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1. Introduction

A central aspect of any kind of geometric consideration is to study the symmetries 
of the underlying spaces. In complex algebraic geometry, the symmetries are biholomor
phic self-maps of projective manifolds. Given a known manifold X then, in the spirit 
of Godeaux, we can often construct new and interesting manifolds by taking quotients 
X/G modulo a free action of a finite group of automorphisms. An important class of 
such quotients are the varieties isogenous to a product.

Definition 1.1. A complex variety X is isogenous to a product if it is isomorphic to a 
quotient

X ≃ (C1 × . . .× Cn)/G,

where the C ′
is are compact Riemann surfaces of genus g(Ci) ≥ 1 and G is a finite group 

acting freely on the product C1 × . . .× Cn. We call X isogenous to a higher product, if 
g(Ci) ≥ 2 for all Ci.

Since Catanese introduced these varieties in [Cat00], they have been studied exten
sively, especially in dimension two in order to construct and classify surfaces of general 
type and describe their moduli spaces, cf. [BCG08,CP09,Gle15,Pen11,Fal24]. We point 
out that a variety X isogenous to a product is of general type if and only if it is isoge
nous to a higher product. It has been shown by Catanese that a surface S isogenous to 
a higher product has a unique minimal realization

S ≃ (C1 × C2)/G.

It is characterized by the property that the diagonal subgroup G0 := G ∩ (Aut(C1) ×
Aut(C2)) acts faithfully on each curve Ci.

An easy example of a surface isogenous to a higher product is due to Beauville [Bea83b, 
Exercises X.13 (4) p.118]: consider the product of two Fermat quintics

C = {x5
0 + x5

1 + x5
2 = 0} ⊂ P 2

C

together with the action of (a, b) ∈ Z2
5 defined by

(a, b) ∗ (︁[x0 : x1 : x2], [y0 : y1 : y2]) := ([ζa5x0 : ζb5x1 : x2], [ζa+3b
5 y0 : ζ2a+4b

5 y1 : y2]
)︁
. (1.1)

Since this action is free, the quotient

S := (C × C)/Z2
5

is a surface isogenous to a product. Its holomorphic Euler number is χ(𝒪S) = 1, which 
is the minimal Euler number for a surface of general type. Remarkably, it turns out that 
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S is rigid, i.e. it has no non-trivial deformations. Motivated by this example Catanese 
defined Beauville surfaces as rigid surfaces isogenous to a product [Cat00, Def 3.23]. 
They are always of general type ([BCG05, cf. Prop 3.2], [BC18, Thm 2.7]) and have 
an entirely group theoretical description in terms of a so called Beauville structure of 
the corresponding group. For this reason, Beauville surfaces have been actively studied, 
not only by algebraic geometers, but also by group theorists, as they provide a rich 
framework to explore the interplay between these disciplines (cf. [BGV15]). The aim of 
this paper is to extend the theory of Beauville surfaces to higher dimensions and explore 
some new phenomena. For this purpose we define:

Definition 1.2. A rigid variety isogenous to a product is called a Beauville manifold.

In contrast to the surface case, the geometry of higher dimensional Beauville manifolds 
is more involved. First we point out that they are not necessarily of general type. Indeed, 
according to [BC18, Thm 3.4 and Thm 3.5] we have:

• For all n ≥ 4 there exists a Beauville n-fold of Kodaira dimension 0.
• For all n ≥ 3 there exists a Beauville n-fold of Kodaira dimension κ for all 2 ≤ κ ≤ n.

Our second remark is that even in the case of a higher product, we cannot assume that 
the diagonal subgroup

G0 := G ∩ (Aut(C1) × . . .× Aut(Cn))

acts faithfully on each curve Ci. Indeed, in [FG16] the authors provide a classification 
of all 3-folds X isogenous to a higher product of curves with χ(𝒪X) = −1 under the 
assumption that the action is diagonal, i.e. G = G0 and faithful on each curve Ci. Among 
the 54 families there are no rigid examples. However, dropping the faithfulness on the 
factors, a rigid example with χ(𝒪X) = −1 is easy to construct as a modification of the 
original Beauville surface (1.1): we take the hyperelliptic curve D of genus two given by 
the a�ine equation y2 = x5 − 1 and define X as the quotient of C2 × D modulo the 
following free Z2

5-action:

(a, b) ∗ (︁[x0 : x1 : x2], [y0 : y1 : y2],[x, y]
)︁

:=(︁
[ζa5x0 : ζb5x1 : x2], [ζa+3b

5 y0 : ζ2a+4b
5 y1 : y2], [ζa5x, y]

)︁
.

Clearly, the action is not faithful on the third factor. However, the quotient X is rigid 
and χ(𝒪X) = −1. This observation serves as a motivation for the following questions 
about Beauville 3-folds of general type:

• Is Z2
5 the smallest group attached to a Beauville 3-fold?

• What is the number of biholomorphism classes of Beauville 3-folds with group Z2
5

and Euler number χ(𝒪X) = −1?
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• What is the largest integer χ ≤ −2 such that there exists a Beauville threefold X
with χ(𝒪X) = χ under the assumption that the group acts faithfully on each Ci? Is 
it possible to classify these 3-folds up to biholomorphism?

For simplicity, we restrict our focus to unmixed Beauville 3-folds, i.e. to the case where 
G acts diagonally on the (higher) product of three curves. Our results are the following:

Theorem 1.3. The smallest group attached to an unmixed Beauville 3-fold X is Z2
5. These 

3-folds have either χ(𝒪X) = −1 or −5. There are 8 biholomorphism classes of such 3
folds with χ(𝒪X) = −1 and 77 with χ(𝒪X) = −5.

Theorem 1.4. The number 𝒩 of biholomorphism classes of unmixed Beauville 3-folds X
with holomorphic Euler number χ(𝒪X) = χ ∈ {−5,−4,−3,−2}, such that the corre
sponding group acts faithfully on each factor of the product is:

χ -5 -4 -3 -2 
𝒩 78 8 0 1 

We will now explain how the paper is organized. In Section 2, we recall the basic 
theory of varieties isogenous to a product of curves and introduce Beauville manifolds. 
Crucial for our analysis is the existence and uniqueness of a minimal realization of a 
Beauville manifold or more generally of a variety isogenous to a higher product of curves 
of unmixed type. Even though this result is well-known in the surface case [Cat00, 
Cor. 3.12 and Prop. 3.13] and folklore in higher dimensions, we decided to include a 
proof, since we could not find a reference for dimension n ≥ 3. In Section 3, we use 
Riemann’s existence theorem to give a purely group theoretical description of unmixed 
Beauville manifolds of general type. More precisely, we explain how to attach to the 
minimal realization of a given Beauville n-fold an n-fold Beauville structure of the cor
responding group G. Then we provide a natural action of the group Aut(G)× (ℬ3 ≀𝔖n)
on the set 𝒰ℬn(G) of all (unmixed) Beauville structures of G, where ℬ3 is the Artin
Braid group on three strands. We show that the biholomorphism classes of unmixed 
Beauville n-folds are in 1 : 1 correspondence with the orbits of this action. Unfortu
nately, for certain groups, it can be very difficult and computationally expensive to 
determine these orbits. This difficulty is resolved in Section 4, where we present an 
effective method to compute the orbits, that extends the automorphism of Braid type 
approach of [Fal24, Section 1.2] from surfaces to arbitrary dimensions. These results 
allow us to employ the Database of topological types of actions on curves of [CGP23] for 
explicit computations. In Section 5, we discuss the notion of the Beauville dimension of 
a finite group G, which is the minimum dimension of a Beauville manifold with group 
G. This concept was introduced by Carta and Fairbairn in [CF22] under the assumption 
that the group acts faithfully on each factor. We drop this assumption and show that 
the group Z3

n has Beauville dimension three if and only if gcd(n, 6) = 1. In Section 6, 
we prove our main theorems using a MAGMA [BCP97] implementation of the algo
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rithm from Section 4. The reader can find a MAGMA implementation on the webpage 
https://www.komplexe-analysis.uni-bayreuth.de/de/team/gleissner-christian/index.php.

