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 a b s t r a c t

In this paper, we investigate the ability of neural networks to mitigate the curse of dimensionality 
in representing control Lyapunov functions. To achieve this, we first prove an error bound for the 
approximation of separable functions with neural networks. Subsequently, we discuss conditions on 
the existence of separable control Lyapunov functions, drawing upon tools from nonlinear control 
theory. This enables us to bridge the gap between neural networks and the approximation of control 
Lyapunov functions. Moreover, we present a network architecture and a training algorithm to illustrate 
the theoretical findings on a 10-dimensional control system.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Control Lyapunov functions (clfs) serve as a certificate of 
asymptotic null-controllability and can also be used to examine 
robustness against uncertainties and disturbances or to study per-
formance criteria. However, their most common application lies 
in designing stabilizing feedback laws using the clf as guidance 
towards the equilibrium. Since, in general, it is quite hard to 
compute clfs analytically, we rely on numerical methods. How-
ever, traditional numerical methods, which employ a grid-based 
approach for the computation of the derivative of the clf, suffer 
from the curse of dimensionality. This means that, to achieve a 
certain accuracy, the number of required grid points and, thus, 
the numerical effort grows exponentially in the dimension of the 
state space. Consequently, such approaches become impractical 
in high dimensions.

This paper concerns the use of neural networks (NNs) to 
circumvent the curse of dimensionality for approximating clfs. 
Our approach is related to the work (Sontag, 1991), which in-
vestigates structural properties of control systems that allow for 
an exact representation of a (possibly discontinuous) stabilizing 
feedback by NNs. Further, there exist several papers that present 
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algorithms for the computation of clfs by NNs, see e.g., Khansari-
Zadeh and Billard (2014), Long and Bayoumi (1993). However, 
while the algorithms therein have similarities with our numerical 
approach, none of them provides a complexity analysis regarding 
the curse of dimensionality. Establishing conditions for mitigating 
the curse of dimensionality in computing clfs is the main contri-
bution of this work. Addressing this challenge requires identifying 
a suitable class of functions that enables NNs to avoid the curse 
of dimensionality.

There exist various recent papers that discuss results regarding 
a curse-of-dimensionality-free approximation of solutions of par-
ticular kinds of partial differential equations, see, e.g., Beck et al. 
(2025), Darbon et al. (2020), Gonon and Schwab (2023). In par-
ticular, some of these references exploit the smoothness of solu-
tions of second-order order Hamilton–Jacobi–Bellman equations. 
However, when it comes to computing a clf for a deterministic 
system, which can be characterized as solution of a particular 
first-order Hamilton–Jacobi–Bellman equation, we cannot expect 
such a level of smoothness. Thus, we rely on a different structural 
assumption that allows NNs to mitigate the curse of dimen-
sionality. To this end, we consider so-called separable functions. 
Informally speaking, a mapping is called separable if it can be 
written as a sum of functions that are each defined on some 
lower-dimensional domain. Separable functions fall into the class 
of compositional functions. The ability of NNs to avoid the curse 
of dimensionality for compositional functions has been discussed 
for instance in Dahmen (2025), Kang and Gong (2022), Poggio 
et al. (2017). Compared to general compositional functions, sep-
arable functions have a simpler structure that allows for more 
precise estimates, while the classes of control systems admitting 
separable clfs are still non-trivial.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Contribution

In this paper, we bridge the gap between NN approximation 
theory and the computation of clfs via NNs. First, we provide error 
estimates for the approximation of separable functions with NNs. 
While Grüne (2021), Grüne and Sperl (2023) state asymptotic 
results for L∞ approximation, this paper derives detailed er-
ror bounds, including all relevant constants. Furthermore, under 
additional assumptions, we prove an extension of the approxi-
mation result to partial derivatives. Afterwards, we extend the 
results for Lyapunov functions in Grüne (2021) to clfs. Specifi-
cally, based on Grüne and Sperl (2023) we use methods from 
nonlinear control theory to identify conditions on the control 
system such that a separable clf exists. Additionally, we explore 
achieving separability through a state space transformation. Over-
all, we identify scenarios where NNs can provably avoid the curse 
of dimensionality in the computation of clfs. Finally, we propose 
a network architecture and training algorithm, and provide an 
empirical evaluation of the benefit of the separable structure. 
Compared to Grüne and Sperl (2023), this paper contributes 
detailed theoretical results on approximation errors, results on 
separability after a suitable transformation, and extended numer-
ical results. In this context, we would also like to mention those 
topics that are not part of this paper. While this paper provides 
an expressivity result and proposes a training algorithm, it does 
not delve into the analysis of the convergence of the training 
algorithm or the generalization properties of the NN. Regarding 
the last point, which is of high importance for practical usage, we 
would like to refer to the works Dai et al. (2021), Liu et al. (2024, 
2025), where methods to verify that the NN output satisfies the 
Lyapunov conditions have been developed, thus providing a tool 
to verify generalization properties. In particular, we would like to 
point out that Liu et al. (2024) leverages a compositional structure 
of the control system for verification, aligning well with the use 
of separability for efficient representation discussed in this paper. 
Specifically, the separable structure might be beneficial for formal 
verification by enabling the decomposition of the verification pro-
cess for high-dimensional systems into the verification of smaller, 
lower-dimensional subsystems. Moreover, we only consider the 
case in which smooth clfs exist, which allows us to better focus on 
the main results of this paper. Non-smooth clfs will be addressed 
in future research, see Grüne et al. (2025) for a first result.

