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Battery energy storage systems are vital for a variety of applications, with a particularly important role in
facilitating the widespread use of renewable energy resources and electric vehicles. To ensure the safety and
optimal performance of these devices, analyzing their operation through physical and data-driven models is
essential. While physical models can effectively model the underlying physicochemical processes, their
complexity often renders them impractical for real-time onboard diagnostics. Conversely, data-driven models are
usually more flexible and easier to implement, but they lack a physical description of the battery. In response to
these challenges, this work models the battery state using a single particle model as a baseline for subsequent
predictions made with neural networks. To achieve this, two neural networks were leveraged: one to apply a
correction to the voltage obtained from the physical model, and the second to evaluate the battery state of health
and aging states. The novel hybrid model, integrating a single particle model with two neural networks,
consistently outperformed both the individual single particle model and the two neural networks in isolations.
Results were benchmarked using two real-world battery cycling datasets, including one collected in-house. The
hybrid model consistently outperformed the individual neural networks in terms of voltage prediction accuracy,
as evidenced by lower root mean square error (RMSE) values. Notably, in four out of the five cases where the
analysis was stratified by battery manufacturer, the RMSE was reduced by at least 50 % and up to tenfold with
the hybrid approach. Given the promise of this new hybrid model, it is expected that the present work will pave
the way for advanced modeling of batteries.

1. Introduction require accurate knowledge of the physicochemical mechanisms un-

derlying battery operation and operating conditions. Moreover, battery

To combat climate change, humanity needs to transition to renew-
able energy sources [1]. Consequently, batteries, which can store and
discharge energy from renewable sources on demand [2], have become
increasingly central to modern life [3]. Battery management systems are
critical to maximizing battery performance, safety, and lifetime; moni-
toring currents and voltages in real-time can prevent battery over-
charging [4], over-discharging, and thermal runaway [5]. Battery
management systems typically use equivalent circuits or physical
models to analyze the battery response to input currents. Although the
latter can be more accurate given their physics-based framework, they

parameters (e.g., areal mass loading of active material in the cathode
(mg/cmz) or electrolyte conductivity [6,7]) are often not readily avail-
able [8]. This reduces the generalizability and applicability of physical
models. Additionally, the application of physical models, such as the
Doyle-Fuller-Newman model [6], has been limited in battery manage-
ment systems due to the high computational demand for onboard pre-
dictions [8]. To reduce the computational effort, simplified models
[8,9], such as single particle models (SPMs) [10], have been proposed.
However, SPMs treat all particles within a battery electrode as exhibit-
ing identical behavior, limiting their accuracy under intermittent
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currents and extreme temperatures [11].

To overcome these limitations, several machine learning (ML)
models have been developed [12]. Notably, ML models demonstrate
superior flexibility and generalizability over physical models due to
their ability to identify complex patterns within large datasets. Such
models have been shown to perform better than physical models with
respect to battery life prediction [13] and cycling protocol development
[14,15]. Additionally, ML models do not require a priori knowledge
regarding the underlying physicochemical processes, instead relying
only on performance data [16]. Nonetheless, achieving high accuracy
with ML models usually involves training on large datasets, which are
not always available.

Leveraging the advantages of physical and ML models, hybrid
models, which combine both techniques, can accurately learn current-
voltage dependencies [17,18]. Such hybrid models combine physics-
based understanding of the battery with the flexibility and adapt-
ability of ML models. Combining these models, therefore, enables a
more comprehensive and generalizable prediction of battery perfor-
mance and lifetime. While only a few works have focused on hybrid
models for battery modeling [17,19,20], aging models have yet to be
included in hybrid models. To the authors' knowledge, only Tu et al.
[18] have demonstrated the advantages of introducing the state of
health (SOH) as a parameter to establish battery degradation.

