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This study introduces a novel, comprehensive approach to optimizing and designing batch foaming of low-
density polyamide 12 (PA-12) using advanced machine learning (ML) techniques. Bayesian optimization was
used to minimize the foam density, which decreased from approximately 900 to 150 kg/m’ in a single
new experiment. A PA-12 foam density of 50 kg/m’, the lowest achieved, was recorded. In addition, an
inverse design approach was used to check the robustness of the model by identifying the specific processing
parameters required to achieve the desired foam density. Finally, PA-12 foams with similar densities but
different processing parameters were obtained using ML. The study highlights the effectiveness of integrating

these ML methodologies in the development of lightweight, high-performance polymer foams, which is much
more sustainable than traditional methods for achieving low-density foams.

1. Introduction

Polymer-based materials have played a significant role in everyday
life since their introduction in the early 20th century, shaping a wide
range of industries and applications [1,2]. Over the decades, polymers
have become integral to a vast range of applications, from packaging
and insulation to key roles in the automotive and aviation sectors [3—
7]. Their versatility also extends to the medical field, where different
types of polymers are tailored for specific uses, such as in implants,
drug delivery systems, and prosthetics [8-13].

Polymer foams are lightweight and insulating materials used in
cushioning, thermal insulation, and acoustic damping, making them
essential in consumer goods and industrial applications [14-16]. Poly-
mer bead foams, with their unique bead structure, offer low-density
foams with complex geometries, making them ideal for applications
like protective packaging, automotive components, and lightweight
construction materials. Since BASF introduced expandable polystyrene
(EPS) in 1950, bead foams based on polymers like polypropylene
(PP) and thermoplastic polyurethane (TPU) have been developed to
meet diverse industry needs. Expanded TPU (ETPU) bead foams are
popular in running shoe midsoles, while expanded Polyether block
amide (EPEBA) bead foams are gaining attention for their lightweight
and strong properties [17-24].

The demand for lightweight, high-performance materials in var-
ious industries has led to increased interest in the development of
advanced foaming technologies. Polyamide (PA) bead foaming is one
such, offering significant advantages in terms of material properties and
application versatility. Expanded Polyamide 12 (ePA) bead foams have
gained significant attention across various industries, particularly in
the automotive sector, due to their light weight, low-density structure
and exceptional thermo-mechanical properties [25]. Unlike more basic
polymer foams like PS, PP, and PU, PA 12 offers superior mechanical
strength, chemical resistance, and thermal stability, making it perfect
for high-performance automotive applications. These high-performance
characteristics are essential for components that must withstand harsh
environments and high stress, such as seat cushions, interior panels,
and other lightweight, high-strength parts that contribute to improved
fuel efficiency and overall vehicle performance [26]. Additionally,
ePA foams are extensively utilized in cold chain logistics, product
packaging, and sports protection, construction materials, and consumer
products, where their insulation, impact absorption, and durability are
highly valued. The ongoing development of ePA bead foams contin-
ues to enhance their properties, broadening their applications across
numerous sectors.
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Artificial Intelligence (AI) has emerges as a powerful catalyst for
change across multiple industries, reshaping how industries, businesses
address complex challenges. The application of Al is vast, ranging from
enhancing decision-making processes to automating routine tasks driv-
ing unprecedented efficiency, innovation, and competitive advantage.
Its capabilities span diverse domains, including predictive analytics in
finance, tailored marketing strategies in retail, autonomous technolo-
gies in transportation, and precision medicine in healthcare [27,28].
As Al continues to evolve, its impact on industries is expanding, en-
abling smarter, more adaptive systems that learn and improve over
time. Within this broader Al landscape, machine learning (ML) and
advanced optimization algorithms have become critical tools, revolu-
tionizing how industries address specific challenges. The integration of
ML and optimization is transforming traditional material science, en-
abling rapid prototyping, enhanced product performance, and greater
adaptability to industry-specific needs. The polymer industry, in par-
ticular, has experienced a significant shift in material development
and manufacturing. These technologies are especially valuable in cre-
ating lightweight, high-performance materials, where precision and
innovation are essential.