Outline

The remainder of this paper is organized as follows: The prob-
lem formulation is introduced in the next section. Afterwards, 
we provide a complexity analysis regarding the approximation 
of separable functions with NNs. In Section 4 we focus on the 
existence of separable clfs, while the numerical framework is 
presented in Section 5. Finally, Section 6 concludes the paper.

Notation

For n ∈ N we set [n] := {1, . . . , n}. For a function f :Rn
→ R

and K ⊂ Rn we define ∥f ∥∞,K := supx∈K |f (x)| provided the 
supremum exists. The symbol D is used to denote the classic 
differential operator. Moreover, for some multi-index α ∈ Nn we 
use Dα to denote the higher-order partial derivative with respect 
to α. For a function f :Rn

→ R and T ∈ Rn×n we set f ◦ T : x ↦→

f (Tx). The set K contains all continuous and strictly increasing 
functions γ : R≥0 → R≥0 with γ (0) = 0 and K∞ comprises all 
unbounded K-functions.
2

2. Problem formulation

We consider a control system of the form 

ẋ = f (x, u), (1)

where the right-hand side f : Rn
× U → Rn is continuous, 

locally Lipschitz in x, and has an equilibrium at 0, i.e., f (0, 0) =

0. The input set is denoted as U ⊂ Rm and the admissible 
control functions are given as the set of measurable and locally 
essentially bounded functions u : R≥0 → U . In order to avoid 
technicalities, we assume the system (1) to be defined on the 
whole domain Rn. We are interested in stabilizing the system 
towards the origin. To this end, we assume the control system (1) 
to be asymptotically controllable. In Sontag (1983, Theorem 2.5) 
it has been shown that asymptotic controllability is equivalent to 
the existence of a clf in the sense of Dini. However, in the scope of 
this paper, we consider only the case in which the control system 
(1) admits a continuously differentiable clf. In this case, the Dini 
derivative coincides with the gradient. This allows us to ensure 
compatibility with some theorems from the literature cited in the 
subsequent sections and avoids distracting technical difficulties. 

Definition 1.  A continuously differentiable function V :Rn
→ R

is called (smooth) control Lyapunov function (clf) for (1) if there 
exist α1, α2 ∈ K∞ and α3 ∈ K such that for x ∈ Rn

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (2a)

inf
u∈U

DV (x)f (x, u) ≤ −α3(∥x∥). (2b)

3. Neural networks approximating separable functions

3.1. Preliminaries on neural networks

From a mathematical point of view, a neural network (NN) 
is a mapping x ↦→ Wθ (x) that takes some input vector x ∈

Rn and processes it according to its parameters θ . In case of a 
feedforward network, the value of a neuron y(l)k  in layer l with 
number k is determined via

y(l)k = σl

(Nl−1∑
i=1

w
(l)
k,iy

(l−1)
i + b(l)k

)
,

where w
(l)
k,i ∈ R are weights, b(l)k ∈ R are bias terms and 

σl :R → R is the activation function of layer l. We solely consider 
feedforward networks with a one-dimensional output Wθ (x) ∈ R
and the identity as activation function in the last layer. It has been 
shown in Cybenko (1989) that the set of NNs with one hidden 
layer and a continuous sigmoidal activation function is dense in 
C([0, 1]n). Since we are interested in the numerical effort, we 
need a quantitative version of an approximation theorem. To this 
end, we characterize the complexity of a NN by the number of 
neurons in its hidden layers. Further, for p ∈ N, r ∈ R>0, and 
K ⊂ Rn compact we define

Wp,r (K ) :=
{
F ∈ Cp(K ,R)

⏐⏐ ∥F∥Wp(K ) ≤ r
}
,

where ∥F∥Wp(K ) :=
∑

0≤|α|≤p ∥DαF∥∞,K . 

Theorem 2.  Let p ∈ N, r, R ∈ R>0 and σ ∈ C∞(R,R) be not a 
polynomial. Then for every n ∈ N there exists µn > 0 such that for 
all M ∈ N, any NN of the form 

Wθ (x) =

M∑
w

(2)
k σ

(
n∑

w
(1)
k,i xi + bk

)
, (3)
k=1 i=1
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and any F ∈ Cp(Kn,R) there exists a parameter vector θF =

(w(1)
F , w

(2)
F , bF ) such that 

∥WθF − F∥∞,Kn ≤ µnM−
p
n R̃∥F∥Wp(Kn), (4)

where Kn := [−R, R]n, ̃R := max {Rp, 1}. Further, assume p ≥ 2 and 
∥σ ′′

∥∞,R ≤ Cσ  for some Cσ > 0. Then for a family of functions F ⊂

Wp,r (Kn) for which ∥w(1)
F ∥∞ and ∥w(2)

F ∥1 are uniformly bounded by 
some Cθ > 0 for all F ∈ F and M ∈ N, in addition we have for each 
|α| = 1 and F ∈ F

∥DαWθF − DαF∥∞,Kn ≤

√
µnM−

p
n R̃C,

where C = 2r(r + C3
θ Cσ ) is independent of n and M.

Proof.  The first statement follows immediately from (Mhaskar, 
1996, Theorem 2.1). For the second statement, observe that under 
the assumptions for all F ∈ F the derivatives DαF  and DαWθF
are Lipschitz with Lipschitz constants LF ′ = r and LW ′ = C3

θ Cσ , 
respectively. Then for e = αT  and x ∈ Kn the mean value theorem 
implies that⏐⏐⏐⏐DαF (x) −

F (x + he) − F (x)
h

⏐⏐⏐⏐ ≤ LF ′h,

⏐⏐⏐⏐DαWθF (x) −
WθF (x + he) − WθF (x)

h

⏐⏐⏐⏐ ≤ LW ′h.

