By inserting ne(Φ) and ni(Φ), given by
(20a,b) in Ref. 12, into (2.73) we then get the final expression for the energy density
difference:

∆w̃ =
1

2

[
Ψ + (K − ε)

(
1 + v2

D

)
+
A− ε

θ

]

+
v2
0

4L

∫ +L

−L

{
−1

2
Z ′

r

(
ṽD√

2

)
Φ − 4

3
b(β, ṽD)Φ3/2

}
dx

+
u2

0

4Lθ

∫ +L

−L

{
−θ

2
Z ′

r

(
u0√

2

)
(Ψ − Φ)

−4

3
b(α, u0) [θ(Ψ − Φ)]3/2

}
dx (2.76)



ENERGY DEFICIT AND NEGATIVE ENERGY STRUCTURES 25

This expression was first presented in Ref. 19. It allows us to search for regions in the
parameter space where ∆w̃ is negative, i.e. where negative energy modes exist. This will
be done in the following section.

2.3.3 Explicit evaluation of ∆w

This section is devoted to an explicit evaluation of ∆w, defined as ∆w := ∆w̃/Ψ (see
below) for certain classes of wave structures with emphasis on regions where ∆w is nega-
tive. Before doing this, we summarize the formulas needed and simplify the notation by
introducing new dimensionless parameters.

If we rewrite the expression for the energy difference (2.76) using the simplifying
notation introduced at the beginning of section 2.2, we find

∆w :=
∆w̃

Ψ
=

1

2

[
1 +

(
k2

0

2
− ε

)(
1 + v2

D

)
+

A− ε

θ

]

+
v2
0

4L

∫ +L

−L

[
−1

2
Z ′

r

(
ṽD√

2

)
φ− 5

4
Beφ

3/2

]
dx

+
u2

0

4Lθ

∫ +L

−L

[
−θ

2
Z ′

r

(
u0√
2

)
(1 − φ)

−5

4
Bi(1 − φ)3/2

]
dx (2.77)

with

ε :=
ε

Ψ
=

k2
0

2
− 1

2
Z ′

r

(
ṽD√

2

)
1

2L

∫ +L

−L

φ dx

−5

4
Be

1

2L

∫ +L

−L

φ3/2dx (2.78a)

A :=
A

Ψ
=
θ

2
Z ′

r

(
u0√

2

)
+

5

4
Bi. (2.78b)

We emphasize that our rescaled energy expression ∆w in (2.77) does not contain the
amplitude Ψ as an independent parameter anymore: now it only appears through Be and
Bi, where it is used in conjunction with the trapping parameters α and β.

In terms of our new parameters, (2.30) and (2.31) are written as

k2
0 ≥ 0 (2.79a)

k2
0 ≥ Bi −Be

2
. (2.79b)

We must exclude the case k2
0 = Be = Bi = 0 that would lead to a null classical potential.

In this case higher order terms that have been neglected would come into play.
At this point, the following cases are of interest:

• Generalized solitary electron holes, in which k2
0 = 0 and V ′(0) = 0. The potential φ

has a bell-like shape

• Generalized solitary ion holes, with k2
0 = Bi−Be

2
, V ′(1) = 0. The potential has an

inverted bell-shape.
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• Harmonic (monochromatic) waves, in which Be = Bi = 0, k2
0 > 0.

The formalism allows other structures as well like cnoidal waves [27] and double layers
[11, 13], but these will not be treated in this thesis.

Now we study the existence of negative energy solutions for the three cases mentioned.

Generalized solitary electron holes

We call generalized solitary electron hole the structure that appears when k2
0 = 0, de-

scribed in Sect. 2.2.1 This results in a bell-like shape potential φ(x); the term “general-
ized” comes from the fact that we allow Bi to be nonzero. In this case, (2.79b) reduces
to Be ≥ Bi. In this section we will restrict ourselves to Be > Bi ≥ 0.

We are interested in finding the areas in the parameter space where negative energies
can exist. These areas can be found by combining equations (2.52) and (2.77). Therefore,
we will first look for values of our parameters that would give us negative energies and
later we will restrict to those values allowed by the NDR.

Proceeding this way, we first look at (2.77) in order to find a simplified expression
valid for electron holes. This has already been done in Ref. 19 for Bi = 0, where one
could analytically integrate (2.24). When we allow for Bi 6= 0, it seems no longer possible
to obtain such a quadrature. However, as φ(x) has a bell-like shape that becomes zero at
both infinities, it is clear that

lim
L→∞

1

2L

∫ +L

−L

(1 − φ)3/2dx = 1, (2.80)

while 1
2L

∫
φ(x)dx and 1

2L

∫
φ3/2(x)dx vanish in this limit L → ∞.

Therefore, we can rewrite (2.77) as

∆w =
1

2

{
1 +

1

θ

[
θ

2
Z ′

r

(
u0√

2

)
+

5

4
Bi

] (
1 − u2

0

)}
(2.81)

which is an extension of Eq. (8) in Ref. 19. Note that it has no explicit Be-dependence,
which means that essentially only ion trapping will affect its value and its sign. More
precisely, Be will enter implicitly through the back-door via the NDR where it influences
v0 resp. u0.

An inspection of (2.81) shows us that in order to yield negative energies, u0 has to
be larger than some u?

0 which is defined by ∆w(u?
0) = 0 and only depends on θ for given

Bi. If Bi = 0, this value will be constant: we will find ∆w < 0 whenever u0 > 2.124. If
Bi > 0, the limiting u?

0 will grow monotonically from 1 (θ = 0) to 2.124 (θ → ∞). The
θ-dependence of u?

0 is shown in the dotted and dash-dotted lines of Fig. 2.6 (for Bi = 0
and Bi = 0.2, respectively).

The second step in our procedure is to look at the nonlinear dispersion relation, which
becomes

−1

2
Z ′

r

(
ṽD√

2

)
− θ

2
Z ′

r

(
u0√
2

)
= Be +

3

2
Bi. (2.82)

Whether it has a solution with ṽD ≥ 0 depends on the values of θ and u0. If we

remember that −0.285 ≤ −1
2
Z ′

r

(
ṽD√

2

)
≤ 1, we can delimit the region of the θ, u0 plane

in which solutions exist by plotting the curves that correspond to − 1
2
Z ′

r

(
ṽD√

2

)
= 1 (i.e.
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Figure 2.6: The dotted and dash-dotted curves represent the values u?
0 that would give ∆w = 0

respectively for Bi = 0 and Bi = 0.2. Negative energies appear only above these curves. Also
shown are the boundaries of the area where solutions of the NDR exist: for Bi = 0 (solid line)

and Bi = 0.2 (dashed line) we have plotted the curves implicitly given by − 1
2Z

′
r

(

ṽD√
2

)

= 1

(upper branch) and − 1
2Z

′
r

(

ṽD√
2

)

= −0.285 (lower branch). Solutions of the NDR exist to the

left of these curves. Both are made for Be = 0.5.

ṽD = 0, upper branch) and −1
2
Z ′

r

(
ṽD√

2

)
= −0.285 (i.e. ṽD = 2.124, lower branch). The

allowed areas lie to the left and between these curves (solid and dashed lines in Fig. 2.6).
Some remarks should be given:

1. As 1
2
Z ′

r

(
u0√

2

)
= 0 for u0 = 1.307, the curves show an asymptotic behavior at this

value of u0. If 0 < Be + 3
2
Bi < 1, there will exist one and only one solution with

u0 = 1.307 for every value of θ.

2. We can easily see that for Be + 3
2
Bi > 1 no solutions with u0 > 1.307 can appear.

As negative energies appear only above certain value of u0 between 1 and 2.12, we
will henceforth restrict ourselves to Be + 3

2
Bi ≤ 1, thus neglecting a relatively small

number of negative energy solutions around Be + 3
2
Bi ≈ 1, Bi 6= 0 and θ � 1.

Now we are able to combine (2.81) and (2.82) to find the negative energy modes which
are allowed by the NDR. They will be above u?

0 and to the left of the upper branch of the
NDR limit. In Fig. 2.6 they are bounded by ABC (for Bi = 0) and A′B′C ′ (for Bi = 0.2).
We call θ? the value of θ in which the curve u?

0(θ) intersects the upper branch of the NDR
limit (points labeled B and B′ in Fig. 2.6).

Now we move to the θ, vD plane. There, we can obtain a first approach to a “nonlinear
stability region” if we consider the case Bi = 0. Figure 2.7 shows the negative energy
boundaries for this value of Bi and three values of Be. We can understand the shape of
these figures if we follow the path given by the points ABC (Be = 0.5), that correspond
also to those of Fig. 2.6 (all but C: see caption). From A to B we move along a line with
fixed u0 = 2.124 and ∆w = 0. The NDR (2.82) shows that the θ dependence of vD is
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Be = 0.9, Bi = 0
Be = 0.5, Bi = 0
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Figure 2.7: Regions of existence of negative energy electron holes for some values of Be and Bi.
Negative energy appears above the curves plotted. Points C and C ′ do not actually correspond
to those of Fig 2.6, but both are intended to be just arbitrary points with θ > θ? (see text).

implicitly given by

−1

2
Z ′

r

(
ṽD√

2

)
= Be + 0.285θ (2.83)

(remember that ṽD = vD − v0 = vD − u0

√
δ/θ). We will reach B at θ = θ?, the point

where the NDR allows no more solutions with u0 = 2.124 (∆w = 0). From (2.83), we can

obtain the exact value of θ? if we set −1
2
Z ′

r

(
ṽD√

2

)
to 1, its maximum value:

θ? =
1

0.285
(1 − Be) . (2.84)

From B to C we move in a range where ∆w = 0 is not possible, although ∆w < 0 is. The
dependence of the minimum vD on θ is depicted in the right part of each plot in Fig. 2.7.

As we increase Be, the corner (B in Fig. 2.7) at θ? is shifted towards smaller values of
θ and larger values of vD following the equation

vD = 2.124

√
δ

θ?
, (2.85)

that results from u0 = 2.124, ṽD = 0, that in turn follows from the NDR (2.82) making
use of (2.84). Equation (2.85) gives us a kind of nonlinear stability limit for electron holes
with Bi = 0. This limit (left part of solid line in Fig. 2.8) extends from θ? = 0 (for Be = 1)
to θ? = 1

0.285
≈ 3.509 (remember that (2.79b) implies Be > 0). For larger θ we must use

the right part of the negative energy limit for very small Be, which is approximated by
Be = 0.01 in Fig. 2.7. Considering all of this, we obtain the continuous line of Fig. 2.8,
which clearly lies below the linear stability limit of Refs. 28 and 29

If we now allow Bi 6= 0, we can see (Figs. 2.6, 2.7) that for a given Be, the corner at
θ? (B and B′) is shifted to the left but below the negative energies limit found for Bi = 0
(see arrow in Fig. 2.7). We can find a new limit if we allow Bi to be as large as possible
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Figure 2.8: Expected stability regions for electron holes. The solid line represents the critical
drift velocity vD(θ) above which solitary electron holes with negative energy (∆w < 0) can be
found for Bi = 0. The dashed line is the extension we can make if we allow Bi 6= 0. The dotted
line represents the linear stability limit (after Refs. 28, 29).

for every value of Be (i.e. we must impose Be > Bi, and we require Be + 3
2
Bi ≤ 1). The

corresponding corners give us the dashed line of Fig. 2.8.
We therefore conclude that the inclusion of Bi extends the region in the θ, vD plane,

albeit slightly, where negative energy generalized electron holes can be found.

Generalized solitary ion holes

Now we examine the generalized solitary ion hole case, in which k2
0 = Bi−Be

2
, so that the

potential has an inverted-bell shape. Now, (2.79a) requires Bi ≥ Be; we will treat only
the case Bi ≥ Be ≥ 0.

We will follow the same steps as we did in the electron holes case: first we examine
the energy expression looking for negative energy states. Later we restrict ourselves to
the solutions which are allowed by the NDR.

Only if Be = 0 we know that (2.24) can be integrated by a quadrature [19]. However,
in order to find the concrete energy expression, it is only necessary to notice that, with
this shape of the potential,

lim
L→∞

1

2L

∫ +L

−L

φ3/2dx = 1, (2.86)

whereas 1
2L

∫
(1 − φ)dx and 1

2L

∫
(1 − φ)3/2dx vanish in the limit L→ ∞.

If we now insert these integrals into the general energy expression (2.77), we get

∆w =
1

2

{
1 +

[
1

2
Z ′

r

(
ṽD√

2

)
+

5

4
Be

]
(1 + v2

D − v2
0)

}
. (2.87)

Note that this expression does not explicitly depend on Bi, and a statement analogous to
that for the electron hole case after (2.81) can be made.
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Figure 2.9: Areas of the v0, vD plane where negative energy ion holes appear for different
values of Be. The dotted line corresponds to ṽD = 1.307: note that no negative energy modes

are found above this line; therefore − 1
2Z

′
r

(

ṽD√
2

)

> 0.

This time, the sign of the energy depends on two quantities, vD and v0. In Fig. 2.9
we can see the areas of the vD, v0 plane in which the energy becomes negative, depending
on the value of Be. No negative energy modes are found with ṽD > 1.307.

For Be = 0 these areas were already given in Ref. 19. Indeed, in this particular case,
∆w vanishes for ṽD = vD −v0 = 0 while another solution for ∆w = 0 exists, which we call
v?. Realistic values for ion hole velocities lie in the ion thermal range. This implies that

v0 ≤ O
(√

δ/θ
)
. For θ not too small, v0 is hence a small quantity and the negative energy

condition for vD becomes v0 < vD < (3v0)
1/3 < 1. We can also express this condition as

v3
D

3
<

√
δ

θ
< vD. (2.88)

Remember that u0 stands for the phase velocity of the hole structure normalized by the
ion thermal velocity.

For Be > 0, there exist minimal values of vD and v0 for negative energy solutions, as
seen from Fig. 2.9.

Our second step is to look at the NDR (2.52), which for ion holes takes the form

−1

2
Z ′

r

(
ṽD√

2

)
− θ

2
Z ′

r

(
u0√
2

)
= Bi +

3

2
Be. (2.89)

At this point, two different cases must be treated:

1. If Bi + 3
2
Be > 1, which we may call strong ion trapping regime, there exists a

distinguished value of θ, which we call θ0, that satisfies 1 + θ0 = Bi + 3
2
Be. For this

θ0, vD = v0 = u0 = 0 is a valid solution of the NDR (2.89). Note also that there
can be no solutions for θ < θ0.
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Figure 2.10: Negative energy areas of the θ, vD plane for ion holes with different values of Be

and Bi satisfying Bi + 3
2Be > 1. The vertical lines where the curves for Be = 0 abruptly cease

are given by θ = θ0. Note the shrunk area of ∆w < 0 in case of Be = 0.001. The dotted line
represents the linear stability limit.

Using equations (2.87) and (2.89), we can plot the areas in the θ, vD plane where
negative energy solutions exist for given values of our parameters Be and Bi. In Fig.
2.10 we have plotted the shapes of the negative energy areas for different values of
Bi and Be.

As can be seen, for Be = 0 these curves extend down to vD = 0 at θ0.This is due to
the fact that in this case the energy expression gives us ∆w = 0 for ṽD = 0, so that
negative energy states will always exist in the proximity of these values. Hence, for
each value of v0 � 1, in the linearly stable region, a value of Bi can be found for
which a negative energy ion hole exists. Note that this implies no threshold velocity.

Now we set Be > 0. From (2.82) and Bi +
3
2
Be > 1 we can see that −1

2
Z ′

r

(
u0√

2

)
> 0

and therefore u0 < 1.307. This can also be expressed as

√
θ

δ
v0 < 1.307. (2.90)

But, as we have already shown in Fig. 2.9, when Be > 0, there exists a minimum v0

for negative energy modes. If we call this vmin
0 , we find that θ has to satisfy

θ < δ

(
1.307

vmin
0

)2

. (2.91)

Therefore we have constraints both in θ and in vD. This explains why the negative
energy areas are significantly diminished even for a very small value of Be, as can
be seen in Fig. 2.10.

2. If Bi +
3
2
Be < 1, corresponding to a moderate or small ion trapping effect, the shape

of the negative energy regions has a very different form, as can be seen in Fig. 2.11.
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Figure 2.11: Negative energy areas of the θ, vD plane for ion holes with different values of
Be and Bi satisfying Bi + 3

2Be < 1. The lower dotted line represents the asymptotic limit of
negative energies for Be = 0 and large θ, given by (2.92) in the text. The upper dotted line
represents the linear stability limit.

Now for every θ, there exists a finite minimum drift velocity. If Be = 0, as we
increase Bi, the limiting curve is shifted downwards. Therefore, the largest negative
area is the one given by Bi ≈ 1. For large θ all of these curves can be approximated
by letting u0 = 1.307, v0 = vD thus yielding (dotted line in Fig. 2.11)

vD = 1.307

√
δ

θ
. (2.92)

When Be > 0, we must consider again that a minimum vD appears (Fig. 2.9) and
the negative energy areas are reduced, as shown in Fig. 2.11.

