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1. Introduction

Control Lyapunov functions (clfs) serve as a certificate of
asymptotic null-controllability and can also be used to examine
robustness against uncertainties and disturbances or to study per-
formance criteria. However, their most common application lies
in designing stabilizing feedback laws using the clf as guidance
towards the equilibrium. Since, in general, it is quite hard to
compute clfs analytically, we rely on numerical methods. How-
ever, traditional numerical methods, which employ a grid-based
approach for the computation of the derivative of the clf, suffer
from the curse of dimensionality. This means that, to achieve a
certain accuracy, the number of required grid points and, thus,
the numerical effort grows exponentially in the dimension of the
state space. Consequently, such approaches become impractical
in high dimensions.

This paper concerns the use of neural networks (NNs) to
circumvent the curse of dimensionality for approximating clfs.
Our approach is related to the work (Sontag, 1991), which in-
vestigates structural properties of control systems that allow for
an exact representation of a (possibly discontinuous) stabilizing
feedback by NNs. Further, there exist several papers that present
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algorithms for the computation of clfs by NNs, see e.g., Khansari-
Zadeh and Billard (2014), Long and Bayoumi (1993). However,
while the algorithms therein have similarities with our numerical
approach, none of them provides a complexity analysis regarding
the curse of dimensionality. Establishing conditions for mitigating
the curse of dimensionality in computing clfs is the main contri-
bution of this work. Addressing this challenge requires identifying
a suitable class of functions that enables NNs to avoid the curse
of dimensionality.

There exist various recent papers that discuss results regarding
a curse-of-dimensionality-free approximation of solutions of par-
ticular kinds of partial differential equations, see, e.g., Beck et al.
(2025), Darbon et al. (2020), Gonon and Schwab (2023). In par-
ticular, some of these references exploit the smoothness of solu-
tions of second-order order Hamilton-Jacobi-Bellman equations.
However, when it comes to computing a clf for a deterministic
system, which can be characterized as solution of a particular
first-order Hamilton-Jacobi-Bellman equation, we cannot expect
such a level of smoothness. Thus, we rely on a different structural
assumption that allows NNs to mitigate the curse of dimen-
sionality. To this end, we consider so-called separable functions.
Informally speaking, a mapping is called separable if it can be
written as a sum of functions that are each defined on some
lower-dimensional domain. Separable functions fall into the class
of compositional functions. The ability of NNs to avoid the curse
of dimensionality for compositional functions has been discussed
for instance in Dahmen (2025), Kang and Gong (2022), Poggio
et al. (2017). Compared to general compositional functions, sep-
arable functions have a simpler structure that allows for more
precise estimates, while the classes of control systems admitting
separable clfs are still non-trivial.
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Contribution

In this paper, we bridge the gap between NN approximation
theory and the computation of clfs via NNs. First, we provide error
estimates for the approximation of separable functions with NNs.
While Griine (2021), Griine and Sperl (2023) state asymptotic
results for L., approximation, this paper derives detailed er-
ror bounds, including all relevant constants. Furthermore, under
additional assumptions, we prove an extension of the approxi-
mation result to partial derivatives. Afterwards, we extend the
results for Lyapunov functions in Griine (2021) to clfs. Specifi-
cally, based on Griine and Sperl (2023) we use methods from
nonlinear control theory to identify conditions on the control
system such that a separable clf exists. Additionally, we explore
achieving separability through a state space transformation. Over-
all, we identify scenarios where NNs can provably avoid the curse
of dimensionality in the computation of clfs. Finally, we propose
a network architecture and training algorithm, and provide an
empirical evaluation of the benefit of the separable structure.
Compared to Griine and Sperl (2023), this paper contributes
detailed theoretical results on approximation errors, results on
separability after a suitable transformation, and extended numer-
ical results. In this context, we would also like to mention those
topics that are not part of this paper. While this paper provides
an expressivity result and proposes a training algorithm, it does
not delve into the analysis of the convergence of the training
algorithm or the generalization properties of the NN. Regarding
the last point, which is of high importance for practical usage, we
would like to refer to the works Dai et al. (2021), Liu et al. (2024,
2025), where methods to verify that the NN output satisfies the
Lyapunov conditions have been developed, thus providing a tool
to verify generalization properties. In particular, we would like to
point out that Liu et al. (2024) leverages a compositional structure
of the control system for verification, aligning well with the use
of separability for efficient representation discussed in this paper.
Specifically, the separable structure might be beneficial for formal
verification by enabling the decomposition of the verification pro-
cess for high-dimensional systems into the verification of smaller,
lower-dimensional subsystems. Moreover, we only consider the
case in which smooth clfs exist, which allows us to better focus on
the main results of this paper. Non-smooth clfs will be addressed
in future research, see Griine et al. (2025) for a first result.