2. Generalities on Beauville manifolds

In this section, we present the basic theory of varieties isogenous to a product of curves 
via uniformization. More precisely, we extend the results [Cat00, Cor. 3.9, Prop. 3.11, 
Cor. 3.12, Prop. 3.13] of Catanese on surfaces, which were established using different 
methods.

In particular, we focus on Beauville manifolds, which are the rigid varieties isogenous 
to a product of curves. In higher dimensions they serve as natural generalizations of 
Beauville surfaces.

Recall that a variety X isogenous to a product is smooth and projective. The Kodaira 
dimension κ(X) is equal to the number of curves of genus g(Ci) ≥ 2 in the product 
C1 × . . . × Cn. The n-fold self-intersection of the canonical class Kn

X , the topological 
Euler number e(X) and the holomorphic Euler number χ(𝒪X) are given in terms of the 
genera g(Ci) and the order of the group.

Proposition 2.1. Let X ≃ (C1 × . . .× Cn)/G be a variety isogenous to a product, then

χ(𝒪X) = (−1)n

|G| 
n ∏︂

i=1

(︁
g(Ci) − 1

)︁
, Kn

X = (−1)nn!2nχ(𝒪X) and e(X) = 2nχ(𝒪X).

Definition 2.2. A rigid variety isogenous to a product is called a Beauville manifold.

Remark 2.3. A Beauville surface is always isogenous to a higher product, i.e. of gen
eral type ([BCG05, cf. Prop. 3.2] and [BC18, Thm. 2.7]). This is not true anymore for 
Beauville manifolds of higher dimension:

1. For all n ≥ 4 there exists a Beauville n-fold of Kodaira dimension 0 (see [BC18, 
Thm. 3.4]).

2. For all n ≥ 3 there exists a Beauville n-fold of Kodaira dimension κ for all 2 ≤ κ ≤ n

(see [BC18, Thm. 3.5]).
3. There is no rigid and free action on a 3-dimensional complex torus. In particular, 

there are no Beauville 3-folds of Kodaira dimension 0. (see [DG23, Thm. 1.1(a)]).
4. The existence of Beauville manifolds of Kodaira dimension 1 is still an open question. 

However, there are no such manifolds if the action is diagonal and faithful on each 
factor, cf. Definition 2.7. For this result, see [BGK25, Cor. 3.11].

5. The existence of rigid 3-folds of Kodaira dimension 0 and rigid n-folds of Kodaira 
dimension 1 for all n ≥ 3 is known (see [Bea83a] and [BG20]). They are obtained as 
certain resolutions of quotients of a product of curves by a non-free action.

https://www.komplexe-analysis.uni-bayreuth.de/de/team/gleissner-christian/index.php
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In this paper, we are mainly interested in the special case where X is isogenous to a 
higher product of curves. In order to study group actions on a product C1 × . . .×Cn of 
compact Riemann surfaces with g(Ci) ≥ 2, it is important to understand the structure 
of the automorphism group of the product. This group has a simple description in terms 
of the automorphism groups Aut(Ci) of the factors, thanks to the lemma below:

Lemma 2.4. Let D1, . . . , Dk be pairwise non-isomorphic compact Riemann surfaces with 
g(Di) ≥ 2. Then for all positive integers n1, . . . , nk it holds:

Aut(Dn1
1 × . . .×Dnk

k ) = (Aut(D1) ≀𝔖n1) × . . .× (Aut(Dk) ≀𝔖nk
).

Here Aut(Di) ≀𝔖ni
= Aut(Di)ni

⋊𝔖ni
denotes the wreath product.

Proof. Any automorphism φ ∈ Aut(Dn1
1 × . . .×Dnk

k ) lifts to an automorphism φ̂ of the 
universal cover, which is a product of unit discs Δn. The claim follows from the well 
known fact that

Aut(Δn) = Aut(Δ) ≀𝔖n.

See, [Nar95, Proposition 3, p.68]. □
The above lemma motivates the following definition:

Definition 2.5. A n-dimensional variety X isogenous to a higher product is said to be 
of unmixed type, if there is a realization X ≃ (C1 × . . . × Cn)/G, such that G acts 
diagonally on the product: G ≤ Aut(C1) × . . . × Aut(Cn). Otherwise, we say that X is 
of mixed type.

Proposition 2.6. A variety X is isogenous to a higher product of curves if and only if 
there exists an unramified cover

f : C1 × . . .× Cn → X, where g(Ci) ≥ 2.

Proof. Assume that f exists, then the universal cover of X is the polydisc Δn and the 
cover f is induced by a finite index subgroup

Γ1 × . . .× Γn < Γ,

where Γ < Aut(Δn) is the fundamental group of X and Γi the fundamental group of Ci. 
An element of Γ is of the form

γτ (z1, . . . , zn) = (γ1(zτ(1)), . . . , γn(zτ(n))),

for some permutation τ ∈ 𝔖n and automorphisms γi ∈ Aut(Δ). This implies
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γτ (Γ1 × · · · × Γn)γ−1
τ = γ1Γτ(1)γ

−1
1 × · · · × γnΓτ(n)γ

−1
n .

The normal core i.e. the largest subgroup of Γ1×· · ·×Γn that is normal in Γ is therefore 
given by

coreΓ(Γ1 × · · · × Γn) =
⋂︂

γτ∈Γ
γτ (Γ1 × · · · × Γn)γ−1

τ =
n ∏︂

i=1

⋂︂
γτ∈Γ

γiΓτ(i)γ
−1
i .

Since the core of a finite index subgroup has finite index, we obtain a finite Galois cover

Δ/Γ′
1 × · · · × Δ/Γ′

n → X, where Γ′
i :=

⋂︂
γτ∈Γ

γiΓτ(i)γ
−1
i . □

We want to point out that a realization of a variety X isogenous to a higher product 
as a quotient (C1 × . . .×Cn)/G is in general not unique. However, we can always find a 
so called minimal realization which is unique up to isomorphism. In this paper, we want 
to stick to the case where X is of unmixed type. Then, given a realization, we obtain 
G-actions ψi : G → Aut(Ci) on the factors which are not necessarily faithful. We denote 
by Ki the kernel of ψi and define the quotient G/Ki, which then acts faithfully on Ci as 
Gi.

Definition 2.7. A diagonal G-action on C1 × . . .× Cn is called

1. minimal, if K1 ∩ . . . ∩ ˆ︁Ki ∩ . . . ∩Kn = {1G} for all i.
2. absolutely faithful, if all kernels Ki are trivial.

Clearly, an absolutely faithful action is also minimal and in dimension two the notions 
coincide.

Theorem 2.8. Every variety isogenous to a higher product of curves of unmixed type has 
a unique minimal realization, i.e. a realization obtained by a minimal action.

To prepare for the proof of this theorem, we need to recall the structure of the fun
damental group of a variety isogenous to a higher product of unmixed type, cf. [DP12].

Remark 2.9. Let (C1 × . . .×Cn)/G be a not necessarily minimal realization of a variety 
X isogenous to a higher product of curves of unmixed type. Considering the universal 
cover πi : Δ → Ci, we obtain the short exact sequence

1 → Γi → Ti
ρi→ Gi → 1.

As above Γi is isomorphic to the fundamental group of Ci and Ti is the group of all 
possible lifts of the elements in Gi, i.e. the orbifold fundamental group:
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Ti = {γ ∈ Aut(Δ) | exists g ∈ Gi such that πi ◦ γ = ψi(g) ◦ πi},

see [Cat15, Chapter 6] for an in depth discussion of orbifold fundamental groups. Simi
larly, we take the universal cover Δn → C1 × . . .× Cn and get the short exact sequence

1 → Γ1 × . . .× Γn → Γ → G → 1.