Harmonic (monochromatic) waves

The third case we are considering here is that of harmonic waves, where Be = Bi = 0 and
k2

0 is left arbitrary but larger than zero. In this case, the classical potential reduces to

−V(φ) =
k2

0

2
φ(1 − φ). (2.93)

From this expression, we can integrate (2.24) and obtain a harmonic wave with wavenum-
ber k0 (and, therefore, half-period L = π

k0
):

φ =
1

2
[1 + cos(k0x)] . (2.94)

This harmonic potential is an exact solution of our nonlinear equations. Note that Be =
Bi = 0 still implies that a certain amount of trapping is required (i.e. α = 1 − u2

0 and
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Figure 2.12: Negative energy areas of the θ, vD plane for purely harmonic waves with different
values of k2

0. The dotted line represents the linear stability limit.

β = 1− ṽ2
D). By inserting the potential (2.94) into the integrals that appear in the energy

expression, and calculating the resulting trivial integrals, one gets

∆w =
1

2

{
1 +

k2
0

2

(
1 + v2

D

)
+

1

4
Z ′

r

(
u0√

2

)[
1 − θ

(
1 + v2

D

)
− u2

0

]

−v
2
0

4
Z ′

r

(
ṽD√

2

)}
,

(2.95)

while the NDR (2.52) is in this case as simple as

k2
0 −

1

2
Z ′

r

(
ṽD√

2

)
− θ

2
Z ′

r

(
u0√

2

)
= 0. (2.96)

Combining (2.95) and (2.96) we obtain

∆w =
1

2

{
1 +

k2
0

2

(
1 + v2

D − v2
0

)
+

1

4
Z ′

r

(
u0√
2

)[
1 − θ

(
1 + v2

D − v2
0

)
− u2

0

]}
.

(2.97)

Now we can proceed to scan the θ, vD plane looking for negative energy states. Com-
bining the condition ∆w < 0 with the NDR one again obtains a region of allowed states
with negative energy density. The boundary of this region is shown in Fig. 2.12 for
different values of k2

0. Negative energy states with given k2
0 exist to the right of the cor-

responding curve. One can clearly see that negative energy harmonic waves can be found
in the linearly stable region; at very low drift velocities vD only negative energy harmonic
waves with large wave number (i.e. short wavelength) exist, but for larger drift velocities
the restriction on the allowed values of k0 is less severe. Note that harmonic waves of
negative energy are possible only for θ & 1.
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2.4 Numerical simulation

This section will be devoted to the description and results of numerical simulations of the
Vlasov-Poisson system1. These numerical simulations will allow us to (i) check the validity
of the pseudo-potential method, (ii) include the eventual effects of small collisions which
we disregarded up to this point and (iii) observe the temporal evolution of the system
when the initial conditions are close but not exactly matching any of our solutions.

The main technical problems involved in the simulation of Vlasov systems are well
known in the literature: they are related with the so-called filamentation of phase-space.
As the Vlasov equation is conservative, the value of the distribution function is preserved
along the trajectory of any particle. These trajectories are, if time steadiness is not
granted, rather complex and lead to phase-mixing, i.e. the appearance of finer and finer
structures in phase space which at some point become too small to be followed by the finite
resolution of the numerics. This is an intrinsically unavoidable problem of integrating the
Vlasov equation and can, therefore, never be completely overcome. We may try, however,
to devise methods that allow us to minimize this difficulty and let us simulate the Vlasov
equation for longer times.

Here we will use a method particularly suited for dealing with velocity distributions
close to a Maxwellian. We will decompose the distribution functions into Hermite poly-
nomials in velocity space and Fourier modes in coordinate space. But before we get into
details, let us devote some words to the effect of dissipation in the Vlasov equation (2.1a).

2.4.1 Fokker-Planck collision operator

To include a certain degree of collisions in equation (2.1a) we should first remember that
it comes from the Boltzmann equation where the term describing collisions was neglected.
The Boltzmann equation for electrons in its full form stands

∂tfe + v∂xfe + ∂xΦ∂vfe =

(
∂f

∂t

)

c

(2.98)

where the term
(

∂f
∂t

)
c
, commonly called collision integral, represents the instantaneous

change of fe due to collisions. The explicit calculation of this term is rather involved
and beyond the scope of this thesis. To deal with collisions integral, a collision model
including some simplifications has to be used instead [30].

We define ψ(v,∆v) as the probability that a particle, due to collisions, changes its
velocity from v to v+∆v in a given time interval ∆t. The distribution function therefore
satisfies

f(x, v, t) =

∫
d(∆v)f(x, v − ∆v, t− ∆t)ψ(v − ∆v,∆v). (2.99)

If we perform a Taylor expansion on fψ we obtain

f(x, v, t) =

∫
d(∆v)

{
f(x, v, t− ∆t)ψ(v,∆v) − ∆v

∂(fψ)

∂v

+
1

2
∆v∆v

∂2(fψ)

∂v2

}
.

(2.100)

1The code described in this section can be downloaded from the internet at

http://www.phy.uni-bayreuth.de/∼btpa16/downloads.html.
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But we can rewrite these integrals by taking into account
∫
d(∆v)ψ(v,∆v) = 1, (2.101a)

i.e., a particle must be found somewhere, and defining

〈∆v〉 :=

∫
d(∆v)∆vψ(v,∆v), (2.101b)

〈∆v∆v〉 :=

∫
d(∆v)∆v∆vψ(v,∆v), (2.101c)

and finally write

f(x, v, t) = f(x, v, t− ∆t) − ∂ (f〈∆v〉)
∂v

+
1

2

∂2 (f〈∆v∆v〉)
∂v2

. (2.102)

Now all the physics of collisions is hidden in the factors 〈∆v〉 and 〈∆v∆v〉 and has
not to be further considered, as it is found in many textbooks [31]. A more direct way of
deriving the collision operator is to make use of the BBGKY hierarchy of correlations to
get, for the plasma case and for shielded Coulomb interactions, the Lenard-Balescu colli-
sion operator [32] which can be cooked down to a Fokker-Planck type collision operator,
involving the Coulomb logarithm. Finally, by assuming the presence of a neutral gas, we
can further simplify the collision operator which can in that case be written as

(
∂f

∂t

)

c

=
∂

∂v

(
−νvf +D(v)

∂f

∂v

)
, (2.103)

where ν is the collision rate between the given species and the neutral gas and D(v)
is a diffusion coefficient. As we may expect that collisions lead the particle distribution
towards a Maxwellian as given in (2.3), we can setD(v) = −ν and then write the collisional
term as (

∂f

∂t

)

c

= −ν ∂
∂v

(
vf +

∂f

∂v

)
=: νFf, (2.104)

the operator F = ∂
∂v

(
v + ∂

∂v

)
being called Fokker-Planck collisional operator. Thus, to

include collisions, equations (2.1) should be corrected, in the wave frame, as

∂tfe + v∂xfe + ∂xΦ∂vfe = νe∂v [∂vfe + (v − ṽD)fe] (2.105a)

µ∂tfi + u∂xfi − θ∂xΦ∂ufi = νi∂u [∂ufi + (u+ u0)fi] , (2.105b)

with

νi = νe

√
θ

δ
. (2.106)

2.4.2 Fourier-Hermite decomposition

We can integrate equations (2.105) by performing a decomposition in Fourier modes and
Hermite polynomials. The latter are given by the expression

Hem(z) = (−1)mez2/2 d
m

dzm
e−z2/2. (2.107)
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They satisfy the recursive relations

Hem+1(z) = zHem(z) − He′m(z), (2.108a)

mHem−1(z) = He′m(z), (2.108b)

and the orthogonality relation

∫ +∞

−∞
dz e−z2/2Hen(z)Hem(z) = m!

√
2πδnm. (2.109)

Now we can, in general, write the distribution functions for electrons and ions as

fe(x, v, t) =
1√
2π
e−

1
2
(v−ṽD)2

∞∑

m=0

Hem(v − ṽD)

(m− 1)!!

∞∑

n=−∞
ke

nm(t)e
inπx

L , (2.110a)

fi(x, u, t) =
1√
2π
e−

1
2
(u+u0)2

∞∑

m=0

Hem(u+ u0)

(m− 1)!!

∞∑

n=−∞
ki

nm(t)e
inπx

L , (2.110b)

where L is the half-length of the system. Note that this decomposition implies that
fs(x, v, t) = fs(x + 2L, v, t) and therefore limits us to periodic solutions or, if we use a
large enough L, solitary solutions with identical conditions for x → +∞ and x → −∞.
Double layers cannot, therefore, be simulated or found within this framework.

Note also that the coefficients ks
nm(t) are, in general, complex. However, the dis-

tribution functions are densities of probability and must therefore be always real. The
condition fs(x, v, t) = f ∗

s (x, v, t) imposes that

ks
nm(t) = ks∗

−nm(t). (2.111)

To obtain all the coefficients ks
nm from the distribution functions themselves we can

make use of the orthogonality properties of Fourier modes and Hermite polynomials
(2.109) and find

ke
nm(t) =

1

2L

1

m!!

∫ +L

−L

dx

∫ +∞

−∞
dvfe(x, v, t)Hem(v − ṽD)e−

inπx

L , (2.112a)

ki
nm(t) =

1

2L

1

m!!

∫ +L

−L

dx

∫ +∞

−∞
dufi(x, u, t)Hem(u+ u0)e

− inπx

L . (2.112b)

The decomposition given by (2.110) is exact but it would demand the use of an infinite
number of coefficients which, of course, no computer can do. This means we have to
truncate the expansion and limit the total number of coefficients to N Fourier modes
(−N < n < N) and M Hermite polynomials (0 ≤ m < M). The selection of N and M is
of course a tradeoff between accuracy (or maximum simulated time in which the results
are still reliable) and computer use. There are however some limitations we have always
to keep in mind.

Suppose we want to simulate a electrostatic structure of amplitude ψ and spatial
extension l (typically several times an electron Debye length). Given the x-dependency
in (2.110) it is clear that to have enough spatial resolution it must hold L

Nπ
� l. This is,

N � L

lπ
. (2.113)
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On the other side, if the potential amplitude is ψ, the size of the structure in velocity
space will be around

√
2ψ. For large m, Hermite polynomials may be approximated by

Hem(z) =





(−1)m/2(m− 1)!!ez2/4 cos

(
z
√
m+ 1

2

)
if m is even,

(−1)(m−1)/2
√

1
m
m!!ez2/4 sin

(
z
√
m+ 1

2

)
if m is odd.

Then, if we use M polynomials, we achieve a resolution
(
M + 1

2

)−1/2 ≈M−1/2. Therefore

the condition to represent a structure of amplitude ψ yields M−1/2 �
√

2ψ or

M � 1

2ψ
. (2.114)

Densities and electrostatic potential

The Fourier-Hermite decomposition allow us to calculate the particle densities and the
electrostatic potential without much computational effort. This is because, as a result of
(2.109), when integrating in velocity space the contributions of all Hermite polynomials
but He0(z) vanish. Making use of this fact, we can calculate the densities of each species
as

ne(x, t) =

∫ +∞

−∞
dvfe(x, v) =

∞∑

n=−∞
ke

n0(t)e
inπx

L , (2.115a)

ni(x, t) =

∫ +∞

−∞
dufi(x, u) =

∞∑

n=−∞
ki

n0(t)e
inπx

L . (2.115b)

These expressions determine also the electrostatic potential through the Poisson equa-
tion ∂2

xφ(x, t) = ne(x, t) − ni(x, t). This results in

φ(x, t) =
∑

n 6=0

L2

n2π2

(
ki

n0 − ke
n0

)
e

inπx

L + C, (2.116)

where use was made of the necessary condition
∫ +L

−L
∂xφ = 0 and C is an arbitrary constant

that we will conventionally choose to assure φ(−L) = φ(L) = 0:

C = −
∑

n 6=0

(−1)n L2

n2π2

(
ki

n0 − ke
n0

)
. (2.117)

For convenience we define also

csnm :=
2L2

π2n2
Re(ks

nm), ss
nm :=

2L2

π2n2
Im(ks

nm), (2.118)

which allows us to rewrite (2.116) as

φ(x, t) =

∞∑

n=1

[
(cin0 − cen0) cos

(nπx
L

)
+ (si

n0 − se
n0) sin

(nπx
L

)]
. (2.119)

In this way, as we choose an initially symmetric potential, we will often follow the evolution
of the cosine coefficients cen0 and cin0, which are usually enough to give us an idea of the
involved processes.
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2.4.3 Time integration

Once we have a suitable representation of the distribution functions, we can insert it into
equations (2.105) and find out how the coefficients ke

nm and ki
nm evolve in time. The result

reads

dke
nm

dt
= − νemk

e
nm +

(m− 1)!!

(m− 2)!!

iLγe
nm−1

π

− inπ

L

[
ṽDk

e
nm +

(m− 1)!!

(m− 2)!!
ke

nm−1 +
(m+ 1)!!

m!!
ke

nm+1

]
,

(2.120a)

dki
nm

dt
=

1

µ

{
−νemk

i
nm − (m− 1)!!

(m− 2)!!

iθLγi
nm−1

π

−inπ
L

[
−u0k

i
nm +

(m− 1)!!

(m− 2)!!
ki

nm−1 +
(m+ 1)!!

m!!
ki

nm+1

]}
,

(2.120b)

where the coupling coefficients γs
nm for any species s are defined as

γs
nm =

∑

n̄ 6=0

1

n̄
ks

n−n̄ m

(
ki

n̄0 − ke
n̄0

)
. (2.121)

Therefore, if we have an initial distribution function, we can decompose it as in (2.112)
and then use (2.120) to integrate the evolution of each coefficient in time by using any
numerical procedure, e.g. a fourth order Runge-Kutta [33].

Linear approximation

As we already mentioned, a large part of plasma kinetic theory has been developed in the
framework of a linearization of Vlasov equations. We also said that the linear approach
leaves out many important solutions of the full Vlasov-Poisson system, among them so-
lutions constructed by the pseudo-potential method. Therefore, it would be interesting
to compare the results of our fully non-linear code with those that an approximate lin-
ear code would yield. The Fourier-Hermite decomposition we have just described is also
particularly well suited to perform this simplification.

The linearization of the Vlasov equation rests on the assumption that one is close
enough to a homogeneous solution, in our case a Maxwellian as (2.5), which we may call
f0. Then we can write f = f0 + εf1, φ = εφ1 with ε being a smallness parameter. If we
insert this ansatz into Vlasov equation (2.1a) we get

∂tf0 + ε∂tf1 + v∂xf0 + εv∂xf1 + ε∂xφ1∂vf0 + ε2∂xφ1∂vf1 = 0. (2.122)

Here the point is that if one were able to neglect the O(ε2) term, the resulting equation
would appear as

∂tf + v∂xf + ∂xφ∂vf0 = 0, (2.123)

which is often referred to as the linearized Vlasov equation. The mistake here is to assume
that whenever εf1 is small, also ε∂vf1 is, which is, in general, false.

To test every result against linear theory we may still use (2.120) but now replace ks
nm

in (2.121) by certain k0
nm which are the coefficients of the expansion of the homogeneous

Maxwellian (2.5), simply
k0

nm = δn0δm0. (2.124)
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Figure 2.13: Evolution of the amplitude in linear and nonlinear runs of the Vlasov code with
the same initial conditions corresponding to an electron hole. Note how the linear run damps
out the structure where it remains stationary in the nonlinear run.

The linear expression for γs
nm yields

γs
nm = δm0

1

n

(
ki

n0 − ke
n0

)
. (2.125)

The utmost importance of the nonlinear terms in the trapping structures we are study-
ing becomes apparent in Fig. 2.13. There the same initial conditions corresponding to an
electron hole have been used for two different runs of the code and the evolution of the
amplitude has been represented. If we keep the nonlinear terms, the electron hole, which
is a solution of the full nonlinear Vlasov-Poisson system, remains rather stationary: only
small oscillations due to inaccuracies in the initial conditions and truncation errors are
visible. However, if we use a linear code, the structure is Landau-damped, as predicted
by the linear theory. Note that we intentionally used a small amplitude electron hole to
show that the linear theory fails even for arbitrarily small amplitudes.

2.4.4 Tests

To be sure that the code above described works correctly and produces accurate results,
we have tested it against several known theoretical predictions as well as against the code
used by Korn and Schamel in Refs. 34, 27, 35, where ions are either immobile or behave
according to linearized fluid equations.

Two-stream instability

First of all, we will check that the code conforms to the theoretical predictions of linear
stability on a two-stream electron-ion plasma [28]. For mass ratio δ = 1/100 and equal
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Figure 2.14: Evolution of the amplitude of the electrostatic potential in the linearly unstable
regime of the two-stream instability, δ = 1/100, θ = 1, vD = 2.0. The solid line represents the
evolution of the fully nonlinear equation while the dashed one pictures the linear evolution. The
simulation was performed with M = 2000, N = 5.

electron and ion temperatures, according to such theory, the plasma becomes unstable for
drift velocities larger than v?

D = 1.308(1 + δ1/2) = 1.4388. To test the plasma stability we
will introduce a perturbation in the electron distribution function. We set, at t = 0

fe(x, v, t = 0) =
1√
2π
e−

1
2
(v−ṽD)2 (1 + ε cos(kx)) , (2.126a)

fi(x, u, t = 0) =
1√
2π
e−

1
2
(u+u0)2 , (2.126b)

where k = π/L, L being one half of the spatial periodicity imposed by the Fourier expan-
sion. According to the decomposition given by (2.110a), this corresponds to the initial
coefficients ke

00 = 1, ke
10 = ε/2, ki

00 = 1 and all the remaining ks
nm = 0. We will use here

ε = 0.05, k = 1/2. Note that the perturbed distribution function still has the shape of
a local Maxwellian and therefore trapping and nonlinear effects play a negligible role for
short evolution times, the distribution function experiencing no topological changes, e.g.
no region will appear with ∂vf > 0, v > 0.

A typical outcome of the code in the unstable regime is presented in Fig. 2.14, where
the logarithm of the total potential amplitude is depicted as a a function of time for a
linear as well as for a nonlinear run. Note how the linearized Vlasov equation leads to
an exponential growth that does not saturate, while the full nonlinear equation drives
a faster growth at the beginning but is finally saturated as the amplitude approaches a
certain maximum.