Outline

The remainder of this paper is organized as follows: The prob-
lem formulation is introduced in the next section. Afterwards,
we provide a complexity analysis regarding the approximation
of separable functions with NNs. In Section 4 we focus on the
existence of separable clfs, while the numerical framework is
presented in Section 5. Finally, Section 6 concludes the paper.

Notation

For n € N we set [n] := {1, ..., n}. For a function f: R" — R
and K C R" we define ||f|lco.x = Supxexlf(x)| provided the
supremum exists. The symbol D is used to denote the classic
differential operator. Moreover, for some multi-index « € N" we
use D, to denote the higher-order partial derivative with respect
to «. For a function f:R" — Rand T € R™" we set foT:x >
f(Tx). The set K contains all continuous and strictly increasing
functions y :R>o — Ry with y(0) = 0 and K, comprises all
unbounded K-functions.

Automatica 182 (2025) 112517

2. Problem formulation

We consider a control system of the form

x = f(x, u), (1)

where the right-hand side f: R" x U — R" is continuous,
locally Lipschitz in x, and has an equilibrium at 0, i.e,, f(0,0) =
0. The input set is denoted as U C R™ and the admissible
control functions are given as the set of measurable and locally
essentially bounded functions u: R>o — U. In order to avoid
technicalities, we assume the system (1) to be defined on the
whole domain R". We are interested in stabilizing the system
towards the origin. To this end, we assume the control system (1)
to be asymptotically controllable. In Sontag (1983, Theorem 2.5)
it has been shown that asymptotic controllability is equivalent to
the existence of a clf in the sense of Dini. However, in the scope of
this paper, we consider only the case in which the control system
(1) admits a continuously differentiable clf. In this case, the Dini
derivative coincides with the gradient. This allows us to ensure
compatibility with some theorems from the literature cited in the
subsequent sections and avoids distracting technical difficulties.

Definition 1. A continuously differentiable function V:R" — R
is called (smooth) control Lyapunov function (clf) for (1) if there
exist a1, ap € Ko and a3 € K such that for x € R"

ai([Ixl) < V(x) < aa(lix]l), (2a)
325 DV(x)f (x, u) < —as(l|x]]). (2b)

3. Neural networks approximating separable functions
3.1. Preliminaries on neural networks

From a mathematical point of view, a neural network (NN)
is a mapping x — Wp(x) that takes some input vector x €
R" and processes it according to its parameters 6. In case of a
feedforward network, the value of a neuron yi') in layer | with
number k is determined via

/.
I . (-1 1
0 = (3wl + ).
i=1

where w,(cl)i € R are weights, bg) € R are bias terms and

01:R — R is the activation function of layer I. We solely consider
feedforward networks with a one-dimensional output Wy(x) € R
and the identity as activation function in the last layer. It has been
shown in Cybenko (1989) that the set of NNs with one hidden
layer and a continuous sigmoidal activation function is dense in
C([0, 1]™). Since we are interested in the numerical effort, we
need a quantitative version of an approximation theorem. To this
end, we characterize the complexity of a NN by the number of
neurons in its hidden layers. Further, for p € N,r € R.g, and
K C R" compact we define

W, (K) == {F € C°(K,R) | IFllw,) <7},
where [IFlw,x) = o< aj<p I1DeF lloc k-
Theorem 2. letp € N, r,R € Ry and 0 € C*(R, R) be not a

polynomial. Then for every n € N there exists ;, > 0 such that for
all M € N, any NN of the form

M n
Wo =3 w0 (Z wix + bk> , (3)
k=1 i=1
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and any F € CP(K,, R) there exists a parameter vector 0 =
(1 (2)
(wg’, wy’, b) such that

_p~
Wap — Fllooky < iaM ™7 RIIF llwy (i) (4)

where K, := [—R, R]", R := max {RP, 1}. Further, assume p > 2 and
lo”loo.r < Cy for some C, > 0. Then for a family of functions F C
W,,.r(Ky) for which ||w(Fl)||oo and IIw(Fz)Ih are uniformly bounded by
some Cy > O forall F € F and M € N, in addition we have for each
le| =1and F € F

IDe W, — DaFlloo.ky < 1/ 1M~ RC,

where C = 2r(r + CjCG) is independent of n and M.