By the triangle inequality we obtain⏐⏐DαWθF (x) − DαF (x)
⏐⏐

≤

⏐⏐⏐⏐DαWθF (x) −
WθF (x + he) − WθF (x)

h

⏐⏐⏐⏐
+

⏐⏐⏐⏐WθF (x + he) − WθF (x)
h

−
F (x + he) − F (x)

h

⏐⏐⏐⏐
+

⏐⏐⏐⏐DαF (x) −
F (x + he) − F (x)

h

⏐⏐⏐⏐
≤ LW ′h + 2µnM−

p
n R̃r/h + LF ′h

≤

√
µnM−

p
n R̃ 2r(LF ′ + LW ′ ),

where we used h =

√
2µnM−

p
n R̃r/(LF ′ + LW ′ ) in the last inequal-

ity, which minimizes the expression in the second last step. This 
yields the claim. □

Note that the requirement for σ  to have a uniformly bounded 
second derivative is satisfied by many commonly used smooth ac-
tivation functions, such as the softplus function σ (x) = log(1+ex), 
the sigmoid function σ (x) =

1
1+e−x , and the hyperbolic tangent 

σ (x) = tanh(x). In the following, for a function F ∈ Cp(Kn,R) we 
denote by θF = (w(1)

F , w
(2)
F , bF ) the vector of parameters satisfying 

(4) for a NN of the form (3).
We can conclude from Theorem  2 that the number of neurons 

needed to provide an approximation up to some accuracy ε > 0 is 
given by M = O(ε−

n
p ), which has been shown in Mhaskar (1996) 

to be best possible. Thus, in general, NNs suffer from the curse of 
dimensionality.

Remark 3.  The assumptions of uniform boundedness of the 
parameters ∥w(1)

F ∥∞ and ∥w(2)
F ∥1, required for the second asser-

tion of Theorem  2, may potentially be avoided by leveraging the 
results presented in Chapter 4 of Gühring and Raslan (2021). 
Investigating how these results can be applied in the present 
setting is part of ongoing work.
3

Fig. 1. Architecture of the NN Wθ  with ∗ = (n− 1)d+ 1 and + = (n− 1)M + 1.

3.2. Mitigating the curse of dimensionality with neural networks

In this section, we demonstrate that NNs can mitigate the 
curse of dimensionality for so-called separable functions and 
provide a detailed expression of the dependency on the involved 
constants.

Definition 4.  Let F ∈ Cp(Rn,R) and d ∈ [n]. Then F  is called 
(strictly) d-separable if for some s ∈ [n] there exist d1, . . . , ds ∈

[d] and functions F1, . . . , Fs with Fj ∈ Cp(Rdj ,R), such that for all 
x ∈ Rn it holds 

F (x) =

s∑
j=1

Fj(zj), (5)

where zj = (xkj−1 , . . . , xkj−1) with k0 := 1 and kj := kj−1 + dj, 
j ∈ [s].

If F  is a strictly d-separable function, its domain can be split 
into s subspaces intersecting only at the origin, allowing F  to 
be written as a sum of s functions, which are defined on these 
subspaces. For simplicity, we will omit the term ‘‘strictly’’ in what 
follows. The separable structure can be exploited by a NN (see Fig. 
1), with two hidden layers: the first using identity activation and 
the second employing a smooth, non-polynomial activation func-
tion σ2 ∈ C∞(R,R). The second layer’s sublayers are constructed 
to compute the functions Fj in (5).

In the following, let d, p ∈ N and r, R ∈ R>0. For n ∈ N define 
Kn := [−R, R]n and

F (n)
r,d,p :=

{
F ∈ Wp,r (Kn)

⏐⏐⏐F  is d-separable, F (0) = 0
}
.

Lemma 5.  For all F ∈ F (n)
r,d,p we can write F =

∑s
j=1 Fj for some 

Fj ∈ Wp,r (Kdj ) with dj ∈ [d] for j ∈ [s].

Proof.  Since F  is d-separable, we can write F =
∑s

j=1 F̃j for some 
Fj ∈ Cp(Rdj ,R) with dj ∈ [d]. As 

∑s
j=1 F̃j(0) = 0 by defining 

Fj : zj ↦→ F̃j(zj) − F̃j(0) we have F =
∑s

j=1 Fj with Fj(0) = 0. This 
yields 

Fj(zj) = Fj(zj) +

∑
i̸=j

Fi(0) = F (0, . . . , 0, zj, 0, . . . , 0). (6)

Further, observe that for x = (z1, . . . , zs) ∈ Rn

DF (x) =
[
DF (z ) DF (z ) · · · DF (z )

]
. (7)
1 1 2 2 s s
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Consequently, together with (6) it follows

∥Fj∥Wp(Kdj )
=

∑
0≤|α|≤p

∥DαFj∥∞,Kdj

≤

∑
0≤|α|≤p

∥DαF∥∞,Kn ≤ r. □

Leveraging Lemma  5, we will henceforth assume that for any 
F (n)

r,d,p ∋ F =
∑s

j=1 Fj, the components Fj belong to Wp,r (Kdj ), 
without explicitly restating this assumption.