ML enables engineers and scientists to analyze extensive datasets,
identify patterns, and accurately predict material behavior under var-
ious conditions and processing parameters. This capability facilitates
the design of superior materials with properties tailored to specific
applications. Meanwhile, advanced optimization algorithms fine-tune
manufacturing processes to ensure these materials meet the highest
performance standards while minimizing waste and reducing produc-
tion costs. Expanding the application of ML will be crucial for driving
sustainability and contributing to a more sustainable world [29,30].
In recent years, ML has become increasingly prevalent in polymer
bead foaming research, focusing on predicting key properties such as
density, viscosity, and pressure [31,32]. Predictive models in this area
are actively being developed and refined to optimize bead foaming
processes [33,34]. Advanced optimization algorithms, such as Bayesian
optimization (BO), have gained importance for identifying optimal
solutions in various polymer processes. BO has proven effective in sig-
nificantly reducing the time required to determine the best parameters
for a wide range of applications. Its use has expanded to material
formulation, where it optimizes specific properties [35-38]. For in-
stance, Albuquerque et al. applied BO to maximize the glass-transition
temperature (7,) in an epoxy resin system composed of one resin and
seven amino acid curing agents with stoichiometric ratios (R) of one-
to-one. Remarkably, 7, reached its highest value after conducting only
nine additional experiments. BO has also been effectively utilized in
foaming processes to minimize experimental trials. Endres et al. demon-
strated that BO-guided experiments significantly reduced the number of
trials needed to achieve desired properties. Their study explored how
variations in copolymer composition and the molar mass of styrene
and methyl methacrylate copolymers influence key properties, such as
foamability [39]. Optimizing foaming processes, particularly to achieve
low-density foams, remains a complex challenge requiring the precise
tuning of parameters such as pressure, temperature, and saturation
time.

The objective of this paper is to address the challenges of achieving
low-density PA 12 batch foaming while minimizing the number of
experimental trials. To this end, BO was employed to generate initial
trial suggestions. To account for uncertainties in the process, BO will
also recommend an Active Learning (AL) point for further refinement.
After each experiment, the measured density will be incorporated into
the optimization process, enabling BO to suggest the next set of trials.
This iterative approach will continue until the desired low-density
foam is achieved. Once the optimal density is reached, inverse design
technique was used to identify the processing parameters required to
achieve a specific target density.
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Table 1

Overview of autoclave processing parameters.
Parameter Units Min Max
Pressure Bar 60 200
Temperature °C 20 300
Residence time min 10 60

2. Materials and methods
2.1. Material

For this study, Polyamide 12 (VESTAMID® LX 9012), supplied by
Evonik GmbH (Essen, Germany) was used. The material has a melting
peak of 179.8 °C.

2.2. Autoclave bead foaming

Autoclave technology is extensively employed in the production of
cellular structures made from thermoplastic polymers. In this study,
batch foaming under pressure was conducted using a high-pressure
autoclave equipped with temperature and pressure control units. The
materials were placed inside the autoclave and carbon dioxide CO,
was dosed in its supercritical state. After the desired saturation period,
foaming was initiated by fully opening the release valve. The experi-
ments systematically varied saturation time, pressure, and temperature
to identify the optimal parameters for each material. An overview of
these parameters is presented in Table 1, with further details available
in [40]. A schematic representation of the autoclave setup is shown in
Fig. 1.

2.3. Density measurement

The density of the PA 12 bead foams was determined using the
Archimedes principle with a precision density balance [41]. Measure-
ments were taken shortly after removing the beads from the autoclave,
with the reported density representing the average of three samples.
To assess material stability, density was also measured after 24 h, with
no significant changes observed. The measurements were performed
by weighing the samples in air and then submerged in water, and the
density was calculated using the following equation:

A
P =2 X Pwater M
where:

* p is the density of the polymer foam,

+ A is the sample’s weight measured in air,

* B is the apparent sample’s weight when submerged in water
(buoyancy),

* Pwater iS the water density at the measurement temperature.

2.4. Morphology

The foam structure and morphology of the PA 12 beads were ex-
amined using a scanning electron microscope (SEM), JEOL JSM 6510.
The beads were sectioned along their diameter and applying a thin gold
coating through sputtering, and their cell morphology was analyzed
using ImageJ software. For the analysis of each sample, at least 100
cells were evaluated to ensure the quality of the data. Additionally,
the cell density, representing the number of cells per unit volume,
was calculated based on a two-dimensional SEM image [40]. The cell
density (N,), representing the number of cells per unit volume in the
foamed sample, was calculated using Eq. (2). This was determined
based on measurements from a two-dimensional SEM image (Fig. 9).