Proof. The first statement follows immediately from (Mhaskar,
1996, Theorem 2.1). For the second statement, observe that under
the assumptions for all F € F the derivatives D,F and D, W,
are Lipschitz with Lipschitz constants Ly = r and Ly = C93Ca,
respectively. Then for e = o7 and x € K, the mean value theorem
implies that

F he) — F
Dap(x)_w < Lph,
W, he) — W,
D Wi ()~ I =Ty,

By the triangle inequality we obtain

| Do Wi (X) — Do F())
_ W, (x 4 he) — We, (x)
h

‘ W, (x + he) — Wy, (x)  F(x+ he) — F(x)

_l’_ —
h h

F(x + he) — F(x)
e
< Lyh + 2pta,M ™R /h + Lerh

S DDZWHF(X)

4+ [DyF(x)

< VM FR 20 + L),

where we used h = \/Z;LHM*%;Z}/(LF/ + Ly) in the last inequal-
ity, which minimizes the expression in the second last step. This
yields the claim. O

Note that the requirement for o to have a uniformly bounded
second derivative is satisfied by many commonly used smooth ac-
tivation functions, such as the softplus function o (x) = log(14-¢€*),
the sigmoid function o(x) = H% and the hyperbolic tangent
o(x) = tanh(x). In the following, for a function F € CP(K,, R) we
denote by 6F = (w(FU, w(Fz), br) the vector of parameters satisfying
(4) for a NN of the form (3).

We can conclude from Theorem 2 that the number of neurons
needed to provide an approximation up to some accuracy & > 0 is
given by M = O(¢™ 7 ), which has been shown in Mhaskar (1996)
to be best possible. Thus, in general, NNs suffer from the curse of
dimensionality.

Remark 3. The assumptions of uniform boundedness of the
parameters ||w(F1)||oO and ||w£2)||1, required for the second asser-
tion of Theorem 2, may potentially be avoided by leveraging the
results presented in Chapter 4 of Giihring and Raslan (2021).
Investigating how these results can be applied in the present
setting is part of ongoing work.
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Fig. 1. Architecture of the NN W, with x=(n—1)d+1and +=(n—1)M + 1.

3.2. Mitigating the curse of dimensionality with neural networks

In this section, we demonstrate that NNs can mitigate the
curse of dimensionality for so-called separable functions and
provide a detailed expression of the dependency on the involved
constants.

Definition 4. Let F € CP(R",R) and d € [n]. Then F is called
(strictly) d-separable if for some s € [n] there exist dy,...,d; €
[d] and functions Fy, ..., F; with Fj € C"(Rdf, R), such that for all
x € R" it holds

Fo) = ) F(z), 5)
j=1

where z; = (ka, ..
j € lsl

.,xkj,1) with kg = 1 and k; = kji_1 + d},

If F is a strictly d-separable function, its domain can be split
into s subspaces intersecting only at the origin, allowing F to
be written as a sum of s functions, which are defined on these
subspaces. For simplicity, we will omit the term “strictly” in what
follows. The separable structure can be exploited by a NN (see Fig.
1), with two hidden layers: the first using identity activation and
the second employing a smooth, non-polynomial activation func-
tion o3 € C*(R, R). The second layer’s sublayers are constructed
to compute the functions F; in (5).

In the following, let d,p € N and r, R € R.. For n € N define
K, .= [—R, R]" and

Fh = {F € W, (Kn)

F is d-separable, F(0) = O}.

Lemma 5. ForallF J—'mp we can write F = Zj;l F; for some

F e Wp,r(de) with d; € [d] for j e [s].

Proof. Since F is d-separable, we can write F = Zs

P e =1 FJ for some
F € CP(R%, R) with d; € [d]. As ijle(O) = 0 by defining
Fi:z > Fj(z) — F(0) we have F = ), F; with F;(0) = 0. This
yields

Fi(z) =Fl(z)+ Y _F(0)=F(0,....0,7,0,...,0). (6)
i#]

Further, observe that for x = (zq,...,z) € R"

DF(x) = [DFy(z1) DFa(z2) DFy(z;)] (7)
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Consequently, together with (6) it follows
Y IDuFillse,
O<|a|=p

< Y IDaFllaosy <7 O

0<l|a|<p

||Fj||wp(1<dj) =

Leveraging Lemma 5, we will henceforth assume that for any
Fﬁ?;’p > F = ijle, 'the cpmponents_ F; belong to Wp,r(Kd].),
without explicitly restating this assumption.

Theorem 6. For any d,p € N and r,R € R., there exists a
constant g > O such that for all n,M € N the NN W, depicted
in Fig. 1 with n(d + M) neurons satisfies that for all F € ]—‘ﬁ"d) » there
exists 6 such that

b
IWs, — Flloox, < nrpugM™dR,

where R = max{RP, 1}. Further assume ||6”||cox < C, for some

Co>0,p=>2andlet F C F; ; such thatforeachF = Z _F e
F the parameters 6, satisfy that lw'" [l and ||wF 2|, are uniformly
bounded by some Cy > 0 over F and M € N. Then foreach || =1

_p
1DaWo, — DoFlloo,ky < v/ taM™dRC

holds for all F € F, where C = 2r(r + C3C,).