On the other hand, a simulation ran with parameters inside the linearly stable regime
produces the results showed in Fig. 2.15. In this case the linear and nonlinear runs first
coincide but later the nonlinear evolution shows that, also in this case, and contrasting
with the linear run, a certain saturation at low amplitude occurs which is a well-known
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Figure 2.15: Same as in Fig. 2.14 but with vD = 1.0, this is, in the linearly stable regime.

phenomenon associated with the so-called nonlinear Landau damping scenario [36]; this
temporal evolution was also seen in numerical simulations by G. Manfredi [37].

Summarizing the outcomes of the code in the linearly stable and unstable regimes, one
is tempted conclude that the result are in accordance with the linear stability theory and
that the difference between a linear and a nonlinear treatment of the evolution equations
rests only in quantitative differences and in the well-known effect of nonlinear saturation.
However, as we will see later, we can find growing instabilities in regions where linear
theory predicts stability. The reason that this qualitative differences between both treat-
ments did not arise in these simulations is that we favoured linear theory by selecting an
initial perturbed state which we are in fact able to write as f = f0 + f1, where f0 is a
homogeneous Maxwellian and f1 satisfies ∂vf1 � ∂vf0, which, as already mentioned, is a
necessary assumption of the linear stability theory. In section 2.6 we will introduce per-
turbations that, although small, violate this condition. Then we will see how the outcome
of the nonlinear evolution strongly contradicts the predictions of linear theory.

Energy conservation

Another obvious test we can face the code against is the conservation of total energy in
the non-dissipative regime. The total energy density of the plasma is divided into three
components, as written in (2.58): kinetic energies of electrons and ions and the energy
of the electrostatic field. The decomposition given in (2.110) allows us to easily calculate
the kinetic energies of each species in the wave frame. For electrons it reads

wkin,wave
e =

1

4L

∫ +L

−L

dx

∫ +∞

−∞
dv v2fe(x, v). (2.127)

But we can write v2 = He2(v − ṽD) + 2ṽDHe1(v − ṽD) + ṽ2
D + 1 and then if we make use

of the orthogonality property of the Hermite polynomials (2.109) we arrive at

wkin,wave
e =

1

2

[
2ke

02 + 2ṽDk
e
01 + (ṽ2

D + 1)ke
00

]
, (2.128a)
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that in the laboratory frame is easily transformed into

wkin,lab
e =

1

2

[
2ke

02 + 2vDk
e
01 + (v2

D + 1)ke
00

]
. (2.128b)

On the other hand, a similar procedure can be followed to calculate the kinetic energy
of the ions:

wkin,wave
i =

1

4Lθ

∫ +L

−L

dx

∫ +∞

−∞
du u2fi(x, u)

=
1

2θ

[
2ki

02 + 2u0k
i
01 + (u2

0 + 1)ki
00

]
.

(2.129a)

But in this case the expression in the laboratory frame is greatly simplified because the
center of mass of ions is resting:

wkin,lab
i =

1

θ

(
ki

02 +
ki

00

2

)
. (2.129b)

The last component of the total energy density is the field energy, which is independent
of the frame of reference:

wfield =
1

4L

∫ +L

−L

dx (∂xφ(x, t))2 . (2.130)

To find an explicit expression for this quantity in terms of our Fourier-Hermite coefficients,
we make use of (2.116). The local energy density is

1

2
(∂xφ)2 =

1

2

∑

n1 6=0

∑

n2 6=0

L2

n1n2π2

(
ki

n10 − ke
n10

) (
ki?

n20 − ke?
n20

)
e

i(n1−n2)πx

L . (2.131)

If we integrate in space and take (2.111) into account, equation (2.131) yields

wfield =
∑

n>0

L2

n2π2

∣∣ki
n0 − ke

n0

∣∣2 . (2.132)

The conservation of the total energy of the system was carefully checked in every non-
dissipative run of the code. As a representative example, we can select the run described
above of a two-stream instability with vD = 2.0 corresponding to Fig. 2.14. The variations
in the three components of the energy in the laboratory frame as well as the sum of them
is represented in Fig. 2.16.

Immobile ions. The bump-in-tail instability

We can also compare the results of our code with those of the one developed by Korn and
Schamel [27, 35, 34]. That code was also based in a decomposition of the Vlasov-Poisson
system into Fourier and Hermite coefficients but disregarded the kinetic behavior of ions,
treating them by linearized fluid equations. This means that the results of both codes
have to converge as we impose e.g. δ → 0, this is, as we fix the ion density to ni = 1
(another agreement should be given if very large phase velocities, u0 � 1 are involved, in
which case trapping and other kinetic distortions of fi are negligible).
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Figure 2.16: Temporal evolution of the kinetic energies of electrons (wkin
e ) and ions (wkin

i ) in
the laboratory frame and field energy (wfield) as well as their sum (wtotal = wkin

e +wkin
i +wfield).

The scale is chosen such that all the energies are zero at t = 0.

To perform this comparison we choose as initial conditions those of a bump-in-tail
instability [38], given by an initial distribution function for electrons [34, 38]

fe(x, v, t = 0) = f0(v)

[
1 + ε

8∑

j=1

cos
(nπx
L

)]
, (2.133a)

where

f0(v) =
1√
2π

[
He0(v) +

1

6
He4(v)

]
e−

1
2
v2

, (2.133b)

and we chose ε = 0.006, L = 20.944.
As both codes were Fourier-Hermite Vlasov codes, we should expect that the results

are exactly the same out of numerical errors. This is in fact the case, as can be seen
by comparing Figs. 2.17 and 2.18. The results are also compatible with those of T.P.
Armstrong and D. Montgomery [38], who observed how, in contradiction to linear theory,
the third Fourier mode of the potential was dominant over the other two growing modes,
as can be observed in our figures (see also Ref. 34).

2.5 Existence of dissipative equilibria with kinetic ions

In section 2.4.1 we described how to correct the Vlasov equation to include the influence
on the dynamics of electrons and ions of the dissipation due to collisions with a neutral
background. We did so by adding to the evolution equations a new term of the form of a
Fokker-Planck collisional operator. A natural question to ask now is what kind of solutions
satisfy the time-independent Vlasov-Poisson-Fokker-Planck system, which are expected
to last for long times in weakly collisional plasmas. First we note that the equations are
trivially solved by homogeneous Maxwellian distribution functions; but we are interested
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Figure 2.17: Time evolution of the three growing Fourier modes of the electrostatic potential
when δ = 0 and the initial distribution function is set as (2.133) in the text (following Ref. 38).
The simulation was done with N = 8 Fourier modes and M = 1000 Hermite polynomials.
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Figure 2.18: Same as in Fig. 2.17, but using the Korn-Schamel code for immobile/fluid ions.
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Figure 2.19: Evolution of the first two cosine Fourier modes of the contribution of electrons
to the electrostatic potential. The starting distribution function was (2.126) with ε = 0.001,
L = 2π. Note that three different phases can be distinguished in the time evolution: (a)
adaptation to self-consistency, until t ≈ 50, (b) growth of the inhomogeneous structure, up to
t ≈ 650 and (c) saturation and persistence of the final structure.

in inhomogeneous solutions and also in how an initially homogeneous distribution in an
unstable regime may be disturbed by small fluctuations and evolve into a inhomogeneous
equilibrium.

A rigorous analytical treatment of such a problem remains out of the scope of this
thesis and seems to present essential and up to this point unsurmounted difficulties.
A numerical approach was performed by J.Korn and H.Schamel making use of the code
described above [27, 35, 34]. The outcome was that self-consistent dissipative equilibria do
exist but only as long as ions are allowed to move and adapt themselves to the equilibrium.
No inhomogeneous solutions were found for immobile ions (δ = 0).

With our code, that also includes the kinetic properties of ions we can perform similar
investigations. If we start the code in a linearly unstable regime and use again (2.126) as
initial distribution functions, but now including a small dissipation coefficient νe = 0.015,
we see an evolution of the first Fourier modes of the distribution functions as represented
in Figs. 2.19 and 2.20. We can observe that for long times a inhomogeneous steady state
is formed, the oscillations in the coefficients being due to an inappropriate reference frame
[35]. This result may appear in some sense surprising at first sight, as one may expect
that the introduction of energy dissipation would lead to a steady decrease of the total
internal energy of the plasma and a damping out of any structure. A more careful look at
the underlying model of equations (2.105) provides an answer to this ostensible paradox:
by fixing the drift between both species we are in fact imposing an external electric field
E = vD/νe. The plasma is therefore not a closed system and it can gain energy from this
external field.

Dissipative inhomogeneous equilibria do not exist, however, for large dissipation co-
efficients. Following Refs. 34, 35 we can scan the parameter space of drift velocities and
dissipation coefficients and find the existence region when ions are treated kinetically.
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Figure 2.20: Same as Fig. 2.19, but here the ion contributions are plotted. Due to the slower re-
action of ions, and the fact that their initial distribution function was a homogeneous Maxwellian,
the phase of adaptation to self-consistency is absent here.

The results are shown in Fig. 2.21. A comparison with the diagram for fluid ions shows
that for small vD it is now much harder to obtain inhomogeneous equilibria. This is not
surprising, as linear theory predicts that for fluid ions the instability begins at vD = 0.195
while this limit is increased to vD = 1.318 when the kinetics of ions is taken into account.
On the other hand, for larger drift velocities, around vD = 3, the maximum ν that allows
the formation of inhomogeneous equilibrium is somewhat larger if we include the kinetics
of ions. Note however that this diagram is obtained with initial distribution functions
without any topological variation from the unperturbed state. Therefore, all these results
do not take into account the possible appearance of perturbations involving trapping.
In the next chapter we insert trapping structures as initial conditions and prove that in
such cases instability and probably also dissipative equilibria exist for a broader region of
parameter space.

2.6 Stability

2.6.1 Motivation

Probably the most important issue regarding phase-space structures is their relationship
with the overall stability of the plasma, in particular the stability of current-carrying
plasmas. The linear approximation provides analytical possibilities from which precise
results can be extracted [28, 29] but on the other side, few analytical approaches are
known to study the nonlinear stability of a two-species Vlasov-Poisson system. In section
2.4.3 we have shown how linear theory fails to predict the correct behavior of holes and
other structures involving trapping. Furthermore, numerical experiments, such as those
of Berman, Dupree and Tetreault (see Refs. 39, 40 and also appendix A) indicate that
instability may exist far below the threshold predicted by linear theory and that it is
related with the formation of phase-space vortices, i.e., collective trapping of particles.
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Figure 2.21: Limit of existence of inhomogeneous dissipative structures for kinetic ions. This
diagram was obtained with (2.126) as initial distribution function, with ε = 0.001, M = 250,
N = 4.

Therefore, strong evidences exist that suggest that the theory of particle trapping
should play a crucial role in an accurate study of nonlinear stability. In section 2.3.1
we pointed out the possibility that trapping structures might nonlinearly destabilize the
plasma if they have a energy deficit, i.e. if the excited system has a smaller energy than
the unperturbed system. This hypothesis, first exposed in Refs. 18, 19 was suggested by
the analytical results of Refs. 12, 19 and the above mentioned numerical work of Berman,
Dupree and Tetreault.

In the present section we will use the numerical code described in section 2.4 to further
develop this hypothesis.

2.6.2 Numerical research

One of the main difficulties that arise when simulating a two-species plasma is the different
time scales between electron and ions. A typical time of the electron evolution is given
by ω−1

pe = (nee
2/ε0me)

−1/2, which in our equations is normalized to unity. On the other

hand, the typical time for ions is given by ω−1
pi = (nie

2/ε0mi)
−1/2 = (mine/meni)

1/2ω−1
pe .

If we assume quasineutrality, the ratio between both typical times is reduced to

ω−1
pe

ω−1
pi

=

(
me

mi

)1/2

= δ1/2. (2.134)

Typically, δ is assumed to be a very small quantity for natural electron-ion plasmas;
for example, for hydrogen δ = 1/1836.2. As in our numerical code time is normalized
by ω−1

pe this means that in order to take into account the effect of the ion mobility, we

should go to times much larger than ω−1
pi ≈ 45. But on the other side, if we want to resolve

accurately enough the motion of electrons, the simulation timestep has to be ∆t� 1. This
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results in a severe difficulty in simulating plasma processes that involve simultaneously
and essentially both electron and ion kinetic equations, as is our case.

The common way out of this problem was to choose larger “artificial” mass ratios
and assume that the qualitative behavior of the plasma remains unchanged. Although
formerly considered only as a numerical trick, finite mass ratios are becoming an important
concern in modern plasma physics due to some recent laboratory experiments [41] with
pair plasmas, composed by ionized fullerene (C60), with mass ratio δ = 1. A further
equal mass plasma is an electron-positron plasma which could be produced in laboratories
[42, 43, 44] and is believed to be the origin of high-energy processes found under most
astrophysical conditions, such as pulsar magnetospheres [45], active galactic nuclei [46]
and models of the early universe [47] 2. Besides, most results, including our own, point in
the direction that the kinetic treatment of ions plays a decisive role in plasma stability; it
is, therefore, an appropriate idea to enhance this role by using relatively large mass ratios.
However, to keep an asymmetry between both species we will here maintain δ < 1. To
compare with the results of Berman, Dupree and Tetreault, we will use the same mass
ratio δ = 1/4 and also the same temperatures for both species: θ = 1. The latter is
in fact a very good assumption, since the high momentum transfer at collision between
unequal particles does not allow a difference in temperatures to survive. For these mass
and temperature ratios the linear theory predicts stability for drift velocities smaller than
v?

D = 1.96. For our simulations we choose vD = 1.75.
As starting conditions we will use generalized solitary ion holes, as described in section

2.2, case E. The reason of choosing them is that the dynamics of the system is driven by
electron reflection, and therefore we expect shorter reaction times. As we want to study
the effects that trapping structures may have on the stability of a thermal plasma, we
will select very small amplitudes, typically Ψ = 0.05. This selection has the additional
advantage of emphasizing the failure of linear theory to predict the evolution even for
very small amplitudes. The main drawback of this decision is that the number of Hermite
polynomials required to resolve such small amplitudes has to be very large. We will here
use M = 5000, although we observed that a smaller number may also be used, as the
results are the same with M ≈ 1000. The smallness of the amplitude of the electrostatic
potential assures the validity of the expansions of the preceding sections. However, to
avoid any influence of the inaccuracies involved in such expansions, we solved numerically
all the density integrals without any smallness assumption.

Finally, we are simulating a solitary structure but the Fourier decomposition we are
using imposes a certain periodicity on the system. The effects of this periodicity will be
small and appear only for long times if we select a system length much larger than the
typical length of the simulated structure, which is usually of the order of several Debye
lengths. We choose a half-length of L = 50.

Note that, as mentioned in 2.3.1, ion holes with an energy deficit exist for any values
of θ, vD. As we are interested in testing the relationship between the concept of energy
deficit and stability, we will make two different runs of the code: one with an energy deficit
(∆w < 0) and another one in the range of a positive energy difference (∆w > 0). If we
would insert an exact ion hole, which is a solution of the Vlasov-Poisson system, no time
evolution would happen and the system would be stationary. Therefore, we introduce
a small perturbation in the initial distribution functions. The best way to do this is to

2Note however that in e
−-e+ plasmas the anihilation time and the cooling time due to cyclotron

emission can be too short to allow the excitation of measurable collective phenomena.
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Parameter Description

δ = 1/4 Electron/ion mass ratio
θ = 1 Electron/ion temperature ratio
vD = 1.75 Drift velocity of the electrons
Ψ = 0.05 Initial amplitude of the electrostatic potential
L = 50 Half-length of the system
v0 = 0.8188735 Phase velocity of the structure
α = -5.948906 Ion trapping parameter
β = 0.133544 Electron trapping parameter
N = 35 Number of Fourier modes
M = 5000 Number of Hermite polynomials

Table 2.1: Parameters of the simulation for negative energies. Note that α and β were perturbed
and therefore the values here presented do not satisfy the nonlinear dispersion relation. The
original values for the solitary ion hole were α = −5.93891, β = 0.132544.

perturb them in the trapped particle range, which can be easily achieved just by changing
the values of the trapping parameters α and β. Typically, these changes will be of order
∆α/α ∼ ∆β/β ∼ 0.01.

A. Negative energy range (∆w < 0)

The first of our runs was made with the parameters of table 2.1. Applying (2.87) we find
∆w = −0.00423914. If we look at the evolution of the potential amplitude as plotted in
Fig. 2.22, we see a sharp exponential increase around t ∼ 150. This is an indication that
the system is in fact explosively unstable, something that is confirmed if we take a look at
the evolution of the energies (Fig. 2.23) where we can see that a large amount of energy
is transferred from the electrons to the ions and, as a collateral result, the field energy
is also increased. But what happened inside the plasma? Did the initial hole grow as
Figs. 2.22 and 2.23 seem to suggest? To answer this question we have to look at the spatial
distribution of the system. For example, Fig. 2.24 represents the temporal evolution of the
electron and ion densities at different positions along the system length. In this plot we
can see that the initial hole remains quite stationary while another structure is triggered
that propagates with a larger phase velocity and which is at the end responsible of the
growth of the potential amplitude and the onset of the instability. This new structure
propagates with a velocity v′0 ≈ 1.0.

The outcome of this simulation is that the plasma can be in fact destabilized by a ion
hole with an initial energy deficit. Furthermore, the system reacts by creating another
structure (or, from an equivalent point of view, by splitting the initial hole). As linear
theory predicts stability in this regime, this result is already worth noting. However, the
question of the relation between nonlinear instability and negative energies still has to
be answered. Note in any case, that this hypothesis is favoured by the fact that newly
created hole has a larger phase velocity and, according to (2.87) lies deeper in the negative
energy range. In any case, we need more information, that could be provided by another
run, now in the positive energy range.
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Figure 2.22: Evolution of the amplitude of the electrostatic potential in the run with the
parameters of table 2.2 (∆w < 0)
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table 2.2 (∆w < 0).
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Figure 2.24: Evolution of the electron (left) and ion (right) densities in the run with the
parameters of table 2.1 (∆w < 0). Darker means higher densities.

