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1. Introduction

A central aspect of any kind of geometric consideration is to study the symmetries
of the underlying spaces. In complex algebraic geometry, the symmetries are biholomor-
phic self-maps of projective manifolds. Given a known manifold X then, in the spirit
of Godeaux, we can often construct new and interesting manifolds by taking quotients
X/G modulo a free action of a finite group of automorphisms. An important class of
such quotients are the varieties isogenous to a product.

Definition 1.1. A complex variety X is isogenous to a product if it is isomorphic to a
quotient

X ~(C; x...xCy)/G,

where the C/s are compact Riemann surfaces of genus ¢(C;) > 1 and G is a finite group
acting freely on the product Cy x ... x Cy. We call X isogenous to a higher product, if
g(C;) > 2 for all C;.

Since Catanese introduced these varieties in [Cat00], they have been studied exten-
sively, especially in dimension two in order to construct and classify surfaces of general
type and describe their moduli spaces, cf. [BCG08,CP09,Glel5,Penll Fal24]. We point
out that a variety X isogenous to a product is of general type if and only if it is isoge-
nous to a higher product. It has been shown by Catanese that a surface S isogenous to
a higher product has a unique minimal realization

S~ (C) x Cy)/G.

It is characterized by the property that the diagonal subgroup Gy := G N (Aut(Cy) x
Aut(C3)) acts faithfully on each curve C;.

An easy example of a surface isogenous to a higher product is due to Beauville [Bea83b,
Exercises X.13 (4) p.118]: consider the product of two Fermat quintics

C = {z) + 27 +25 =0} c P¢
together with the action of (a,b) € Z2 defined by
(a,b) * ([zo : 1z @), [yo : y1 : w2)) = ([(Ewo : an = @], [G5Tm0 + 247w < 4]). (1.1)
Since this action is free, the quotient
S:=(Cx0C)/73

is a surface isogenous to a product. Its holomorphic Euler number is x(Og) = 1, which
is the minimal Euler number for a surface of general type. Remarkably, it turns out that
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S is rigid, i.e. it has no non-trivial deformations. Motivated by this example Catanese
defined Beauville surfaces as rigid surfaces isogenous to a product [Cat00, Def 3.23].
They are always of general type ([BCGO5, cf. Prop 3.2], [BC18, Thm 2.7]) and have
an entirely group theoretical description in terms of a so called Beauville structure of
the corresponding group. For this reason, Beauville surfaces have been actively studied,
not only by algebraic geometers, but also by group theorists, as they provide a rich
framework to explore the interplay between these disciplines (cf. [BGV15]). The aim of
this paper is to extend the theory of Beauville surfaces to higher dimensions and explore
some new phenomena. For this purpose we define:

Definition 1.2. A rigid variety isogenous to a product is called a Beauville manifold.

In contrast to the surface case, the geometry of higher dimensional Beauville manifolds
is more involved. First we point out that they are not necessarily of general type. Indeed,
according to [BC18, Thm 3.4 and Thm 3.5] we have:

e For all n > 4 there exists a Beauville n-fold of Kodaira dimension 0.
e For all n > 3 there exists a Beauville n-fold of Kodaira dimension « for all 2 < x < n.

Our second remark is that even in the case of a higher product, we cannot assume that
the diagonal subgroup

Go := G N (Aut(Cy) x ... x Aut(Cy,))

acts faithfully on each curve C;. Indeed, in [FG16] the authors provide a classification
of all 3-folds X isogenous to a higher product of curves with x(Ox) = —1 under the
assumption that the action is diagonal, i.e. G = G and faithful on each curve C;. Among
the 54 families there are no rigid examples. However, dropping the faithfulness on the
factors, a rigid example with x(Ox) = —1 is easy to construct as a modification of the
original Beauville surface (1.1): we take the hyperelliptic curve D of genus two given by
the affine equation y?> = 2° — 1 and define X as the quotient of C? x D modulo the
following free ZZ2-action:

(a,b) x ([zo : x1: 2], [yo = y1 : Yol [z, 9]) =
([G8zo « Ghan = o), [CEF%0y0 + 2¥F0yn = wa), (G2, ).

Clearly, the action is not faithful on the third factor. However, the quotient X is rigid
and x(Ox) = —1. This observation serves as a motivation for the following questions
about Beauville 3-folds of general type:

o Is Z% the smallest group attached to a Beauville 3-fold?
o What is the number of biholomorphism classes of Beauville 3-folds with group Z2
and Euler number x(Ox) = —17
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o What is the largest integer x < —2 such that there exists a Beauville threefold X
with x(Ox) = x under the assumption that the group acts faithfully on each C;? Is
it possible to classify these 3-folds up to biholomorphism?

For simplicity, we restrict our focus to unmixed Beauville 3-folds, i.e. to the case where
G acts diagonally on the (higher) product of three curves. Our results are the following:

Theorem 1.3. The smallest group attached to an unmized Beauville 3-fold X is Z2. These
3-folds have either x(Ox) = —1 or —5. There are 8 biholomorphism classes of such 3-
folds with x(Ox) = —1 and 77 with x(Ox) = —5.

Theorem 1.4. The number N of biholomorphism classes of unmized Beauville 3-folds X
with holomorphic Euler number x(Ox) = x € {—5,—4,—-3,—2}, such that the corre-
sponding group acts faithfully on each factor of the product is:

N 78 8 0 1

We will now explain how the paper is organized. In Section 2, we recall the basic
theory of varieties isogenous to a product of curves and introduce Beauville manifolds.
Crucial for our analysis is the existence and uniqueness of a minimal realization of a
Beauville manifold or more generally of a variety isogenous to a higher product of curves
of unmixed type. Even though this result is well-known in the surface case [Cat00,
Cor. 3.12 and Prop. 3.13] and folklore in higher dimensions, we decided to include a
proof, since we could not find a reference for dimension n > 3. In Section 3, we use
Riemann’s existence theorem to give a purely group theoretical description of unmixed
Beauville manifolds of general type. More precisely, we explain how to attach to the
minimal realization of a given Beauville n-fold an n-fold Beauville structure of the cor-
responding group G. Then we provide a natural action of the group Aut(G) x (B3 16,,)
on the set UB,,(G) of all (unmixed) Beauville structures of G, where B3 is the Artin-
Braid group on three strands. We show that the biholomorphism classes of unmixed
Beauville n-folds are in 1 : 1 correspondence with the orbits of this action. Unfortu-
nately, for certain groups, it can be very difficult and computationally expensive to
determine these orbits. This difficulty is resolved in Section 4, where we present an
effective method to compute the orbits, that extends the automorphism of Braid type
approach of [Fal24, Section 1.2] from surfaces to arbitrary dimensions. These results
allow us to employ the Database of topological types of actions on curves of [CGP23] for
explicit computations. In Section 5, we discuss the notion of the Beauville dimension of
a finite group G, which is the minimum dimension of a Beauville manifold with group
G. This concept was introduced by Carta and Fairbairn in [CF22] under the assumption
that the group acts faithfully on each factor. We drop this assumption and show that
the group Z3 has Beauville dimension three if and only if ged(n,6) = 1. In Section 6,
we prove our main theorems using a MAGMA [BCP97] implementation of the algo-
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rithm from Section 4. The reader can find a MAGMA implementation on the webpage
https://www.komplexe-analysis.uni-bayreuth.de/de/team /gleissner-christian /index.php.