Theorem 6.  For any d, p ∈ N and r, R ∈ R>0, there exists a 
constant µd > 0 such that for all n,M ∈ N the NN Wθ  depicted 
in Fig.  1 with n(d+M) neurons satisfies that for all F ∈ F (n)

r,d,p there 
exists θF  such that

∥WθF − F∥∞,Kn ≤ nrµdM−
p
d R̃,

where ̃R := max{Rp, 1}. Further, assume ∥σ ′′
∥∞,R ≤ Cσ  for some 

Cσ > 0, p ≥ 2, and let F ⊂ F (n)
r,d,p such that for each F =

∑s
j=1 Fj ∈

F the parameters θFj  satisfy that ∥w
(1)
Fj

∥∞ and ∥w(2)
Fj

∥1 are uniformly 
bounded by some Cθ > 0 over F and M ∈ N. Then, for each |α| = 1

∥DαWθF − DαF∥∞,Kn ≤

√
µdM−

p
d R̃C

holds for all F ∈ F , where C = 2r(r + C3
θ Cσ ).

Proof.  We set the parameters corresponding to the first hidden 
layer of the NN in Fig.  1 such that its first s sublayers contain the 
vectors zj, j ∈ [s], respectively. For the output layer we choose 
w

(3)
1,i = 1 for i ∈ [dM], w(3)

1,i = 0 for i > dM , and b(3)1 = 0. Observe 
that 

Wθ (x) =

n∑
j=1

M∑
i=1

y(2)(j−1)M+i =

s∑
j=1

M∑
i=1

y(2)(j−1)M+i, (8)

where for each j ∈ [s], the output 
∑M

i=1 y
(2)
(j−1)M+i of the jth 

sublayer can be viewed as the output of a NN with input zj and a 
hidden layer of M neurons (cf. Fig.  1), denoted by W (j)

θj
. Applying 

Theorem  2, we get

∥W (j)
θFj

− Fj∥∞,Kdj
≤ rµdM−

p
d R̃.

For the resulting θF , by (8) we have for x ∈ Kn⏐⏐WθF (x) − F (x)
⏐⏐ =

⏐⏐⏐ s∑
j=1

W (j)
θFj
(zj) − Fj(zj)

⏐⏐⏐
≤

s∑
j=1

⏐⏐W (j)
θFj
(zj) − Fj(zj)

⏐⏐ ≤ srµdM−
p
d R̃.

As s ≤ n, this shows the first claim. Since

DWθF (x) =

[
DW (1)

θF1
(z1) . . . DW (s)

θFs
(zs)
]
,

together with (7), the second claim immediately follows from 
Theorem  2. □

The first hidden layer of the network in Fig.  1 computes the 
decomposition of the state x into vectors zj, 1 ≤ j ≤ s, as in 
Definition  4. Since this layer can realize any linear mapping via 
suitable chosen weights, the following definition is motivated.

Definition 7.  Let d ∈ [n], F ∈ C1(Rn,R), and T ∈ Rn×n be 
invertible. Then F  is called linearly d-separable with respect to 
T  if the mapping x ↦→ F (Tx) is (strictly) d-separable. Further, a 
function G ∈ C1(Rn,Rl) is called linearly d-separable if each of its 
l component functions is linearly d-separable.
4

The following corollary generalizes Theorem  6 to linearly d-
separable functions. For c ∈ R≥1, let GLcn denote the set of 
invertible matrices T ∈ Rn×n with ∥T∥∞ ≤ c and ∥T−1

∥∞ ≤ c. 
Note that any T ∈ Rn×n with condition number ≤ c2 can be 
rescaled to lie in GLcn. Further, define

F (n)
r,d,p,c :=

{
F ∈ Wp,r (Kn)

⏐⏐⏐F  is linearly d-separable
w.r.t. some T ∈ GLcn, F (0) = 0

}
.

Corollary 8.  For any d, p ∈ N and c, r, R ∈ R>0, there exists a 
constant µd > 0 such that for all n,M ∈ N the NN Wθ  depicted in 
Fig.  1 with n(d + M) neurons satisfies that for all F ∈ F (n)

r,d,p,c there 
exists θF  such that 

∥WθF − F∥∞,Kn ≤ ncprµdM−
p
d R̂, (9)

where ̂R := max{(cR)p, 1}. Further, assume ∥σ ′′
∥∞,R ≤ Cσ  for some 

Cσ > 0, p ≥ 2, and let F ⊂ F (n)
r,d,p,c such that for each F ∈ F with 

F ◦T =
∑s

j=1 Fj the parameters θFj  satisfy that ∥w
(1)
Fj

∥∞ and ∥w(2)
Fj

∥1

are uniformly bounded by some Cθ > 0 over F and M ∈ N. Then, 
for each |α| = 1 the inequality

∥DαWθF − DαF∥∞,Kn ≤ c
√

µdM−
p
d R̂̂C

holds for all F ∈ F , where ̂C = 2cpr(cpr + C3
θ Cσ ).

Proof.  Let F ∈ F (n)
r,d,c,p. Consider the mapping G : T−1Kn → R, x ↦→

F (Tx). By assumption, G is a d-separable function. Further, note 
that G(0) = 0 and T−1Kn ⊂ cKn = [−cR, cR]n. Moreover, it holds 
that

∥G∥W1(T−1Kn) =

∑
0≤|α|≤p

∥Dα(F ◦ T )∥∞,T−1Kn

≤ cp
∑

0≤|α|≤p

∥(DαF ) ◦ T∥∞,T−1Kn ≤ cp∥F∥Wp(Kn).