Ny = E.(nA)*/? 2
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Fig. 1. Schematic representation of the autoclave setup, including the inlet and outlet valves (V1 and V2) and the electrical heating elements.

Source: Reproduced with permission from Ref. [40].

In this equation, E is the expansion ratio, n refers to the number of
identified cells, and A represents the total area occupied by these cells.
This nucleation density combines the cell density (N,) with the bulk
polymer density (9, @and the density of the foamed sample (p /4,);
indicating the number of nuclei per unit volume in the unfoamed
material prior to cell expansion. This approach provided insights into
the foamed sample’s structure.

2.5. Framework of Bayesian optimization and active learning

Bayesian Optimization (BO) is a probabilistic model-driven opti-
mization method employed to identify the minimum or maximum
values of a function. It is particularly useful for optimizing complex
situations where each evaluation is costly and time consuming, such as
parameter optimization in material science experiments. For example
autoclave foaming. BO uses a surrogate model to approximate the
objective function. Commonly, Gaussian Processes (GPs) are employed
due to their ability to provide not only predictions but also uncertainty
estimates. BO starts with an initial set of data points and fits a GP
model. It then utilizes the acquisition function to determine the next
point for evaluation. For each new point, the model is refined, and this
iterative process continues until convergence is achieved. The surrogate
model used in the BO runs was Gaussian Processes (GP), which is
the best model known to date for this kind of optimization, as its
predictions come automatically with the corresponding uncertainties,
which are used inside the acquisition function employed during BO, as
well as because it has a good performance for small datasets.

A GP is defined by a mean function m(x) and a covariance function
(kernel) k(x,x"). The mean function is specified as:

m(x) = E[f(x)] 3)

This is the expected value of the function f(x) at the input x, before
observing any data, here E represents the expected value or mean of a
random variable.

For inputs x and x’, the covariance is given by:

n (x—x'?
k(x,x") = 0" exp <—7> (€))
where ¢ is the variance and 7 is the length scale.

The acquisition function directs the choice of the next evaluation
point by balancing exploration (searching in areas with high uncer-
tainty) and exploitation (focusing on areas likely to yield better opti-
mization). Typical acquisition functions include Expected Improvement
(EI) and Upper Confidence Bound (UCB). The Expected Improvement
(ED) is calculated as:

El(x) = E [max (0, f(x*) = f(x))] ®

where f(x*) is the best observed value so far.

Active Learning (AL) is a technique used to selectively choose the
most informative data points to label or evaluate, minimizing the num-
ber of experiments needed. In the context of BO, AL helps by selecting
new candidate points based on the current model’s uncertainty. The
BO process includes AL component where the acquisition function not
only aims to improve the objective function but also considers the
uncertainty of predictions. AL helps the model queries the data points
about which it is most uncertain. This uncertainty can be quantified
by measures such as variance or entropy in probabilistic models. BO
uses a surrogate model to predict outcomes and an acquisition function
to suggest new evaluation points. AL refines this process by selecting
points with high uncertainty or potential for significant improvement.
Workflow of framework is as bellow,

1. Initialize with a set of sample points.

2. Fit a Gaussian Process model to these points.

3. Utilize an acquisition function to determine the next point for
evaluation.

4. Apply Active Learning to address areas with high uncertainty.

5. Update the model with new data and repeat the process until the
optimization converges.

2.6. Machine learning models

After completing the BO process, a dataset was generated for subse-
quent analysis. Different ML models were subsequently applied to the
dataset to determine the most effective one. The models considered in-
clude Linear Regression (LR), Decision Trees (DT), Random Forest (RF),
Gradient Boosting Regression (GBR), Gaussian Processes (GP), Lasso
Regression (LASSO), Stochastic Gradient Descent Regression (SGDR),
and Ridge Regression (RR). For the general description about the
model please see [31,42]. Each model was assessed on its capacity to
predict the target accurately and efficiently across various experimental
scenarios. This involved comparing the models’ performance in terms
of prediction accuracy, computational efficiency, and robustness to
varying data conditions, with the aim of determining which model
provides the most reliable and effective predictions for the dataset
generated through BO. The ML code was developed in Python 3 within
the Jupyter Notebook environment, utilizing Python libraries such as
NumPy and scikit-learn.'?3

1 https://scikit-learn.org.
2 https://numpy.org.
3 https://jupyter.org.
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Fig. 2. Schematic representation of inverse design approach comparing to traditional
approach in Autoclave batch foaming.