2. Generalities on Beauville manifolds

In this section, we present the basic theory of varieties isogenous to a product of curves
via uniformization. More precisely, we extend the results [Cat00, Cor. 3.9, Prop. 3.11,
Cor. 3.12, Prop. 3.13] of Catanese on surfaces, which were established using different
methods.

In particular, we focus on Beauville manifolds, which are the rigid varieties isogenous
to a product of curves. In higher dimensions they serve as natural generalizations of
Beauville surfaces.

Recall that a variety X isogenous to a product is smooth and projective. The Kodaira
dimension x(X) is equal to the number of curves of genus ¢g(C;) > 2 in the product
Ch1 X ... x C,. The n-fold self-intersection of the canonical class K%, the topological
Euler number e(X) and the holomorphic Euler number x(Ox) are given in terms of the
genera g(C;) and the order of the group.

Proposition 2.1. Let X ~ (Cy x ... x C,,)/G be a variety isogenous to a product, then

«(0x) = S T 600 - 1), K = (-1"nl2'x(0x) and e(X) =2'x(Ox).

Definition 2.2. A rigid variety isogenous to a product is called a Beauville manifold.

Remark 2.3. A Beauville surface is always isogenous to a higher product, i.e. of gen-
eral type ([BCGO5, cf. Prop. 3.2] and [BC18, Thm. 2.7]). This is not true anymore for
Beauville manifolds of higher dimension:

1. For all n > 4 there exists a Beauville n-fold of Kodaira dimension 0 (see [BC1S,
Thm. 3.4]).

2. For all n > 3 there exists a Beauville n-fold of Kodaira dimension k for all2 < x <n
(see [BC18, Thm. 3.5]).

3. There is no rigid and free action on a 3-dimensional complex torus. In particular,
there are no Beauville 3-folds of Kodaira dimension 0. (see [DG23, Thm. 1.1(a)]).

4. The existence of Beauville manifolds of Kodaira dimension 1 is still an open question.
However, there are no such manifolds if the action is diagonal and faithful on each
factor, cf. Definition 2.7. For this result, see [BGK25, Cor. 3.11].

5. The existence of rigid 3-folds of Kodaira dimension 0 and rigid n-folds of Kodaira
dimension 1 for all n > 3 is known (see [Bea83a] and [BG20]). They are obtained as
certain resolutions of quotients of a product of curves by a non-free action.
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In this paper, we are mainly interested in the special case where X is isogenous to a
higher product of curves. In order to study group actions on a product C7 X ... x Cp of
compact Riemann surfaces with g(C;) > 2, it is important to understand the structure
of the automorphism group of the product. This group has a simple description in terms
of the automorphism groups Aut(C;) of the factors, thanks to the lemma below:

Lemma 2.4. Let Dy, ..., Dy be pairwise non-isomorphic compact Riemann surfaces with
9(D;) > 2. Then for all positive integers ny,...,ny it holds:

Aut(DI* x ... x Di*) = (Aut(D1) 16y,,) X ... X (Aut(Dy) 1 6,,).
Here Aut(D;) 1 6, = Aut(D;)™ x &, denotes the wreath product.

Proof. Any automorphism ¢ € Aut(D]* x ... x D*) lifts to an automorphism ¢ of the
universal cover, which is a product of unit discs A™. The claim follows from the well
known fact that

Aut(A") = Aut(A) 1 G,,.
See, [Nar95, Proposition 3, p.68]. O
The above lemma motivates the following definition:

Definition 2.5. A n-dimensional variety X isogenous to a higher product is said to be
of unmixed type, if there is a realization X ~ (Cy x ... x C},)/G, such that G acts
diagonally on the product: G < Aut(Cy) x ... x Aut(C,,). Otherwise, we say that X is
of mixed type.

Proposition 2.6. A variety X is isogenous to a higher product of curves if and only if
there exists an unramified cover

fiCx...xCp— X, where  g(C;) > 2.

Proof. Assume that f exists, then the universal cover of X is the polydisc A™ and the
cover f is induced by a finite index subgroup

I'nx...xI'y, <T,

where I' < Aut(A™) is the fundamental group of X and I'; the fundamental group of C;.
An element of I is of the form

'77(217 ceey zn) = (Vl(zﬂr(l))v s 7’7n(ZT(n)))7

for some permutation 7 € &,, and automorphisms ~; € Aut(A). This implies
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(T X D)y b =Tyt X X YLy

The normal core i.e. the largest subgroup of I'y x - - - x I';, that is normal in I is therefore
given by

n

corer(I'y X -+ x T},) = ﬂ YTy x - x Tyt = H ﬂ Yilryvi
vr €T i=1~y,€l

Since the core of a finite index subgroup has finite index, we obtain a finite Galois cover

AJTyx - X AJT) = X, where Tji= () 7.T@7 ' O
Y- €l

We want to point out that a realization of a variety X isogenous to a higher product
as a quotient (Cq x ... x C},)/G is in general not unique. However, we can always find a
so called minimal realization which is unique up to isomorphism. In this paper, we want
to stick to the case where X is of unmixed type. Then, given a realization, we obtain
G-actions ¥;: G — Aut(C;) on the factors which are not necessarily faithful. We denote
by K; the kernel of ¢; and define the quotient G/K;, which then acts faithfully on C; as
G;.

Definition 2.7. A diagonal G-action on C; X ... x C,, is called

1. minimal, if K3 N...N IA(Z N...NK, ={1g} for all 4.
2. absolutely faithful, if all kernels K; are trivial.

Clearly, an absolutely faithful action is also minimal and in dimension two the notions
coincide.

Theorem 2.8. Every variety isogenous to a higher product of curves of unmized type has
a unique minimal realization, i.e. a realization obtained by a minimal action.

To prepare for the proof of this theorem, we need to recall the structure of the fun-
damental group of a variety isogenous to a higher product of unmixed type, cf. [DP12].