B. Positive energy range (∆w > 0)

In a second run we selected the parameters given in table 2.2. They yield an energy
difference ∆w = 0.033268. As plotted in Fig. 2.25, also a growing explosive instability
appears that now develops around t = 100. Looking now at Fig. 2.26 we notice that the
process of energy transfer is again very similar: the ion kinetic energy is increased at the
expense of the electrons while this produces also a boost in the field energy. Figure 2.27
tells us that again a new structure is triggered which propagates faster than the initial
hole.

Also in this case we can note that an increase in the phase velocity, according to (2.87)
leads usually to smaller energies (if we keep β fixed). Therefore, we may ask ourselves
whether the new structure has an energy deficit. If we measure the phase velocity of
this generated structure, we find that it is v′0 ≈ 0.65 i.e. this velocity does not lie in
the negative energy domain as long as we assume Be = 0, something which was used
in Ref. 19 (see (2.77)) to simplify the calculations (note that in this particular case the
boundary between positive and negative energies lies at the same v0 also when we assume
β = 0). There is, however, no physical necessity for this assumption. The issue of the
connection between energy deficits and stability requires, therefore, a further discussion,
which is presented in the next section.

2.6.3 Discussion. Are energy deficits related with instability?

In the past section we proved numerically that instability occurs in current-carrying plas-
mas far below the linear stability threshold and that this instability can be triggered by
perturbed ion holes. We also showed that the response of the system to such holes was
to create another structure that propagates faster and that quickly grows nonlinearly and
explosively. The question of whether the energy deficits that we investigated in section
2.3.1 may give us a key to understand this nonlinear instability remains, however, a point
to be clarified.
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Parameter Description

δ = 1/4 Electron/ion mass ratio
θ = 1 Electron/ion temperature ratio
vD = 1.75 Drift velocity of the electrons
Ψ = 0.05 Initial amplitude of the electrostatic potential
L = 50 Half-length of the system
v0 = 0.35834 Phase velocity of the structure
α = -4.474941 Ion trapping parameter
β = -1.042535 Electron trapping parameter
N = 35 Number of Fourier modes
M = 5000 Number of Hermite polynomials

Table 2.2: Parameters of the simulation for positive energies. Note that α and β were perturbed
and therefore the values here presented do not satisfy the nonlinear dispersion relation. The
original values were α = −4.464941, β = −1.032535.
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Figure 2.25: Evolution of the amplitude of the electrostatic potential in the run with the
parameters of table 2.2 (∆w > 0)
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Figure 2.26: Evolution of the components of the energy in the run with the parameters of
table 2.2 (∆w > 0). Compare with the plots of Fig. 2.23.

0

20

40

60

80

100

120

t

−1 −0.5 0 0.5 1

x/L

0

20

40

60

80

100

120

t

−1 −0.5 0 0.5 1

x/L

Figure 2.27: Evolution of the electron (left) and ion (right) densities in the run with the
parameters of table 2.2 (∆w > 0). Darker means higher densities.
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To shed some light on this issue, we can take a look at Fig. 2.28. There the parameter
space of v0 and β is represented along with the region that, according to (2.87), corre-
sponds to negative energies (shaded area). Also represented are the values that we used in
the last section as inputs of our numerical code; point A marks the first run, with ∆w < 0
while B indicates the second one, with ∆w > 0. In the plot, the phase velocities of the
triggered structures are also represented and labeled as v ′0A and v′0B. Unfortunately, we
do not have a precise enough access to the value of the trapping parameter β from the
outcome of the code.

By looking at Fig. 2.28 one is tempted to interpret the numerical results as an indi-
cation that the initial conditions in some sense excite a structure with a smaller energy
which then grows and is in this way responsible of the instability. This structure would
have a larger phase velocity and maybe also a larger β, which could explain why the
simulation labeled B jumps to a phase velocity that would not have a energy deficit if we
keep β fixed. However, the transient process of the excitation and the details on which
new mode is chosen would still be unclear.

This explanation is consistent with some laboratory [16] as well as numerical [48] ex-
periments that showed how a plasma hole can suddenly change its velocity and accelerate.
We have to admit, however, that the evidences are at the moment not conclusive enough
to settle this issue. In any case, from our numerical simulations it can be concluded that
holes and, in general, trapping structures have to be taken into account in any complete
study of stability in current-carrying plasmas. We infer also that ion kinetics play a
decisive role in the outset of plasma instability.
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2.7 Concluding remarks

In this chapter we explored self-consistent trapping in classical two-component, current-
carrying plasmas. By systematically scanning the parameter space in the small amplitude
limit, we showed a complex spectrum of equilibrium solutions to the Vlasov-Poisson sys-
tem of equations, including some new structures like the chain of alternating electron and
ion holes. In a rigorous nonlinear study of current-carrying plasmas, these structures have
to complement the linear spectrum of plasma waves.

We also investigated systematically the energies of these electrostatic structures for
which we gave an explicit expression. We restricted ourselves to the three most known
and easyly describable families of trapping structures, namely electron and ion holes and
harmonic (monochromatic) waves. For them we explored their parameter spaces and
delimited the areas where energy deficits exist. For ion holes we proved that negative
energy structures exist for any θ and vD. This fact as well as the observation in numerical
experiments of the spontaneous development and growth of ion holes far below the linear
stability threshold led us to believe that a certain connection exists between the possibility
of electrostatic structures having an energy deficit and their contribution to a nonlinear
destabilization of a current-carrying plasma.

To further investigate this topic we developed a numerical code that, via a Fourier-
Hermite decomposition, directly integrates the Vlasov-Poisson system for a two-species
current-carrying plasma. We performed two runs of the code inserting as initial conditions
respectively a positive and a negative energy small amplitude perturbed ion hole. Then
we saw that in both cases the effect of the perturbation was to induce the creation of a
new structure that propagates faster than the initial hole. We speculated that this can be
explained as the excitation of a new negative energy structure. The difficulty of measuring
the trapping parameter as well as the inexistence of drift velocities for which no negative
energy modes at all are available, which would allow a decisive test of the hypothesis,
are the main obstacles to a more conclusive theory of destabilization by negative energy
structures. The way these structures are excited and how they attract the dynamics of
the system are also topics deserving further investigation. Our results do not, however,
leave any doubt on the utmost importance that self-consistent particle trapping should
play in a future complete theory on the nonlinear stability of plasmas.

Therefore, and despite of the mentioned difficulties, we conjecture and in some sense
arrive at a new paradigm of stability of current-carrying plasmas in which hole structures
of negative energy may play a key role in the understanding of the time evolution of
plasmas and the associated anomalous transport. The practical relevance of these findings
is better understood in the context of plasma confinement, where improvements in the
knowledge of transport phenomena would allow the design of improved devices with longer
confinement times.

It is however clear that further refinements and investigations have to be made; first
to conclusively settle the issue concerning negative energy structures, later to develop a
more formal and general theory that might also allow the extension of our results to three
dimensional systems and perhaps also to gradient-driven instabilities. One promising
research line is the one provided by the already mentioned availability in the laboratory of
pair-plasmas in which, due to the unitary mass ratio, the kinetic equations of electrons and
ions are completely symmetric. Such plasmas provide an excellent medium to investigate
the importance on the overall stability of the plasma of the ion kinetics, which, according
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to our results is decisive in the development of particle trapping instabilitites [49].



CHAPTER 3

Trapping in the quantum domain

The important thing in science is not so much to obtain

new facts as to discover new ways of thinking about

them.

Sir William Bragg

3.1 Motivation

In the previous chapter we studied thoroughly electrostatic self-consistent structures in
classical plasmas. However, trapping can also be seen in Quantum Plasmas [50], a kind of
system which has recently received much attention. Non-ideal, dense plasmas generated
e.g. in the ultraintense laser-solid interaction certainly belong to this category. However,
also ideal plasmas —the addressee of this chapter— can exhibit a quantum behavior.
One reason is that the miniaturization of today’s micro- and nano-electronic components
has reached a level such that the system length becomes comparable with the de Broglie
wavelength, in which case tunneling effects are no longer negligible [51, 52, 53, 54, 55].
Also, states in combined traps attained by particles and their anti-particles used to form
anti-hydrogen may be modeled by a plasma having quantum features [56]. Other examples
can easily be found, and some of them will be mentioned further below. Hence, classical
transport models will unlikely be sufficient to describe the plasma behavior in such devices
adequately.

Before studying the quantum corrections to such holes let us review some further di-
lute many particle systems and related disciplines that reveal quantum aspects. Charged-
particle beams in particle accelerators are typically dilute systems, so quantum effects
are usually disregarded, as we will do in Chap. 4. However, a spectrum of phenom-
ena, which recently became more and more important, reveals the existence of several
quantum aspects of beam physics connecting the physics of particle accelerator with the
frontiers of several disciplines, such as (for instance) plasma physics, radiation beam

57
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physics, astrophysics, mesoscopic and condensate physics [57, 58]. Most of these phe-
nomena introduce a sort of quantum correction to the leading classical behavior of the
system. For example, quantum excitation [59] plays a role for the long-term stability of
longitudinal electron beam dynamics in the high-energy circular accelerating machines
while the Sokolov-Ternov effect [60] of spin polarization of electron and proton beams is a
manifestation, at the macroscopic level, of the single quantum nature of the beam parti-
cles. Numerical phase space investigations based on tracking with the quantum map have
shown that quantum corrections can substantially affect the particle beam trajectories in
the vicinity of the separatrix [61].

Recently quantum-like methodologies [62, 63] have been applied to a number of clas-
sical physical situations, in which ~ is replaced by another characteristic parameter of
the problem considered. For instance, they have been applied to accelerator physics
[64, 65, 66], to plasma physics [67], to surface gravity wave physics [68, 69, 70, 71] and to
nonlinear optics [72, 73, 74, 75] in an attempt to describe linear and nonlinear problems
of the dynamics of beams and large amplitude wavepackets.

In principle, all these problems can be formulated, in the configuration space, in
terms of a system of Zacharov equations, i.e. nonlinear Schrödinger-like equation coupled
with one (or more) equation(s) taking into account the reaction of the environment.
The corresponding phase space description is the one provided by the Wigner-Moyal
quasidistribution [76, 77, 78] whose evolution equation, the von Neumann equation, plays
the role of a kinetic-like equation associated with the system.

Analytically, one framework under which Wigner-Moyal quasidistributions have been
considered is that of particles interacting with a given external e.g. parabolic potential
to analyze coherent and squeezed states. Also, a quantum-like phase space analysis of a
paraxial-charged-particle beam transport, traveling through a quadrupole-like device with
small sextupole and octupole aberrations, has been carried out showing a satisfactory
agreement with the results of the standard tracking simulations [79] and, consequently,
the suitability of using the quantum phase space formalism in particle accelerators. This
has been done within the framework of the thermal wave model [64, 65, 66]. Quantum-like
corrections involved in the von Neumann equation have been discussed for paraxial beams
of both particles and radiation and compared with the standard classical description
[80, 81].

Particles in dilute quantum plasmas moving in their own, self-consistent potential, on
the other hand, have not been given much attention so far. An exception are self-consistent
but linearized solutions of the Wigner-Poisson system, dealing with quantum corrections
to Landau damping of Langmuir waves [82] or to the two-stream instability by means
of the Nyquist method [83], and the self-consistent linearized solution of the Wigner-
Moyal kinetic-like equation for Langmuir wavepackets coupled with the ion-acoustic wave
equation [84]. In particular, the Wigner-Moyal kinetic-like description is suitable for
describing the Benjamin-Feir instability (modulational instability) as well as predicting
the stabilizing effect of a sort of Landau damping. It is well known that the latter cannot
be shown in configuration space, where the system is usually described by the Zakharov
equations. By using the pure state formalism, a Landau-type damping has been shown for
the longitudinal dynamics of both charged-particle coasting beams and electromagnetic
wavetrains in high-energy circular accelerators and nonlinear media, respectively [85, 86].
A similar approach has been extended (mixed state formalism) to ensembles of partially-
incoherent waves in different physical situations [84, 87, 88].
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3.2 Quantum corrections to electron holes

In this chapter we will describe an unmagnetized electron-ion plasma, in which, on the
basis of the experimental evidences as well as on theoretical and numerical investigations
mentioned above, the quantum nature of the particles is not disregarded. However, it
is taken into account only as a weak (perturbative) effect in comparison to the leading
classical behavior of the system. Together with the weak quantum effect, we take into
account the usual classical electrostatic collective plasma effects coming from the standard
meanfield approximation of the Coulombian interaction, in such a way that our system
is described by a set of coupled equations comprising the von Neumann equation for
the Wigner-Moyal quasidistribution and Poisson’s equation. Hereafter, we will refer to
this system of equations as WP-system (Wigner-Poisson system). Our goal is to find a
self-consistent solution of the WP-system to the lowest order of the quantum correction.

3.2.1 The von Neumann equation

As already mentioned, the most appropriate framework to study quantum correction to
electron holes is that of Wigner pseudodistribution functions [76]. But before we start to
study its application to electron holes, let us first review some of its properties and the
important concept of pure and mixed states, which will help us understand what we are
doing.

Pseudodistribution function for pure and mixed states

Suppose a quantum-mechanical system of N interacting particles. The state of the system
at a given time t is completely given by its wave function |ψ〉 that in the real space
representation is a complex function of 3N variables plus time ψ(x1,x2, . . . ,xN ; t). We can
find a pseudodistribution function (Wigner distribution function) fN defined as [76, 89]

fN(x1, . . . ,xN ,p1, . . . ,pN ; t) =
1

(2π)3N

∫
dλ1 . . . dλNe

−i
P

λi·pi×

×ψ?

(
x1 −

1

2
~λ1, . . . ; t

)
ψ

(
x1 +

1

2
~λ1, . . . ; t

)
.
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This function gives us a complete, microscopic description of our system. However, not
every real 6N -variable function corresponds to a complex 3N -variable wavefunction. In
order for fN to be acceptable, it must satisfy the Tatarskii criterium [89] of separability,
i.e. a |ψ〉 must exist from which we can build fN . This condition can be expressed as

∑

ij

∂2 ln ρ(x1
1, . . . ,x

1
N ,x

2
1, . . . ,x

2
N ; t)

∂x1
i ∂x

2
j

= 0, (3.2)

where ρ(x1
1, . . . ,x

1
N ,x

2
1, . . . ,x

2
N ; t) is the probability matrix

ρ(x1
1, . . . ,x

1
N ,x

2
1, . . . ,x

2
N ; t) =

∫
exp

[
i
∑

i

pi · (x1
i − x2

i )/~

]
×

×fN

(
x1

1 + x2
1

2
, . . . ,

x1
N + x2

N

2
,p1, . . . ,pN ; t

)
dp1 . . . dpN .

(3.3)
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If the Hamiltonian of the system can be expressed as H =
∑ p2

i

2m
+ V (xi, . . . ,xN ; t),

then the time dependence of fN is given by

∂fN

∂t
+
∑ pi

m
· ∂fN

∂xi

− 1

i~

[
V

(
x1 +

i~

2

∂

∂p1

, . . . ; t

)
− V

(
x1 −

i~

2

∂

∂p1

, . . . ; t

)]
fN = 0.

(3.4)

There is, however, too much information in fN to be an useful representation of the
state of the system. As in classical statistical mechanics, we are not interested in the
full microscopic description, either because we cannot know the exact state (statistic
uncertainty) or because anyway we are concerned only with a more macroscopic behavior.

But (3.4) can also be interpreted in a different way. Suppose that we are not able to
determine the exact state of the system at time t and we can only talk about probability
ρk of finding the system in one of an ensemble of states |ψk〉. Note that this probability
has a completely different meaning than the quantum probability. From every |ψk〉 we
can construct, using (3.1) a pseudodistribution function f k

N . Finally, we define

fN =
∑

k

ρkf
k
N . (3.5)

This fN still depends on 6N variables, but it offers no longer a complete description of
our system. We can say that this fN is not a pure-state pseudodistribution function and,
as it is made up of a lot of different |ψk〉, we cannot expect that it can be decomposed
by (3.1) and obtained from a single wave function and, therefore, it should not fulfill the
Tatarskii criterium. We call it mixed-state pseudodistribution function.

But, in spite of having an absolutely different interpretation, it can be shown that,
due to the linear nature of (3.4), and as long as our probabilities ρk are time-independent,
the equation of evolution for a mixed-state pseudodistribution function is still the same
as the one of pure-state functions (3.4).

Quantum BBGKY hierarchy

Up to the moment, we have always dealt with functions of 6N variables and, since we
have made no approximation, our evolution equation is still exact and includes all orders
of correlations between particles. Now we want to make some approximations in order to
find an easier although not so precise equation.

As in classical mechanics, we define the reduced pseudodistribution functions as

f1(x1,p1, t) =

∫
dx2 . . . dxNdp2 . . . dpNfN(x1, . . . ,p1, . . . , t), (3.6)

f2(x1,x2,p1,p2, t) =

∫
dx3 . . . dxNdp3 . . . dpNfN(x1, . . . ,p1, . . . , t), (3.7)

and so forth. Now we integrate (3.4) with respect to the coordinates and momenta of
particle N . The first term becomes

∂

∂t

∫
dxNdpN

∂fN

∂t
=
∂fN−1

∂t
. (3.8)
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The second term is also easy to calculate:

∫
dxNdpN

N∑

i

pi

m
· ∂fN

∂xi
=

N−1∑

i

pi

m
· ∂fN−1

∂xi
+

∫
dpN

pN

m
·
∫
dxN

∂fN

∂xN
(3.9)

Now we assume that fN vanishes whenever any of the coordinates goes to infinity and,
therefore the last term of (3.9) is zero.