2.7. Inverse design

The goal of the inverse design technique is to identify a set of pro-
cessing parameters that will yield a specific target density, a schematic
representation can be seen in Fig. 2. The process involves deploying
a model that relates the processing parameters to the resulting foam
density and then using optimization techniques to find the parameters
that produce the desired density. Let the desired foam density be
denoted by pgesireq- The foam density p can be expressed as a function of
different processing parameters such as temperature T, pressure P, and
saturation time ¢,. Mathematically, the relationship can be represented
as:

p=f(T,P,t,) (6)

The inverse design problem aims to find the optimal set of parameters
T*, P*,t} that result in the foam density pgegired- This can be formulated
as an optimization problem:

7[?1}}2 |f(T7 P, ts) - pdesiredl (7)

The objective is to minimize the absolute difference between the pre-
dicted foam density and the target density. To solve this optimization
problem, an iterative algorithm such as BO can be employed. The
algorithm explores the parameter space and suggests new parameter
sets likely to produce densities closer to the target. After obtaining
the optimal parameters T*, P*, 1%, the final step is to verify the results
experimentally. The foaming process is conducted under these condi-
tions, and the resulting density is measured to confirm that it meets
the desired target.

For example, in order to get the desired density pyegireq Of 50 kg/m?,
with the function f(T,P,t,) approximated using a Gaussian Process
model, the inverse design problem involves iteratively adjusting the
temperature, pressure, and saturation time until the foam density con-
verges to approximately 50 kg/m?>. Note that during BO, all parameters
are varied simultaneously, with each new suggested experiment consist-
ing of three different values for temperature, pressure, and residence
time. The workflow of the inverse design is as follows:

1. Identify the optimal processing parameters T, P, , to achieve the
desired PA 12 foam density (pgesired)-

2. Model the relationship between the processing parameters and
PA 12 foam density.

3. Formulate and solve the optimization problem to minimize the
difference between predicted and target densities.

4. Use Bayesian Optimization, an iterative algorithm, to refine the
parameters.

5. Experimentally verify the results to confirm the desired PA 12
density is achieved.

3. Results and discussion

The primary goal of employing BO is to efficiently achieve low-
density PA 12 foams during the autoclave batch foaming process.

Polymer 320 (2025) 128096

This approach not only aims to optimize the material properties with
minimal experimental trials but also to generate a high-quality dataset
for training an ML predictive model. By generating a comprehensive set
of 1 million (10°) virtual experiments, a parameter space encompassing
various temperature, pressure, and time combinations was mapped out.

When optimizing a process like autoclave batch foaming to achieve
low-density foam, one key step is to identify regions in the three-
dimensional space of processing parameters, such as temperature, pres-
sure, and saturation time, where the foam density reaches a high
value, by keeping the density of the neat material as the reference.
Understanding these regions allows us to define the “window” which is
the range of parameters that will yield the low-density foam desired for
optimization goals. By exploring the high-density regions in the three-
dimensional space of T, P, and ¢, the range of parameters that helps
avoid such outcomes can be defined. BO, with its posterior distribution,
helps narrow the search to the most promising subspaces for achieving
low-density foam.

To initiate the optimization process, the approach began with five
random formulations. These included BO rounds, represented by blue
triangles, aimed at maximizing each property; see Fig. 6. Remarkably,
after just the first or second BO rounds, the suggested parameters
demonstrated superior properties compared to all four initial random
points. The optimization process also included Random (red circle) and
AL (green square) rounds interspersed between the BO rounds. As an-
ticipated, the BO rounds consistently resulted in higher property values
than those achieved through the Random and AL approaches. Extend-
ing BO to explore a broader range of the parameter space successfully
identified a plateau in the high-density region. This indicates that the
optimization function is effectively navigating the three-dimensional
space to pinpoint areas of maximum values in the space, as illustrated in
Fig. 6. The trend toward this maximum plateau not only validates opti-
mization strategy but also demonstrates the precision of the acquisition
function in enhancing the desired property as needed.