Remark 2.9. Let (Cy x ... x C),)/G be a not necessarily minimal realization of a variety
X isogenous to a higher product of curves of unmixed type. Considering the universal
cover m;: A — C;, we obtain the short exact sequence

As above I'; is isomorphic to the fundamental group of C; and T; is the group of all
possible lifts of the elements in G;, i.e. the orbifold fundamental group:
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T; = {y € Aut(A) | exists g€ G; such that m; 0y = ;(g) om},

see [Cat15, Chapter 6] for an in depth discussion of orbifold fundamental groups. Simi-
larly, we take the universal cover A™ — Cy x ... x C,, and get the short exact sequence

1-Ty1x...xI'y > T -G — 1.

The group I' consists of the lifts of the elements in G to Aut(A™). It is isomorphic to
the fundamental group of X, because the action of G is free. Since G acts diagonally on
the product of curves, an automorphism g € G lifts to an automorphism (v1,...,7,) €
Aut(A)™, if and only if each ;(g) lifts to v; € Aut(A). Therefore, we can write I' in the
following way:

L={(7,---sYn) €Ty x ... x T, | g=pi(7) € G; for all 1 <i < n and some g € G}.

Proof of Theorem 2.8. (I) To show the existence of a minimal realization, we start with
an arbitrary realization

For each ¢, we consider the normal subgroups H; := K1 N...N I?i N...NK, <G. Note
that H; acts trivially on C; for all 7 # j and freely on C;. In particular, the genus of the
quotient curve C;/H; is at least 2. We take the product H := Hy -...- H, < G of our
normal subgroups and form the double quotient

(Cy x...xCp)/H N Cy/Hy x ... x Cn/H,

X G/H G/H

By construction, the induced G/H-action on the product Cy/Hy x ... x Cy,/H, is min-
imal.

(IT) To prove the uniqueness, we consider a biholomorphism between two minimal real-
izations of a variety X isogenous to a higher product:

Clx...an%Dlx...an
G G’ '

f:

The map f lifts to an automorphism f € Aut(A") = Aut(A)?S,,. Up to permutation
of the curves D;, we may assume that

A N A~

flz1, 00 20) = (fl(zl),...,fn(zn)).

Conjugation with f induces an isomorphism between the deck transformation groups of
the universal covers
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N A —1 A~ A —1
f*:F_>F/7 (717"‘7’7n)'_>(f171f1 77f’n’7nfn )

Our goal is to show that f, restricts to an isomorphism between the fundamental groups
of the product of curves

fe@ix...xTp)=T7 x...xI. (2.1)

Under this condition the uniqueness follows, since then f, induces an isomorphism of
Galois groups

GeT/(Ty x...xT,) =T//T) x...xT)~G

and a biholomorphic lift of f to the product of curves:

(Cy ... % Cn)/G —Ls (D1 x ... x Dn)/G

o,

Cyx...xC, Dy x...x D,.

To verify equation (2.1), it suffices to show that
fo(Lo Ly 1, 1) el x ..o x T,

for all 1 < ¢ < n and v; € I';. Here we use the structure of IV given in Remark 2.9 and
assume for simplicity that ¢ = 1. Take v; € 'y, then

A~ A —1
f*(vlv]-?"'a]-):(fl/ylfl 717~o~,1)€F/.

Hence there exists g € G’ such that
A a1
gzpll(ff)/lfl )EG//Kl and §2p9(1)=1EG//KJ/<

s a1
for all j > 2. This implies g € K, N...N K], = {1g'} and therefore also f1y1f1 €
ker(p}) =T%. O

Remark 2.10. Theorem 2.8 allows us to attach, to any variety isogenous to a higher
product of unmixed type, a product of curves C; X ... x C), together with a finite group
G acting minimally on the product. We will use this fact in the next section to give a
purely group theoretical description of unmixed Beauville manifolds.

Proposition 2.11. A diagonal and free G-action on a product of compact Riemann sur-
faces
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yields a Beauville manifold, if and only if each C; is a triangle curve:

1. C;/G; ~ P! and
2. C; — C;/G; is branched in three points, where G; = G /K;.

Proof. The tangent bundle of Y decomposes as

Oy =piOc, &---®p;O¢c

where p;: Y — Cj is the projection onto the i-th factor. Consequently,
H'Y(Y,0y) = H'(Y,piOc,) ®---© H'(Y,p;O0¢, ).
Each summand can be computed using the Kiinneth formula. Since
p;0c, = [ Q)p;0c, | @ P00,
J#i
we obtain
H'(Y,p;0c)= P Q) H(C;,0¢,) | @ H'(C;,0¢,) = H'(C;, Oc,),
li++lp=1 \ j#i

where the final equality follows from the fact that H°(C}, Oc,) = Cand H 9(C;,0¢,) =
for g(C;) > 2. Summing over all ¢, we find:

HY(Y,0y) = H'(C1,0¢,) & & H'(Cy,O¢,).
Since the G-action on Y is diagonal, we obtain
H'Y(Y,0y)¢ =0 ifandonly if H(C;,0¢,) =0 for all i.

By using [Bea83b, Examples VI.12 (2)], the condition H'(C;,O¢,)% = 0 is easily seen
to be equivalent to (1) and (2). O

Corollary 2.12. An unmized Beauville manifold is always regqular, i.e. it has no non-zero
global holomorphic 1-forms.

Proof. The irregularity of X = (C; x ... x C,,)/G is given by ¢(X) =Y, 9(C;/G;) =
0. O
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3. Group theoretical description of Beauville n-folds

In this section we briefly recall the theory of triangle curves from the group theoretical
point of view. This allows us to give a group theoretical description of unmixed Beauville
n-folds that provides a way to classify them up to biholomorphism.

As we mentioned in the previous section, triangle curves are finite Galois covers of the
projective line branched on three points B := {—1,0,1} C P!. Note that the fundamental
group of the complement P!\ B is generated by three simple loops v, and € around the
points —1,0 and 1, respectively. These loops satisfy a single relation and we get:

71 (PY\ B,00) = (v,d,¢ | v-d-e=1). (Fig. 1)

VRN x Y
N N

Fig. 1. The three generators ~, 8, € of the fundamental group of P! \ B.

Definition 3.1. Let G be a finite group. A triple S = [a, b, ¢] of non-trivial group elements
is called a spherical triple of generators or shortly a generating triple of G if

G = (a,b,c) and a-b-c=1g
The type of S is defined as
T(S) := [ord(a),ord(b), ord(c)].