We propose a novel hybrid model (ML + SPM) combining an SPM
with two neural networks to simultaneously parametrize the battery
SOH and current-voltage responses. Specifically, we used a neural
network based on ordinary differential equations (neural-ODE) [21] and
a long-short-term memory (LSTM) recurrent neural network [22]. Given
that neural-ODEs are known for their accuracy and ability to predict
SOH curves over a long lifespan range [23], we used a neural-ODE to
recover the battery health parameters, including the SOH and total times
for complete charge and discharge, which are all functions of the cycle
number [21]. Moreover, we integrated the LSTM recurrent neural
network due to its ability to 1) regress currents and voltages using
feedback loop structure, and 2) accurately propagate the memory of the
past history into future states [24]. In this work, an SPM model
parameterized using available cell specifications and operating condi-
tions was harnessed to provide the LSTM model with a baseline voltage
profile during the discharge. Therefore, the LSTM was used to correct
the regressed voltage, accounting for missing physical knowledge and
aging profile shifts. In addition to the ML + SPM model, two neural
networks were studied without the SPM correction (ML model), where
the LSTM was used to directly compute the voltages from aging pa-
rameters and input currents after each discharging cycle. The ML and
ML + SPM models were benchmarked using two datasets, including one
generated by our group (denoted as ‘HKUST dataset’), and the Oxford
dataset [25,26]. Both datasets are representative of real-life applications
where limited knowledge about battery properties is available.

Our results highlight the strengths and limitations of ML and ML +
SPM models for battery analysis. The hybrid ML + SPM model signifi-
cantly improves performance in key areas. When analyzing batteries
subjected to diverse cycling protocols, the integrated SPM boosts the
model's accuracy in predicting current-voltage responses by providing a
physical baseline. The neural-ODE accurately models battery degrada-
tion within the LSTM, allowing us to predict time-dependent voltage
profiles and to inform battery health evolution. Our ML + SPM model
outperformed the standalone ML model in most cases, demonstrating
superior voltage prediction accuracy. This novel approach, combining
an SPM with two neural networks, simultaneously calculates battery
SOH and current-voltage responses. In short, by directly incorporating
aging information, our model delivers more accurate predictions and
streamlines battery analysis.

Journal of Energy Storage 108 (2025) 115044
2. Cycling data
2.1. HKUST battery dataset

To assess the quality of our approach against experimental data, a
new battery cycling dataset was collected in-house. To obtain this data,
batteries were tested from five different manufacturers, namely CHAM,
EVE, LISHEN, MOLICEL and SAMSUNG, all of which are identified by
the same names. Six cells of each type were purchased from the manu-
facturers, and the cathode type, external dimensions, and nominal ca-
pacity of each cell are reported in Table 1. All cells tested were
cylindrical-type 21700 cells, except for the 18650-type EVE batteries.
The CHAM and LISHEN cells were constructed with LiNi,Mn,Co;_x_, 0>
(NMC) cathodes with an unspecified stoichiometry, while the EVE and
MOLICEL cells used LiNig gMng ; Cog 1 O3 (NMC811) cathodes. Lastly, the
SAMSUNG cells used a nickel cobalt aluminum (NCA) cathode. The
batteries were cycled using a Neware BTS-4008T 5V6A-S1 battery cycle
tester at room temperature (25 C +2°C) according to heavy or light
charge-discharge profiles (see Table 1). For the heavy charge-discharge
profile, the batteries were charged using a constant-current constant-
voltage (CC-CV) charging protocol, comprising an initial CC charge step
to 4.2V at 0.5C followed by a CV step that held the batteries at 4.2V until
a current of 0.02C was reached. The cells were then discharged at 1C
until the voltage reached 2.5 V. For the light cycling profile, a similar
CC-CV charge protocol was used, this time with an initial CC charge to
4.1 V at 0.5C, then CV charging at 4.1 V until the current decayed to
0.02C. Constant current discharge at 1C was then performed with a
lower voltage cutoff of 3.0 V. In all cases, the batteries were rested for
10 min between the charge and discharge. The C-rate for each cell was
calculated using the manufacturer-specified nominal capacity.

2.2. Oxford battery dataset

In addition to the HKUST dataset, eight commercial Kokam
(SLPB533459H4) lithium-ion batteries cycled at Oxford University [26]
were considered. These cells, which are characterized by a 740-mAh
nominal capacity, were repeatedly discharged using the dynamic
Artemis urban drive cycle and recharged at a constant 2C rate. Every
100 cycles, a constant-current discharge with a rate of 1C was performed
to characterize the battery discharge performance and SOH. The end of
life of the batteries was observed after approximately 8000 cycles.