Proof. We set the parameters corresponding to the first hidden
layer of the NN in Fig. 1 such that its first s sublayers contain the
vectors zj, j € [s], respectively. For the output layer we choose
w(f,) = 1fori e [dM], w(f,) =0 for i > dM, and b(f) = 0. Observe
that

n M
Wo(x) = Z ZyEizll)MH =

j=1 i=1

s M
Z ZJ’E}'ZEUMH’ (8)

j=1 i=1

where for each j € [s], the output va' 1 yU2 i Of the jth
sublayer can be viewed as the output of a NN with input z; and a

hidden layer of M neurons (cf. Fig. 1), denoted by WU) Applying
Theorem 2, we get

. .
”WeUF; _Fj||oo,l<,,j < rugM™aR.

For the resulting 6F, by (8) we have for x € K,

[Way (0) = Flx)| = \ZWU) F@)|
= Z ’We (z)

As s < n, this shows the first claim. Since
DWi(x) = [DWilz) ... DW()],

together with (7), the second claim immediately follows from
Theorem 2. O

— F(z)| < sruaM~dR.

The first hidden layer of the network in Fig. 1 computes the
decomposition of the state x into vectors z, 1 < j < s, as in
Definition 4. Since this layer can realize any linear mapping via
suitable chosen weights, the following definition is motivated.

Definition 7. Letd € [n], F € ¢ (R, R), and T € R"™" be
invertible. Then F is called linearly d-separable with respect to
T if the mapping x +— F(Tx) is (strictly) d-separable. Further, a
function G € C'(R", R!) is called linearly d-separable if each of its
I component functions is linearly d-separable.
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The following corollary generalizes Theorem 6 to linearly d-
separable functions. For ¢ € Rsj, let GL denote the set of
invertible matrices T € R™" with ||T|l, < c and ||T™"|» < c.
Note that any T € R™" with condition number < c¢? can be
rescaled to lie in GL{,. Further, define

F = {F € Wy (Kn)

F is linearly d-separable

w.r.t. some T € GL;, F(0) = O}.

Corollary 8. Forany d,p € Nand c,r,R € R., there exists a
constant pg > 0 such that for all n, M € N the NN Wy depicted in

Fig. 1 with n(d + M) neurons satisfies that for all F € F. d p.c there
exists 6 such that

_P=
Wap — Fllook, < ncPrpgM™dR, (9)

where R := max{(cR), 1}. Further, assume ||6"||c.r < Cy for some
Co>0,p=>2andlet F C ]—‘ﬁd)pc such thatforeachF € F with
FoT = Z] 1 Fj the parameters OF; satisfy that ||wF )||oo and ||wF )||
are uniformly bounded by some Cg > 0 over F dand M € N. Then,

for each |«| = 1 the inequality

_b=s~
”Dawé’p - DO(F”oo,Kn =< Cy maM™dRC

holds for all F € F, where C= 2cPr(cPr 4+ CjCa ).
Proof. LetF € }‘(“;C - Consider the mapping G: T™!'K, — R, x

F(Tx). By assumption, G is a d-separable function. Further, note
that G(0) = 0 and T~ 'K,, C cK, = [—cR, cR]". Moreover, it holds
that

IGlwyr-1ky = D, IDalF 0 Tl 11k,

O<la|<p

<cP E

0<lal<p

I(DaF) o Tllo r-1k, = €’ IFllwpixn)-

Hence, applying Theorem 6 yields 6 such that

_p~
[Wag — Glloo r-1k, < ncPruaM dR,

where W is the NN constructed in the proof of Theorem 6. Recall
that the output of the first hidden layer is given by Wx for
some W) e R Replacing T~'K, as the input space with
K, and ad;ystmg the weights of the first hidden layer to obtain
W = WOT-T proves the first claim. For the second claim,
assume F € F and observe that for any |o| = 1 we have

— DoFllooiy < 1T I[1De W,

<cy uaM™ iRC,

where the last mequality follows from Theorem 6 applied for

G= FOTG‘FCPrdp a

1D W, — Do Gll oo 7-1k,

The estimate (9) in Corollary 8 can also be derived using Theo-
rem 4.10 from Kang and Gong (2022). Representing the separable
function as a compositional function and estimating the constants
in Kang and Gong (2022, Remark 4.12) yields arguments similar
to those in the proofs of Lemma 5, Theorem 6, and Corollary 8.

As a consequence of Theorem 6 and Corollary 8, by counting
the total number of neurons in the hidden layers in Fig. 1, we
obtain that the number of hidden neurons needed to approximate
(linearly) d-separable functions grows only polynomially in the
state dimension n. For £, approximation this asymptotic result
has already been stated in Griine (2021). The following Corollary
extends the asymptotic result to the Wi-norm.
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(=) '

/ !L'2=CU1—CU2+$%, (11)
@—> .i'3:$2—$3.

Fig. 2. A control system and its corresponding graph.