The third term of the integration of (3.4) is a little bit more complicated. First, we
will assume that there exist only pair interactions, this is, we can rewrite the potential as

V (x1, . . . ,xN) =
∑

i6=j

v(xi,xj), (3.10)

where v(xi,xj) = v(xj,xi). With this assumption, we are now interested in calculating

1

i~

∫
dxNdpN

∑

i6=j

[
v

(
xi +

i~

2

∂

∂pi
,xj +

i~

2

∂

∂pj

)

−v
(
xi −

i~

2

∂

∂pi
,xj −

i~

2

∂

∂pj

)]
fN :=

1

i~

∫
dxNdpN

∑

i6=j

âijfN .

(3.11)

But, as âij = âji,
N∑

i6=j

âijfN =
N−1∑

i6=j

âijfN + 2
N−1∑

j

âjNfN . (3.12)

and ∫
dxNdpN

N−1∑

i6=j

âijfN =
N−1∑

i6=j

âijfN−1. (3.13)

Therefore we can write the full evolution equation for fN−1 as

∂fN−1

∂t
+

N−1∑

i

pi

m
· ∂fN−1

∂xi

− 1

i~

[
N−1∑

i6=j

âijfN−1 + 2
N−1∑

j

∫
dxNdpN âjNfN

]
= 0

(3.14)

We can also extend these calculations for all α = 1 . . . N and find evolution equa-
tions for every fα. The set of equations thus obtained may be termed quantum BBGKY
hierarchy :

∂fα

∂t
+

α∑

i

pi

m
· ∂fα

∂xi

− 1

i~

[
α∑

i6=j

âijfα + 2
α∑

j

∫
dxαdpαâjα+1fα+1

]
= 0 (3.15)

We note that if we let ~ → 0, then

∑

i6=j

âij = 2i~
∑

i6=j

∂v(xi,xj)

∂xi
· ∂

∂pi
. (3.16)
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Defining

Ṽ (x) = 2
∑

j

v(x,xj) (3.17)

we find
∑

i6=j

âij = i~
∑

i

dṼ (xi)

dxi
· ∂

∂pi
. (3.18)

and we reobtain the classical BBGKY hierarchy:

∂fα

∂t
+

α∑

i

pi

m
· ∂fα

∂xi
−

α∑

i

dṼ (xi)

dxi
· ∂fα

∂pi

−4

α∑

j

∫
dxαdpα

∂v(xj ,xα+1)

∂xj
· ∂fα+1

∂pj
= 0

(3.19)

Quantum kinetic equation

Now we must simplify the set of N equations in order to obtain a kinetic evolution equa-
tion. In quantum as well as in classical statistical mechanics, the easiest approximation
consists in neglecting second and higher order correlations between particles and set

f2(x1,x2,p1,p2; t) = f1(x1,p1; t)f1(x2,p2; t). (3.20)

The validity of this approximation is restricted by two conditions: the non-degenerate
character of the plasma and the neglection of binary collisions.

The first restriction, namely that we do not treat the particles as identical, thereby
assuming the system is completely non-degenerate is justified as long as the mean distance

between particles λn =
(

4
3
πn
)−1/3

is larger than the thermal de Broglie wavelength:

λn > λdB. (3.21)

If we want to consider the degenerate case, where the identity of the particles is treated
rigorously, the Fermi-Dirac or the Bose-Einstein statistics have to be taken into account.
For this purpose, (3.20) can be modified to read

f2(x1,x2,p1,p2; t) =f1(x1,p1; t)f1(x2,p2; t)

±
∫
dλ1dλ2%

(
x1 +

1

2
~λ1,x2 −

1

2
~λ2

)
×

× %

(
x2 +

1

2
~λ2,x1 −

1

2
~λ1

)
e−iλ1·p1−iλ2·p2

(3.22)

where %(x1,x2) is the second two-particle density matrix and the plus sign applies to
bosons and the minus applies to fermions.

The second restriction to the validity of (3.20) is that the binary Coulomb energies are
comparatively less important than the mean kinetic energy (i.e. thermal energy) [32, 82]
of the plasma. Quantitatively, the relative importance of both processes is measured by
the plasma parameter, already introduced in the previous chapter:

g :=

(
4

3
πλ3

Dn

)−1

=

(
λn

λD

)3

, (3.23)
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where λD is the Debye length and n is the particle density. The parameter g can be
interpreted as the inverse of the average number of particles contained in a Debye sphere.
As the neglected terms in (3.20) are of order O(g), we can safely use (3.20) as long as
g � 1, this is,

λD > λn. (3.24)

This condition is satisfied by low density, high temperature plasmas.
Taking the conditions for the approximation (3.20) as granted, the evolution of f1 is

then given by

∂f1

∂t
+

p

m
· ∂f1

∂x
− 2

i~

∫
dx2dp2â12f1(x1,p1; t)f1(x2,p2; t) = 0. (3.25)

To cope with this equation we first note that the operator â contains partial derivatives
of the form ∂/∂p2. However, as this partial derivatives operate on f1(x1,p1; t)f1(x2,p2; t)
and are later integrated with respect to p2, all their contributions will vanish and therefore
we can write

∫
dx2dp2â12f1(x1,p1; t)f1(x2,p2; t) =

∫
dx2dp2

[
v

(
x1 +

i~

2

∂

∂p1

,x2

)
−

v

(
x1 −

i~

2

∂

∂p1
,x2

)]
f1(x1,p1; t)f1(x2,p2; t).

(3.26)

Now we will define the average field V that a particle placed in x sees as

V(x; t) = 2

∫
dx2dp2v(x,x2)f1(x2,p2; t). (3.27)

Then, we can write (3.25) as

∂f1

∂t
+

p

m
· ∂f1

∂x
+

1

i~

[
V
(
x +

i~

2

∂

∂p
; t

)
− V

(
x − i~

2

∂

∂p
; t

)]
f1 = 0. (3.28)

This equation is formally the same as the evolution equation for a single particle in a
given potential V. However, f1 in (3.28) may not be interpreted as a pseudodistribution
function describing the complete state of a single particle, but rather as one that describes
a ensemble of many distribution functions fN . Namely, we can think of f1 as containing
all the different fN that give rise to f1 via (3.6) averaged with the same weight.

In quantum statistical mechanics, equation (3.28) plays the same role as Vlasov equa-
tion in classical mechanics. We should remember that, as it relies on the assumption
(3.20), it corresponds to a non-degenerate gas in the self-consistent field approximation.

3.2.2 Weak quantum corrections to electron holes

Now we can apply the Wigner quasidistribution framework of quantum mechanics to
study how an electrostatic structure would be modified when we approach the quantum
regime, as was first presented in Ref. 90. The simplest structure we can study is the
stationary solitary electron hole as described at the end of Sect. 2.1.4. To do so, we can
renormalize (3.28) and, as we will now look for standing structures, make ∂/∂t → 0 and
write it as

v∂xf +
1

iε

[
φ

(
x+

iε

2
∂v

)
− φ

(
x− iε

2
∂v

)]
f = 0, (3.29)
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where ε is the dimensionless Planck’s constant

ε =
~

mevthλD
=
λdB

λD
, (3.30)

the lengths λdB and λD being thereby the thermal de Broglie wavelength and the Debye
screening length. As said before, the validity of (3.29) assumes the absence of degeneracy
and of binary collisions.

In the quasiclassical approximation, ε is small, i.e. the quantum effects appear only
as corrections to the classical solution, and we can perform a power expansion of the
potential operator keeping only the lowest order terms:

φ

(
x+

iε

2
∂v

)
=φ(x) +

iε

2
φ′(x)∂v +

1

2!

(
iε

2

)2

φ′′(x)∂2
v

+
1

3!

(
iε

2

)3

φ′′′(x)∂3
vf + O(ε4).

(3.31)

All even terms are canceled out when we insert this expression into (3.29). Therefore, to
include quantum correction of the lowest possible order, we keep terms up to the third
order and neglect all other higher order terms. Proceeding this way, we arrive at

v∂xf + φ′(x)∂vf − ε2

3!4
φ′′′(x)∂3

vf = 0, (3.32)

which is the equation we have to couple with the Poisson’s equation (2.2).
Neglecting terms of order O(ε4) is valid as long as the quantum correction to the

Vlasov terms dominates over the lowest order collision term, which, as mentioned above,
is of order O(g) with g defined in (3.23). This condition can be written as

(
λn

λD

)3

<

(
λdB

λD

)2

. (3.33)

If we summarize all conditions for this approach to be valid, namely (3.21), (3.24), (3.33)
we arrive at the set of constraints

λdB < λn <
(
λ2

dBλD

)1/3
< λD. (3.34)

A picture of the available physical conditions where these approximations are valid is
presented in Fig. (3.1). These conditions are met in sufficiently hot and dense plasmas
as may be found in the intense laser/particle beam-solid interaction and possibly in the
interior of giant planets.

As we keep terms up to O(ε2), we will look for corrections of the same order in the
potential and in the distribution function, f = f0 + ε2f1, φ = φ0 + ε2φ1, with f0 and φ0

representing now (2.16) and (2.20) respectively. Inserting this ansatz into (3.32) and (2.2)
neglecting again terms of O(ε4) we find

[v∂x + φ′
0(x)∂v] f1 = −φ′

1(x)∂vf0 +
1

3!4
φ0(x)

′′′∂3
vf0, (3.35a)

∂2
xφ1(x) =

∫
dvf1. (3.35b)
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Figure 3.1: (Color) Range of validity of the weak quantum correction presented in the text
[see (3.34)]. The shadowed areas represent conditions were one or more of the following con-
straints are violated: (a) binary collision are negligible (λn < λD), (b) The plasma is a non-
degenerate gas (λdB < λn) and (c) quantum corrections are larger than collisional corrections
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λDλ
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By defining
g(x, v) = f1 + φ1∂vf0, (3.36)

we can reduce equations (3.35a) and (3.35b) to the somewhat simpler system

[v∂x + φ′
0(x)∂v] g =

1

3!4
φ′′′

0 (x)∂3
vf0 =: h(v, x), (3.37a)

φ′′
1(x) + V ′′(φ0)φ1(x) =

∫ +∞

−∞
dv g(x, v), (3.37b)

Now it is convenient to switch into a new set of variables defined by ξ = x, E =
v2

2
− φ0(x), σ = sg(v) and rewrite h(x, v) = H(ξ, E, σ), g(x, v) = G(ξ, E, σ). With these

variables, (3.37a) becomes

∂ξG(ξ, E, σ) =
H(ξ, E, σ)

v(ξ, E, σ)
, (3.38)

whose general solution is

G(ξ, E, σ) = G(0, E, σ) +

∫ ξ

0

dξ′
H(ξ′, E, σ)

v(ξ′, E, σ)
, (3.39)

where v(ξ, E, σ) = σ
√

2 [E + φ0(ξ)]. Therefore, in order to find G we only have to
integrateH(ξ, E, σ)/v(ξ, E, σ) along the classical particle trajectories given byE = const..
In this expression we have chosen the lower integration limit as ξ = 0 because this is the
only point which is reached by all trajectories (see below). Note that a trapped particle
will move along a closed, bounded trajectory around the origin in phase space.

Now we need to replace H(ξ, E, σ) by its full expression. Expressing f0 in Eq. (2.16)
as f0(E) = (2π)−1/2 [exp(−E)θ(E) + exp(−βE)θ(−E)] we get by differentiation

∂3
vf0 =

1√
2π
v
{
[3 − 2(E + φ0)] e

−Eθ(E) + β2 [3 − 2β(E + φ0)] e
−βEθ(−E)

−
[
3(1 − β) − 2φ0(1 − β2)

]
δ(E) − 2(E + φ0)(1 − β)δ′(E)

}

=:
1√
2π
v(ξ, E, σ)Ω(ξ, E). (3.40)

For positive energies, we can follow the trajectories up to any ξ in (3.39) and, assuming
that the correction vanishes at ξ → ±∞, we arrive at

G(0, E, σ) =

∫ 0

−∞
dξ′

H(ξ′, E, σ)

v(ξ, E, σ)
=

1

3!4
√

2π

∫ 0

−∞
dξ′ φ′′′

0 (ξ′)Ω(ξ′, E). (3.41)

Note that this expression does no longer depend on σ. For negative energies G(0, E, σ)
is not determined by such a procedure but, due to the symmetry of the problem we can
assume that it will also be σ-independent. On the other side, we can always extend the
integration of (3.39) to −∞ for negative energies also as long as we change the integration
constant. Therefore we have, for any E,

G(ξ, E, σ) = G(ξ, E) =
1

3!4
√

2π

[
G0(E) +

∫ ξ

−∞
dξ′ φ′′′

0 (ξ′)Ω(ξ′, E)

]
, (3.42)

with G0(E) = 0 for E > 0.
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Note that ∂Ef0 is discontinuous at E = 0. Therefore, G(ξ, E) does not have a definite
value at the separatrix. Our approach will be to solve (3.37) for positive and negative
energies separately and then put both solutions together imposing the continuity of f1 at
the separatrix.

In order to integrate (3.42), we consider these two different cases:

1. For E > 0 we have G0(E) = 0 and

Ω(ξ, E) = [3 − 2(E + φ0(ξ))] e
−E , (3.43)

The integral (3.42) can be performed analytically to yield

G(ξ, E) =
1

3!4
√

2π

[
φ′

0(ξ)
2 + (3 − 2E − 2φ0(ξ))φ

′′
0(ξ)

]
e−E.

2. If E < 0 we must take G0(E) into account. In this case

Ω(ξ, E) = β2 [3 − 2(E + φ0(ξ))β] e−βE. (3.44)

and (3.42) reads

G(ξ, E) =
1

3!4
√

2π
{G0(E)

+
[
βφ′

0(ξ)
2 + (3 − 2βE − 2βφ0(ξ))φ

′′
0(ξ)

]
β2e−βE

}
.

(3.45)

The continuity of f1 is now imposed to determine G0(E). As f1 = g − φ1∂Ef0, the
discontinuity of g(x, v) = G(ξ, E), namely ∆G := G(ξ, 0+) −G(ξ, 0−) should be equal to
φ1∆(∂Ef0). Since it holds

∆(∂Ef0) =
β − 1√

2π
, (3.46)

we get

∆G = 1
3!4

√
2π

{
φ′

0(ξ)
2 + (3 − 2φ0(ξ))φ

′′
0(ξ)

−β2
[
βφ′

0(ξ)
2 + (3 − 2βφ0(ξ))φ

′′
0(ξ)

]
−G0(0)

}
. (3.47)

Then we can find φ1(ξ) as

φ1(ξ) = ∆G
∆(∂Ef0)

= 1
3!4(β−1)

{φ′
0(ξ)

2 + (3 − 2φ0(ξ))φ
′′
0(ξ)

−β2 [βφ′
0(ξ)

2 + (3 − 2βφ0(ξ))φ
′′
0(ξ)] −G0(0)} . (3.48)

Moreover, as we imposed φ1(±∞) = 0, we know that G0(0) = 0. Hence, we obtained
φ1(ξ). Figure 3.2a shows φ1(ξ) for Ψ = 0.1 and Fig. 3.2b represents the corrected poten-
tial. For reference, also the unperturbed potential is drawn. We see that the potential
experiences a reduction as a result of quantum correction.

To determine G0(E) for all negative energies we go back to (3.37b). As we have
already determined φ1(x), the left hand side is now given. It is convenient to write it
in terms of φ0. To do this we note that all derivatives of φ0 can by expressed by φ0

itself via φ′
0(ξ) = −φ0(ξ)

(
1 −

√
φ0(ξ)/Ψ

)1/2

, φ′′
0(ξ) = φ0(ξ)

(
1 − 5

√
φ0(ξ)/Ψ/4

)
and
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Figure 3.2: Correction to the potential for Ψ = 0.1.
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also V ′′(φ0) = −
(
1 − 15

√
φ0/Ψ/8

)
. Inserting these expressions into (3.37b) we find an

expression for its left hand side as a function of φ0 which we call L(φ0). It can be expressed
as

L(φ0) :=
3φ0

16Ψ

{
40
(
1 + β + β2

)
φ2

0 + 15Ψ(1 + β)

√
φ0

Ψ

−φ0

[
15 − 16Ψ − 8β2Ψ

(
2 − 7

√
φ0

Ψ

)

+56Ψ

√
φ0

Ψ
+ β

(
15 − 16Ψ + 56Ψ

√
φ0

Ψ

)]}
. (3.49)

On the other side, the right hand side of (3.37b) can be written as
∫ +∞

−∞
dv g(x, v) =

∑

σ

σ

∫ ∞

−φ0(ξ)

dE
G(ξ, E)

v(ξ, E, σ)

= 2

∫ ∞

−φ0(ξ)

dE
G(ξ, E)

v(ξ, E, 1)
.