3. Methods
3.1. Models

3.1.1. Single particle model

The Python Battery Mathematical Modelling (PyBAMM) package
(version 22.3) [7] was used to generate first-cycle discharge-voltage
profiles for each of the tested batteries using an included SPM that de-
scribes the voltage, V, as [27]

B 2RT( . ., I _ I
V=U,—U, T (smh <2j0papr> + sinh <2j0_naan> ) (@D)

where U, and U, are the open circuit potentials of the positive, p, and
negative, n, electrode, respectively, R is the universal gas constant, T is
the temperature, F is the Faraday constant, I is the current, a, and a, are
the surface area of the positive and negative electrodes, respectively,
and L, and L, are the thickness of the positive and negative electrodes,
respectively. Moreover, the exchange current densities jo, and jo, for
the positive and negative electrodes, respectively, are defined as

Jop = /(1 —¢p) (2a)
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Table 1
Characteristics of the cycling experiments in the HKUST dataset.

Manufacturer EVE CHAM LISHEN MOLICEL SAMSUNG

Cathode NMC-811 NMC NMC NMC-811 NCA

Battery type 18650 21700 21700 21700 21700

Nominal 2.8 5.0 4.0 4.2 4.9
capacity
(Ah)

Heavy Constant current 0.5 C (1.4 Constant current 0.5 C (2.5 Constant current 0.5 C (2.0 Constant current 0.5 C (2.1 Constant current 0.5 C (2.45
charging A), constant voltage (4.2 V), A), constant voltage (4.2 V), A), constant voltage (4.2 V), A), constant voltage (4.2 V), A), constant voltage (4.2 V),
protocol and cut-off current 0.02 C and cut-off current 0.02 C and cut-off current 0.02 C and cut-off current 0.02 C and cut-off current 0.02 C

(0.056 A) (0.01 A) (0.08 A) (0.084 A) (0.097 A)

Light Constant current 0.5 C (1.4 Constant current 0.5 C (2.5 Constant current 0.5 C (2.0 Constant current 0.5 C (2.1 Constant current 0.5 C (2.45
charging A), constant voltage (4.1 V), A), constant voltage (4.1 V), A), constant voltage (4.1 V), A), constant voltage (4.1 V), A), constant voltage (4.2 V),
protocol and cut-off current 0.02 C and cut-off current 0.02 C and cut-off current 0.02 C and cut-off current 0.02 C and cut-off current 0.02 C

(0.056 A) (0.01 A) (0.08 A) (0.084 A) (0.097 A)

Heavy Constant current 1 C (2.8 A), Constant current 1 C (5.0 A), Constant current 1 C (4.0 A), Constant current 1 C (4.2 A), Constant current 1 C (4.9 A),
discharging cut-off voltage (2.5 V) cut-off voltage (2.5 V) cut-off voltage (2.5 V) cut-off voltage (2.5 V) cut-off voltage (2.5 V)
protocol

Light Constant current 1 C (2.8 A), Constant current 1 C (5.0 A), Constant current 1 C (4.0 A), Constant current 1 C (4.2 A), Constant current 1 C (4.9 A),
discharging cut-off voltage (3.0 V) cut-off voltage (3.0 V) cut-off voltage (3.0 V) cut-off voltage (3.0 V) cut-off voltage (3.0 V)
protocol

Cycle Rest-charge-rest-discharge Rest-charge-rest-discharge Rest-charge-rest-discharge Rest-charge-rest-discharge Rest-charge-rest-discharge
sequence

Jon = V(1 — cn) (2b) discharge cycle using the SPM. The values of the parameters used are

where ¢, and c, are the lithium concentration at the positive and
negative electrode, respectively. More details about this SPM can be
found in the literature [27].

For the HKUST dataset, batteries with NMC cathodes and NCA
cathodes were modeled using the Chen2020 [28] and NCA _Kim2011
[29] as base parameter sets, respectively. The physical and chemical
parameters of the HKUST batteries were matched to manufacturer data
(where available), and the PyBAMM experimental parameters were
subsequently set to replicate the real-world cycling protocol used for the
HKUST batteries (more details are given in Table 1). Furthermore, the
Ecker2015 parameter set included in PyBAMM was used as a baseline to
model a Kokam SLPB533459H4 pouch cell and generate representative
discharge voltage profiles for the Oxford dataset [30-34]. The manu-
facturer specifications for the Oxford batteries were then used to define
the electrode's dimensions, cell cooling surface area, cell volume, and
nominal cell capacity. The PyBAMM experimental parameters were set
by matching the initial temperature, ambient temperature, current
function, and upper and lower voltage cut-offs to the testing protocol
from the Oxford dataset. Voltage curves were then simulated for the first

reported in Table S1 of the Supplementary Information (SI).