Although the ultimate objective is to minimize density, understand-
ing and achieving this high-density plateau allows us to rigorously
test the BO framework. With this insight, the optimization process
can be directed toward lower-density regions, paving the way for the
development of low-density PA 12 batch foams. This optimization
function highlights its versatility and potential for both maximizing and
minimizing target properties as needed. To study the process-property
relationship between bead density and other processing parameters,
a correlation analysis was conducted. The correlation matrix, shown
in Fig. 3 represents the relationships between key process parame-
ters, including pressure, temperature, residence time, and the resulting
density during PA 12 batch foaming. Seaborn’s PairGrid was utilized
to visualize these pairwise relationships, and Pearson correlation co-
efficients (denoted as R values) are displayed within Fig. 3. The full
Pearson correlation figure is provided in the supporting information. To
further investigate the relationships among these variables, a linear cor-
relation analysis was conducted. The results revealed no strong linear
correlation between the processing parameters. Therefore, quadratic,
cubic, and fourth-order fits were explored to better capture potential
non-linear relationships, with these additional analyses included in the
supporting information.

In this correlation analysis, the main property, density, is compared
with the process parameters: pressure, temperature, and saturation or
residence time. The diagram provides insights into two-dimensional
correlations without hiding information or leading to misinterpreta-
tions. Since no significant correlations exist among the processing
parameters themselves, these plots will not be further elaborated. How-
ever, density is clearly influenced by the processing parameters, as
shown at the bottom of Fig. 3 where density is plotted against pressure
for all data points. It is evident that low densities are achieved at both
low and high pressures. However, the trend line indicates that, in gen-
eral, higher pressures lead to lower densities. This trend is consistent
with observations in other studies [43,44], although it also depends
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Fig. 3. A pairwise correlation plot showing the relationships between key variables (processing parameters) in the autoclave batch foaming of PA 12, where the R shows Pearson

correlation coefficients.

on the selected temperature. The plot of temperature versus pressure
shows that samples with low density and low pressure were processed
at high temperatures, while samples with high density at medium pres-
sure were processed at lower temperatures. These results highlight the
interplay between selected pressure and temperature. When comparing
density to residence time, no discernible trends are observed. Low
and high densities are achieved at both extremes of residence time.
Temperature, a well-known parameter for foaming, exhibits a negative
correlation with density in this study. High temperatures generally
lead to lower densities, as low temperatures restrict foaming, while
sufficiently high temperatures enable it. However, previous studies [45,
46] often describe a local maximum, indicating that excessively high
temperatures can hinder achieving lower densities. This relationship is
further illustrated in the parallel coordinates plot Fig. 4, which shows
the interactions between pressure, residence time, temperature, and
density. The color gradient represents density, ranging from 50 (teal)
to 1000 (rose). The overview of the ML model’s performance on both
the test and train sets can be seen in Fig. 5.

3.1. Minimizing foam density

To achieve low-density PA 12 batch foam, previously measured data
points situated in the high-density range were used as the starting point.
The variation in density across a series of autoclave experiments is
shown in Table 2. These points were chosen because they had been
experimentally validated in the lab as having high density. Subse-
quently, BO was employed to systematically guide the optimization
process toward developing low-density foam. In the BO process, a GP
model was utilized as the regressor, paired with the maximum expected
improvement acquisition function. This acquisition function effectively
balanced exploitation (favoring low predicted values) and exploration
(favoring high uncertainty). The GP model was constructed using three
input variables: pressure, temperature, and residence time, with the
aim of predicting density and its associated uncertainty. The Matérn
kernel was employed within the GP model to enhance its flexibility and
performance. Additionally, an AL strategy was integrated to propose
uncorrelated processing parameters, further refining and enhancing the

Pressure Res_Time Temperature Density
180 40 192 993
180 40
Density
190 900
35
160 | 800 1000
30 185 700 900
140 h 600 800
25+
180 500 700
120
400
20 600
\. 300
100 175 \ 500
15 200
400
100
80 10+ 170-
80 10 170 50

Fig. 4. Parallel coordinate plot showing the relationship between Pressure, Residence
time, Temperature and density, for different combination of processing parameters in
the batch foaming of PA 12 in Autoclave. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

GP model in subsequent iterations.