Observe that a generating triple S = [a, b, ¢] of a finite group G induces a surjective
homomorphism

ns: m(P*\ B,oc) = G by y—=a, O0rb and e~ c.
Using Riemann’s existence theorem, the homomorphism 7g yields a Galois triangle cover
fs: (Cs,q0) = (P, 00)

with branch locus B together with a unique isomorphism %: G — Deck(fs) such that
the composition

(Y ons): m(PY\ B,oo) = G — Deck(fs)

is the monodromy map of the associated unramified cover. All triangle covers arise in
this way.
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Remark 3.2.

1. The genus of Cg, the order of G and the orders of the generators a, b and c are
related by Hurwitz’s formula:

1 1 1
29(Cs) — 2 = |G| (1 ~ord(a) ord(b) 0rd(c)> ’

In particular we observe that g(Cg) > 2, if and only if

1 1 1

ord(a) + ord(b) + ord(c) <1

In this case the generating triple S = [a, b, ¢] is said to be hyperbolic, which we will
assume throughout this section.
2. The stabilizer set of S is defined as

Ss:= |J (gla)g ™ Ug(b)g U gle)g™)
geG

It consists of the elements in G which have at least one fixed point on the curve Cl.

Remark 3.3. An unmixed Beauville n-fold X = (Cy x ... x C,)/G of general type yields
an n-tuple [Sy,...,Sy,], such that

1. S; = [ai, bi, ¢;] is a hyperbolic generating triple of G; = G/K;, where K; < G is the
kernel of

2. The intersection K71 N...N I?l N...N K, is trivial for all 7.
3. ﬂ?zl Ys, - Ki ={l¢}.

The condition that S; is hyperbolic tells us g(Cg,) > 2. The second condition reflects
the minimality of the realization and the third the freeness of the action. Conversely,
any such tuple gives rise to an unmixed Beauville n-fold of general type.

Definition 3.4. Let G be a finite group. An n-tuple [Sy,...,S,] of hyperbolic generating
triples such that the conditions (1), (2) and (3) from Remark 3.3 hold is called an n-fold
unmized Beauville structure for G. The set of n-fold unmixed Beauville structures for G
is denoted by UB,,(G).

The group G is called an n-fold unmized Beauville group if G admits an n-fold unmized
Beauwille structure.
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In the following we derive a criterion which allows us to decide whether two unmixed
Beauville structures yield biholomorphic Beauville manifolds (cf. [BCGO05, Proposition
4.2] for the surface case). For this purpose it is important to understand when two
generating triples lead to the same triangle cover.

Definition 3.5. A twisted covering isomorphism of two triangle G-covers f;: C; — P!,
branched on B = {—1,0,1}, is a pair (u,v) of biholomorphic maps

u: C; — Cy and v: Pt = P!
such that v(B) = Band vo f; = faou.
Remark 3.6. Let 1;: G — Deck(f;) be the corresponding G-actions, then the existence

of a twisted covering isomorphism is equivalent to the existence of an automorphism
a € Aut(G) and a biholomorphism u: C; — Cs such that

Po(alg)) ou=wuodn(g) forall geG.

As we shall see, this holds if and only if the corresponding generating triples belong to
the same orbit of a certain group action on the set S(G) of all hyperbolic generating
triples of G. First of all, there is a natural action of the Artin-Braid group

83 = <O’1,0’2 | 0102071 = 0'20'10'2>
on S(G) defined by:

o1 * [a,b,c] = [aba™, a, ] and o9 * [a,b, ] == [a,bcb™, b].

This action commutes with the diagonal action of an automorphism « € Aut(G) given
by

ax[a,b,d = [a(a), a(b), a(c)]-
Thus, we obtain a well-defined action of Aut(G) x Bs on S(G) by
(o, 0) xS :=a* (6% 5).

Proposition 3.7. [BCG05, Proposition 2.3] Let G be a finite group and S, S’ € S(G) be
two generating triples of G. Then, the following are equivalent:

1. There is a twisted covering isomorphism between fg: Cs — P and fg: Cg — P1L.
2. The generating triples S and S’ are in the same Aut(G) x Bs orbit.



406 F. Fallucca et al. / Journal of Algebra 688 (2026) 393—419

Remark 3.8. Proposition 3.7 tells us that the collection of triangle G-covers modulo
twisted covering isomorphisms is in bijection with the quotient

T(G) := S(G)/(Aut(G) x Bs).

For this reason, several authors put effort into the development of an efficient algorithm
to compute these quotients, see [CGP23] and [Pau23]. In [CGP23] a database is set up,
which contains a representative for any orbit of hyperbolic generating triples for a fixed
genus g < 64 and group order d < 2000.

Proposition 3.9. Let X and X’ be Beauville n-folds given by the unmized Beauville struc-
tures [S1,...,Sn] and [SY,...,S)] for G, where S; € S(G/K;) and S} € S(G/K!). Then
X and X' are biholomorphic if and only if there exist an automorphism a € Aut(QG),
braids 6+, ...,0, € B3 and a permutation T € &,,, such that

K = a(K.@) and S = (@,0;)* Srz), where  @: G/K,;) — G/K].

Proof. By uniqueness of the minimal realization (Theorem 2.8), every biholomorphism
f: X — X’ between the quotients lifts to a biholomorphism

f:OSlX...XCSHHCSiX...XCS;L.

As explained in Proposition 2.4, this map must be of the form

f(zl, ey Zn) = (u1 (Z.,-(l)), ceey un(zT(n))),

for some permutation 7 € G,,. Such a map descends to the quotient level if and only if
there exists an automorphism « € Aut(G) such that

Yi(a(g)) oui = uijothry(g)  forall  geG. (3.1)

Now the action 1,(;): G — Aut(Cs,, ) factors through the faithful action

’l/JT(,L) : G/KTU) — Aut(CSTi)

and similarly 1] descends to ¢/;: G/K] — Aut(Cg/). Thus Equation (3.1) is equivalent
to

Vi(@(g)) oui =uiop,(g),  where  geG/K.q).

Here, @: G/K,; — G/K; denotes the induced isomorphism. In other words, we have
twisted covering isomorphisms
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Us

Cs., Cs/
Cs., Cs/

G/K.,-(i) Vi G/K{

The claim follows now from Proposition 3.7, that we use to translate into the language
of spherical generating triples. The converse direction is clear. 0O

Remark 3.10. The group Aut(G) x (B316&,,) acts on UB,,(G) by
(0[, 51, ceey 5n,T) * (Sl, ey Sn) = ((a, 51) * S.,.—l(l), ey (a, 577.) * S‘r_l(n))a

where a: G/K; — G/a(K;) are the induced isomorphisms. According to Proposition 3.9,
the orbits of this action are in one-to-one correspondence with the biholomorphism classes
of unmixed Beauville n-folds with group G.

To avoid a complicated notation, we will from now on denote @ by «.