The group Γ consists of the lifts of the elements in G to Aut(Δn). It is isomorphic to 
the fundamental group of X, because the action of G is free. Since G acts diagonally on 
the product of curves, an automorphism g ∈ G lifts to an automorphism (γ1, . . . , γn) ∈
Aut(Δ)n, if and only if each ψi(g) lifts to γi ∈ Aut(Δ). Therefore, we can write Γ in the 
following way:

Γ = {(γ1, . . . , γn) ∈ T1 × . . .× Tn | g = ρi(γi) ∈ Gi for all 1 ≤ i ≤ n and some g ∈ G}.

Proof of Theorem 2.8. (I) To show the existence of a minimal realization, we start with 
an arbitrary realization

X ≃ C1 × . . .× Cn

G 
.

For each i, we consider the normal subgroups Hi := K1 ∩ . . . ∩ ˆ︁Ki ∩ . . . ∩Kn ⊴ G. Note 
that Hi acts trivially on Cj for all i ̸= j and freely on Ci. In particular, the genus of the 
quotient curve Ci/Hi is at least 2. We take the product H := H1 · . . . ·Hn ⊴ G of our 
normal subgroups and form the double quotient

X ≃ (C1 × . . .× Cn)/H
G/H 

≃ C1/H1 × . . .× Cn/Hn

G/H 
.

By construction, the induced G/H-action on the product C1/H1 × . . .×Cn/Hn is min
imal. 
(II) To prove the uniqueness, we consider a biholomorphism between two minimal real
izations of a variety X isogenous to a higher product:

f : C1 × . . .× Cn

G 
→ D1 × . . .×Dn

G′ .

The map f lifts to an automorphism f̂ ∈ Aut(Δn) = Aut(Δ) ≀𝔖n. Up to permutation 
of the curves Di, we may assume that

f̂(z1, . . . , zn) =
(︁
f̂1(z1), . . . , f̂n(zn)

)︁
.

Conjugation with f̂ induces an isomorphism between the deck transformation groups of 
the universal covers
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f∗ : Γ → Γ′, (γ1, . . . , γn) ↦→ (︁
f̂1γ1f̂1

−1
, . . . , f̂nγnf̂n

−1)︁
.

Our goal is to show that f∗ restricts to an isomorphism between the fundamental groups 
of the product of curves

f∗(Γ1 × . . .× Γn) = Γ′
1 × . . .× Γ′

n. (2.1)

Under this condition the uniqueness follows, since then f∗ induces an isomorphism of 
Galois groups

G ≃ Γ/(Γ1 × . . .× Γn) → Γ′/(Γ′
1 × . . .× Γ′

n) ≃ G′

and a biholomorphic lift of f to the product of curves:

(C1 × . . .× Cn)/G
f

(D1 × . . .×Dn)/G′

C1 × . . .× Cn

f̃
D1 × . . .×Dn.

To verify equation (2.1), it suffices to show that

f∗(1, . . . , 1, γi, 1, . . . , 1) ∈ Γ′
1 × . . .× Γ′

n,

for all 1 ≤ i ≤ n and γi ∈ Γi. Here we use the structure of Γ′ given in Remark 2.9 and 
assume for simplicity that i = 1. Take γ1 ∈ Γ1, then

f∗(γ1, 1, . . . , 1) =
(︁
f̂1γ1f̂1

−1
, 1, . . . , 1

)︁ ∈ Γ′.

Hence there exists g ∈ G′ such that

g = ρ′1
(︁
f̂1γ1f̂1

−1)︁ ∈ G′/K1 and g = ρ′j(1) = 1 ∈ G′/K ′
j

for all j ≥ 2. This implies g ∈ K ′
2 ∩ . . . ∩ K ′

n = {1G′} and therefore also f̂1γ1f̂1
−1 ∈

ker(ρ′1) = Γ′
1. □

Remark 2.10. Theorem 2.8 allows us to attach, to any variety isogenous to a higher 
product of unmixed type, a product of curves C1 × . . .×Cn together with a finite group 
G acting minimally on the product. We will use this fact in the next section to give a 
purely group theoretical description of unmixed Beauville manifolds.

Proposition 2.11. A diagonal and free G-action on a product of compact Riemann sur
faces
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Y = C1 × . . .× Cn with g(Ci) ≥ 2

yields a Beauville manifold, if and only if each Ci is a triangle curve:

1. Ci/Gi ≃ P 1 and
2. Ci → Ci/Gi is branched in three points, where Gi = G/Ki.

Proof. The tangent bundle of Y decomposes as

ΘY = p∗1ΘC1 ⊕ · · · ⊕ p∗nΘCn
,

where pi : Y → Ci is the projection onto the i-th factor. Consequently,

H1(Y,ΘY ) = H1(Y, p∗1ΘC1) ⊕ · · · ⊕H1(Y, p∗nΘCn
).

Each summand can be computed using the Künneth formula. Since

p∗i ΘCi
=

⎛⎝⨂︂
j ̸=i 

p∗j𝒪Cj

⎞⎠⊗ p∗i ΘCi
,

we obtain

H1(Y, p∗i ΘCi
) =

⨁︂
l1+···+ln=1

⎛⎝⨂︂
j ̸=i 

H lj (Cj ,𝒪Cj
)

⎞⎠⊗H li(Ci,ΘCi
) = H1(Ci,ΘCi

),

where the final equality follows from the fact that H0(Cj ,𝒪Cj
) = C and H0(Ci,ΘCi

) = 0
for g(Ci) ≥ 2. Summing over all i, we find:

H1(Y,ΘY ) = H1(C1,ΘC1) ⊕ · · · ⊕H1(Cn,ΘCn
).

Since the G-action on Y is diagonal, we obtain

H1(Y,ΘY )G = 0 if and only if H1(Ci,ΘCi
)Gi = 0 for all i.

By using [Bea83b, Examples VI.12 (2)], the condition H1(Ci,ΘCi
)Gi = 0 is easily seen 

to be equivalent to (1) and (2). □
Corollary 2.12. An unmixed Beauville manifold is always regular, i.e. it has no non-zero 
global holomorphic 1-forms.

Proof. The irregularity of X = (C1 × . . .×Cn)/G is given by q(X) =
∑︁n

i=1 g(Ci/Gi) =
0. □
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3. Group theoretical description of Beauville 𝒏-folds

In this section we briefly recall the theory of triangle curves from the group theoretical 
point of view. This allows us to give a group theoretical description of unmixed Beauville 
n-folds that provides a way to classify them up to biholomorphism.

As we mentioned in the previous section, triangle curves are finite Galois covers of the 
projective line branched on three points ℬ := {−1, 0, 1} ⊂ P 1. Note that the fundamental 
group of the complement P 1 \ℬ is generated by three simple loops γ, δ and ϵ around the 
points −1, 0 and 1, respectively. These loops satisfy a single relation and we get:

π1(P 1 \ ℬ,∞) = ⟨γ, δ, ϵ | γ · δ · ϵ = 1⟩. (Fig. 1)

Fig. 1. The three generators γ, δ, ϵ of the fundamental group of P1 \ ℬ. 

Definition 3.1. Let G be a finite group. A triple S = [a, b, c] of non-trivial group elements 
is called a spherical triple of generators or shortly a generating triple of G if

G = ⟨a, b, c⟩ and a · b · c = 1G

The type of S is defined as

T (S) := [ord(a), ord(b), ord(c)].

Observe that a generating triple S = [a, b, c] of a finite group G induces a surjective 
homomorphism

ηS : π1(P 1 \ ℬ,∞) → G by γ ↦→ a, δ ↦→ b, and ϵ ↦→ c.