Hence, applying Theorem  6 yields θG such that

∥WθG − G∥∞,T−1Kn ≤ ncprµdM−
p
d R̂,

where Wθ  is the NN constructed in the proof of Theorem  6. Recall 
that the output of the first hidden layer is given by Ŵ (1)x for 
some Ŵ (1)

∈ Rnd×n. Replacing T−1Kn as the input space with 
Kn and adjusting the weights of the first hidden layer to obtain 
W (1)

= Ŵ (1)T−1 proves the first claim. For the second claim, 
assume F ∈ F and observe that for any |α| = 1 we have

∥DαWθF − DαF∥∞,Kn ≤ ∥T−1
∥∥DαWθG − DαG∥∞,T−1Kn

≤ c
√

µdM−
p
d R̂̂C,

where the last inequality follows from Theorem  6 applied for 
G = F ◦ T ∈ F (n)

cpr,d,p. □

The estimate (9) in Corollary  8 can also be derived using Theo-
rem 4.10 from Kang and Gong (2022). Representing the separable 
function as a compositional function and estimating the constants 
in Kang and Gong (2022, Remark 4.12) yields arguments similar 
to those in the proofs of Lemma  5, Theorem  6, and Corollary  8.

As a consequence of Theorem  6 and Corollary  8, by counting 
the total number of neurons in the hidden layers in Fig.  1, we 
obtain that the number of hidden neurons needed to approximate 
(linearly) d-separable functions grows only polynomially in the 
state dimension n. For L∞ approximation this asymptotic result 
has already been stated in Grüne (2021). The following Corollary 
extends the asymptotic result to the W -norm.
1
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Fig. 2. A control system and its corresponding graph.

Corollary 9.  Let ε > 0 and consider the setting from Corollary  8. 
Then for n ∈ N the number of hidden neurons N ∈ N needed to 
ensure

sup
F∈F

inf
θ

∥Wθ − F∥W1([−R,R]n) ≤ ε

is given by N = O
(
nd + n

2d
p +1

ε
−

2d
p
)
.

4. Existence of separable control Lyapunov functions

In this section, we use methods from nonlinear systems theory 
to provide conditions for the existence of (linearly) separable 
clfs. Thus, by invoking the results from Section 3 we can iden-
tify classes of systems that allow NNs to mitigate the curse of 
dimensionality.

4.1. Separability via small-gain theory and active nodes

This subsection proves the existence of separable clfs based 
on small gain theory, leveraging the notion of active nodes from
Chen and Astolfi (2020, 2024). We consider a control system (1) 
and assume that it can be decomposed into s ∈ N subsystems 
denoted by 
Σj : żj = fj(x, ũj) = fj(zj, z−j, ũj), j ∈ [s], (10)

x =

⎛⎜⎝ z1
...

zs

⎞⎟⎠ , u =

⎛⎜⎝ ũ1
...

ũs

⎞⎟⎠ , f (x, u) =

⎛⎜⎝ f1(x, ũ1)
...

fs(x, ũs)

⎞⎟⎠ ,

with zj ∈ Rdj , U = U1 × · · · × Us, ũj ∈ Uj, fj :Rn
× Uj → Rdj , and

z−j :=
(
z1, . . . , zj−1, zj+1, . . . , zs

)T
∈ Rn−dj .

We explicitly allow for the case that some subsystems Σj are 
independent of the control u, which corresponds to the case Uj =

{0}. Such a decomposition is now represented as a directed graph 
that consists of s nodes. Each node belongs to one subsystem and 
there exists an edge from node i to node j, i ̸= j, if the subsystem 
i influences the subsystem j, i.e., if the function fj depends on the 
vector zi. Fig.  2 illustrates the graph corresponding to a decompo-
sition into 1-dimensional subsystems of the control system (11) 
from Chen and Astolfi (2020).

Assumption 10.  For each j ∈ [s] there exists a feedback function 
Fj : Rdj → Uj, comparison functions αj ∈ K∞, γi,j ∈ K∞, i ̸= j, 
as well as a positive-definite and radially unbounded function 
Vj ∈ C1(Rdj ,R) such that 

DVj(zj)fj(zj, z−j, Fj(zj)) ≤ −αj(Vj(zj)) +

∑
i̸=j

γi,j(Vi(zi)). (12)

Note that for a subsystem Σj that is not influenced by the con-
trol, the left-hand side in (12) does not depend on any feedback 
function Fj. Assumption  10 states that for all j ∈ [s], the function 
Vj is an ISS-Lyapunov function (see Sontag and Wang (1995)) for 
the system ż = f (z , z , F (z )), where z  is seen as the external 
j j j −j j j −j

5

input. Given such a stability assumption on each of the subsys-
tems, small-gain theory can be used to obtain a stability property 
of the overall system, see, for instance, Dashkovskiy et al. (2010), 
Rüffer (2007). In the following, we focus on the theory developed 
in Chen and Astolfi (2024) that allows to formulate a graph-based 
criterion for the existence of a separable clf. Note that we do not 
impose regularity conditions on Fj in Assumption  10 since this is 
not necessary in order to apply the results from Chen and Astolfi 
(2024), whereas regularity of Fj is required for the existence of 
solutions. 

Definition 11 (cf. Chen & Astolfi, 2024).  Let j ∈ [s] and consider 
a subsystem Σj as in (10). The subsystem is called active if there 
exist ᾱj, γi,j ∈ K∞, i ̸= j, and a function Vj ∈ C1(Rdj ,R) such that 
for all αj > ᾱj there exists Fj :Rdj → Uj such that (12) holds.

Intuitively, Definition  11 implies that, for given gain functions 
γi,j, the rate of decrease of Vj along the direction of the vector 
field can be made as steep as desired by applying an appropriate 
feedback Fj. Using this notion of active subsystems (or active 
nodes), the results of Chen and Astolfi (2024) yield the following 
proposition. 

Proposition 12.  Consider a control system (1) given through 
subsystems of the form (10) and let Assumption  10 hold. Moreover, 
assume that in each cycle of the directed graph corresponding to the 
decomposition (10) there is at least one active subsystem. Then there 
exists a d-separable clf for the system (1) with d := maxj∈[s] dj.