=3+ u,

Corollary 9. Let ¢ > 0 and consider the setting from Corollary 8.
Then for n € N the number of hidden neurons N € N needed to
ensure

supinf [|Wy — Fllw,(—rrm) < €

Fer ¢

P dyq 2
zsglvenbyN:O(nd+nP e P).

4. Existence of separable control Lyapunov functions

In this section, we use methods from nonlinear systems theory
to provide conditions for the existence of (linearly) separable
clfs. Thus, by invoking the results from Section 3 we can iden-
tify classes of systems that allow NNs to mitigate the curse of
dimensionality.

4.1. Separability via small-gain theory and active nodes

This subsection proves the existence of separable clfs based
on small gain theory, leveraging the notion of active nodes from
Chen and Astolfi (2020, 2024). We consider a control system (1)
and assume that it can be decomposed into s € N subsystems
denoted by

T 4 =fix W) = fi(z. 2, W), jels), (10)
7y il filx, W)

X= , U= , flx,u)= s
Zs 1 fi(x, 1)

with zj € RS, U = Uy x -+ x Uy, Il € Uj, fj: R" x U; — R%, and
T —d:
z=(21,....41.2i41,....2 ) €R"Y.

We explicitly allow for the case that some subsystems X; are
independent of the control u, which corresponds to the case U; =
{0}. Such a decomposition is now represented as a directed graph
that consists of s nodes. Each node belongs to one subsystem and
there exists an edge from node i to node j, i # j, if the subsystem
i influences the subsystem j, i.e., if the function f; depends on the
vector z;. Fig. 2 illustrates the graph corresponding to a decompo-
sition into 1-dimensional subsystems of the control system (11)
from Chen and Astolfi (2020).

Assumption 10. For eachj € [s] there exists a feedback function
Fj:R% — Uj, comparison functions o € Koo, ¥ij € Koo, i # J,
as well as a positive-definite and radially unbounded function
V; e c'(R%, R) such that

DVj(z)fj(z, z-j, Fi(z)) = —a;(Vj(z)) + Z Y1i(Vi(z:)). (12)
i#j

Note that for a subsystem X that is not influenced by the con-

trol, the left-hand side in (12) does not depend on any feedback

function F;. Assumption 10 states that for all j € [s], the function

V; is an ISS-Lyapunov function (see Sontag and Wang (1995)) for

the system z; = fj(z, z_j, Fi(zj)), where z_; is seen as the external
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input. Given such a stability assumption on each of the subsys-
tems, small-gain theory can be used to obtain a stability property
of the overall system, see, for instance, Dashkovskiy et al. (2010),
Riiffer (2007). In the following, we focus on the theory developed
in Chen and Astolfi (2024) that allows to formulate a graph-based
criterion for the existence of a separable clf. Note that we do not
impose regularity conditions on F; in Assumption 10 since this is
not necessary in order to apply the results from Chen and Astolfi
(2024), whereas regularity of F; is required for the existence of
solutions.

Definition 11 (cf. Chen & Astolfi, 2024). Let j € [s] and consider
a subsystem Xj as in (10). The subsystem is called active if there
exist &;, ¥ij € Koo, 1 # j, and a function V; € c(R%, R) such that
for all o > &; there exists F;: R% — Uj such that (12) holds.

Intuitively, Definition 11 implies that, for given gain functions
vij» the rate of decrease of V; along the direction of the vector
field can be made as steep as desired by applying an appropriate
feedback F;. Using this notion of active subsystems (or active
nodes), the results of Chen and Astolfi (2024) yield the following
proposition.

Proposition 12.  Consider a control system (1) given through
subsystems of the form (10) and let Assumption 10 hold. Moreover,
assume that in each cycle of the directed graph corresponding to the
decomposition (10) there is at least one active subsystem. Then there
exists a d-separable clf for the system (1) with d := maXje d;.

Proof. Let V;, j € [s], denote the ISS-Lyapunov functions obtained
from Assumption 10. Applying Theorem 4 and Theorem 5 in Chen
and Astolfi (2024), yields the existence of continuous, positive
definite functions Aj: R>g — Rx, j € [s], such that

5 Vi(z))
Vx) = / Aj(s) ds
j=0 70

is a Lyapunov function for z; = fi(z,z_;, Fi(z)),j € [s]. This
implies that V satisfies condition (2b), whence V is a clf for (1).
This gives us the decomposition of V as d-separable function as
in Definition 4. O

Revisiting the control system in (11), we can check that Vj(x;)
= sz is an ISS-Lyapunov function for each subsystem and that the
first subsystem is active. Thus, Proposition 12 yields the existence
of a 1-separable clf.