4. The orbits of UB,,(G) modulo Aut(G) x (B3 1 S,,)

In this section, we will provide a detailed explanation on how to count the number of
elements in the quotient

by utilizing T(G/K;) = S(G/K;)

_ uB.©)
Beau, (G)  Aut(G/K;) x Bs’

T AW(G) x (B3 16,

As discussed in Remark 3.8, the latter may be determined by using the database from
[CGP23]. We break down the problem into several steps. First we exploit the natural
action of Aut(G) on the set of potential kernels

{((Ki,...,K,) | Kin...nK;n...NnK, = {l¢}, K; <G},
which is defined by
a*x(Ky,...,Kp) = (a(K1),...,a(K,)) for «c Aut(G).

For each orbit, let K = (K74,..., K,,) be a representative. We use the permutations in &,,
to put equal kernels side by side. This allows us to assume and write K = (K1,...,K,) =
(N7, ..., N/*) with pairwise distinct NN;. Let Autx(G) be the stabilizer of /C, then we
can form the quotients

[15, S(G/Ny)™
Autic (G) x [T1, (Bs1 6y,

Beau, (G, K) = (4.1)
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Running over all K, we obtain the elements of Beau,(G), by selecting the classes in
Beau, (G, K) such that the condition on the intersection of the stabilizer sets from Re-
mark 3.3 (3) holds. Thus it suffices to achieve a description of Beau, (G, K) in terms of
T(G/N).

Remark 4.1.

1. Since any automorphism in Autx (G) induces an automorphism in Aut (G/N;), there
is a natural surjective map

[, , T(G/N,)™
Hf:l an

Following [Fal24], we solve the problem of counting (4.1) by counting the elements

n: Beau,(G,K) —

in the fibers of 7.
2. Dropping the action of the symmetric group, we obtain another surjection

T H?:l S<G/Ki)

A0 B [[7@G/K).

i=1

3. For a point z = ([S1],...,[Sn]) € [Ti; T(G/K;) the fibers n~*([z]) and 7~ (z) are
related modulo the action of the stabilizer of x. More precisely

k
Stab(z) < H Gy, acts on 7 (x)
i=1

and we obtain a bijection n~! ([z]) ~ 7~ *(z)/ Stab(z).
Thus we can break down the enumeration problem of the fibers of 7 in two steps:

1. Describe the fibers 7= (x).
2. Count the orbits of the Stab(x)-action on 7=1(x).

We start with the first step. By construction of 7, the fiber is given by
7 @) = {[on * 51, 00 % Sy] | i € Aut(G/K;)}.
The problem is that different tuples of automorphisms
(o1, ), (Bu,...,Bn) € [ Aut(G/K:)
i=1

may lead to same point in the fiber 7=1(x). To deal with this ambiguity, we use the
concept of automorphisms of braid type, introduced in [Fal24]:
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Definition 4.2. Let S be a generating triple of the finite group G. Then the group of
automorphisms of braid type on S is defined as

BAut(G,S) := {p € Aut(G): 3 o € B; such that px S = o * S}.

Remark 4.3. Since the action of an automorphism of G commutes with the action of a
braid, it follows that B Aut(G, S) is a subgroup of Aut(G).

Proposition 4.4. Two tuples of automorphisms

(@1, am), (B, Bn) € [ Aut(G/K;)

=1

yield the same point in the fiber m=1(x) if and only if there exists a € Autx(G) and
vi € BAw(G/K;, S;) such that

Bi =aoaq;ony for all i=1,...,n.
Proof. Assume that
[ % S1,. .. 0 % Sy] = [B1 % S1,. .., Bn ¥ Sy) € 7 H2).
Then there exists an automorphism « € Autx(G) and braids d; € Bs such that
Bix S; = (o) * (§; xS;), so that (ai_loafloﬂi)*Sizéi*Si.

This shows that ~; = a;l o a1 o B; belongs to BAut(G/K;,S;). Assume conversely
that a € Auti(G) and v; € BAut(G/K;, S;) be such that 8, = a0 a; o ;. Let §; € Bs
be a braid fulfilling ~; x S; = §; * .5;, then we have

51' ES Sz = (a oai) k ((51 k Sl)
This shows that the corresponding points in the fiber agree. O

Remark 4.5. We have obtained a generalization of [Fal24, Thm. 2.18 and Cor. 2.20] in
higher dimension n > 2. More precisely, the following hold:

1. The group

Auti (G) x HBAut(G/Ki, Si) acts on HAut(G/Ki)

i=1 i=1

via the rule
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(aa’}/l?"'a’}/n)*(a17"'7an) = (aOalo’)/lilv"waoano’yr:l)

By Proposition 4.4, the quotient, which is denoted by @ ([T, Au‘c(G/Ki))S1 e

is in bijection with 7= (x) via

: Q (HAut(G/Kﬁ) - Yx), [(ai,...,an)] = [a1-S1,. .., - Sy
S1 S

i=1

seeesOn

By definition the bijection 1 depends on the choices of representatives S; of the
classes [S;].

To achieve a description of the fibers of 77, we need to understand the induced action
of Stab(x) on the quotient defined in (1). Let

k
€Tr = (Il,...,.’I}]@) S HT(G/NZ)7“7

i=1

then up to exchanging the order of the factors within the product T(G/N;)™, we
may assume that

T; = ([Si,ﬂm“ e [Si’li]mi’”) e T(G/N;)™
with pairwise distinct classes
[Si,l]; ey [Szll] and m;1+ ... + mg 1, = Ny.

In this notation, the stabilizer of x is given by

k l; k
Stab(z) = [ | ( Gmw) <IIsn.
i=1 1

i= i=1

Clearly, the natural action of 7 € Stab(x) on 7~ (x) induces an action on the quotient

k
Q (H Aut(G/Ni)”i>

which is compatible with v and defined by the following rule:

T * [(al, ce ,Oén)] = [(Oszl(l), ey 047.71(”)].

This action is of course only well defined if we choose the same representative for all
of the identical classes that occur in z.
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Remark 4.6. Following the approach presented in this section, we wrote a MAGMA
script that takes as input a group G, a sequence of kernels K = (K7,...,K,) of G and
a sequence of classes

n

r=([S],....[S]) € [[T(G/K:).

=1

It returns the fiber 7! ([z]), namely all unmixed Beauville n-folds with group G and
kernels K defined by [S1],...,[Sh].

5. The Beauville dimension of a group

In this section we discuss the Beauville dimension of a finite group G, that has been
introduced by Carta and Fairbairn in [CF22]. In their article Beauville manifolds of
unmixed type and their groups are studied from a combinatorial and group theoretic
perspective under the assumption that the G-action is absolutely faithful. They define the
Beauville dimension of a finite group G as the minimal length of a sequence [Sy,. .., Sy]
of generating triples for G, such that

Y, N...NXg, ={lg}.