Proof.  Let Vj, j ∈ [s], denote the ISS-Lyapunov functions obtained 
from Assumption  10. Applying Theorem 4 and Theorem 5 in Chen 
and Astolfi (2024), yields the existence of continuous, positive 
definite functions λj :R≥0 → R≥0, j ∈ [s], such that

V (x) :=

s∑
j=0

∫ Vj(zj)

0
λj(s) ds

is a Lyapunov function for żj = fj(zj, z−j, Fj(zj)), j ∈ [s]. This 
implies that V  satisfies condition (2b), whence V  is a clf for (1). 
This gives us the decomposition of V  as d-separable function as 
in Definition  4. □

Revisiting the control system in (11), we can check that Vj(xj)
= x2j  is an ISS-Lyapunov function for each subsystem and that the 
first subsystem is active. Thus, Proposition  12 yields the existence 
of a 1-separable clf.

4.2. Linear separability via linearization

This subsection addresses the existence of linearly d-separable 
CLFs. This is motivated by the system

ẋ1 = x3 + u, ẋ2 = x1 − x2 + x22, ẋ3 = x2 + x3,

which is a variation of (11) for which it has been shown in Grüne 
and Sperl (2023) that it has a clf, but no 1-separable clf. However, 
it can be shown that there exists a linearly 1-separable clf in a 
neighborhood of the origin. We first prove that stabilizable linear 
systems always admit a linearly 1-separable clf. 

Proposition 13.  Consider a linear control system 

ẋ = Ax + Bu, (13)

where A ∈ Rn×n and B ∈ Rn×m. Assume that (A, B) is stabilizable. 
Then there exists a linearly 1-separable clf V  for the system (13). 
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˜

The function V  is quadratic, i.e., V (x) = xTPx for some P ∈ Rn×n

and satisfies 

inf
u∈Rm

DV (x)(Ax + Bu) ≤ DV (x)(A + BF )x ≤ −c∥x∥2
2 (14)

for a suitable feedback matrix F ∈ Rm×n and some c > 0.

Proof.  It is known that for a linear and stabilizable system, 
there always exists a clf V (x) = xTPx with P ∈ Rn×n symmet-
ric and positive definite. The inequality (14) then follows from 
the usual matrix Lyapunov inequality. As P is symmetric and 
positive-definite, there exists an orthogonal matrix T ∈ Rn×n such 
that

P := T−1PT = T TPT = diag(p1, . . . , pn)

is a diagonal matrix. Thus,

V (Tx) = (Tx)TP(Tx) = xT P̃x =

n∑
i=1

pix2i

is a 1-separable function. □

Proposition  13 implies that linearizable control systems locally 
possess linearly 1-separable clfs. 

Corollary 14.  Consider a control system (1) with a C1-function f
and assume that its linearization at the origin is stabilizable. Then 
the control system (1) possesses a linearly 1-separable clf on some 
neighborhood of the origin.

Proof.  Write f (x, u) = Ax + Bu + g(x, u) with

lim
∥(x,u)∥→0

∥g(x, u)∥
∥(x, u)∥

= 0.

Since (A, B) is stabilizable, Proposition  13 yields the existence of 
c ∈ R≥0, F ∈ Rn×m, and a linearly 1-separable function V (x) =

xTPx such that (14) holds. Following the proof of Sontag (1998, 
Theorem 19), we obtain

inf
u

DV (x)f (x, u) ≤ −c∥x∥2
2 + 2xTPg(x, F (x)) < 0

for x sufficiently small, since ∥2xPg(x,F (x))∥
∥x∥2

→ 0 for x → 0. Hence, 
V  is a clf for the nonlinear system (1) in a suitable neighborhood 
of the origin. □

4.3. Linear separability via feedback linearization

Next we explore a class of systems for which Proposition  13 
can be employed to achieve linear separability through a potential 
nonlinear transformation. To this end, we extend the definition 
of feedback linearizability from (Sontag, 1998, Section 5.3) to 
multi-input systems. 

Definition 15.  An affine control system

ẋ = f (x) +

m∑
j=1

gj(x)uj

with control input u = (u1, . . . , um)T ∈ Rm is called feedback 
linearizable, if there exists a diffeomorphism S ∈ C1(Rn,Rn)
as well as functions aj, bj : Rn

→ R, j ∈ [m], such that the 
transformed control system

̇̃x = f̃ (x̃) +

m∑
g̃j(x̃)vj
j=1

6

with transformed state x̃ = S(x), new control input v = (v1, . . . ,

vm)T ∈ Rm, and

f̃ (x̃) = DS(x)
(
f (x) +

m∑
j=1

aj(x)gj(x)
)
,

g̃j(x̃) = bj(x)DS(x)gj(x),

is a linear control system, i.e., if there exist matrices A ∈ Rn×n and 
B ∈ Rn×m such that f̃ (x̃) = Ax̃ and (g̃1(x̃), . . . , g̃m(x̃)) = B holds for 
all x̃ ∈ Rn.

Theorem 16.  Consider a feedback linearizable affine control system 
with transformation S satisfying S(0) = 0, for which the pair (A, B)
is stabilizable. Then the control system admits a clf V  of the form 
V (x) = Ṽ (S(x)) with a linearly 1-separable function ̃V : Rn

→ R.