Using Riemann’s existence theorem, the homomorphism ηS yields a Galois triangle cover

fS : (CS , q0) → (P 1,∞)

with branch locus ℬ together with a unique isomorphism ψ : G → Deck(fS) such that 
the composition

(ψ ◦ ηS) : π1(P 1 \ ℬ,∞) → G → Deck(fS)

is the monodromy map of the associated unramified cover. All triangle covers arise in 
this way.
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Remark 3.2. 

1. The genus of CS , the order of G and the orders of the generators a, b and c are 
related by Hurwitz’s formula:

2g(CS) − 2 = |G|
(︃

1 − 1 
ord(a) − 1 

ord(b) − 1 
ord(c)

)︃
.

In particular we observe that g(CS) ≥ 2, if and only if

1 
ord(a) + 1 

ord(b) + 1 
ord(c) < 1.

In this case the generating triple S = [a, b, c] is said to be hyperbolic, which we will 
assume throughout this section.

2. The stabilizer set of S is defined as

ΣS :=
⋃︂
g∈G

(g⟨a⟩g−1 ∪ g⟨b⟩g−1 ∪ g⟨c⟩g−1)

It consists of the elements in G which have at least one fixed point on the curve CS.

Remark 3.3. An unmixed Beauville n-fold X = (C1 × . . .×Cn)/G of general type yields 
an n-tuple [S1, . . . , Sn], such that

1. Si = [ai, bi, ci] is a hyperbolic generating triple of Gi = G/Ki, where Ki ⊴ G is the 
kernel of

ψi : G → Aut(Ci).

2. The intersection K1 ∩ . . . ∩ ˆ︁Ki ∩ . . . ∩Kn is trivial for all i.
3.

⋂︁n
i=1 ΣSi

·Ki = {1G}.

The condition that Si is hyperbolic tells us g(CSi
) ≥ 2. The second condition reflects 

the minimality of the realization and the third the freeness of the action. Conversely, 
any such tuple gives rise to an unmixed Beauville n-fold of general type.

Definition 3.4. Let G be a finite group. An n-tuple [S1, . . . , Sn] of hyperbolic generating 
triples such that the conditions (1), (2) and (3) from Remark 3.3 hold is called an n-fold 
unmixed Beauville structure for G. The set of n-fold unmixed Beauville structures for G
is denoted by 𝒰ℬn(G).

The group G is called an n-fold unmixed Beauville group if G admits an n-fold unmixed 
Beauville structure.
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In the following we derive a criterion which allows us to decide whether two unmixed 
Beauville structures yield biholomorphic Beauville manifolds (cf. [BCG05, Proposition 
4.2] for the surface case). For this purpose it is important to understand when two 
generating triples lead to the same triangle cover.

Definition 3.5. A twisted covering isomorphism of two triangle G-covers fi : Ci → P 1, 
branched on ℬ = {−1, 0, 1}, is a pair (u, v) of biholomorphic maps

u : C1 → C2 and v : P 1 → P 1

such that v(ℬ) = ℬ and v ◦ f1 = f2 ◦ u.

Remark 3.6. Let ψi : G → Deck(fi) be the corresponding G-actions, then the existence 
of a twisted covering isomorphism is equivalent to the existence of an automorphism 
α ∈ Aut(G) and a biholomorphism u : C1 → C2 such that

ψ2(α(g)) ◦ u = u ◦ ψ1(g) for all g ∈ G.

As we shall see, this holds if and only if the corresponding generating triples belong to 
the same orbit of a certain group action on the set 𝒮(G) of all hyperbolic generating 
triples of G. First of all, there is a natural action of the Artin-Braid group

ℬ3 := ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩

on 𝒮(G) defined by:

σ1 ∗ [a, b, c] := [aba−1, a, c] and σ2 ∗ [a, b, c] := [a, bcb−1, b].

This action commutes with the diagonal action of an automorphism α ∈ Aut(G) given 
by

α ∗ [a, b, c] := [α(a), α(b), α(c)].

Thus, we obtain a well-defined action of Aut(G) × ℬ3 on 𝒮(G) by

(α, δ) ∗ S := α ∗ (δ ∗ S).

Proposition 3.7. [BCG05, Proposition 2.3] Let G be a finite group and S, S′ ∈ 𝒮(G) be 
two generating triples of G. Then, the following are equivalent:

1. There is a twisted covering isomorphism between fS : CS → P 1 and fS′ : CS′ → P 1.
2. The generating triples S and S′ are in the same Aut(G) × ℬ3 orbit.
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Remark 3.8. Proposition 3.7 tells us that the collection of triangle G-covers modulo 
twisted covering isomorphisms is in bijection with the quotient

𝒯 (G) := 𝒮(G)/(Aut(G) × ℬ3).

For this reason, several authors put effort into the development of an efficient algorithm 
to compute these quotients, see [CGP23] and [Pau23]. In [CGP23] a database is set up, 
which contains a representative for any orbit of hyperbolic generating triples for a fixed 
genus g ≤ 64 and group order d ≤ 2000.

Proposition 3.9. Let X and X ′ be Beauville n-folds given by the unmixed Beauville struc
tures [S1, . . . , Sn] and [S′

1, . . . , S
′
n] for G, where Si ∈ S(G/Ki) and S′

i ∈ S(G/K ′
i). Then 

X and X ′ are biholomorphic if and only if there exist an automorphism α ∈ Aut(G), 
braids δ1, . . . , δn ∈ ℬ3 and a permutation τ ∈ 𝔖n, such that

K ′
i = α(Kτ(i)) and S′

i = (α, δi) ∗ Sτ(i), where α : G/Kτ(i) → G/K ′
i.

Proof. By uniqueness of the minimal realization (Theorem 2.8), every biholomorphism 
f : X → X ′ between the quotients lifts to a biholomorphism

f̂ : CS1 × . . .× CSn
→ CS′

1
× . . .× CS′

n
.

As explained in Proposition 2.4, this map must be of the form

f̂(z1, . . . , zn) = (u1(zτ(1)), . . . , un(zτ(n))),

for some permutation τ ∈ 𝔖n. Such a map descends to the quotient level if and only if 
there exists an automorphism α ∈ Aut(G) such that

ψ′
i(α(g)) ◦ ui = ui ◦ ψτ(i)(g) for all g ∈ G. (3.1)

Now the action ψτ(i) : G → Aut(CSτi
) factors through the faithful action

ψτ(i) : G/Kτ(i) → Aut(CSτi
)

and similarly ψ′
i descends to ψ′

i : G/K ′
i → Aut(CS′

i
). Thus Equation (3.1) is equivalent 

to

ψ′
i(α(g)) ◦ ui = ui ◦ ψτ(i)(g), where g ∈ G/Kτ(i).

Here, α : G/Kτ(i) → G/K ′
i denotes the induced isomorphism. In other words, we have 

twisted covering isomorphisms
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CSτi

ui

CS′
i

CSτi

G/Kτ(i) vi

CS′
i

G/K ′
i

The claim follows now from Proposition 3.7, that we use to translate into the language 
of spherical generating triples. The converse direction is clear. □
Remark 3.10. The group Aut(G) × (ℬ3 ≀𝔖n) acts on 𝒰ℬn(G) by(︁

α, δ1, . . . , δn, τ
)︁ ∗ (S1, . . . , Sn) :=

(︁
(α, δ1) ∗ Sτ−1(1), . . . , (α, δn) ∗ Sτ−1(n)

)︁
,

where α : G/Ki → G/α(Ki) are the induced isomorphisms. According to Proposition 3.9, 
the orbits of this action are in one-to-one correspondence with the biholomorphism classes 
of unmixed Beauville n-folds with group G.

To avoid a complicated notation, we will from now on denote α by α.

4. The orbits of 𝓤𝓑𝒏(𝑮) modulo Aut(𝑮) × (𝑩3 ≀ 𝕾𝒏)

In this section, we will provide a detailed explanation on how to count the number of 
elements in the quotient

Beaun(G) := 𝒰ℬn(G) 
Aut(G) × (ℬ3 ≀𝔖n) by utilizing 𝒯 (G/Ki) = 𝒮(G/Ki) 

Aut(G/Ki) × ℬ3
.