4.2. Linear separability via linearization

This subsection addresses the existence of linearly d-separable
CLFs. This is motivated by the system
X1 =X3+1U, Xp=Xx; —X2+X§, X3 =Xy + X3,

which is a variation of (11) for which it has been shown in Griine
and Sperl (2023) that it has a clf, but no 1-separable clf. However,
it can be shown that there exists a linearly 1-separable clf in a
neighborhood of the origin. We first prove that stabilizable linear
systems always admit a linearly 1-separable clf.

Proposition 13. Consider a linear control system
X = Ax + Bu, (13)

where A € R™" and B € R™™, Assume that (A, B) is stabilizable.
Then there exists a linearly 1-separable clf V for the system (13).
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The function V is quadratic, i.e., V(x) = x"Px for some P € R™"
and satisfies

inf DV(x)(Ax 4+ Bu) < DV(x)(A+ BF)x < —c||x||§ (14)
ueR™
for a suitable feedback matrix F € R™" and some ¢ > 0.

Proof. It is known that for a linear and stabilizable system,
there always exists a cIf V(x) = x'Px with P € R™" symmet-
ric and positive definite. The inequality (14) then follows from
the usual matrix Lyapunov inequality. As P is symmetric and
positive-definite, there exists an orthogonal matrix T € R"™ " such
that

P :=T7'PT = T"PT = diag(p:, ..., pn)

is a diagonal matrix. Thus,
n
V(Tx) = (Tx)TP(Tx) = x"Px = X:p,-xi2
i=1

is a 1-separable function. O

Proposition 13 implies that linearizable control systems locally
possess linearly 1-separable clfs.

Corollary 14. Consider a control system (1) with a C'-function f
and assume that its linearization at the origin is stabilizable. Then
the control system (1) possesses a linearly 1-separable clf on some
neighborhood of the origin.

Proof. Write f(x, u) = Ax 4+ Bu + g(x, u) with

llgtx, wil _
lxwil—0 |(x, u)]]

Since (A, B) is stabilizable, Proposition 13 yields the existence of
¢ € Ry, F € R™™, and a linearly 1-separable function V(x) =
xTPx such that (14) holds. Following the proof of Sontag (1998,
Theorem 19), we obtain

inf DV(x)f (x, u) < —c|lx]13 + 2x" Pg(x, F(x)) < 0
u
for x sufficiently small, since ”Z"Pg”(;‘w — 0 for x — 0. Hence,

|
V is a cIf for the nonlinear system 81) in a suitable neighborhood
of the origin. O

4.3. Linear separability via feedback linearization

Next we explore a class of systems for which Proposition 13
can be employed to achieve linear separability through a potential
nonlinear transformation. To this end, we extend the definition
of feedback linearizability from (Sontag, 1998, Section 5.3) to
multi-input systems.

Definition 15. An affine control system
m

k=F0)+ ) gxy;
j=1

with control input u = (uq,...,un)’ € R™ is called feedback
linearizable, if there exists a difftfomorphism S e C!(R", R")
as well as functions a;, bj: R" — R, j € [m], such that the
transformed control system

=R+ gy
j=1
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with transformed state X = S(x), new control input v = (vq, ...,
vm)T € R™, and

F®) = DsE(f0 + Y ax)g0),
j=1

§(X) = bi(x)DS(x)gj(x),

is a linear control system, i.e., if there exist matrices A € R™" and
B € R™™ such that f(x) = Ax and (g(X), ..., &x(X)) = B holds for
all x e R™.

Theorem 16. Consider a feedback linearizable affine control system
with transformation S satisfying S(0) = 0, for which the pair (A, B)
is stabilizable. Then the control system admits a cIf V of the form
V(x) = V(S(x)) with a linearly 1-separable function V : R" — R.

Proof. According to Proposition 13, we have

inf DV(X)(AX 4 Bv) < DV(X)(AX + BFX) < —c|X||2

veRM

for suitable c € Rso, F € R™™, and some linearly 1-separable
mapping V. For V(x) = V(S(x)) and u; = aj(x) + b;(x)v; we then
obtain

DV)(f(x) + ) _ gi(x)
j=1
= DV(S()DS(X)(F(X) + Y gi(x)aj(x) + bi(x)v))
j=1

= DVE(FX) + Y _§(X);) = DV(X)AZ+ Bv).
j=1
This implies

inf DVCO(F00 -+ Y gilxu;) < —clSGI3:
j=1

ueR™M

Since S is a diffeomorphism with S(0) = 0, there exist a1, a3 €
Koo With a1(]1x|2) < (IIS(X)]l2) < aa(]Ix]]2), see Lemma 1 in Kellett
and Dower (2015). Thus, V satisfies all inequalities in (2), whence
itisaclf. O

Corollary 17. Consider the setting of Theorem 16 and assume that
the transformation map S is linearly k-separable for some k € [n].
Then the control system has a clf V that is a composition of a linearly
1-separable function with a linearly k-separable function.