In the first optimization trial, five new experimental suggestions
were received. As shown in the first five rows of Table 2, the opti-
mization process is proving effective, with a clear downward trend
in density. The average density of these initial five experiments, after
execution and measurement, is 187.5 kg/m?, with a maximum density
of 387 kg/m> (suggested AL point) and a minimum of 123 kg/m?>.
This downward trend is visually represented in Fig. 7, demonstrating a
successful transition into the low-density region. The dataset was pro-
gressively expanded with BO-suggested experiments until the minimum
density target of 50 kg/m> was achieved. After multiple iterations,
the optimization yielded densities as low as 51 kg/m?, 56 kg/m?, and
50 kg/m>. These results confirm the establishment of a plateau in the
low-density region for PA 12, as illustrated in Fig. 7. The best parameter
combination for these densities was identified as a pressure of 170 bar,
a temperature range of 187 °C-188 °C, and a residence time of 20 min.
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Fig. 5. R score of each machine learning model used to predict the density for
both train and test set. The dataset was generated from experimental trials following
Bayesian optimization.
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Fig. 6. Exploration of maximum value region. Evolution of Bayesian Optimization
(blue triangles), Active Learning (green squares), and Random (red circles) techniques
in optimizing the target property across a series of experiments. x-axis represent the
experiment number, and the target property value on y-axis. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Notably, the parameter space for the low density PA 12 batch foaming
in the autoclave is quite narrow. Achieving low-density PA 12 beads
requires maintaining the temperature within a narrow range of 185 °C
to 192.5 °C. As highlighted by the correlation study (Fig. 3) and pa-
rameter combinations leading to density (Fig. 4), temperature is highly
correlated with density. While pressure also influences density, its vari-
ation is broader, allowing for multiple effective combinations. Although
the BO investigation reported in this study was highly efficient, it
is important to note that there is no guarantee BO will consistently
outperform initial random trials, even after multiple BO rounds. If
BO runs do not perform as expected, alternative strategies, such as
active learning experiments (e.g., uncertainty sampling) or additional
random experiments, can be employed to enhance the GP model and
potentially achieve convergence during BO runs. Exploring different
kernels for the GP model or employing alternative acquisition functions
in the BO procedure are additional strategies to improve suboptimal BO
runs. However, if the selected features (parameters) are not intrinsically
correlated with the target property, BO is unlikely to succeed regardless
of the strategy used. The current hyperparameters used in the BO runs
- such as the maximum expected improvement acquisition function and
the RBF or Matérn kernel — have already proven effective, enabling a
highly efficient optimization process. Notably, the density decreased

Polymer 320 (2025) 128096

Table 2
Overview of Bayesian optimization suggested trials to minimize the density, where P
= Pressure, R = Residence time, T = Temperature, and ED = Experimental Density.

Trials P/bar R/min T/°C ED/kg m™3
1 180 25 191 143
2 180 30 188 125
3 180 25 186 138
4 180 25 182 387
5 180 30 187 123
6 180 30 186 121
7 180 25 189 117
8 80 30 186 110
9 145 30 192 110
10 170 25 188 64
11 170 20 190 68
12 165 30 188 107
13 170 20 187 51
14 165 25 190 97
15 170 20 188 50
16 170 25 186 53
® Choosen max_density A BayesianOpt M Active Learning
1000
800
£
g 600
i
2
8 400
200
0
1 3 5 7 9 1 13 15 17 19 21

# No of Experiment

Fig. 7. Minimizing the density. Evolution of Bayesian Optimization (blue triangles),
Active Learning (green squares), and Random (red circles) techniques in optimizing
the target property across a series of experiments. On x-axis the experiment number,
and y-axis represents the density. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

from approximately 900 kg/m? to 150 kg/m’ within a single BO
suggestion, as shown in Fig. 7. For further details on hyperparameter
selection and optimization strategies, refer to a recent publication by
the group [47], which provides an in-depth discussion of these topics.