If no such sequence exists then the Beauville dimension of G is set to be 1, see [CF22,
Definition 1.3]. According to their definition, the groups of Beauville dimension two are
precisely the classical Beauville surface groups. Using computers they determine all finite
groups G of order less than or equal to 1023 with Beauville dimension 2, 3 and 4.

Remark 5.1. In their definition Carta and Fairbairn do not assume that the generating
triples are hyperbolic i.e. they also allow elliptic curves and even projective lines in the
product. Hence the Beauville manifolds corresponding to the groups in their tables with
Beauville dimension 3 and 4 might not be of general type. In these cases the rigidity
of the corresponding quotient manifolds does not follow from the condition that the
curves are triangle curves, because there are further rigidity conditions involved, see
[BGK25, Corollary 1.4]. Since they claim the rigidity in [CF22, Definition 4] but do not
verify these extra conditions, we decided to investigate their groups in detail using the
computer algebra system MAGMA:

1. None of the 27 groups of Beauville dimension 3 admit a rigid action on an elliptic
curve or on P!, i.e. all of them correspond to a Beauville threefold of general type.

2. There are 153 groups of Beauville dimension 4. None of them admit a rigid action on
P! and only 43 of them a rigid action on an elliptic curve. The elliptic curve is always
the Fermat cubic curve and the branching signature is always equal to [3, 3, 3]. None
of these 43 groups correspond to a Beauville 4-fold of general type, or with Kodaira
dimension 1 or 2.
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(a) Two out of the 43 groups, namely Z2 and He(3), yield Beauville 4-folds of Kodaira
dimension 0. They are quotients of a product E; x Ey X E3 X E4 of four Fermat
elliptic curves F; = E. In this case the extra rigidity condition

(Hl(wgf)ébHo(ij))G =0 forall i#j

can be fulfilled for both groups G = Z3 and G = He(3) by suitable choices of
generating triples. According to [BG21, Theorem 1.7] there is a unique Beauville
4-fold for each of these groups. The two 4-folds are topologically distinct.

(b) The remaining 41 groups yield Beauville 4-folds

X:(EX01XCQX03)/G

of Kodaira dimension 3, i.e. the curves C; have genus at least two and FE is
the Fermat cubic curve as explained above. The extra rigidity condition to be
checked is

(H' (W) ® Ho(wci))G =0, for all 1<4<3.

By [BGK25, Corollary 3.10] this condition holds true since E — E/G ~ P! is
branched with signature [3,3,3]. Below is a table with a structural description
of these groups as subgroups of Aut(E), i.e. as semidirect products of the form
A X Z3, where A is an abelian group of translations and Z3 acts as a group of
rotations. The column Id contains the MAGMA identifier: {(a, b) denotes the b-th
group of order a in the MAGMA Database of Small Groups.

No. G Id No. G 1d

1 (Z2 X ZG) N L3 (367 11> 22 Z1g3 X ZLs <549, 3>

2 Zy X ZLs (63,3) 23 (Z3 x Zes) x Z3  (567,13)
3 (Zs x Zo) x Zs  (81,9) 24 (Zs x Z2a) X\ Zz  (576,1070)
4 Zg % Zs (108,22) 25 Zoor ¥ Zsg (603, 3)

5 Zso X Zs (117, 3) 26 Zoio X Z3 (657, 4)

6 (Zy X Z12) X Z3  (144,68) 27 Z%, x Zs (675,12)
7 Zs7 % Ls (171, 4) 28  (Zo X Z114) X Z3  (684,45)
8 (Z3 X Zo1) X Zs  (189,8) 29 Zioz7 X L3 (711, 3)

9 (Z3 x Z1s) X\ Zz  (225,5) 30 (Zog X Za7) X Zs  (729,95)
10 VAW (243, 26) 31 (Z x Zaz) X Zs3 (756, 117)
11 (Zo x Za2) x Zg  (252,40) 32 Ziors X ZLs (819, 9)
12 Zgz X L3 (279, 3) 33 Zors X Zs (819, 10)
13 (Zo x Z1s) X\ Zz  (324,50) 34  (Zs x Zg3) xZs  (837,8)
14 Zy11 N Zs (333,4) 35 Zoor ¥ Z3 (873, 3)
15 (Z3 x Z3o) x Zs  (351,8) 36 (Zro X Z3z0) X Zz (900, 141)
16 Zy29 X L3 (387, 3) 37 Z3oo X Zs (927, 3)
17 Z3, x Zs (432, 103) 38 Z34 % Zg (972, 122)
18 Zyar X Zs (441, 3) 39 Zsor X g (981, 4)
19 (Z7 X Z21) Dol ZS (4417 12> 40 (Z3 X lel) X Zg (999, 9>
20 (ZQ X Z73) X Z3 <468,49> 41 (Z4 X Zg4) X Z3 <1008,409>

21 (Z3 x Zs7) ¥\ Zs  (513,9)

In summary our verifications show that all of the groups in the tables of Carta and
Fairbairn yield Beauville manifolds. We suggest to incorporate the additional rigidity
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conditions into the definition of the Beauville dimension, or alternatively, restrict to
hyperbolic generating triples. Moreover, we want to point out that the uniqueness of
the minimal realization, which in particular allows us to attach a unique group to a
given Beauville manifold X is only established if the Kodaira dimension is maximal.
In case where X has Kodaira dimension zero, we can uniquely attach the holonomy
group of the underlying flat Riemannian manifold, which is a quotient of G. The two
4-folds in (a) both have holonomy Z2, cf. [BG21, Remark 5.10].

As we have seen, there are Beauville manifolds of dimension dim(X) > 3 obtained by
actions which are not absolutely faithful. Thus it makes sense to generalize the definition
of the Beauville dimension by allowing non-trivial kernels. In contrast to [CF22] we
decided to restrict to hyperbolic generating triples.

Definition 5.2. The Beauville dimension d(G) of a finite group G is the minimal positive
integer n > 2, such that UB,(G) # (. If no such integer exists then the Beauville
dimension of G is set to be equal to 1.