As discussed in Remark 3.8, the latter may be determined by using the database from 
[CGP23]. We break down the problem into several steps. First we exploit the natural 
action of Aut(G) on the set of potential kernels

{(K1, . . . ,Kn) 
⃓⃓
K1 ∩ . . . ∩ ˆ︁Ki ∩ . . . ∩Kn = {1G}, Ki ⊴ G},

which is defined by

α ∗ (K1, . . . ,Kn) := (α(K1), . . . , α(Kn)) for α ∈ Aut(G).

For each orbit, let 𝒦 = (K1, . . . ,Kn) be a representative. We use the permutations in 𝔖n

to put equal kernels side by side. This allows us to assume and write 𝒦 = (K1, . . . ,Kn) =
(Nn1

1 , . . . , Nnk

k ) with pairwise distinct Ni. Let Aut𝒦(G) be the stabilizer of 𝒦, then we 
can form the quotients

Beaun(G,𝒦) :=
∏︁k

i=1 𝒮(G/Ni)ni

Aut𝒦(G) ×∏︁k
i=1(ℬ3 ≀𝔖ni

)
(4.1)
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Running over all 𝒦, we obtain the elements of Beaun(G), by selecting the classes in 
Beaun(G,𝒦) such that the condition on the intersection of the stabilizer sets from Re
mark 3.3 (3) holds. Thus it suffices to achieve a description of Beaun(G,𝒦) in terms of 
𝒯 (G/Ni).

Remark 4.1. 

1. Since any automorphism in Aut𝒦(G) induces an automorphism in Aut (G/Ni), there 
is a natural surjective map

η : Beaun(G,𝒦) →
∏︁k

i=1 𝒯 (G/Ni)ni∏︁k
i=1 𝔖ni

Following [Fal24], we solve the problem of counting (4.1) by counting the elements 
in the fibers of η.

2. Dropping the action of the symmetric group, we obtain another surjection

π :
∏︁n

i=1 S(G/Ki)
Aut𝒦(G) × ℬn

3
→

n ∏︂
i=1

𝒯 (G/Ki).

3. For a point x =
(︁
[S1], . . . , [Sn]

)︁ ∈ ∏︁n
i=1 𝒯 (G/Ki) the fibers η−1(︁[x]

)︁
and π−1(x) are 

related modulo the action of the stabilizer of x. More precisely

Stab(x) ≤
k∏︂

i=1
𝔖ni

acts on π−1(x)

and we obtain a bijection η−1(︁[x]
)︁ ≃ π−1(x)/ Stab(x).

Thus we can break down the enumeration problem of the fibers of η in two steps:

1. Describe the fibers π−1(x).
2. Count the orbits of the Stab(x)-action on π−1(x).

We start with the first step. By construction of π, the fiber is given by

π−1(x) = {[α1 ∗ S1, . . . , αn ∗ Sn] 
⃓⃓
αi ∈ Aut(G/Ki)}.

The problem is that different tuples of automorphisms

(α1, . . . , αn), (β1, . . . , βn) ∈
n ∏︂

i=1
Aut(G/Ki)

may lead to same point in the fiber π−1(x). To deal with this ambiguity, we use the 
concept of automorphisms of braid type, introduced in [Fal24]:
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Definition 4.2. Let S be a generating triple of the finite group G. Then the group of 
automorphisms of braid type on S is defined as

ℬAut(G,S) := {φ ∈ Aut(G) : ∃ σ ∈ ℬ3 such that φ ∗ S = σ ∗ S}.

Remark 4.3. Since the action of an automorphism of G commutes with the action of a 
braid, it follows that ℬAut(G,S) is a subgroup of Aut(G).

Proposition 4.4. Two tuples of automorphisms

(α1, . . . , αn), (β1, . . . , βn) ∈
n ∏︂

i=1
Aut(G/Ki)

yield the same point in the fiber π−1(x) if and only if there exists α ∈ Aut𝒦(G) and 
γi ∈ ℬAut(G/Ki, Si) such that

βi = α ◦ αi ◦ γi for all i = 1, . . . , n.

Proof. Assume that

[α1 ∗ S1, . . . , αn ∗ Sn] = [β1 ∗ S1, . . . , βn ∗ Sn] ∈ π−1(x).

Then there exists an automorphism α ∈ Aut𝒦(G) and braids δi ∈ ℬ3 such that

βi ∗ Si = (α ◦ αi) ∗ (δi ∗ Si), so that (α−1
i ◦ α−1 ◦ βi) ∗ Si = δi ∗ Si.

This shows that γi := α−1
i ◦ α−1 ◦ βi belongs to ℬAut(G/Ki, Si). Assume conversely 

that α ∈ Aut𝒦(G) and γi ∈ ℬAut(G/Ki, Si) be such that βi = α ◦ αi ◦ γi. Let δi ∈ ℬ3
be a braid fulfilling γi ∗ Si = δi ∗ Si, then we have

βi ∗ Si = (α ◦ αi) ∗ (δi ∗ Si).

This shows that the corresponding points in the fiber agree. □
Remark 4.5. We have obtained a generalization of [Fal24, Thm. 2.18 and Cor. 2.20] in 
higher dimension n > 2. More precisely, the following hold:

1. The group

Aut𝒦(G) ×
n ∏︂

i=1
ℬAut(G/Ki, Si) acts on

n ∏︂
i=1

Aut(G/Ki)

via the rule
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(α, γ1, . . . , γn) ∗ (α1, . . . , αn) := (α ◦ α1 ◦ γ−1
1 , . . . , α ◦ αn ◦ γ−1

n )

By Proposition 4.4, the quotient, which is denoted by Q (
∏︁n

i=1 Aut(G/Ki))S1,...,Sn
, 

is in bijection with π−1(x) via

ψ : Q
(︄

n ∏︂
i=1

Aut(G/Ki)
)︄

S1,...,Sn

→ π−1(x), [(α1, . . . , αn)] ↦→ [α1 · S1, . . . , αn · Sn]

By definition the bijection ψ depends on the choices of representatives Si of the 
classes [Si].

2. To achieve a description of the fibers of η, we need to understand the induced action 
of Stab(x) on the quotient defined in (1). Let

x = (x1, . . . , xk) ∈
k∏︂

i=1
𝒯 (G/Ni)ni ,

then up to exchanging the order of the factors within the product T (G/Ni)ni , we 
may assume that

xi =
(︁
[Si,1]mi,1 , . . . , [Si,li ]mi,li

)︁ ∈ 𝒯 (G/Ni)ni

with pairwise distinct classes

[Si,1], . . . , [Si,li ] and mi,1 + . . . + mi,li = ni.

In this notation, the stabilizer of x is given by

Stab(x) =
k∏︂

i=1

(︃ li∏︂
j=1

𝔖mi,j

)︃
<

k∏︂
i=1

𝔖ni
.

Clearly, the natural action of τ ∈ Stab(x) on π−1(x) induces an action on the quotient

Q

(︄
k∏︂

i=1
Aut(G/Ni)ni

)︄
S

m1,1
1,1 ,...,S

m1,l1
1,l1

,...,S
mk,1
k,1 ,...,S

mk,lk
k,lk

which is compatible with ψ and defined by the following rule:

τ ∗ [(α1, . . . , αn)] := [(ατ−1(1), . . . , ατ−1(n)].

This action is of course only well defined if we choose the same representative for all 
of the identical classes that occur in x.
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Remark 4.6. Following the approach presented in this section, we wrote a MAGMA 
script that takes as input a group G, a sequence of kernels K = (K1, . . . ,Kn) of G and 
a sequence of classes

x = ([S1], . . . , [Sn]) ∈
n ∏︂

i=1
𝒯 (G/Ki).