(3.50)

Making use of (3.42) we can reduce (3.50) to
∫ +∞

−∞
dv g(x, v) = R(φ0) +

1

3!2
√

2π

∫ 0

−φ0(ξ)

dE
G0(E)

v(ξ, E, 1)
(3.51)

The second term of (3.51) can be obtained analytically just by integration of (3.44) and
(3.45), and finally we can write it as a function that only depends on φ0:

R(φ0) :=
1

3!2
√

2π

∫ ∞

−φ0(ξ)

dE

∫ ξ

−∞
dξ′

φ′′′
0 (ξ′)Ω(ξ′, E)

v(ξ, E, 1)

= − 1

3!4
√

4π

√
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√
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Ψ
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]
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)
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√
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Ψ
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)

+eβφ0erf
(√

βφ
)
β
√
π
√
βφ0

[

(5 + 2βφ0)

√
φ0

Ψ
− 2βφ0 − 4

]

+eφ0erfc
(√

φ0

)√
π
√
φ0

[

(5 + 2φ0)

√
φ0

Ψ
− 2φ0 − 4

]}

. (3.52)

To perform the remaining integral of (3.51), we make a half power expansion of G0(E):

1

3!2
√

2π
G0(E) = a1/2|E|1/2 + a1|E| + a3/2|E|3/2 + . . . (3.53)

With this ansatz, we have

1

3!2
√

2π

∫ 0

−φ0(ξ)

dE
G0(E)

v(ξ, E, 1)
=
√
φ0

√
π

2

∞∑

n=1

Γ
(
1 + n

2

)

Γ
(

3
2

+ n
2

)an/2φ
n/2
0 . (3.54)
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And we can finally reduce (3.37b) to

L(φ0) = R(φ0) +
√
φ0

√
π

2

∞∑

n=1

Γ
(
1 + n

2

)

Γ
(

3
2

+ n
2

)an/2φ
n/2
0 . (3.55)

Therefore, if we define ρ(t) as

ρ(t) :=
1

t

(
L(t2) − R(t2)

)
, (3.56)

we can find all an/2 as

an/2 =
1

n!

√
2

π

Γ
(

3
2

+ n
2

)

Γ
(
1 + n

2

) d
nρ(t)

dtn

∣∣∣∣
t=0

(3.57)

With this expression for an/2 we can sum G0(E) and then find G(ξ, E) and f1. The
correction of the distribution function, f1(x, v) is plotted in Fig. 3.3, while the final,
corrected distribution function f = f0 + ε2f1 is represented at fixed x in Fig. 3.5.

We clearly recognize a partial filling of the phase space within the separatrix being
maximum at the hole center. An interpretation may be given in terms of refraction
or tunneling: in the classical solution nearby its separatrix, the region of untrapped
electrons is populated stronger than that of trapped electrons. In the quantum domain
when tunneling becomes effective this gives rise to a net influx of particles resulting in a
less dilute distribution of trapped electrons.

We, therefore, conclude that the overall effect of a quantum correction to a classical e-
hole is the tendency of the system to reduce the coherent excitation by both a diminution of
the amplitude and a partial filling of the trapped particle region by refraction (tunneling),
bringing the system closer to the thermal state.

Open questions are how these semiclassical corrections are modified in case of finite
amplitudes Ψ & O(1), of finite quantum corrections ε & O(1), of hole propagation v0 > 0,
of nonlocality of structures such as periodic wave trains (cnoidal waves). In fact, first
numerical simulations of a two-stream unstable WP-plasma [91] suggest the existence of
propagating holes of finite amplitude in the fully quantum regime.

3.3 Quantum-like systems

In the last section we developed a method to study small quantum corrections to elec-
trostatic structures in plasmas. However, there exist many other quantum-like physical
systems which we can investigate following a very similar approach, in particular in the
field of nonlinear optics.

In the following pages, we will show that self-consistent trapping is not a phenomenon
affecting only real particles. In fact, quasi-particles such as photons or phonons can also
become trapped when they interact nonlinearly with their medium. As an appropriate
framework, the Wigner method will be used, which has already been applied to the study
of trapped BGK-like modes in the incoherent light propagation of wavepackets in nonlinear
media [87], but only for long enough wavelengths that the quantum-like effects could be
completely disregarded. Linearization of the von Neumann equation has also been used to
investigate a kind of quantum-like Landau damping of electromagnetic wavepackets [86].
Here we will deal with a fully nonlinear weak quantum treatment of this phenomenon.
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Figure 3.3: Correction of the distribution function f1(x, v).
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Figure 3.5: Corrected distribution function (f1(x, v)) at x = 0. For Ψ = 0.01, ε =
√

Ψ = 0.1.
The dashed line represents the original (unperturbed) distribution function.

The key is that whenever we face a Schrödinger-like equation with a self-consistent
potential, we can perform a Wigner transformation and, if some parameter that plays the
role of Planck’s constant is small enough, arrive at an equation identical to (3.32) coupled
with some other Poisson-like equation. Based on the solution we found for quantum
plasmas, in this section we will provide a more general method to solve equations like
these. In particular, we will study the Nonlinear Schrödinger Equation (NSE) for which
we will provide approximate solutions for its well known cubic form as well as a method
to face arbitrary nonlinearities.

The application of the Wigner method to nonlinear optics has several advantages
and gives us new insights into the underlying physics of such systems. First of all, it
allows us, as we will do here, to draw parallelisms and find new connections to standard
plasma physics, and other mesoscopic physical systems. It also allows the formulation of
conceptually new problems regarding the dynamics of incoherent waves and beams.

3.3.1 The Nonlinear Schrödinger Equation

The propagation of an electromagnetic wavepacket through a nonlinear medium can be
described by a Schrödinger-like equation for the (complex) wave amplitude where ~ and
potential energy are replaced by the inverse of the wavenumber 1/k = λ/2π and refractive
index, respectively [92]. In general, the refractive index depends on the wave amplitude
and the describing equation becomes the Nonlinear Schrödinger equation [93, 94]. The
longitudinal dynamics of the wavepacket predicted by such an equation has received much
attention. In particular, modulational instability and soliton formation deserved careful
studies as they are regarded as crucial phenomena in the design of optical fibers for the
communication industry [75, 93, 95].

In general, the Nonlinear SchrödingerEquation can be written as [86]

i
∂ψ

∂t
+
α2

2

∂2ψ

∂x2
− Uψ = 0, (3.58)
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where α2 is a parameter proportional to the inverse of the wave number which accounts
for the diffraction effects while x and t play the role of configurational space coordinate
(longitudinal coordinate relative to the wavepacket center) and time-like variable (longi-
tudinal coordinate of the wavepacket center), respectively. The potential U is in general a
functional of |ψ(x, t)|2 representing the refractive index. The relationship between U and
|ψ(x, t)|2 is given by the nonlinearity of the medium. A possible form of this dependence
is given by [86]

U
[
|ψ|2

]
= −χ

(
|ψ|2 − |ψ0|2

)
−R

∫ (
|ψ|2 − |ψ0|2

)
dx. (3.59)

An equation similar to this one has been considered for studying the nonlinear stability in
nonlinear media [95] as well as in the thermal wave model [66]. Here, χ accounts for the
nonlinear frequency shift and R accounts for a sort of resistive effect. In the case R → 0,
ψ0 → 0 we arrive to the well-known cubic form of the NSE:

i
∂ψ

∂t
+
α2

2

∂2ψ

∂x2
+ χ|ψ|2ψ = 0. (3.60)

The cubic NSE given by (3.60) has been called “the master equation of nonlinear
optical fibers” [93] and has deserved thoroughful investigations since the seventies. A
proof of its integrability as well as a general solution were provided using the inverse
scattering method [96]. Without loss of generality, we will deal here with χ > 0, and the
boundary conditions |ψ(x, t)| → 0 when x → ±∞. Under these conditions, the general
solution is constructed from one or several bright soliton solutions given by [93, 96]

ψ(x, t) = ηeiσ(x,t)sech

(
η

√
χ

α2
(x− x0) + κχt

)
, (3.61a)

σ(x, t) = −
√

χ

α2
κx+

1

2
(η2 − κ2)χt+ ϕ, (3.61b)

where η, κ, ϕ and x0 are real arbitrary constants. Note that the solitons provided by this
particular solutions are moving with a velocity −καχ1/2/η and therefore we can also find
standing structures by setting κ = 0. General solutions are composed of several soliton
solutions via inverse scattering. Although this method allows us to solve exactly the NSE,
it has the drawback that N -soliton solutions do not have explicit analytical expressions.

Several analytical as well as numerical approaches, among them the variational method
[97], have succeeded in sheding a new light on the NSE and bringing in a great amount of
information about the properties of the cubic NSE and some of its extensions, including
different nonlinearities and space dependent damping or amplification [98]. In the next
section we will take a different view and emphasize the role of the NSE as an equation
describing the trapping of (pseudo)particles in nonlinear media. For this reason we will
introduce pseudodistribution functions and deal with them in a way that resembles the
pseudo-potential method in classical plasmas.

Most of the literature about the NSE deals with coherent waves, described by (3.60).
Coherence means that knowing the phase at a given point on the beam one can predict the
phase at any point across that beam. In recent years, however, the subject of incoherent
or partially incoherent waves has received attention in the nonlinear optics community,
both experimentally [99] and theoretically [87, 100, 101]. Incoherent waves are composed
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by a statistical ensemble of waves satisfying the coherent NSE. The nonlinear excitation
of the medium is in the cubic case given by χ〈|ψ|2〉, where 〈. . . 〉 represents the average
over the statistical ensemble (Klimontovich average). The equation for these incoherent
waves then reads

i
∂ψ

∂t
+
α2

2

∂2ψ

∂x2
+ χ〈|ψ|2〉ψ = 0. (3.62)

In the Wigner-Moyal framework of quasidistribution functions, equations (3.60) and (3.62)
receive a formally equivalent treatment. However, not all the quasidistribution functions
that solve the corresponding von Neumann equation can be transformed back into a single
wavefunction that satisfies (3.60). Therefore, if we are interested in finding solutions to
this equation, we must disregard all pseudodistribution functions that violate the Tatarskii
criterium, as they do not represent pure states. Equation (3.62) do not present this
problem and all solutions arising from the von Neumann equation are legitime. Our
approach here will be to find a general family of incoherent solutions and then look
among them for a solution as close as possible to coherence, thereby finding a partially
incoherent state.

3.3.2 Wigner transform and quasi-classical solutions

Now we can apply the Wigner transformation method [76] to the NSE (3.60) and again
look for standing structures with ∂f/∂t → 0. Then we arrive to a von Neumann equation
like (3.29), where the role of the adimensionalized Planck’s constant ε is now played by
α, that contains information about the wavepacket carrying wavelength. If it is small
enough (i.e. we are interested only on structures much larger than one wavelength) an
expansion with respect to α2 can be made and we will finish in an equation similar to
(3.32):

v∂xf + φ′(x)∂vf − α2

3!4
φ′′′(x)∂3

vf = 0. (3.63)

The role of the potential is now played by the medium refractive index, which depends
on |ψ(x)|2 =

∫
dvf(x, v). In the cubic NSE case, the Poisson-like equation reads

−U = φ(x) = χ

∫
dvf(x, v) ≡ χ|ψ|2. (3.64)

Although equation (3.63) is in fact mathematically identical to (3.32), a straightfor-
ward application of the method we developed in section 3.2.2 is here prevented by (3.64).
To see this, just suppose we find two nonzero functions f0(x, v) and φ0(x) given by (2.16)
that satisfy (3.63) with α = 0. Then we would have a known function n(φ) =

∫
dvf(x, v)

and (3.64) would result in φ = χn(φ), which is a closed equation in φ that can therefore
be only solved by φ = const. Furthermore, we also require φ → 0 as |x| → ∞ which
implies that no other solution than the trivial φ = 0 would be found. Therefore this direct
naive approach must be rejected.

Note also that the boundary conditions that we are imposing require

lim
x→±∞

φ(x) = χ lim
x→±∞

∫
dvf(x, v) = 0, (3.65)

and they will not be met if we look for quasidistribution functions close to (2.16), which
have

∫
dvf(x, v) → 1 when φ→ 0.
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There is, however, a path to circumvent these difficulties. First suppose we have
f0(x, v) and φ0(x) that satisfy the unperturbed Vlasov equation corresponding to (3.63)
with α = 0 where f0 is not given by (2.16) but

f0(x, v) = Aθ(−E)
[
e−βE − 1

]
(3.66)

where A is a arbitrary normalization constant and E = v2/2− φ0(x). Note that for small
E (3.66) can be written as f0(x, v) ≈ −Aθ(−E)βE. In fact, we could have used this
simpler expression, and obtain exactly the same results, but we kept (3.66) to make the
analogy with (2.16) apparent. Note that at this point we do not know what φ0(x) and
therefore f0(x, v) are.

The pseudodistribution function defined by (3.66) should be interpreted as one in
which only trapped particles are present. This makes sense because we are looking for
bright soliton solutions, being formed by solitary structures where the amplitude vanishes
at infinity. Note also that nothing in (3.66) restricts us to standing solitons: on the
contrary, the following development might be also made for propagating structures. Only
for simplicity and without loss of generality we will in the following deal only with standing
solutions.

We will now look for solutions of (3.63) and (3.64) that are close enough to certain
f0 and φ0 to be written as f = f0 + α2f1, φ = φ0 + α2φ1 with f1 and φ1 being of order
unity. Inserting this expressions into (3.63) and neglecting terms of order O(α4) we find
the equivalent of (3.35a)

[v∂x + φ′
0(x)∂v] f1 = −φ′

1(x)∂vf0 +
1

3!4
φ0(x)

′′′∂3
vf0. (3.67)

To avoid the problem mentioned above, we make the ansatz
∫
f1(x, v)dv = γφ′′

0(x) +
φ1

χ
, (3.68)

where γ is an arbitrary introduced constant. If we make use of (3.68) in (3.64) we obtain

φ0(x) = χ

∫
f0(x, v)dv + χα2γφ′′

0(x). (3.69)

But from (3.66) we also know

∫
f0(x, v)dv =

4Aβ
√

2

3
φ

3/2
0 + O(φ

5/2
0 ) =: λ(φ0). (3.70)

Therefore, we can write the following equation for φ0:

φ0 = χλ(φ0) + χα2γφ′′
0, (3.71)

that we can solve by defining a classical potential

−V ′(φ0) = φ′′
0 =

1

χα2γ
[φ0 − χλ(φ0)] , (3.72)

that integrated yields

−V (φ0) =
1

χα2γ

φ2
0

2

(
1 − 8Aβ

√
2

15
χφ

1/2
0

)
. (3.73)
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If, as usual, we call Ψ the maximum value of φ0, we can find a nonlinear dispersion relation
by imposing V (Ψ) = 0. This is,

√
Ψ =

15

8Aβχ
√

2
, (3.74)

which, as we are assuming χ > 0, implies Aβ > 0. Thus we can write the classical
potential as

V (φ0) = −rφ
2
0

2

(

1 −
√
φ0

Ψ

)

, (3.75)

where r = 1/χα2γ. Note that r has to be positive and, therefore γ > 0. If we make use of
this expression of the classical potential to obtain the actual shape of φ0(x) we arrive at

φ0(x) = Ψsech4

(
x
√
r

4

)
. (3.76)

At this point we can follow the approach developed in Sect. 3.2.2 to solve (3.35a) this
time coupled with (3.68), which will now play the role of a Poisson-like equation. If we
introduce again g(x, v) := f1 + φ1∂Ef0 equation (3.68) will read

γφ′′
0(x) +

φ1(x)

χ
+ V ′′(φ0)φ1(x) =

∫
g(x, v)dv, (3.77)

which plays the same role as (3.37b) in our previous derivation.
We must however keep in mind that now we are dealing with a different f0 that is

exactly null for all the untrapped range. This implies that G(ξ, E, σ), as defined in (3.38),
will now be zero for E > 0. Taking all this into account, the correction to the potential
results as shown in Fig. 3.6 for an arbitrary γ. The correction f1 to the distribution
function can also be obtained by the direct application of the procedure sketched above
for electron holes in quantum plasmas.

Finding an almost pure (coherent) state

Up to this point we have found valid solutions of equations (3.63) and (3.64). Note that
the parameter γ introduced in (3.68) has been left arbitrary and therefore for a given
amplitude Ψ we have obtained a whole family of solutions. On the other side, not every
pseudodistribution function f(x, v) can be transformed back into a coherent complex
wavefunction ψ(x), this is, not any f(x, v) represents a coherent state. This problem
did not arise in the case of plasmas because there we assumed that f(x, v) represents a
mixture of many different pure states, combined according to some statistical ensemble.
In the case of optical beams, incoherence can also be allowed, but only up to some extent
and only in inertial media. If we are interested in coherent or only partially incoherent
states, we must look at (3.60), for which only pure states can be accepted. The obvious
way to proceed now is to look for pure states in the space of solutions which we obtain
by varying γ.

The standard check to know if a pseudodistribution function represents a pure state
is given by Eq. 3.2. This is however too mathematically involved to make any analytical
progress and even numerical approaches would be unnecessarily complicated. Instead we
will use a much easier method to test how close a given solution is to a pure wavefunction.
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Figure 3.6: Correction to the potential for ψ = 0.08. As can be observed, the qualitative shape
of φ1(x) is here similar to that found before for the quantum correction to electron holes, but
with a sign inversion.

Suppose that for a given γ we have already calculated φ = φ0 + α2φ1. Then if it were
a valid solution of (3.60), it must hold φ = |ψ|2. To simplify the notation let us define
ρ(x) :=

√
φ(x). We are looking for a function

ψ(x, t) = ρ(x)eiσ(x,t). (3.78)

that solves the NSE. We make the ansatz σ(x, t) = Kx − Ωt with K and Ω being real
constants related to the width in wavenumber and frequency domains in Fourier space of
the wavepacket. Inserting it into (3.78) and then into (3.60), taking the real and imaginary
parts, we arrive at

2Kα2ρ′(x) = 0, (3.79a)

2Ωρ(x) + 2χρ3(x) + α2
(
ρ′′(x) −K2ρ

)
= 0. (3.79b)

From the first equation we derive K = 0. The second one, on the other hand, can be
rewritten as

Ω = −2χρ3(x) + α2ρ′′(x)

2ρ(x)
:= s(x). (3.80)

But as we know ρ(x), we already have an explicit form of s(x); we can therefore check
whether it is a constant and if it is, the potential φ is compatible with a pure state.
However, we have solved the von Neumann equation only perturbatively: nothing assures
us that an exact solution is included in the family of solutions we have found so far. We
can however test how far any particular solution is from being an exact solution if we note
that (3.80) is equivalent to

∫ +∞

−∞

(
ds

dx

)2

dx = 0. (3.81)
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Figure 3.7: Dependence of the function Y (γ), as defined in Eq. (3.82) with respect to γ. The
solution corresponding to the minimum of Y (γ) is the closest to a pure state. Figure 3.8 shows
how this solution looks like and compares it to the exact analytical solution.