It is natural to ask the question if there are further groups of Beauville dimension
d(G) > 3, using our definition. For this purpose we wrote a MAGMA algorithm to check if
a given finite group G admits an unmixed n-fold Beauville structure. Since the presence
of non-trivial kernels increases the computational difficulty drastically, we restrict to
groups of order less than or equal to 255 and n = 3. The algorithm also determines the
Beauville dimension of the respective groups according to our definition. We find:

Proposition 5.3. The groups G of order less or equal to 255, which admit an unmized
3-fold Beauville structure are the following:

No. G Id d(G)
1 Zg (25,2) 2
2 VA (49, 2) 2
3 S5 (120, 34) 2
4 z3, (121, 2) 2
5 He(5) (125, 3) 2
6 VA (125, 5) 3
7 73.Qs (128, 36) 2
8 PSL(2,7) (168, 42) 2
9 z3, (169, 2) 2
10 SL(2,5) x Zo (240, 90) 2
11 As % Zy (240, 91) 2
12 Zs x G5 (240,189) 2
13 (Zs x He(3)) x Zs (243, 3) 2
14 (Zg X M27) X Z3 <243, 4> 3
15 73 % Zy (243,13) 3

Here He(p) is the Heisenberg groups of order p® and Moy is the unique non-abelian
group of order 27 which has an element of order 9.
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There are three groups of Beauville dimension d(G) = 3 in our table. The smallest of
them Z3 is the only abelian and moreover the only group that does not appear in the
table of Carta and Fairbairn. This means that a Beauville structure of Z2 can only exist
with non-trivial kernels. This group is interesting for the following reasons:

Remark 5.4.

1. According to [BCGO5] the abelian groups of Beauville dimension two are Z2, where
ged(n, 6) = 1. Carta and Fairbairn extended this result to higher dimensions. Using
their definition, they show that an abelian group of Beauville dimension greater than
two has Beauville dimension four and is isomorphic to Z2, where ged(n,2) = 1, see
[CF22, Theorem 2.9]. In contrast the group Z32 is not 2-generated, which raises the
question of a general structure theorem for abelian groups G of Beauville dimension
d(G) > 3 in view of our definition.

2. Carta and Fairbairn point out that the order of the groups of Beauville dimension
greater than two which are contained in their tables is always divisible by 3. They
ask if this is a general fact [CF22, Problem 4.3]. Using our definition of Beauville
dimension the group Z$ of Beauville dimension three gives a negative answer to this
question.

Proposition 5.5. The group Z3 has an unmized 3-fold Beauville structure if and only if
ged(n, 6) = 1.

Proof. Assume that ged(n,6) = 1. We choose the kernels K; = (e;) for G = Z3 =
(e1,e2,e3) and the following generating triples of the quotient groups G/K; of type
[n, n,n]:

i Si Ys, + K;

1 [e2 —e3,e2 + e3, —2e2] {(l,5,k) eG|j=
2 [e1 +es,e3 —er, —2es] {(L,j, k) €eG | 1=
3 [261+62,81,73€17€2] {(l,],k)EG\l:

—korj=korj=0}
korl=—kork=0}
2jorl=0o0r!l=23j}

To verify the freeness condition, we consider an element (1,5, k) € N:_,(Zs, + Ki)
and show that it is trivial. If j = 0, we conclude directly from the third row that [ =0
and consequently from the second row k = 0, since ged(n,6) = 1. On the other hand, if
j # 0, the three conditions yield 0 # j = £k = £1 = £m - j with m € {2, 3}, leading to
a contradiction.

Suppose that G = Z3 has a 3-fold Beauville structure. We show that ged(n, 6) = 1.
Step 1. Reduction to the case Zik. The group G is the product of its Sylow subgroups

G= P Gy, with G, =175,

p prime

This implies
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G/Ki= P G,/(KinGy).

p prime

If the group G/ K; has the generating triple S; := [z, y;, z;] (from a Beauville structure
of G), then G,/(K; N G,) has the generating triple m,(S;) consiting of the projections
Tp(), mp(y:) and mp(2;). Let X5, and X (g,) be the corresponding stabilizer sets. We
have ¥ (s,) C s, because the projections 7, (x;), 7,(y;) and 7,(2;) are multiples of ;,
y; and z;. Therefore, we have

Zﬁp(sz‘) + (KZ mGp) C Zsi + K;.

Note that K; N G, is a proper subgroup of G,. Otherwise, if K1 NG, = G, then
K> NGy, = 0 by minimality of the action and therefore

Gp/(KxNGp) = Gp = Z),

pP’

A contradiction, since the group Zikp is not 2-generated. Thus we have shown that ZZ’“P
admits a 3-fold Beauville structure for all primes p dividing n.

Step 2. Reduction to Zg. By the first step we may assume that G = ng. Since G/K; is
2-generated, it holds

G/Kl = Zpai X Zpbi7 where k 2 a; Z b?, Z 0.

Here b; = 0 is possible, but a; # 0 according to the remark at the end of the first step.
Since G/K; is 2-generated the kernel K; must have an element of order p*. We use this
fact to show a; = k. Assume a; < k, then p*~1G C K. Let ¢ € K5 be an element of
order ord(g) = p*, then

0# pk_lg € (pk_lG) NK,C KiNnK,=0.
A contradiction. Thanks to this argument we have
G/Ki:Zpk prbi7 with k’ZbZZO
This shows that

pk—lG

R A R S N 5
PNk, P (G/Ki) =~ Z, or Z,

Now let S; = [z, y;, 2;] be a generating triple of G/K;, then the elements of the triple

[pF Yy, pP s, pF 2]

generate the group p*~!- (G/K;). This generating triple has at least 2 elements different
from zero. It holds
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(p" - 2g) + (K;Nnp"1G) C S, + K;.

Here the set (p*~1 - Xg,) coincides with the stabilizer set of

k—1

[p" g, oy, P 2]

A priori one of the elements of this triple might be zero, but it never happens. Assume
otherwise and ¢ = 1, then

k-1 k=1, _ k=1, ~ 73
(P Xe) + (KiNp* ' G) =p" G =L,

We observe that the intersection of the sets (p"~! - Xg,) + (K; NpF~1G) for j = 2 and 3
must be trivial. This implies that

pk—l e 7
(K2 NpF—1G) + (Ksnph—1@) — 7

Il

is a Beauville surface group, which is a contradiction. In summary this shows that p#~1-

G= Zf, admits a 3-fold Beauville structure.
Step 3. It remains to exclude the groups G = Zg for the primes p = 2 and p = 3. This
is a straightforward computation by hand or by MAGMA. O

6. Proof of the main theorems

We will now apply our implementation of the method outlined in Section 4 to prove
the main theorems from the introduction.