3.1.2. Machine learning model

The architecture for the ML model is combined with the neural-ODE
and LSTM (see Section 1) to obtain time-dependent voltage profiles from
aging parameters (more details are given in Section 3.2) and input
currents, respectively. Neural-ODEs, as originally proposed by Chen
[35], are deep neural networks designed to model the evolution over
time of the states, y, of a system. These states follow this relation [23]:

y=F(ty) 3

where the function F( e ) is assumed to be autonomous and parameter-
ized through an infinitely deep neural network. The dynamics of the
neural-ODE can be reformulated as a continuous ODE problem within an
infinitesimal time step. An ODE solver then computationally determines
system states, starting from an initial value, while simultaneously
learning the function F( e ). Earlier research demonstrates the strong
performance of ODE-based models in uncovering intrinsic dynamics and
predicting outcomes for battery degradation parameters, including the
SOH [23].

ML
AP,
AP,
- neural-ODE
I (tpc,k) VML x(tpe.k)
ML+SPM
Iy(tpc.o)

AP,

neural-ODE

I (tpc,k)

SPM

Vspato(tpc,o)

VAL k(tpc,k) - Varwssear(tpek)

Fig. 1. The upper and lower panels show a schematic representation of the architecture of the ML and ML + SPM models, respectively. APy, Ix (ch.k), VMLk (ch.k),

and V. spmk (tDc,k) denote the vector of aging parameters, current, ML-based voltage, and ML + SPM-based voltage at the cycle k and over the time for the full

discharge tpcx, respectively, while Vsppm o (ch.o) is the SPM-based voltage at the initial cycle. We stress that the neural-ODE only uses APy_; to predict APy.
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Moreover, the architecture of the ML model is displayed in Fig. 1.
The parameters for each neural network are given in Table S2.

3.1.3. Hybrid model

The architecture of the ML + SPM model, see Fig. 1, leverages an
LSTM integrated with a neural-ODE and the SPM. To compute the
voltage profiles, the LSTM was used to obtain a correction term
(Vspm (t)), which was subsequently applied to a baseline voltage curve
generated by the SPM model [19]. The neural-ODE network was used to
fit and predict the battery aging parameters, which were then fed to the
LSTM to evaluate the current cycle and future states. Moreover, Fig. 2
provides a flowchart illustrating the complete structure of our new ML
+ SPM model, highlighting the key roles of the SPM and ML
components.

The parameters for each neural network are given in Table S2.

3.2. Aging features

Since the SOH cannot be readily measured [36], the aging state of the
cells was parametrized as a function of the cycle number using three
quantities derived from the dataset. First, the SOH at the k-th cycle,
SOHy, was expressed as the ratio of the capacity at the k-th cycle, Qy,
divided by the total capacity of a fresh battery, Qo, i.e.,

Qx
SOH; = Qo 4

Additionally, the k-th cycle (total) charge, tcx, and discharge, tpc,
times were considered at constant current because these two quantities
have been identified as primary predictors of battery aging by Hu et al.
[36]. Moreover, tcy and tpcy are expected to decrease with the battery
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lifetime due to the increase in battery internal resistance, mirroring the
SOH. It is expected that the combination of tcx and tpcx will improve the
SOH prediction since the SOHy alone is not sufficiently informative of
battery internal decay, especially early in the battery lifetime [37]. Next,
the vector, APy, of aging parameters was defined as

SOH;
AP = oy ©)

ok

where APy is the vector input of the neural-ODE network at the cycle k,
see Fig. 1. We stress that the output of this neural network is the vector,
APy 1, of aging parameters at the following cycle. Moreover, the input
vector to the LSTM at the k-th cycle includes APy from the neural-ODE,
and the current imposed for a full discharge cycle, Ii(t). Importantly, the
latter was discretized with 100 collocation points over the discharging
period. In the case of the HKUST dataset, three additional features were
considered: one feature used to identify the manufacturer, each repre-
sented by a numerical value between 0 and 1, and two features identi-
fying the upper and lower cut-off voltage values to distinguish heavy and
light cycling protocols (Section 2.1).