Proof.  According to Proposition  13, we have
inf

v∈Rm
DṼ (x̃)(Ax̃ + Bv) ≤ DṼ (x̃)(Ax̃ + BF x̃) ≤ −c∥x̃∥2

2

for suitable c ∈ R≥0, F ∈ Rn×m, and some linearly 1-separable 
mapping ̃V . For V (x) = Ṽ (S(x)) and uj = aj(x) + bj(x)vj we then 
obtain

DV (x)
(
f (x) +

m∑
j=1

gj(x)uj
)

= DṼ (S(x))DS(x)
(
f (x) +

m∑
j=1

gj(x)(aj(x) + bj(x)vj)
)

= DṼ (x̃)
(
f̃ (x̃) +

m∑
j=1

g̃j(x̃)vj
)

= DṼ (x̃)(Ax̃ + Bv).

This implies

inf
u∈Rm

DV (x)
(
f (x) +

m∑
j=1

gj(x)uj

)
≤ −c∥S(x)∥2

2.

Since S is a diffeomorphism with S(0) = 0, there exist α1, α2 ∈

K∞ with α1(∥x∥2) ≤ (∥S(x)∥2) ≤ α2(∥x∥2), see Lemma 1 in Kellett 
and Dower (2015). Thus, V  satisfies all inequalities in (2), whence 
it is a clf. □

Corollary 17.  Consider the setting of Theorem  16 and assume that 
the transformation map S is linearly k-separable for some k ∈ [n]. 
Then the control system has a clf V  that is a composition of a linearly 
1-separable function with a linearly k-separable function.

Note that Corollary  17 in particular applies to linear mappings 
S, as linear mappings are always 1-separable, cf. Proposition  13. 
We can conclude that in the setting of Corollary  17 there exists 
a curse-of-dimensionality-free approximation with a NN that is 
built as in Fig.  1, but has one additional hidden layer at the begin-
ning, which is used to represent the k-separable transformation 
S.

5. Numerical illustration

5.1. Network structure and training algorithm

The structure of the NN that we use for the computation of a 
linearly separable clf is exactly the one depicted in Fig.  1 with the 
modification of introducing a hyperparameter s for the number of 
sublayers, i.e., replacing the n sublayers in Fig.  1 by s sublayers. An 
important feature of this network architecture is the fact that the 
decomposition of the state vector x into the vectors zj, 1 ≤ j ≤ s, 
is determined by the first hidden layer. Thus, the detection of a 
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suitable splitting of the state space (see Definition  4) is part of 
the training process. This means that the numerical algorithm 
presented in this section does not need to know the splitting 
or coordinate transformation discussed in Section 4. Rather, this 
structure will be ‘‘learned’’ by the network in the training process.

It is possible to incorporate the linear transformation com-
puted by the first hidden layer in Fig.  1 into the second hidden 
layer, that is, to merge the two hidden layers into one hidden 
fully connected layer. Since the NN in Fig.  1 can be viewed as a 
fully connected NN with some particular weights set to 0, a fully 
connected NN still preserves the property of mitigating the curse 
of dimensionality for separable clfs. However, in our numerical 
test cases, the NN with two hidden layers as depicted in Fig. 
1 frequently demonstrated an improved numerical performance. 
On the other hand, if no a priori estimates of the hyperparameters 
d and s are possible, the use of a fully connected NN is more prac-
tical. A detailed comparison of these NN architectures, including 
different numbers of layers, is of high importance but is deferred 
to future research due to space limitations.

We define a loss function L that penalizes violations of the 
three characterizing inequalities of a smooth clf given in Defini-
tion  1. For any point x ∈ Kn we set
L(x,Wθ (x),DWθ (x)) := ([Wθ (x) − α1(∥x∥)]−)2

+ ([Wθ (x) − α2(∥x∥)]+)2 (15)

+ η

([
α3(∥x∥) + inf

u∈U
DWθ (x)f (x, u)

]
+

)2
,

where α1, α2 ∈ K∞, α3 ∈ K, [·]+ := max(·, 0), [·]− := min(·, 0), 
and η > 0 is a weighting factor. Note that the functions α1, α2, 
and α3, as well as the parameter η are hyperparameters of the al-
gorithm. Their choice can significantly affect the training process, 
whence a system approach for selecting these hyperparameters 
is important and will be investigated in future research.

Note that L depends on the point x, the evaluation Wθ (x)
and the orbital derivative DWθ (x)f (x, u). We calculate this orbital 
derivative alongside the evaluation of Wθ (x) via automatic dif-
ferentiation. This means that the orbital derivative is computed 
on the fly from the separable network, using the built-in dif-
ferentiation via backpropagation in TensorFlow (see Abadi et al. 
(2015)). Thus, the derivative does not need to be stored sepa-
rately, whence separability of the orbital derivative, which cannot 
be expected since f  is not separable, is not needed. Moreover, we 
need to evaluate the term infu∈U DWθ (x)f (x, u). This expression 
can be simplified for systems with U = [−C, C]

m for some C > 0
and systems with an affine linear control input of the form ẋ =

f (x, u) = h(x) + g(x)u, since then we have 
inf
u∈U

DWθ (x)f (x, u) = DWθ (x)h(x) − C∥DWθ (x)g(x)∥1, (16)

cf. Grüne and Sperl (2023, Lemma 6). The training process of the 
NN is then performed by minimizing the loss function (15) over 
a finite set of training data DT ⊂ Kn.

Remark 18.  Clfs can be characterized as solutions of Zubov’s 
equation (Camilli et al., 2008; Grüne & Wirth, 2000), i.e., as 
optimal value functions for suitable optimal control problems. 
For such problems, NN approaches have been proposed in the 
literature, see e.g. Albi et al. (2022), Liu et al. (2025), Nakamura-
Zimmerer et al. (2022), Zhou et al. (2024). However, they are 
difficult to apply in our setting, because while we assume that 
a separable clf exists, we do not know its precise form and thus 
also not the corresponding optimal control problem.