Note that Corollary 17 in particular applies to linear mappings
S, as linear mappings are always 1-separable, cf. Proposition 13.
We can conclude that in the setting of Corollary 17 there exists
a curse-of-dimensionality-free approximation with a NN that is
built as in Fig. 1, but has one additional hidden layer at the begin-
ning, which is used to represent the k-separable transformation
S.

5. Numerical illustration
5.1. Network structure and training algorithm

The structure of the NN that we use for the computation of a
linearly separable clf is exactly the one depicted in Fig. 1 with the
modification of introducing a hyperparameter s for the number of
sublayers, i.e., replacing the n sublayers in Fig. 1 by s sublayers. An
important feature of this network architecture is the fact that the
decomposition of the state vector x into the vectors z;, 1 <j <s,
is determined by the first hidden layer. Thus, the detection of a
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suitable splitting of the state space (see Definition 4) is part of
the training process. This means that the numerical algorithm
presented in this section does not need to know the splitting
or coordinate transformation discussed in Section 4. Rather, this
structure will be “learned” by the network in the training process.

It is possible to incorporate the linear transformation com-
puted by the first hidden layer in Fig. 1 into the second hidden
layer, that is, to merge the two hidden layers into one hidden
fully connected layer. Since the NN in Fig. 1 can be viewed as a
fully connected NN with some particular weights set to 0, a fully
connected NN still preserves the property of mitigating the curse
of dimensionality for separable clfs. However, in our numerical
test cases, the NN with two hidden layers as depicted in Fig.
1 frequently demonstrated an improved numerical performance.
On the other hand, if no a priori estimates of the hyperparameters
d and s are possible, the use of a fully connected NN is more prac-
tical. A detailed comparison of these NN architectures, including
different numbers of layers, is of high importance but is deferred
to future research due to space limitations.

We define a loss function L that penalizes violations of the
three characterizing inequalities of a smooth clf given in Defini-
tion 1. For any point x € K, we set

L(x, Wy(x), DWy(x)) := ([Wp(x) — a1([Ix[1)]-)?

+ (Wp(x) — ea(llx[1)]4)? (15)
. 2
+ n([astlix) + inf DWaarix w)] )
where a1, a3 € Koo, @3 € K, [-]4 := max(:, 0), [-]- := min(-, 0),

and n > 0 is a weighting factor. Note that the functions o, a3,
and a3, as well as the parameter 7 are hyperparameters of the al-
gorithm. Their choice can significantly affect the training process,
whence a system approach for selecting these hyperparameters
is important and will be investigated in future research.

Note that L depends on the point x, the evaluation Wjy(x)
and the orbital derivative DWy(x)f (x, u). We calculate this orbital
derivative alongside the evaluation of Wy(x) via automatic dif-
ferentiation. This means that the orbital derivative is computed
on the fly from the separable network, using the built-in dif-
ferentiation via backpropagation in TensorFlow (see Abadi et al.
(2015)). Thus, the derivative does not need to be stored sepa-
rately, whence separability of the orbital derivative, which cannot
be expected since f is not separable, is not needed. Moreover, we
need to evaluate the term inf,cy DWy(x)f (X, u). This expression
can be simplified for systems with U = [—C, C]™ for some C > 0
and systems with an affine linear control input of the form x =
f(x, u) = h(x) + g(x)u, since then we have

525 DW,(x)f (x, u) = DWy(x)h(x) — C|IDWa(x)g(X)ll1, (16)

cf. Griine and Sperl (2023, Lemma 6). The training process of the
NN is then performed by minimizing the loss function (15) over
a finite set of training data Dr C K.

Remark 18. CIfs can be characterized as solutions of Zubov's
equation (Camilli et al, 2008; Griine & Wirth, 2000), i.e., as
optimal value functions for suitable optimal control problems.
For such problems, NN approaches have been proposed in the
literature, see e.g. Albi et al. (2022), Liu et al. (2025), Nakamura-
Zimmerer et al. (2022), Zhou et al. (2024). However, they are
difficult to apply in our setting, because while we assume that
a separable clf exists, we do not know its precise form and thus
also not the corresponding optimal control problem.

Furthermore, in our numerical tests it has turned out that the
most significant error usually lies around the origin. We tackle
this by adding the term W;(0)? + | DW,(0)||? to the loss function
used for the training of the network, cf. Chang et al. (2019). This
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encourages the used optimization routine to stay at Wy(0) = 0
and DWy(0) = 0 during the training. While this approach pro-
duced the best results for us, different ways to address issues at
the origin have successfully been implemented in the literature,
for instance by transforming the NN output, cf. Gaby et al. (2022),
Mukherjee et al. (2022).