It returns the fiber η−1([x]), namely all unmixed Beauville n-folds with group G and 
kernels K defined by [S1], . . . , [Sn].

5. The Beauville dimension of a group

In this section we discuss the Beauville dimension of a finite group G, that has been 
introduced by Carta and Fairbairn in [CF22]. In their article Beauville manifolds of 
unmixed type and their groups are studied from a combinatorial and group theoretic 
perspective under the assumption that the G-action is absolutely faithful. They define the 
Beauville dimension of a finite group G as the minimal length of a sequence [S1, . . . , Sn]
of generating triples for G, such that

ΣS1 ∩ . . . ∩ ΣSn
= {1G}.

If no such sequence exists then the Beauville dimension of G is set to be 1, see [CF22, 
Definition 1.3]. According to their definition, the groups of Beauville dimension two are 
precisely the classical Beauville surface groups. Using computers they determine all finite 
groups G of order less than or equal to 1023 with Beauville dimension 2, 3 and 4.

Remark 5.1. In their definition Carta and Fairbairn do not assume that the generating 
triples are hyperbolic i.e. they also allow elliptic curves and even projective lines in the 
product. Hence the Beauville manifolds corresponding to the groups in their tables with 
Beauville dimension 3 and 4 might not be of general type. In these cases the rigidity 
of the corresponding quotient manifolds does not follow from the condition that the 
curves are triangle curves, because there are further rigidity conditions involved, see 
[BGK25, Corollary 1.4]. Since they claim the rigidity in [CF22, Definition 4] but do not 
verify these extra conditions, we decided to investigate their groups in detail using the 
computer algebra system MAGMA:

1. None of the 27 groups of Beauville dimension 3 admit a rigid action on an elliptic 
curve or on P 1, i.e. all of them correspond to a Beauville threefold of general type.

2. There are 153 groups of Beauville dimension 4. None of them admit a rigid action on 
P 1 and only 43 of them a rigid action on an elliptic curve. The elliptic curve is always 
the Fermat cubic curve and the branching signature is always equal to [3, 3, 3]. None 
of these 43 groups correspond to a Beauville 4-fold of general type, or with Kodaira 
dimension 1 or 2.
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(a) Two out of the 43 groups, namely Z2
3 and He(3), yield Beauville 4-folds of Kodaira 

dimension 0. They are quotients of a product E1 ×E2 ×E3 ×E4 of four Fermat 
elliptic curves Ei = E. In this case the extra rigidity condition(︁

H1(ω⊗2
Ei

) ⊗H0(ωEj
)
)︁G = 0 for all i ̸= j

can be fulfilled for both groups G = Z2
3 and G = He(3) by suitable choices of 

generating triples. According to [BG21, Theorem 1.7] there is a unique Beauville 
4-fold for each of these groups. The two 4-folds are topologically distinct.

(b) The remaining 41 groups yield Beauville 4-folds

X = (E × C1 × C2 × C3)/G

of Kodaira dimension 3, i.e. the curves Ci have genus at least two and E is 
the Fermat cubic curve as explained above. The extra rigidity condition to be 
checked is (︁

H1(ω⊗2
E ) ⊗H0(ωCi

)
)︁G = 0, for all 1 ≤ i ≤ 3.

By [BGK25, Corollary 3.10] this condition holds true since E → E/G ≃ P 1 is 
branched with signature [3, 3, 3]. Below is a table with a structural description 
of these groups as subgroups of Aut(E), i.e. as semidirect products of the form 
A ⋊ Z3, where A is an abelian group of translations and Z3 acts as a group of 
rotations. The column Id contains the MAGMA identifier: ⟨a, b⟩ denotes the b-th 
group of order a in the MAGMA Database of Small Groups.

No. G Id
1 (Z2 × Z6) ⋊ Z3 ⟨36, 11⟩
2 Z21 ⋊ Z3 ⟨63, 3⟩
3 (Z3 × Z9) ⋊ Z3 ⟨81, 9⟩
4 Z2

6 ⋊ Z3 ⟨108, 22⟩
5 Z39 ⋊ Z3 ⟨117, 3⟩
6 (Z4 × Z12) ⋊ Z3 ⟨144, 68⟩
7 Z57 ⋊ Z3 ⟨171, 4⟩
8 (Z3 × Z21) ⋊ Z3 ⟨189, 8⟩
9 (Z3 × Z15) ⋊ Z3 ⟨225, 5⟩
10 Z2

9 ⋊ Z3 ⟨243, 26⟩
11 (Z2 × Z42) ⋊ Z3 ⟨252, 40⟩
12 Z93 ⋊ Z3 ⟨279, 3⟩
13 (Z6 × Z18) ⋊ Z3 ⟨324, 50⟩
14 Z111 ⋊ Z3 ⟨333, 4⟩
15 (Z3 × Z39) ⋊ Z3 ⟨351, 8⟩
16 Z129 ⋊ Z3 ⟨387, 3⟩
17 Z2

12 ⋊ Z3 ⟨432, 103⟩
18 Z147 ⋊ Z3 ⟨441, 3⟩
19 (Z7 × Z21) ⋊ Z3 ⟨441, 12⟩
20 (Z2 × Z78) ⋊ Z3 ⟨468, 49⟩
21 (Z3 × Z57) ⋊ Z3 ⟨513, 9⟩

No. G Id
22 Z183 ⋊ Z3 ⟨549, 3⟩
23 (Z3 × Z63) ⋊ Z3 ⟨567, 13⟩
24 (Z8 × Z24) ⋊ Z3 ⟨576, 1070⟩
25 Z201 ⋊ Z3 ⟨603, 3⟩
26 Z219 ⋊ Z3 ⟨657, 4⟩
27 Z2

15 ⋊ Z3 ⟨675, 12⟩
28 (Z2 × Z114) ⋊ Z3 ⟨684, 45⟩
29 Z237 ⋊ Z3 ⟨711, 3⟩
30 (Z9 × Z27) ⋊ Z3 ⟨729, 95⟩
31 (Z6 × Z42) ⋊ Z3 ⟨756, 117⟩
32 Z273 ⋊ Z3 ⟨819, 9⟩
33 Z273 ⋊ Z3 ⟨819, 10⟩
34 (Z3 × Z93) ⋊ Z3 ⟨837, 8⟩
35 Z291 ⋊ Z3 ⟨873, 3⟩
36 (Z10 × Z30) ⋊ Z3 ⟨900, 141⟩
37 Z309 ⋊ Z3 ⟨927, 3⟩
38 Z2

18 ⋊ Z3 ⟨972, 122⟩
39 Z327 ⋊ Z3 ⟨981, 4⟩
40 (Z3 × Z111) ⋊ Z3 ⟨999, 9⟩
41 (Z4 × Z84) ⋊ Z3 ⟨1008, 409⟩

In summary our verifications show that all of the groups in the tables of Carta and 
Fairbairn yield Beauville manifolds. We suggest to incorporate the additional rigidity 
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conditions into the definition of the Beauville dimension, or alternatively, restrict to 
hyperbolic generating triples. Moreover, we want to point out that the uniqueness of 
the minimal realization, which in particular allows us to attach a unique group to a 
given Beauville manifold X is only established if the Kodaira dimension is maximal. 
In case where X has Kodaira dimension zero, we can uniquely attach the holonomy 
group of the underlying flat Riemannian manifold, which is a quotient of G. The two 
4-folds in (a) both have holonomy Z2

3, cf. [BG21, Remark 5.10].

As we have seen, there are Beauville manifolds of dimension dim(X) ≥ 3 obtained by 
actions which are not absolutely faithful. Thus it makes sense to generalize the definition 
of the Beauville dimension by allowing non-trivial kernels. In contrast to [CF22] we 
decided to restrict to hyperbolic generating triples.