3.2.1. Error metrics

Model performance was benchmarked with the voltage root-mean-
square error (RMSE) for regression, RMSE g, which is defined as the
following quantity:

RMSE, ¢ = S (V- (6)

START

False

False

END

=5
7

Loop

Fig. 2. Flowchart illustrating the structure of the ML and ML + SPM models. In the case of the ML + SPM model, the SPM model is used to compute the baseline
voltage at the first cycle (k = 0) using the battery parameters and initial current. For each battery cycle, the neural-ODE and LSTM are then used to either regress or

autoregress the voltage.
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where Ny, is the number of points used to compare the trained ML and
SPM-ML models, and \7k and Vi are the regressed and experimental
voltages at the cycle k for k =1, 2, ..., Nreg, respectively. Furthermore,
the RMSE from Nieg to Niot, RMSEautoreg, Which was used for autore-
gressed segments, is given by

1 Neot )
N No > (V- @

€8 Nieg

RMSEautoreg =

where Ny, is the total number of cycle points. In addition to RMSE,¢; and
RMSE.utoreg, the normalized voltage deviations were calculated using

AVe V-V
Vst ®
> Vi
=
Niot

Last, the normalized RMSE,; and RMSE,yre; Were derived by
applying to Eq. (8) the mean square root over the cycle k.

3.3. Data preparation

Both experimental cycling datasets were used to compare the per-
formance of both ML and ML + SPM models in mapping the current-
voltage state space. First, the batteries were split into subgroups based
on the manufacturer, as illustrated in Fig. 3(a).

Another subgroup of NMC batteries from the HKUST dataset was
created and further subdivided depending on the discharge voltage cut-
off, as shown in Fig. 3(b). 70 %, 10 %, and 20 % of the cycling data of the
batteries in each subgroup were used for training, validation, and testing
purposes, respectively. Finally, the models' regressive and autore-
gressive capabilities, where future values are predicted based on past
data, were evaluated using the test data. The influence of the prediction
window, ie., the number of cycles used for autoregression, was also
investigated. To achieve this, the autoregressed voltage curves were
compared against unseen data corresponding to 20 % and 80 % of the
total number of cycles, Ni. Importantly, Ny, was set to the lowest
number of cycled data in each dataset, i.e., Ny, = 995 and 44 for the
HKUST and Oxford datasets, respectively. Furthermore, for the HKUST
dataset, the cycle count was subsampled to 100 to expedite result
convergence. Lastly, current and voltage curves were segmented into
parts of 100 points through interpolation to maintain consistent input
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length for machine learning models. The learning rates of the neural-
ODE and LSTM were initially tuned manually and then kept constant
for all simulations, while the early-stopping criterion was used on the
validation set to find the optimal number of iterations for each
simulation.

4. Results
4.1. HKUST dataset

4.1.1. Analysis by battery type

First, the performance of the ML + SPM model was compared to that
of the ML model using the batteries from the HKUST dataset for each
manufacturer. For illustrative purposes, Fig. 4(a) shows the experi-
mental voltages for a LISHEN cell for all cycles.

The voltages regressed with the SPM, ML, and ML + SPM models at
the first cycle are displayed in Fig. 4(b). Graphically, the ML and ML +
SPM models regressed the experimental voltage accurately. The close
regression of the ML + SPM model stems from the correction term added
to the voltage obtained with the SPM model, see Fig. 1. The voltage
deviation obtained with the SPM, ML, and ML + SPM at the first and last
cycles are shown for completeness in Fig. S1. Quantitatively, the values
of RMSE,¢; and RMSEayoreg defined in Egs. (6) and (7) are shown in
Table 2. Except for the EVE cell, the values of both metrics were smaller
for the ML + SPM model compared to those of the ML model. To allow
comparison between different battery types, the normalized RMSE, g
and RMSEtoreg, defined in Section 3.2.1, are shown in Table S3. For the
EVE battery, we observed discrepancies between SPM voltage pre-
dictions and experimental results (see Fig. S2(g)). This explains why the
ML + SPM model, which incorporates SPM voltages, exhibited slightly
lower accuracy in voltage regression and autoregression compared to
the ML-only model. These results are detailed in Figs. 1 and 2, and
Table 2. Next, the influence of the cycle number on the normalized
voltage deviation, % in Eq. (8), was evaluated. Fig. 4(c) shows the
contour plot of these deviations obtained with the ML + SPM model
using regression on 80 % of the total cycle number, and the last 20 % of
the total cycle number for autoregression. Fig. 4(d) shows the contour
plot obtained using the ML + SPM model with 20 % and 80 % of the total
cycle number for regression and autoregression, respectively. In both
cases, the deviations were not significantly affected when the cycle
number was increased, demonstrating that aging was appropriately
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Fig. 3. Schematic representation of the HKUST batteries grouped by (a) cell manufacturer and (b) cathode chemistry and discharge protocol. The orange, green, and
blue colors refer to the groups of batteries used for training, validation, and testing purposes, respectively. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 4. For one LISHEN cell, (a) experimental voltages and (b) voltages regressed with the SPM, ML, and ML + SPM models with the experimental voltage also shown
at the first cycle. The contour plots of the normalized voltage deviation as a function of the normalized discharge time and cycle number obtained using the ML +
SPM model with regression and autoregression only on the last (c) 20 % and (d) 80 % of the total cycle number are also shown.