3.2. Inverse design to achieve desired density

Using an inverse design approach, a model was developed to rec-
ommend optimal processing parameters for achieving specific bead
densities. This method enabled efficient targeting and fine-tuning of
density outcomes. Seven trials were conducted, each targeting different
density values (referred to as the desired targets), with the results
summarized in Table 3. The process demonstrates the model’s ability to
predict the processing parameters required to achieve precise densities.
As seen in Table 3, the model performs particularly well for lower-
density targets, with a low standard deviation. This consistency may be
attributed to the model’s prior exposure to data from the lower-density
region. Further analysis of the inverse design revealed that for some
density targets, the model suggests multiple combinations of processing
parameters that yield approximately the same density. For example, a
desired density of 110 kg/m? was achieved with different combinations
of pressure (e.g., 80 bars and 145 bars) and temperature (e.g., 186 °C
and 192 °C), while maintaining the same residence time. See Fig. 8 for
the experimental density and desired density (or predicted density) .

To gain deeper insights, a density range of 70-80 kg/m? was se-
lected as the target, and the inverse design provided approximately 90
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Table 3

Overview of the inverse design trials, where ED = experimental density, and DD =
desired (or predicted) density suggested from the inverse design. P, R and T are defined
in the caption of Table 2.

Trials P/bar R/min T/°C DD (kg/m?) ED/kg m™
1 120 15 188 50 63

2 155 20 187 51 56

3 160 40 188 75 77

4 165 35 185 76 85

5 80 40 188 100 97.6

6 80 35 190 150 135

7 80 10 192 125 130

160

I Experimental Density
B Desired Density

Density (g/cm?3)

Trial1l Trial2  Trial 3 Trial4 Trial 5 Trial 6  Trial 7
Trials

Fig. 8. The comparison of predicted and experimental densities of PA-12 bead foams
for inverse design.

different parameter combinations. Four of these combinations were se-
lected for experimental validation. The chosen parameters were based
on an understanding of the autoclave process, allowing investigation
of specific relationships between pressure, temperature, and residence
time. For two trials, temperature and residence time were kept constant
while varying the pressure from 80 to 180 bars. For the other two, a
pressure of 140 bars was maintained with a residence time of 30 min,
while the temperature was varied between 187.5 °C and 190 °C.
These experiments provided clearer insights into how pressure and
temperature affect the foaming behavior of PA 12 and demonstrated
the robustness of the inverse design model in predicting processing
parameters for different density targets.

3.3. Cell morphology

The properties of cellular materials like polymer foams are mainly
influenced by both density and morphology. Factors like cell shape, size
distribution, and structure of cell walls can lead to different properties,
thus satisfying requirements for special applications. By utilizing the
previously validated ML model, 90 individual parameter sets were
generated out of the total 1 million possible virtual experiments, with
predicted densities ranging from 70 kg/m? to 80 kg/m?. To investigate
the maximum spectrum of possible morphology, parameter sets were
specifically selected from a pressure range of 80 bar to 180 bar, in
combination with varying temperatures from 187.5 °C to 190.0 °C.
The small possible variation in temperature, compared to the pressure,
again indicates the high sensitivity of the autoclave process to that
parameter. Residence time was kept constant at 30 min to ensure a
state of equilibrium blowing agent sorption. The resulting cross-section
of the foams via SEM can be seen in Fig. 9, supported by the resulting
cell size distribution graph on the right side. Note that the trained
ML model was simply used to suggest new low-density foams, whose
cellular structures were later characterized and discussed. This model
cannot predict cellular structures.