Furthermore, in our numerical tests it has turned out that the 
most significant error usually lies around the origin. We tackle 
this by adding the term Wθ (0)2 + ∥DWθ (0)∥2 to the loss function 
used for the training of the network, cf. Chang et al. (2019). This 
7

encourages the used optimization routine to stay at Wθ (0) = 0
and DWθ (0) = 0 during the training. While this approach pro-
duced the best results for us, different ways to address issues at 
the origin have successfully been implemented in the literature, 
for instance by transforming the NN output, cf. Gaby et al. (2022), 
Mukherjee et al. (2022).

5.2. Numerical test case

Finally, we illustrate the presented algorithm on the 10-
dimensional control system 

ẋ = f (x, u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x1 + x1x2 − 0.1x29
−x2u1

−x3 + x3x4 − 0.1x21
−x4u2

−x5 + x5x6 + 0.1x27
−x6u3

−x7 + x7x8
−x8u4

−x9 + x9x10
−x10u5 + 0.1x22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

with U = [−1, 1]5. It consists of 5 two-dimensional bilinear 
subsystems of the form ẏ = −y + zy, ż = −uz coupled with 
small non-linearities. For u = 1 this recovers the ODE presented 
in Ahmadi et al. (2011), where it is shown that there does not ex-
ist a polynomial Lyapunov function for this system on R2. While 
there still exists a quadratic clf with appropriate coefficients on 
compact sets, enlarging the training domain makes it more diffi-
cult to recover it. This can cause the NN to defer from a quadratic 
influence of the variables, cf. Fig.  3. To illustrate the ability of 
our approach to determine subspaces that lead to separability, 
we consider the transformed system ẋ = T−1f (Tx, u), where T =

I10 +P ∈ R10×10 with P being normally distributed around 0 with 
scale 0.1. Note that the subsystems that are computed during the 
training process are typically not the original subsystems from 
(17). We employed the hyperparameters α1(r) = 0.5r2, α2(r) =

10r2, α3(r) = 0.01r2, as well as d = 2, s = 5, and M = 64
in a training process with 2 × 105 training data, a batch size of 
64, and the softplus-function as activation function in the second 
hidden layer. The training process was conducted to compute a 
clf on the domain [−4, 4]10, where we beforehand transformed 
x ↦→

1
4x and performed the training on [−1, 1]10 for numerical 

reasons. Our computations are carried out with Python 3.10.6 
and TensorFlow 2.11.0 on an NVIDIA GeForce RTX 3070 GPU. 
The optimization has been performed with the Adam stochastic 
gradient descent method. After 30 epochs and a training time of 
470 s, the algorithm reached an L1 error of 9.8 × 10−5 in the 
training data. An evaluation at independently chosen 2 × 105

validation data points showed an L1 error of 9.3 × 10−7 and an 
L∞ error of 6.7 × 10−2.

Fig.  3 shows the computed NN output Wθ (x) projected onto 
the (x1, x6)-axis as surface plot. Further, the directional derivative 
DWθ (x)f (x, u∗) with 
u∗(x) = argminDWθ (x)f (x, u) (18)

is calculated according to (16) and depicted as wireframe plot. 
Fig.  4 depicts the evaluation of Wθ  alongside 20 trajectories with 
initial values randomly sampled in [−0.5, 0.5]10 and control u∗(x)
as in (18). Note that the convergence of the trajectories in Fig.  4 
towards 0 as well as the plots in Fig.  3 provide empirical evidence 
that the computed NN output might indeed by a clf. However, 
there is no formal guarantee that the Lyapunov conditions are 
met at every point. For verification techniques, we refer to the 
corresponding discussion in the introduction.
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Fig. 3. Approximate clf (solid) and its corresponding orbital derivative (mesh) 
on the (x1, x6)-plane.

Fig. 4. Evaluation of Wθ  along trajectories x(t).

Further, we trained neural networks towards clfs for the con-
trol system (17), adjusted to dimensions n = 2, 4, . . . , 16. For 
each dimension, we utilized a network architecture as shown in 
Fig.  4 with n/2 sublayers. The sublayer size M was decreased as 
far as possible while still achieving an L1 loss below a tolerance 
of 10−4 on both the training and independently chosen validation 
data. The resulting total number of neurons in the network and its 
number of trainable parameters in dependence of the dimension 
are shown in Fig.  5. Notably, the growth in both the number of 
neurons and trainable parameters is non-exponential and appears 
almost linear. This trend arises because the minimal sublayer 
size M remains in {2, 3, 4, 5} across all dimensions. This indicates 
that the bounds derived in Section 3 are conservative for this 
example, as expected, since the theoretical error bounds consider 
the worst-case scenario where each subsystem simultaneously 
attains its maximal error for the same input x. Our TensorFlow 
code is available on https://github.com/MarioSperl/SeparableCLF-
NN.

6. Conclusion

In this paper, we have discussed the capability of NNs to 
approximate clfs in high space dimensions. To this end, we have 
shown that NNs can mitigate the curse of dimensionality for 
approximating (linearly) separable functions and provided condi-
tions for the existence of (linearly) separable clfs. Thus, we have 
identified control systems that allow for a representation of a clf 
with a NN mitigating the curse of dimensionality. Moreover, a nu-
merical algorithm was presented. For future research, we intend 
8

Fig. 5. Scaling of neurons and parameters with dimension.

to systematically study the influence of the hyperparameters de-
termining the NN architecture and the loss function. Afterwards, 
a comparison to other numerical methods is of interest, as it was 
for example done in Zhou et al. (2024). Moreover, we aim to 
investigate the approximation of non-smooth clfs with NNs.
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