Definition 5.2. The Beauville dimension d(G) of a finite group G is the minimal positive 
integer n ≥ 2, such that 𝒰ℬn(G) ̸= ∅. If no such integer exists then the Beauville 
dimension of G is set to be equal to 1.

It is natural to ask the question if there are further groups of Beauville dimension 
d(G) ≥ 3, using our definition. For this purpose we wrote a MAGMA algorithm to check if 
a given finite group G admits an unmixed n-fold Beauville structure. Since the presence 
of non-trivial kernels increases the computational difficulty drastically, we restrict to 
groups of order less than or equal to 255 and n = 3. The algorithm also determines the 
Beauville dimension of the respective groups according to our definition. We find:

Proposition 5.3. The groups G of order less or equal to 255, which admit an unmixed 
3-fold Beauville structure are the following:

No. G Id d(G)
1 Z2

5 ⟨25, 2⟩ 2
2 Z2

7 ⟨49, 2⟩ 2
3 𝔖5 ⟨120, 34⟩ 2
4 Z2

11 ⟨121, 2⟩ 2
5 He(5) ⟨125, 3⟩ 2
6 Z3

5 ⟨125, 5⟩ 3
7 Z4

2.Q8 ⟨128, 36⟩ 2
8 PSL(2, 7) ⟨168, 42⟩ 2
9 Z2

13 ⟨169, 2⟩ 2
10 SL(2, 5) ⋊ Z2 ⟨240, 90⟩ 2
11 𝒜5 ⋊ Z4 ⟨240, 91⟩ 2
12 Z2 × 𝔖5 ⟨240, 189⟩ 2
13 

(︁
Z3 × He(3)

)︁
⋊ Z3 ⟨243, 3⟩ 2

14 
(︁
Z3 × M27

)︁
⋊ Z3 ⟨243, 4⟩ 3

15 Z3
3 ⋊ Z9 ⟨243, 13⟩ 3

Here He(p) is the Heisenberg groups of order p3 and M27 is the unique non-abelian 
group of order 27 which has an element of order 9.
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There are three groups of Beauville dimension d(G) = 3 in our table. The smallest of 
them Z3

5 is the only abelian and moreover the only group that does not appear in the 
table of Carta and Fairbairn. This means that a Beauville structure of Z3

5 can only exist 
with non-trivial kernels. This group is interesting for the following reasons:

Remark 5.4. 

1. According to [BCG05] the abelian groups of Beauville dimension two are Z2
n, where 

gcd(n, 6) = 1. Carta and Fairbairn extended this result to higher dimensions. Using 
their definition, they show that an abelian group of Beauville dimension greater than 
two has Beauville dimension four and is isomorphic to Z2

n, where gcd(n, 2) = 1, see 
[CF22, Theorem 2.9]. In contrast the group Z3

5 is not 2-generated, which raises the 
question of a general structure theorem for abelian groups G of Beauville dimension 
d(G) ≥ 3 in view of our definition.

2. Carta and Fairbairn point out that the order of the groups of Beauville dimension 
greater than two which are contained in their tables is always divisible by 3. They 
ask if this is a general fact [CF22, Problem 4.3]. Using our definition of Beauville 
dimension the group Z3

5 of Beauville dimension three gives a negative answer to this 
question.

Proposition 5.5. The group Z3
n has an unmixed 3-fold Beauville structure if and only if 

gcd(n, 6) = 1.

Proof. Assume that gcd(n, 6) = 1. We choose the kernels Ki = ⟨ei⟩ for G = Z3
n =

⟨e1, e2, e3⟩ and the following generating triples of the quotient groups G/Ki of type 
[n, n, n]:

i Si ΣSi
+ Ki

1 [e2 − e3, e2 + e3,−2e2] {(l, j, k) ∈ G | j = −k or j = k or j = 0}
2 [e1 + e3, e3 − e1,−2e3] {(l, j, k) ∈ G | l = k or l = −k or k = 0}
3 [2e1 + e2, e1,−3e1 − e2] {(l, j, k) ∈ G | l = 2j or l = 0 or l = 3j}

To verify the freeness condition, we consider an element (l, j, k) ∈ ⋂︁3
i=1(ΣSi

+ Ki)
and show that it is trivial. If j = 0, we conclude directly from the third row that l = 0
and consequently from the second row k = 0, since gcd(n, 6) = 1. On the other hand, if 
j ̸= 0, the three conditions yield 0 ̸= j = ±k = ±l = ±m · j with m ∈ {2, 3}, leading to 
a contradiction.

Suppose that G = Z3
n has a 3-fold Beauville structure. We show that gcd(n, 6) = 1. 

Step 1. Reduction to the case Z3
pk . The group G is the product of its Sylow subgroups

G =
⨁︂

p prime

Gp, with Gp = Z3
pkp .

This implies
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G/Ki =
⨁︂

p prime

Gp/(Ki ∩Gp).

If the group G/Ki has the generating triple Si := [xi, yi, zi] (from a Beauville structure 
of G), then Gp/(Ki ∩ Gp) has the generating triple πp(Si) consiting of the projections 
πp(xi), πp(yi) and πp(zi). Let ΣSi

and Σπp(Si) be the corresponding stabilizer sets. We 
have Σπp(Si) ⊂ ΣSi

because the projections πp(xi), πp(yi) and πp(zi) are multiples of xi, 
yi and zi. Therefore, we have

Σπp(Si) + (Ki ∩Gp) ⊂ ΣSi
+ Ki.

Note that Ki ∩ Gp is a proper subgroup of Gp. Otherwise, if K1 ∩ Gp = Gp, then 
K2 ∩Gp = 0 by minimality of the action and therefore

Gp/(K2 ∩Gp) = Gp = Z3
pkp .

A contradiction, since the group Z3
pkp is not 2-generated. Thus we have shown that Z3

pkp

admits a 3-fold Beauville structure for all primes p dividing n. 
Step 2. Reduction to Z3

p. By the first step we may assume that G = Z3
pk . Since G/Ki is 

2-generated, it holds

G/Ki = Zpai × Zpbi , where k ≥ ai ≥ bi ≥ 0.

Here bi = 0 is possible, but ai ̸= 0 according to the remark at the end of the first step. 
Since G/Ki is 2-generated the kernel Ki must have an element of order pk. We use this 
fact to show ai = k. Assume a1 < k, then pk−1G ⊂ K1. Let g ∈ K2 be an element of 
order ord(g) = pk, then

0 ̸= pk−1g ∈ (pk−1G) ∩K2 ⊂ K1 ∩K2 = 0.

A contradiction. Thanks to this argument we have

G/Ki = Zpk × Zpbi , with k ≥ bi ≥ 0.

This shows that

pk−1G 
(pk−1G) ∩Ki

≃ pk−1 · (G/Ki) ≃ Zp or Z2
p.

Now let Si = [xi, yi, zi] be a generating triple of G/Ki, then the elements of the triple

[pk−1xi, p
k−1yi, p

k−1zi]

generate the group pk−1 · (G/Ki). This generating triple has at least 2 elements different 
from zero. It holds
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(pk−1 · ΣSi
) + (Ki ∩ pk−1G) ⊂ ΣSi

+ Ki.

Here the set (pk−1 · ΣSi
) coincides with the stabilizer set of

[pk−1xi, p
k−1yi, p

k−1zi].

A priori one of the elements of this triple might be zero, but it never happens. Assume 
otherwise and i = 1, then

(pk−1 · ΣS1) + (K1 ∩ pk−1G) = pk−1G ∼ = Z3
p.

We observe that the intersection of the sets (pk−1 ·ΣSj
) + (Kj ∩ pk−1G) for j = 2 and 3

must be trivial. This implies that

pk−1 ·G 
(K2 ∩ pk−1G) + (K3 ∩ pk−1G)

∼ = Zp

is a Beauville surface group, which is a contradiction. In summary this shows that pk−1 ·
G ∼ = Z3

p admits a 3-fold Beauville structure.
Step 3. It remains to exclude the groups G = Z3

p for the primes p = 2 and p = 3. This 
is a straightforward computation by hand or by MAGMA. □
6. Proof of the main theorems

We will now apply our implementation of the method outlined in Section 4 to prove 
the main theorems from the introduction.