5.2. Numerical test case

Finally, we illustrate the presented algorithm on the 10-
dimensional control system

—x1 + x1%, — 0.1x3
—XoUq
—X3 + X3%4 — 0.1x
—Xqly
. —X5 + X5Xg + 0.1x2
k= flxuy = | 7T TR (17)
—X7 + X7Xg
—Xgly
—Xg + X9X10
—X10Us + O.lX%

with U = [—1, 1]°. It consists of 5 two-dimensional bilinear
subsystems of the form y = —y + zy,Z = —uz coupled with
small non-linearities. For u = 1 this recovers the ODE presented
in Ahmadi et al. (2011), where it is shown that there does not ex-
ist a polynomial Lyapunov function for this system on R2. While
there still exists a quadratic clf with appropriate coefficients on
compact sets, enlarging the training domain makes it more diffi-
cult to recover it. This can cause the NN to defer from a quadratic
influence of the variables, cf. Fig. 3. To illustrate the ability of
our approach to determine subspaces that lead to separability,
we consider the transformed system x = T~ 'f(Tx, u), where T =
I1ip+P e R'%%10 with P being normally distributed around 0 with
scale 0.1. Note that the subsystems that are computed during the
training process are typically not the original subsystems from
(17). We employed the hyperparameters «(r) = 0.5r2, a(r) =
10r?, a5(r) = 0.01r%, aswell asd = 2,s = 5,and M = 64
in a training process with 2 x 10° training data, a batch size of
64, and the softplus-function as activation function in the second
hidden layer. The training process was conducted to compute a
cIf on the domain [—4, 4]'°, where we beforehand transformed
X = %x and performed the training on [—1, 1]'° for numerical
reasons. Our computations are carried out with Python 3.10.6
and TensorFlow 2.11.0 on an NVIDIA GeForce RTX 3070 GPU.
The optimization has been performed with the Adam stochastic
gradient descent method. After 30 epochs and a training time of
470 s, the algorithm reached an £; error of 9.8 x 10~ in the
training data. An evaluation at independently chosen 2 x 10°
validation data points showed an £ error of 9.3 x 10~/ and an
Lo error of 6.7 x 1072,

Fig. 3 shows the computed NN output Wjy(x) projected onto
the (x1, Xg)-axis as surface plot. Further, the directional derivative
DW,(x)f (x, u*) with

u*(x) = arg min DWy(x)f (x, u) (18)

is calculated according to (16) and depicted as wireframe plot.
Fig. 4 depicts the evaluation of Wy alongside 20 trajectories with
initial values randomly sampled in [—0.5, 0.5]'° and control u*(x)
as in (18). Note that the convergence of the trajectories in Fig. 4
towards 0 as well as the plots in Fig. 3 provide empirical evidence
that the computed NN output might indeed by a clf. However,
there is no formal guarantee that the Lyapunov conditions are
met at every point. For verification techniques, we refer to the
corresponding discussion in the introduction.
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Fig. 3. Approximate clf (solid) and its corresponding orbital derivative (mesh)
on the (xq, xg)-plane.

Wo(x(t))

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

Fig. 4. Evaluation of Wy along trajectories x(t).

Further, we trained neural networks towards clfs for the con-
trol system (17), adjusted to dimensions n = 2,4, ..., 16. For
each dimension, we utilized a network architecture as shown in
Fig. 4 with n/2 sublayers. The sublayer size M was decreased as
far as possible while still achieving an L; loss below a tolerance
of 10~* on both the training and independently chosen validation
data. The resulting total number of neurons in the network and its
number of trainable parameters in dependence of the dimension
are shown in Fig. 5. Notably, the growth in both the number of
neurons and trainable parameters is non-exponential and appears
almost linear. This trend arises because the minimal sublayer
size M remains in {2, 3, 4, 5} across all dimensions. This indicates
that the bounds derived in Section 3 are conservative for this
example, as expected, since the theoretical error bounds consider
the worst-case scenario where each subsystem simultaneously
attains its maximal error for the same input x. Our TensorFlow
code is available on https://github.com/MarioSperl/SeparableCLF-
NN.

6. Conclusion

In this paper, we have discussed the capability of NNs to
approximate clfs in high space dimensions. To this end, we have
shown that NNs can mitigate the curse of dimensionality for
approximating (linearly) separable functions and provided condi-
tions for the existence of (linearly) separable clfs. Thus, we have
identified control systems that allow for a representation of a clf
with a NN mitigating the curse of dimensionality. Moreover, a nu-
merical algorithm was presented. For future research, we intend
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Fig. 5. Scaling of neurons and parameters with dimension.

to systematically study the influence of the hyperparameters de-
termining the NN architecture and the loss function. Afterwards,
a comparison to other numerical methods is of interest, as it was
for example done in Zhou et al. (2024). Moreover, we aim to
investigate the approximation of non-smooth clfs with NNs.
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