Proof of Theorem 1.3 and 1.4. According to Proposition 5.3 we know that UBs(G) = 0
for all groups G of order |G| < 25 except for G = Z2 = (e1, e2). Here the types of the
generating triples S; defining X are [5, 5, 5]. By the Hurwitz formula, the possible genera
of the curves are either 6 or 2, depending on the kernel K; being trivial or isomorphic
to Zs. Using Proposition 2.1 we see that the only possible values of the holomorphic
Euler number are x(Ox) = —1 or —5. More precisely, x(Ox) = —1 occurs when two
of the three kernels are trivial and x(Ox) = —5 when all kernels are trivial. In the
first case, we can reorder K; in such a way that K1 = Ky = {0} and only the third
one is not trivial. Furthermore, since the automorphism group GL(2,5) of Z2 is acting
transitively on Z2, we can assume K3 = {(e3). There is only one GL(2,5) x B3 orbit on
the set of spherical system of generators of Z2 with signature [5,5,5]. It is represented
by S := [e1,ea,4e1 + 4dey]. Similarly for G3 = Zs the set T(G3) consists of only one
equivalence class represented by S’ = [e1, €1, 3e1]. Running the algorithm presented in
Section 4 for K = ({0), (0), (e2)) and S =[S, S, S"] we obtain 8 biholomorphism classes
of unmixed Beauville 3-folds with x(Ox) = —1 represented by the Beauville structures
in Table 1.
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Table 1
The 8 biholomorphism classes of unmixed Beauville 3-folds with G = Z2 and x(Ox) = —1 and their Hodge
numbers.

Sy So S B30 52,0 p1,0 11 p2,1
1 [62, 361 + 362, 261 + 62] [461 + 362, 361, 361 + 262] [361, 361, 461] 2 0 0 7 10
2 [ez2,3e1 + 3ea,2e1 + e2] ler + 4ez, 3e1 + ea, e1] le1, e1,3eq] 2 0 0 7 10
3 [4e1 + 3ez,4ea, e + 3es] [4de1 + ez, de1 + 4dea,2e1] [2e1,2e1,e1] 3 1 0 5 9

4 [381 +€2,3€1 +4€2,4€1] [362,461 +62,€1 Jrez] [461,461,261] 3 1 0 5 9

5 [261 =+ 2627 261 + 462, el + 462] [262, 461, el + 362] [4617 4617 261] 3 1 0 5 9

6 [e1 + ez, e1 + 2e2,3e1 + 2e3] [2e2,4e1, e1 + 3ez] [2e1,2e1,e1] 3 1 0 5 9

7 [461 +482,461 +362,2€1 +362} [62,261,361 +4€2] [61,61,361] 4 2 0 3 8

8 [62,261 +2€2,361 +2€2] [61 +462,3€1 —+ 62,61] [361,361,461] 4 2 0 3 8

The Hodge numbers are computed using the generating triples as explained in
[FG16, Theorem 3.7]. It remains to classify the unmixed Beauville manifolds X with
x(Ox) € {—5,—4, -3, —2} under the assumption that the G-action is absolutely faith-
ful. By Hurwitz’s bound we have |G| < 84(g; — 1), where g; = ¢g(C;). In combination
with the formula for x(Ox) from Proposition 2.1 we obtain a bound for the group order
in terms of the holomorphic Euler number:

N := |G| < |168y/—21x(Ox)].

This already shows the finiteness of the classification, which is performed with MAGMA.
To make the algorithm more efficient, we invoke some additional combinatorics, as ex-
plained in [FG16]. Since (g; — 1) is a divisor of N - x(Ox) we can create for fixed value
of x = x(Ox) a list of 4-tuples for the possibilities of the group order and the genera

[Na gla92ag3]'

For each 4-tuple we determine the possible types T; = [m; 1, m; 2, m; 3] of the generating
triples in the Beauville structures. The entries m;; > 2 are divisors of IV, fulfill the
Hurwitz formula (cf. Remark 3.2) and the following additional combinatorial constraints:

mijl(gisy — D(9psy — 1) and  my; < 4g; + 2,

see [FG16, Prop. 4.8]. This allows us to determine a list of 4-tuples
[Na T17 TQ; T3]

of possible group orders and types. Not all of them will occur. However, any Beauville
structure [Sy, Sz, S3] attached to an unmixed Beauville threefold X with x = x(Ox)
obtained from an absolutely faithful G-action yields a tuple

[|G‘7 T(Sl)v T(S2)a T(SS)]

in this list. For each [N, Ty, Ty, T3] we run through the groups G of order N and check if
there is an unmixed Beauville structure [S1, Sa, S3], with S; € S(G) and T; = T(S;). In
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Table 2
Beauville 3-folds X with x(Ox) € {—5, —4, —3, —2} obtained by an absolutely faithful action.
a e T e R3O R3O0 L0 pLl a1z N
e 2,5,4 [2,6,5] [3,4,4] 4 1 0 5 12 -2 1
2 PSL(2,7) [2,3,7] [3,3,4] [7,7,7] 6 1 0 11 24 -4 2
3 PSL(2,7) [2,3,7] 3,3,4 [7,7,7] 9 4 0 5 21 -4 2
4 PSL(2,7) [2,3,7 [4,4,4] [3,3,7] 6 1 0 7 20 -4 2
5  PSL(2,7) [2,3,7] [4,4,4 [3,3,7 7 2 0 5 19 -4 2
6 O (2,5,4] [3,4,4] [3,6,6] 8 2 0 7 24 -5 1
7z 5,55 [5,5,5 [5,5,5 6 0 0 15 30 5 2
s 72 5,55 [5,5,5] [5,5,5 7 1 0 13 29 5 3
9 z2 [5,5,5] [5,5,5] [5,5,5] 7 1 0 17 33 5 1
10z 5,55 [5,55 [555 8 2 0 11 28 -5 13
11z [5,5,5] [5,5,5] [5,5,5] 8 2 0 15 32 -5 3
12 Zg [5,5,5] [5,5,5] [5,5,5 9 3 0 9 27 5 14
13 Z; [5,5,5] [5,5,5] [5,5,5 9 3 0 13 31 5 4
4z 5,55 [5,55 [5,55 10 4 0 7 26 -5 12
15 zZ2 5,55 [5,55 [5,55 10 4 0 11 30 5 8
16 z? 5,55 [5,5,5] [5,55 11 5 0 5 25 5 3
17 Z2 5,55 [5,5,5 [5,55 11 5 0 9 29 5 7
18 z? 5,55 [5,5,5 [555 12 6 0 3 24 -5 4
19 Z2 [5,5,5] [5,5,5] [5,5,5] 12 6 0 7 28 -5 3

case, we determine for each T; a representative of each orbit of the Aut(G) x Bs-action
on the set of generating triples S; of G with type T;. The method from Section 4 is then
used to determine the Aut(G) x (B3 ! &3) orbits, i.e. the number A of biholomorphism
classes. The output is summarized in Table 2. O

Data availability
No data was used for the research described in the article.
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