Thus, we may say that the best solution contained in the parametric family of solutions
is the one that minimizes the function

Y (γ) =

∫ +∞

−∞

(
ds

dx

)2

dx. (3.82)

A typical representation of the function Y (γ) is given in Fig. 3.7. Choosing γ through
the procedure just sketched, we arrive to a final potential φ as represented in Fig. 3.8.

3.3.3 Generalization to an arbitrary nonlinearity

In the last section we found an approximate solution to the cubic NSE, of which an
exact analytical solution already exists. The purpose of such development was twofold:
(a) show how self-consistent trapping appears also in fields quite different from plasma
physics and give some hints as to how trapping in the quantum domain can be faced
and (b) provide a general, albeit only approximate, procedure to solve the NSE with any
arbitrary nonlinearity. In this section we will focus on (b) and show how the steps we
took in the last section can be generalized when the potential (resp. refractive index) of
a given material depends on the field amplitude as

φ = F [|ψ|2], (3.83)

where the only property required to F is being a continuous, derivable and invertible func-
tion. As long as α is a small parameter, when transformed into the Wigner representation,
(3.83) can be written as

φ(x) = F

[∫
dvf0(x, v)

]
+ α2F ′

[∫
dvf0(x, v)

] ∫
dvf1(x, v). (3.84)
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Figure 3.8: Approximate and exact solutions of the cubic NSE. The exact solution is given
by (3.61) with κ = 0. The amplitudes are selected such that the maximum of the corrected
(approximate) solution coincides with the top of the exact solution.

Where f0 has been defined again according to (3.66). The ansatz we should make now
being equivalent to (3.68) reads

∫
f1(x, v)dv = γφ′′

0(x) +
φ1

F ′[λ(φ0)]
, (3.85)

with λ(φ0) still defined by (3.70). The equation for φ0 yields

φ0 = F [λ(φ0)] + γα2F ′[λ(φ0)]φ
′′
0. (3.86)

This is an ordinary equation that can in general be solved directly through e.g. the pseudo-
potential method. Once we have obtained a suitable φ0 we only need to go again through
the same steps as for plasmas and the cubic NSE and then find φ1 and f1. Looking then
for a solution closest to a pure state is also straightforward because we have demanded F
to be invertible and therefore, given φ we can know |ψ|. The parameter γ can be fixed in
this way.

Note that in (3.85) nothing prevents us from including more derivatives of φ0 along
with more parameters γ1, . . . , γn. In general, the more terms we add, the larger the
freedom we have later when looking for pure states. The price we pay is that the resulting
equation for φ0 might then not be analytically solvable.

3.4 Concluding remarks

In this chapter we have extended the theory of self-consistent trapping to quantum and
quantum-like systems. This extension was based on the use of the Wigner method and on a
perturbative expansion of the von Neumann evolution equation. We presented, therefore,
a fully nonlinear approach to the study of self-trapping in dilute, weakly quantum plasmas,
which to our knowledge is new.
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The first part of the chapter was devoted to the study of quantum corrections to elec-
tron holes. There we saw how to introduce the quantum character of particles, which
means a finite de Broglie wavelength and the possibility of diffraction and tunneling ef-
fects, and which resulted in bringing the system closer to thermodynamical equilibrium.
This effect was expected because it is a typical phenomenon met for any quantum correc-
tion. Drawbacks of the method we used are that it is only applicable to certain systems
with some constraints with respect to density and temperature and that we are limited
to strictly standing structures. This is due to the fact that in the way we construct the
unperturbed, classical solutions, infinite derivatives are involved with respect to the ve-
locity as we approach the separatrix from the outside. A possible path to circumvent this
problem would be to use some kind of intermediate layer theory in which we introduce
a special treatment of the equation near the separatrix. This extension lies, however,
beyond the scope of this thesis.

In the second part we dealt with the self-consistent trapping of (pseudo)particles that
interact nonlinearly with the medium and whose behavior is described by the nonlinear
Schrödinger equation (NSE). There we presented an approach to the study of such systems
based on a phase space representation of the trapping via Wigner pseudodistribution
functions. In the particular case of Kerr media, governed by the cubic NSE, we derived
an approximate solution that successfully compares with the exact one-soliton solution.
An interesting point that this derivation raises is the comparison with some other methods
of facing the cubic NSE, such as the already mentioned variational method, that do not
rely on a phase space representation.

Our procedure is based on the introduction of the closure relation (3.68), that allows
us to treat the problem as a perturbative one. The exact form of this closure relation
is to a certain extent arbitrary, but it is intended to emphasize the relationship between
self-consistent trapping in plasmas and in other nonlinear systems, thus giving us a deeper
understanding of the physics involved in such processes.

In summary, from this chapter we can conclude that strong connections exists between
the trapping of particles in an electrostatic potential and the trapping of pseudo-particles
in a self-modulated nonlinear medium. The methods outlined here seem to be appropriate
to shed light on this connection and to cope with similar problems in both fields as well
as to formulate conceptually new problems.



CHAPTER 4

Trapping in charged particle beams

. . . y hasta los cerebros electrónicos se estremecen

en las noches de luna llena

cuando una ĺıvida lucidez ilumina los ficheros

donde las ecuaciones sonŕıen petulantes

afilando los ángulos de sus ráıces cúbicas.

Ángel González

4.1 Motivation

The third and last kind of physical system that we will study is that of beams of charged
particles in storage rings and accelerators. Long-lived coherent structures due to particle
trapping have been observed since a long time in coasting beams [102, 103] and an ana-
lytical theory [104, 105] has been developed. Similar coherent structures have also been
recently observed in bunched beams in the Super Proton Synchrotron (SPS) at CERN
[106, 107] and the Tevatron at Fermilab [108, 109] as well as in the Relativistic Hadron-
Ion Collider (RHIC) in the Brookhaven National Laboratory [110, 111]. In this chapter
we will address the study of these phenomena showing how their longitudinal dynamics
can also be described by a system of a Vlasov equation and a Poisson-like equation. In
particular, we will deal here with trapping in bunched beams, a phenomenon in which,
due to the boundary conditions, different to these of infinite plasmas, analytical solutions
are not known for the Vlasov-Poisson system and therefore we must rely heavily on nu-
merical approaches. However, before proceeding with this task, we will shortly review the
fundamental physics of modern synchrotrons and storage rings.

A synchrotron [112] is a circular particle accelerator similar to a cyclotron in which
the magnitude of the magnetic field and of the accelerating rf voltage are changed in
time to keep the diameter of the designed trajectory constant. As the space where the
fields are created is confined to a circular ring, this design is much more efficient than
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a cyclotron. The machine is designed in such a way that a given ideal particle which
follows the design trajectory always enters the rf cavities with the same phase and the
energy it receives is hence maximized. However, the energy spread of all the particles in
the beam and the self-consistent interaction between them (so called space-charge forces)
makes it difficult to predict the trajectories of real particles and optimize the machine to
give them the maximum possible amount of energy. The characteristics of the machine
and the injection conditions of the particles have to be carefully chosen to assure that
particles close to the design trajectory do not get further apart as time evolves. These
desired conditions are commonly referred as focusing and are usually associated with the
existence of bunches and hotspots in the particle distributions.

4.2 Electrostatic structures in coasting beams (a review)

Stable long-lived coherent electrostatic structures superimposed on the designed beam
have been long observed in coasting beams [102, 103] and a theoretical explanation has
been given [104, 105] based in a kinetic description of the longitudinal beam dynamics
which leads for a purely reactive wall impedance to the Vlasov-Poisson system of equations
[105, 113]

[∂t + p∂z − ε∂p] f = 0, (4.1)

ε′′ = µ̄ε+ ᾱλ′
1, (4.2)

where λ1 is the perturbation of the line density λ =
∫
dpf over the designed one. The

notation defined in Ref. 105 is followed here, which means that the constants µ̄ and ᾱ in
(4.2) are given by

µ̄ =
µ

1 − L
, ᾱ = α

g0 − L

1 − L
, (4.3)

where L is the dimensionless wall inductance and g0 represents the capacitive space charge
impedance of the beam. The parameters µ and α, where µ is proportional to (γR0/b)

2

and α proportional to ηN , are typically very large, so that one is tempted to solve (4.2)
approximately by letting both terms on the right hand side balance each other. Note that
R0 is the large radius of the design trajectory, b the radius of the circularly shaped cross
section of the toroidal vessel, N the total number of particles in the beam and η is the
slip factor [112].

A rigorous study of equations (4.1) and (4.2) and the focusing properties of beams
that can be derived from them has already been performed in Ref. 113. The results are
summarized in Fig. 4.1.

4.3 Bunched beams

4.3.1 Experimental evidences

Long-lived coherent structures (solitons) have been observed in the SPS, the Tevatron and
in the RHIC. They were first apparent in reported observations of “rf activity” during
stochastic cooling studies. Later they have been clearly seen in current monitor data
at RHIC. This data measures the current induced at a certain point of the wall by the
beam and is commonly assumed to be proportional to the instantaneous line density
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Figure 4.1: Standard (de)focusing properties of impedances for coasting (debunched) beams,
valid for L < 1 < g0. Represented at each cell is the shape of the electric potential (above) and
the schematic distribution function, where a darker color means larger particle densities. When
1 < L the chart must be changed by reversing columns and rows, which means e.g. that for
η < 0 (positive mass) the system is focusing, showing a positive potential for q < 0.
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Figure 4.2: Wall current monitor data for a freshly injected (left) bunch of protons with
γ = 35.9 at RHIC and the same bunch 17 min later, still at injection energy (right).
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Figure 4.3: Wall current monitor data for two different bunches at flattop. Both have γ = 107.

carried by the beam at this point. The wall current monitor (WCM) data gives us
therefore an image of the density profile of particles in the beam. Thus, if we take different
measures as the beam passes through different monitors or through the same monitor at
different cycles, we can have a picture of how the line density evolves. Figure 4.2 shows
an example of the mountain range plot of observations at RHIC where a bunch can be
seen with a superimposed oscillating soliton manifest as a hump (hotspot) in the line
density. Figure 4.3 show two other bunches at flattop with a larger energy. In all cases,
only the 28MHz accelerating cavities were operating and the total acquisition time was
4000turns ≈ 50ms. The transition energy [112] of RHIC is γT = 23.8, so all the measures
were above transition. There exists also data showing humps in deuteron beams with
γ = 10.7 < γT . All this observations are commonplace at RHIC but a stable hole (a
depression in the line density) has never been observed.

Humps have always been observed with impedances that for a coasting beam will be
thought as defocusing and lead to holes. It is therefore clear that a new approach has to be
taken to model bunched beams. Due to the strong nonlinear nature of the phenomenon,
perturbative analytical approaches have few chances to succeed.
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4.3.2 Bunched beam model

Following Ref. 111, a theoretical model for bunched beams can be developed which relies
on the approximation of assuming that the two terms to the right of (4.2) are much larger
than the left hand side ε′′ which can be thus neglected. This simplification corresponds
to what in Ref. 113 is called quasineutrality (QN) assumption. For bunched beams a
bunching rf voltage has also to be included in the beam equations of motion. Let ϕ
be the position in the bunch measured in radians, ωs,0 be the small amplitude angular
synchrotron frequency and use s = ωs,0t as the evolution variable. Let λ(ϕ, s) be the
normalized line density of particles

∫ +π

−π

dϕλ(ϕ, s) = 1 (4.4)

The rf voltage is V (t) = Vrf sinϕ and ωrf is the angular rf frequency. The effect of
transition energy is included in the sign of the rf voltage with Vrf > 0 below transition
and Vrf < 0 above. Let Q denote the total charge in the soliton, which is assumed to be
positive. The single particle equation of motion is then

d2ϕ

ds2
+ sinϕ = `

∂λ(ϕ, s)

∂ϕ
, (4.5)

where to simplify notation we have set

` = −LQωrf

Vrf
. (4.6)

If we introduce now p = dϕ/ds, we can rewrite (4.5) in canonical coordinates as

dp

ds
= − sinϕ− `

∂λ(ϕ, s)

∂ϕ
. (4.7)

This equation can be generated from the Hamiltonian

H(ϕ, p, s) = p2/2 + 1 − cosϕ+ `λ(ϕ, s). (4.8)

Consider a canonical transformation of Goldstein’s [114] first type with a generator given
by

F1(ϕ,Ψ) =
ϕ2

2
cot (Ψ + s) (4.9)

where Ψ is the new position coordinate and J is the new momentum coordinate. They
are related to the old coordinates via

p =
√

2J cos (Ψ + s) ϕ =
√

2J sin (Ψ + s) . (4.10)

Performing a phase average defined as

〈h(J,Ψ, s)〉s =
1

2π

∫ 2π

0

h(J,Ψ, s)ds, (4.11)

we arrive at the following averaged Hamiltonian, valid as long as the coherent frequency
of the soliton is close to the small amplitude synchrotron frequency:

H1(J,Ψ) = α(J) +
`

π

∫
dΨ1dJ1

f(Ψ1, J1, s)
[
2J + 2J1 − 4

√
JJ1 cos(Ψ − Ψ1)

]1/2
, (4.12)
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where f(Ψ1, J1, s) is the distribution function of particles and α(J) := −J/2 + 1 −
J0(

√
2J) ≈ −J2/16, J0(x) being the Bessel function.

The corresponding Vlasov equation for this Hamiltonian is

∂f

∂s
+ {f,H} = 0, (4.13)

with the Poisson bracket {f,H} defined as

{f,H} =
∂f

∂Ψ

∂H1

∂J
− ∂f

∂J

∂H1

∂Ψ
. (4.14)

The solitons will appear as solutions uniformly rotating in the phase space defined by
(Ψ, J), f(Ψ, J, s) = g(Ψ + r̃s, J), where r̃ is a constant. Inserting this into (4.13) we
obtain [

r̃ +
∂H1

∂J

]
∂g

∂Ψ
− ∂H1

∂Ψ

∂g

∂J
= 0. (4.15)

It is useful to transform back to Cartesian phase space coordinates

A =
√

2J sin Ψ, B =
√

2J cos Ψ. (4.16)

As we got rid of the time dependence, the density g(A,B) satisfies now the time-
independent Vlasov equation

∂K

∂B

∂g

∂A
− ∂K

∂A

∂g

∂B
= 0, (4.17)

with the new Hamiltonian
K = R(A,B) + V (A,B), (4.18)

where the single particle motion is generated by

R(A,B) = α
(
[A2 +B2]/2

)
+
r̃

2
(A2 +B2) (4.19)

and collective effects are due to the self-consistent potential

V (A,B) =
`

π

∫
dA1dB1

g(A1, B1)√
(A− A1)2 + (B − B1)2

(4.20)

4.3.3 Self-consistent numerical solutions

It is well known that the Vlasov equation (4.17) can be solved if the contours of constant
particle density in phase-space coincide with those of constant energy K. However, due
to the possible existence of separatrices, this does not imply that there exists a single
function G(K) such that g(A,B) = G (K(A,B)) in all the phase space. In principle,
there can be as many different Gi functions as regions in which the separatrices divide
the phase-space.

In Fig. 4.4 (left) a schematic plot of K is presented along the line B = 0. Note that
for a given value of K there can be as much as four different points with this same energy.
The value of K at the separatrix, which in this picture can be identified with the local
maximum to the left, is denoted by Ks. In the same figure to the right, a phase-space
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Figure 4.4: Schematic plot of K(A,B = 0) for ` > 0 (left) and typical phase-space map (right)
when a soliton is present. The dashed line represents the separatrix K = Ks. The particles are
divided into three different groups: particles that belong to the soliton and that rotate around
a certain O-point located at (A0 > 0, 0) (region 1), particles inside the inner separatrix which
rotate around a different O-point at (A′

0 < 0, B) (region 2) and particles outside the outer
separatrix which turn around the whole structure (region 3).

map symmetric around the B = 0 axis is presented with a typical shape of the separatrix
that differentiates three areas in each one of which, a different dependence of K on the
density can be assumed.

We can solve the Vlasov-Poisson-like system composed by (4.17) and (4.20) by pre-
scribing the functions Gi(K) at each one of the three regions of the phase-space. There
are limitless possibilities, but we take the fairly simple

g(A,B) = C3






G1(x) = C0x
2 + C1, in region 1,

G2(x) = C1 +
√
C2 − x−

√
C2, in region 2,

G3(x) = C1 −
√
C2 − x+

√
C2, in region 3,

(4.21)

with x = K −Ks, and C0, . . . , C3 being arbitrary constants.
Any g(A,B) given by (4.21) will automatically satisfy Vlasov equation. But at this

point nothing assures us that it will also be consistent with the potential satisfying (4.20).
To find self-consistent solutions with ` > 0 and containing a hotspot we use the following
numerical procedure1:

1. Choose r̃. Set n, the iteration counter, as zero. Choose initial parameters C0
0 , C1

and C2. Set up an initial distribution function g0(A,B) which is symmetric around
B = 0.

2. Use gn(A,B) to calculate Kn(A,B) through (4.20). Find the separatrix, on which
Kn(A,B) = Kn

s . We can easily do this as the symmetry imposed by the initial
conditions will be kept all along the procedure, so the X-point contained in the
separatrix will have B = 0 and can be found as a local maximum of K(A, 0).