Proof of Theorem 1.3 and 1.4. According to Proposition 5.3 we know that 𝒰B3(G) = ∅
for all groups G of order |G| ≤ 25 except for G = Z2

5 = ⟨e1, e2⟩. Here the types of the 
generating triples Si defining X are [5, 5, 5]. By the Hurwitz formula, the possible genera 
of the curves are either 6 or 2, depending on the kernel Ki being trivial or isomorphic 
to Z5. Using Proposition 2.1 we see that the only possible values of the holomorphic 
Euler number are χ(𝒪X) = −1 or −5. More precisely, χ(𝒪X) = −1 occurs when two 
of the three kernels are trivial and χ(𝒪X) = −5 when all kernels are trivial. In the 
first case, we can reorder Ki in such a way that K1 = K2 = {0} and only the third 
one is not trivial. Furthermore, since the automorphism group GL(2, 5) of Z2

5 is acting 
transitively on Z2

5, we can assume K3 = ⟨e2⟩. There is only one GL(2, 5) × ℬ3 orbit on 
the set of spherical system of generators of Z2

5 with signature [5, 5, 5]. It is represented 
by S := [e1, e2, 4e1 + 4e2]. Similarly for G3 ∼ = Z5 the set 𝒯 (G3) consists of only one 
equivalence class represented by S′ = [e1, e1, 3e1]. Running the algorithm presented in 
Section 4 for K = (⟨0⟩, ⟨0⟩, ⟨e2⟩) and S = [S, S, S′] we obtain 8 biholomorphism classes 
of unmixed Beauville 3-folds with χ(𝒪X) = −1 represented by the Beauville structures 
in Table 1.



F. Fallucca et al. / Journal of Algebra 688 (2026) 393--419 417

Table 1
The 8 biholomorphism classes of unmixed Beauville 3-folds with G = Z2

5 and χ(𝒪X) = −1 and their Hodge 
numbers.

S1 S2 S3 h3,0 h2,0 h1,0 h1,1 h2,1

1 [e2, 3e1 + 3e2, 2e1 + e2] [4e1 + 3e2, 3e1, 3e1 + 2e2] [3e1, 3e1, 4e1] 2 0 0 7 10 
2 [e2, 3e1 + 3e2, 2e1 + e2] [e1 + 4e2, 3e1 + e2, e1] [e1, e1, 3e1] 2 0 0 7 10 
3 [4e1 + 3e2, 4e2, e1 + 3e2] [4e1 + e2, 4e1 + 4e2, 2e1] [2e1, 2e1, e1] 3 1 0 5 9 
4 [3e1 + e2, 3e1 + 4e2, 4e1] [3e2, 4e1 + e2, e1 + e2] [4e1, 4e1, 2e1] 3 1 0 5 9 
5 [2e1 + 2e2, 2e1 + 4e2, e1 + 4e2] [2e2, 4e1, e1 + 3e2] [4e1, 4e1, 2e1] 3 1 0 5 9 
6 [e1 + e2, e1 + 2e2, 3e1 + 2e2] [2e2, 4e1, e1 + 3e2] [2e1, 2e1, e1] 3 1 0 5 9 
7 [4e1 + 4e2, 4e1 + 3e2, 2e1 + 3e2] [e2, 2e1, 3e1 + 4e2] [e1, e1, 3e1] 4 2 0 3 8 
8 [e2, 2e1 + 2e2, 3e1 + 2e2] [e1 + 4e2, 3e1 + e2, e1] [3e1, 3e1, 4e1] 4 2 0 3 8 

The Hodge numbers are computed using the generating triples as explained in 
[FG16, Theorem 3.7]. It remains to classify the unmixed Beauville manifolds X with 
χ(𝒪X) ∈ {−5,−4,−3,−2} under the assumption that the G-action is absolutely faith
ful. By Hurwitz’s bound we have |G| ≤ 84(gi − 1), where gi = g(Ci). In combination 
with the formula for χ(𝒪X) from Proposition 2.1 we obtain a bound for the group order 
in terms of the holomorphic Euler number:

N := |G| ≤ ⌊168
√︁
−21χ(𝒪X)⌋.

This already shows the finiteness of the classification, which is performed with MAGMA. 
To make the algorithm more efficient, we invoke some additional combinatorics, as ex
plained in [FG16]. Since (gi − 1) is a divisor of N · χ(𝒪X) we can create for fixed value 
of χ = χ(𝒪X) a list of 4-tuples for the possibilities of the group order and the genera

[N, g1, g2, g3].

For each 4-tuple we determine the possible types Ti = [mi,1,mi,2,mi,3] of the generating 
triples in the Beauville structures. The entries mi,j ≥ 2 are divisors of N , fulfill the 
Hurwitz formula (cf. Remark 3.2) and the following additional combinatorial constraints:

mi,j |(g[i+1] − 1)(g[i+2] − 1) and mi,j ≤ 4gi + 2,

see [FG16, Prop. 4.8]. This allows us to determine a list of 4-tuples

[N,T1, T2, T3]

of possible group orders and types. Not all of them will occur. However, any Beauville 
structure [S1, S2, S3] attached to an unmixed Beauville threefold X with χ = χ(𝒪X)
obtained from an absolutely faithful G-action yields a tuple

[|G|, T (S1), T (S2), T (S3)]

in this list. For each [N,T1, T2, T3] we run through the groups G of order N and check if 
there is an unmixed Beauville structure [S1, S2, S3], with Si ∈ 𝒮(G) and Ti = T (Si). In 
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Table 2
Beauville 3-folds X with χ(𝒪X) ∈ {−5,−4,−3,−2} obtained by an absolutely faithful action.

G T1 T3 T2 h3,0 h2,0 h1,0 h1,1 h1,2 χ 𝒩
1 𝔖5 [2, 5, 4] [2, 6, 5] [3, 4, 4] 4 1 0 5 12 −2 1
2 PSL(2, 7) [2, 3, 7] [3, 3, 4] [7, 7, 7] 6 1 0 11 24 −4 2
3 PSL(2, 7) [2, 3, 7] [3, 3, 4] [7, 7, 7] 9 4 0 5 21 −4 2
4 PSL(2, 7) [2, 3, 7] [4, 4, 4] [3, 3, 7] 6 1 0 7 20 −4 2
5 PSL(2, 7) [2, 3, 7] [4, 4, 4] [3, 3, 7] 7 2 0 5 19 −4 2
6 𝔖5 [2, 5, 4] [3, 4, 4] [3, 6, 6] 8 2 0 7 24 −5 1
7 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 6 0 0 15 30 −5 2
8 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 7 1 0 13 29 −5 3
9 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 7 1 0 17 33 −5 1
10 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 8 2 0 11 28 −5 13
11 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 8 2 0 15 32 −5 3
12 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 9 3 0 9 27 −5 14
13 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 9 3 0 13 31 −5 4
14 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 10 4 0 7 26 −5 12
15 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 10 4 0 11 30 −5 8
16 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 11 5 0 5 25 −5 3
17 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 11 5 0 9 29 −5 7
18 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 12 6 0 3 24 −5 4
19 Z2

5 [5, 5, 5] [5, 5, 5] [5, 5, 5] 12 6 0 7 28 −5 3

case, we determine for each Ti a representative of each orbit of the Aut(G) × ℬ3-action 
on the set of generating triples Si of G with type Ti. The method from Section 4 is then 
used to determine the Aut(G) × (ℬ3 ≀𝔖3) orbits, i.e. the number 𝒩 of biholomorphism 
classes. The output is summarized in Table 2. □
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