Polymer 320 (2025) 128096

In general a clear trend is visible by comparing the morphology
of the first three foamed samples. With higher pressures at similar
temperatures, the average cell size gets smaller and cell density is
increased while simultaneously narrowing its distribution. At 180 bar,
a fine morphology of cell sizes around 31 pm was achieved Table 4.
This behavior is directly linked to the increased pressure drop rate
initiated by the higher saturation pressures [40]. This is also because
a higher amount of CO, leads to higher pressure, which results in
higher solubility, and as a result, a high number of nuclei form due to
pressure drop and concentration. Thus, leading to a more pronounced
thermodynamic disequilibrium between the polymer and the diluted
blowing agent trying to separate throughout this process. In the initial
state of the foaming process, this disequilibrium leads to the forma-
tion of nuclei within the system, which subsequently grow due to
constant diffusion of the blowing agent from surrounding areas. This
nucleation step was further investigated by calculating the density-
corrected nucleation density. Here, a similar correlation is visible, with
increasing nucleation density for higher saturation pressures. Finally,
the parameter was set again at 140 bar, but with a slightly elevated
temperature of 190.0 °C instead of 187.5 °C. Despite showing similar
average cell sizes around 45 to 48 pm, the distribution appears to be
more irregular. This can be attributed to the reduced viscosity of the
polymer matrix at the elevated temperature, which can lead to a more
unstable growth of the cells and possible coalescence by partial rupture
of cell walls during expansion. Thus, indicating that foaming at lower
temperatures around 188 °C results in a more stable and controllable
process for precisely adjusting the foam morphology. In general, this
chapter highlights the potential of the generated ML model to expand
to further target parameters exceeding the currently used prediction of
density. Within a small number of experiments, it is possible to generate
virtual parameter sets for a defined density.

4. Conclusions

This study demonstrates the successful use of Bayesian Optimiza-
tion (BO) and inverse design to optimize processing parameters for
producing low-density PA 12 foams through autoclave batch foam-
ing. By mapping a three-dimensional parameter space of temperature,
pressure, and residence time, key regions for minimizing foam density
were identified. The inverse design model effectively predicted optimal
combinations of processing parameters, which were validated through
experimental trials, enabling the achievement of desired density targets
with minimal experimental effort.

It was observed that temperature plays a critical role in controlling
foam density, with a narrow low-density foaming range between 185 °C
and 192.5 °C. Pressure also showed significant effects, allowing for the
achievement of low densities at various pressure levels, highlighting
the flexibility of the process. Furthermore, the study confirmed that
residence time exhibited no strong correlation with density, while tem-
perature was inversely correlated, consistent with existing literature.
Through the use of advanced optimization techniques, the density of
PA 12 foam was reduced to as low as 50 kg/m?, with the best results
achieved using a pressure of 170 bar, a temperature of 187 °C, and
a residence time of 20 min. These findings contribute to a deeper
understanding of the process-property relationships in batch foaming
and establish a robust framework for further optimization of polymer
foaming processes.

This work not only advances the capability to fine-tune foam densi-
ties but also sets the foundation for future research in applying machine
learning and optimization strategies to enhance material properties in
polymer processing.
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Table 4
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Overview of processing parameters for the bead foam which is been analyzed with SEM, and also can see the SEM analysis data, Processing
parameters (PP), Foam density (FD), Predicted density (PD) Mean cell size (MCS), Area cell density (ACD), Volumetric cell density (VCD),

Nucleation density (ND).

PP FD (kg/m?) PD (kg/m?) MCS (pm) ACD (cell/cm?) VCD (cell/cm?) ND (nuclei/cm?)
80 bar, 188 °C, 30 min 85 77 171 + 25.7 5.40 * 10° 3.97 * 108 4.79 * 10°
140 bar, 187.5 °C, 30 min 87 77 48 + 8.14 2.04 * 107 9.21 * 1010 1.09 * 102
180 bar, 188 °C, 30 min 73 70 31 + 3.862 6.50 * 107 5.24 * 101 7.36 * 102
140 bar, 190 °C, 30 min 66 73 45 + 7.90 2.80 * 107 1.48 * 101! 2.30 * 102

N w
n oS
=) 5l

N
o
=

i
o
o

Relative distribution / -

Relative distribution /-

Relative distribution / -
=
o
o

Relative distribution / -

Parameters: 80 bar, 188 °C, 30 min

100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0

Cell size / pm
30 Parameters: 140 bar, 187.5 °C, 30 min
20
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0!
0 20 40 60 80 100
Cell size / pm
30 180 bar, 188 °C, 30 min
20
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Parameters: 140 bar, 190 °C, 30 min
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Cell size [ pm

Fig. 9. Cell size distribution with the SEM images on the left size and respective data on the right size for different pressure and temperature.
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Appendix A. Supplementary data

The Python script (provided as a Jupyter notebook) is freely avail-
able on GitHub (“https://github.com/Polymer-Engineering-University-
Bayreuth/BO”).

Supplementary material related to this article can be found online
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