Define the electrostatic amplitude ψn = Kn(O) −Ks where Kn(O) is the value of
K at the O-point in region 1 (and also the absolute maximum of K).

1The code that implements this algorithms and that was used to produce the results of this chapter

can be downloaded from http://www.phy.uni-bayreuth.de/∼btpa16/downloads.html.
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Figure 4.5: Evolution of the density along B = 0 during the iteration. Convergence is reached
after about 30 iterations.

3. If n > 0 change C0 through the formula

Cn+1
0 = Cn

0

(
1 − α

ψn − ψn−1

ψn

)
, (4.22)

where α is an input parameter. If n = 0 use C1
0 = C0

0 .

4. Calculate gn+1 using (4.21) with Kn(A,B) and Cn
0 . Calculate the global normaliza-

tion constant C4 and increase n.

5. Repeat the iteration steps 2-4 until gn(A,B) converges.

The variation in C0 defined through Eq. 4.22 is introduced because an iterative scheme
with fixed C0 was proven to be largely unsuccessful, as the initial density had to be so
close to a final self-consistent solution that the whole procedure was of small utility. The
exact form of (4.22) was chosen because in the numerical investigation it proved robust,
leading almost always to interesting, nontrivial solutions. When convergence is achieved,
the parameter α ceases to play any significant role. It can be therefore regarded as
an additional “initial condition”. Typically, α ∼ 1. Figure 4.5 shows the evolution of
the density as the iteration proceeds. Depending on the initial parameters (including
α), a large range of stable solutions can be obtained. An outcome of this numerical
procedure is that there is a definite relationship between r̃ and the converged quantities
C0 and ψ, denoted by F (ψ,C0, r̃) = 0 and shown in Fig. 4.6. It can be regarded as
a nonlinear dispersion relation (NDR) that plays a similar role than the one played in
standard particle-trapping theory by the relationship between the trapping parameter β,
potential amplitude Ψ and the propagating velocity v0, shown e.g. in Eq. (2.52).

As seen from (4.21), C0 can be expressed by

C0 =
g(O) − g(X)

Nψ
, (4.23)

where g(O) [g(X)] is the distribution function at the stable (unstable) fixed point. It is
clear that C0 is positive for a hump in region 1 of Fig. (4.4), zero for a flattoped and
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Figure 4.6: Relationship between C0 and the soliton potential ψ. The red circles (outer curve)
correspond to r̃ = 0.025 and the blue crosses (inner curve) to r̃ = 0.030.

negative for a notch, and hence C0 reflects the status of trapped particles. We learn from
Fig. 4.6 that C0 is strictly positive, corresponding to a hump (hotspot), and that there
are two different values of ψ for given r̃ and C0. For the larger one (upper branch), most
of the particles are residing in the hotspot, this is, region 1 (as in Fig. 4.7), whereas
for the smaller value of ψ (lower branch) the majority of the particles id residing in the
background.

Figure 4.7 shows the phase space density and accompanying line density for a bunch
with most of the beam trapped in the soliton, while Fig. 4.8 presents a small soliton, similar
to the observations shown in Fig. 4.3. Both solutions have ` = 0.01 and A0 = 0.025
showing the broad range of solutions that are possible for the same bunch charge and
machine impedance. This is qualitatively consistent with Figs. 4.2 and 4.3.

To cross-check the results obtained by the iterative procedure, they were inserted
in a time-dependent drift-kick code that directly simulates equations (4.13) and (4.20).
The results are presented in Fig. 4.9: the plot on the left shows the mountain range
plot (simulated WCM) for the initial conditions taken as the outcome of the iterative
procedure. On the right the line density after 100 synchrotron oscillation is presented.
As can be seen, the soliton proves to be quite robust and long-lived, with only small
quantitative change that may be due to numerical inaccuracies.

4.3.4 Holes in bunched beams

Although long-lived holes have not yet been observed in bunched beams [111], the theory
we have developed can also be successfully applied to find hole solutions as long as ` < 0.

One is tempted to blindly apply the iterative procedure just described but set an initial
density g0(A,B) with a hole instead of a jump and C0

0 < 0. There are several difficulties
that would then arise:
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Figure 4.7: (a) Phase space density (gray scale) and contours of constant energy K(A,B)
(particle trajectories). (b) Line density (simulated WCM data). The solution was obtained with
α = 0.3, r̃ = 0.025, C1 = 0.1, C3 = 0.005, ` = 0.01, C0 = 21975 and ψ = 0.014. This solution
consists in a large soliton with a little background, i.e., almost all particles are trapped in the
soliton.
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Figure 4.8: (a) Phase space density (gray scale) and contours of constant energy K(A,B)
(particle trajectories). (b) Line density (simulated WCM data). The solution was obtained with
α = 1.2, r̃ = 0.025, C1 = 0.1, C3 = 0.005, ` = 0.01, C0 = 92191 and ψ = 0.0022. This solution
has comparable density in the soliton and the background.
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Figure 4.9: Simulation of a bunched beam with initial conditions provided by the outcome of
the iterative procedure. On the left the line density for the first oscillation is shown, whereas
the plot on the right corresponds to the line densities after 100 synchrotron oscillations. Only
small quantitative variations probably due to numerical errors, can be observed, which proves
that the solution obtained by the iterative code is a solution to the time-independent Vlasov
equation.
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Figure 4.10: Mountain range plot or WCM of a hole solution with ` = −0.01, C0 = −144208.

1. From Eq. 4.21 we see that a negative C0 can lead to negative particle densities which
have no physical sense. This can be avoided by setting

G1(x) = max(0, C0x
2 + C1). (4.24)

2. The attempts made to find hole solutions by using (4.24) instead of (4.21) proved
that convergent nontrivial solutions are very hard to obtain. In almost all cases, one
arrives either to a standard bunch without any superimposed structure or to vacuum
solutions with g(A,B) = 0. To overcome this further problem, a “trial and error”
schema can be devised. To assure the convergence, we set an amplitude window
defined by a minimum and a maximum ψ, denoted ψ− and ψ+ respectively. Then
we apply the iterative steps described in the former section but with the restriction
that if ψ− < ψn < ψ+ does not hold, then C0 is modified according to (4.22) but the
density gn(A,B) (and therefore, also the energy) is held constant. Then the code
will evolve and vary C0 until a acceptable nontrivial solution (usually in the very
margin of the window) is obtained.

Through this modified iterative approach, hole solutions can easily be obtained as long
as ` < 0. An example of a possible mountain range plot is given in Fig. 4.10

4.4 Concluding remarks

This chapter was concerned with trapping phenomena in the longitudinal dynamics of
charged particles beams. After reviewing the status of the topic of coasting beams, we
concentrated on investigating solitons on bunched beams. For this purpose we developed
a simplified model in which some terms of the fields equation were neglected in a quasi-
neutral approach.

Within this model we applied an iterative numerical procedure to find self-consistent
solutions consisting of hotspots sitting on top of the bunch. A relationship between the
parameters determining the shape of the distribution function and the soliton amplitude
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was also found. A comparison with the actual data show a good qualitative agreement
with our results. Later we slightly modified the code to search also for holes in the particle
densities. We concluded that holes are in principle possible but only for ` < 0, a condition
which has not yet been available in the experimental machines.

Many improvements could be made to the present theory. First of all a more rigorous
derivation of the field equations should be made to take fully into account the local
charge densities and the quasi-cylindrical geometry, leaving aside the quasi-neutrality
approximation. A theory that continuously connects the coasting beam scenario with
the bunched beam one would also be helpful in the understanding of soliton phenomena
in particle beams. This theory might be constructed by starting from a coasting beam
solution and then using finite amplitude expressions to derive solutions where almost all
the particles are contained in the soliton.



CHAPTER 5

Summary and conclusions

Überhaupt ist es für den Forscher ein guter

Morgensport, täglich vor dem Frühstück eine

Lieblingshypothese einzustampfen – das erhählt jung.

Konrad Lorenz

In the introduction to this thesis we mentioned that its main purpose was to present
an account on the role self-consistent trapping phenomena are playing in many different
areas of modern physics. We investigated three topics which we were able to study within
a similar framework of Vlasov-Poisson-like systems of equations and we showed that self-
consistency and trapping are the keys to the understanding of a plethora of nonlinear
physical phenomena.

A large part of plasma physics is concerned with transport theory and stability issues;
in some sense we can say that progress in plasma physics is measured by the increasing
ability to avoid unstable regimes and control the flow of particles, momentum and energy
through the system. The lack of understanding of some of these processes, commonly
known as anomalous transport processes, has impeded many of the desired progresses e.g.
in the confinement times of fusion reactors. But it has been shown[27, 35] that the exis-
tence of electrostatic structures greatly affects the transport coefficients. Furthermore, as
we showed in this thesis, these electrostatic structures can be excited out of thermal noise
and therefore have to be taken into account from the very beginning of the calculations.
Therefore a general framework for the study of self-consistent trapping like the one pre-
sented in this work seems to provide a helpful resource for the research in this important
field.

On the other hand, the extension of the concept of nonlinear self-consistent trapping
into the quantum domain further proves that these phenomena have to be always taken
into account when one deals with dilute systems of interacting particles. It also allows
to show connections between seemingly distant parts of physics, such as hot plasmas and
nonlinear optical fibers. The concept of approaching a nonlinear equation (in our case

95



96 SUMMARY AND CONCLUSIONS

the Nonlinear Schrödinger Equation) by going into a kinetic description and then apply-
ing some variation of the pseudo-potential method appears to be appropriate for other
equations as well thereby allowing the formulation of conceptually new and challenging
problems and providing a deeper understanding on the physics involved in nonlinear wave
phenomena in different media.

Finally, charged particle beams show another example of the successful application of
the methods and knowledge about nonlinear trapping that stem from plasma physics. The
investigations on solitons on bunched beams had however to rely strongly on numerical
methods, due to the lack of reliable analytical unperturbed solutions. This problem might
be overcome in the future if a theory that continuously connects coasting and bunched
beam physics succeeds.

Many open questions deserve further investigation in this field. The properties of
negative energy modes seem to be the most outstanding one among them: a new paradigm
of stability based on the idea of nonlinear self-consistent trapping appears to be at hand
that would be a breakthrough in plasma physics, a point that could eventually be applied
also to quantum systems as well as to beam dynamics. In the corresponding chapter
we mentioned also the value of extending the description of holes in a weak quantum
plasma to propagating electron holes and finite amplitudes. Also the topic of trapping in
accelerators and storage rings presents challenging problems that still need to be solved,
e.g. the use of an improved field equation for bunched beams.

In summary, we can say that the topic of self-consistent collective nonlinear particle
trapping has achieved a better understanding on many relevant nonlinear problems in
plasma physics and related areas. It is, on the other hand, far from being exhausted, for
it still provides challenging problems and promises to play a key role in many forthcoming
investigations on a large variety of subjects mainly contained in, but not restricted to
plasma physics.



APPENDIX A

Particle–in–cell simulation of two–stream

nonlinear instabilities

A.1 Motivation

In a landmarking work, R.H. Berman, D.J. Tetreault and T.H Dupree [39, 40] presented
computer simulations showing instability well below the predicted linear ion-acoustic
threshold. In particular, they observed how eddies typical of a Bernstein-Greene-Kruskal
equilibrium were formed even without any initial macroscopic (i.e. collective) excitation.
These structures in phase space, that can be better described as holes, tended to last for
relatively long times while they grew and were decelerated.

By showing how a system conventionally regarded as stable against small perturba-
tions was destabilized even by thermal fluctuations, these results focused the attention
of the plasma physics community onto the limitations of linear stability theory. These
numerical works were presented two decades ago and, although they used very optimized
algorithms and computer capabilities quite impressive for that time, progress in the avail-
able hardware has been so fast that an average desktop computer of nowadays can easily
outperform the computational power they used. It is therefore timely and convenient to
reexamine such results and check them using modern equipment to test whether they
stand up when using more realistic conditions for the simulations (i.e. a larger number of
simulated particles).

A.2 Particle-in-cell simulation: a short review

Besides the Vlasov and Fokker-Planck codes like the one we introduced in section 2.4,
the other family of simulation techniques that take into account the kinetic behavior of
the particles is that of Particle-in-cell (PIC) codes [115]. Unlike Vlasov and Fokker-
Planck codes, which integrate a statistical kinetic equation to predict the evolution of a
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x0 x1 xi xi+1 xN−1 xN· · · · · ·

qi

∆x

−L +L

Figure A.1: Division of the system length into several sub-intervals (cells). The electric field
is calculated at every xi and later interpolated for all intermediate positions.

distribution function, PIC codes just follow the trajectory of every plasma particle while
self-consistently calculating the generated fields.

The name Particle-in-cell comes from the procedure used to calculate the field. Simply
using the complete Coulomb expression to calculate the interaction between every pair
of particles turns usually out to be far too computationally expensive to be useful. A
different approach is used instead which can be regarded as the numerical equivalent to
what in statistical mechanics is called a mean-field approximation. The procedure for a
one-dimensional system with periodic boundary conditions is as follows1 : as represented
in Fig. A.1, one can divide the simulated system lenght, that we suppose spans from −L
to +L, into N sub-intervals or cells of length ∆x = 2L/N . Let qi be the net charge
contained between points xi and xi+1, this is,

qi = ni
i − ni

e, (A.1)

with ni
i and ni

e being, respectively the number of ions and electrons present in cell i. If
we apply the Gauß theorem we find the variation of electric field between points xi and
xi+1:

E(xi+1) − E(xi) = qi. (A.2)

Then, supposing we know the field at the boundary E(x0) = E(xN ), we would be able to
calculate the field at any xj as

E(xj) = E(x0) +

j−1∑

i=0

qi. (A.3)

Note that the periodicity is granted if we assume quasineutrality, this is
∑N−1

i=0 qi = 0.
The field at the boundary can be related with the average electric field 〈E〉. Usually
〈E〉 = 0, in which case

E(x0) = − 1

N

N−1∑

j=0

j−1∑

i=0

qi. (A.4)

Once we have calculated the electric field at every grid point, we can also calculate by
interpolation the forces acting on each particle and then integrate the field equations by
a straightforward leap-frog algorithm.

1Here we describe a direct integration of the field equations via a finite differences method. Most of the

actual PIC codes use Fast Fourier Transforms (FFT) to compute the fields, which has the advantages

of smoothing the solutions and providing immediate access to spectral information. As we are only

interested in a handy repetition of previous results, the exposed procedure yields a sufficiently reliable

outcome. For a detailed review on further refinements on PIC codes, see Ref. 115.
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Figure A.2: Initial phase space densities of electrons (left) and ions (right). Note that no initial
excitations are present, the local variations in the density being due only to random (incoherent)
fluctuations. The dashed line is located at v = 0.75 and represents the limit of negative energies
for ion holes when β = 0.

A.3 Nonlinear instability and formation of phase-space vortices

A PIC code that works as sketched in the past section2 can be used to prove that nonlinear
instability exists far below the linear threshold. To do so, we can initialize the code with
a very large number of particles with an initial thermal distribution and without any
macroscopic excitation (what Berman and coworkers called random start). As physical
parameters we will use the same as we did in section 2.6.2 which, in turn, are the same used
by Berman and coworkers: the mass ratio is set to δ = me/mi = 1/4, the temperature
ratio is set to unity (Te = Ti) and the drift between electrons and ions is set to vD = 1.75
(remember that the linear threshold for stability for this parameters is located at v?

D =
1.96). We will simulate 1024000 particles whithin 1024 cells (i.e. ten times more particles
and double as many cells as in Ref. 40).

The outcome of the simulations is summarized in Figs. A.2 - A.5. The first conclussion
we can extract from looking at such pictures is that the system is actually far from stable,
thus contradicting the linear stability theory. We conclude also that the onset of instability
is clearly related with the development of vortices in phase space that usually appear as
electron and ion holes (depressions in the particle densities). Figure A.5 shows also that
after the interaction and coalescence of structures, some of them seem to survive for long
times.

We can also study the influence of negative energy modes on the nonlinear destabi-
lization of the system. On this purpose we plotted in our figures the boundary v? = 0.75
between positive and negative energy ion holes for the used temperature ratio and drift
velocity and β = 0 (see (2.77) and also Fig. 2.28). The selection of β = 0 seems not to be

2The PIC code which was used to generate the results presented here can be down-

loaded from the same internet address as all the codes with which we deal in this thesis:

http://www.phy.uni-bayreuth.de/∼btpa16/downloads.html.
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Figure A.3: Phase space densities of electrons (left) and ions (right) at t = 255. This is
approximately the instant when nonlinear instability is first macroscopically visible. Note how
small vortices, seen as depressions in phase space density, start to develop.
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Figure A.4: Phase space densities of electrons (left) and ions (right) at t = 350. Note how
instability has led to the formation of clusters of trapping structures, mostly visible in the
electron phase space.
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Figure A.5: Phase space densities of electrons (left) and ions (right) at t = 400.

unphysical, as one would expect that when structures arise out of thermal fluctuations,
they start with distribution functions more or less flat at the trapped range. Figure A.3
suggests that initially electrostatic structures start to develop in the negative energy range
while later (perhaps due to the interaction between them) the are decelerated. If we go
to much larger times (Fig. A.5) and we look at the ion phase space densities we see that
the distribution function has suffered a large amount of filamentation mostly above the
negative energy threshold. Some solitary surviving holes are found however in the postive
energy range.

From our simulations we conclude that the results of Berman and coworkers remain
unchanged when the number of particles in the simulation is highly increased, thereby
proving to be robust and reliable evidences of the importance of trapping and holes in
the nonlinear stability of current-carrying plasmas. The results support also the claim
of Refs. 19, 18 according to which ion holes arise spontaneously in the negative energy
range, which is one of the arguments on which the conjecture of a destabilization through
negative energy holes is based.
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