Table 2
For each battery manufacturer from the HKUST dataset, RMSE,; and
RMSEutoreg Values obtained with the ML and ML + SPM models. Best values are
in bold.

Battery ML ML + SPM

RMSE,eg/mV ~ RMSEautoreg/mV ~ RMSEeg/mV ~ RMSEaytoreg/mV
MOLICEL 33.23 9.90 12.27 5.95
LISHEN 159.68 159.41 15.67 25.32
CHAM 100.35 102.06 23.32 33.68
EVE 9.27 6.49 17.66 13.93
SAMSUNG  100.35 102.06 38.91 53.07

accounted for by the ML + SPM model.

4.1.2. Analysis by charge/discharge protocol

To evaluate how the cycling protocol affects the performance of the
ML and ML + SPM models, and how these two models handle clusters of
batteries characterized by similar chemistries, all the NMC-type batte-
ries from the HKUST dataset were used. This group was further sub-
divided into batteries which had undergone heavy and light cycling
protocols. For each manufacturer and cycling protocol, Table 3 shows
the values of RMSE,¢; and RMSEyoreg for the ML and ML + SPM models.
Notably, grouping the batteries improved the performance of the ML
model in 6 cases out of 8, see the values of RMSE,¢; and RMSEaytoreg in
Table 3, compared to the values in Table 2. One possible explanation lies
in the fact that in the case where the cycling protocols were mixed

Table 3
For the EV29, CMF2, LSSA, and MLPA manufacturers, RMSEe; and RMSEaycoreg
values obtained with the ML and ML + SPM models. Best values are in bold.

Battery ML ML + SPM

RMSE;eg/mV ~ RMSEautoreg/mV ~ RMSEreg/mV  RMSEqytoreg/mV
Heavy charge/discharge
MOLICEL 85.37 85.43 35.97 34.40
LISHEN 75.30 115.69 70.00 76.69
CHAM 132.83 82.26 56.54 69.75
EVE 21.07 24.09 34.49 4.40
Light charge/discharge
MOLICEL 22.24 20.83 25.54 20.57
LISHEN 81.75 96.46 64.60 47.07
CHAM 92.78 87.67 112.65 116.71
EVE 18.95 22.53 27.76 3.78

during training and testing, the ML model was unable to accurately
predict the voltage shape characteristic of each protocol (see Fig. S2).
This issue was overcome using the ML + SPM model because the voltage
from the SPM model was used as a baseline, which already accounted for
modifications in the discharge-voltage profile due to the protocol. To
overcome this issue for the ML model, the model parameters could be
tuned to attribute more weight to features that encapsulate the protocol
characteristics. To allow comparison between different battery types,
the normalized RMSEe; and RMSEayoreg defined in Section 3.2.1 are
presented in Table S4. Furthermore, compared with the heavy charge-
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discharge protocol, the ML + SPM model did not consistently outper-
form the ML model under the light charge-discharge protocol. We
attribute this behavior to the larger discrepancy between the SPM
voltage predictions and experimental voltages in the light protocol
compared to the heavy protocol (see Fig. S2).

4.2. Oxford dataset

The performance of the ML + SPM and ML models was further
characterized using the Oxford dataset. Fig. 5(a) shows the experimental
voltage trajectories of a given battery for all discharging cycles.

Characterization experiments took place every 100 cycles, reflecting
the snapshot presented in Fig. 5(a). The actual and projected voltages at
the battery's initial cycle are shown in Fig. 5(b), with predictions derived
from the ML and ML + SPM models. For comparison purposes, the
voltage deviations obtained with the SPM, ML, and ML + SPM models at
the first and last cycles are shown in Fig. S1. Overall, both the ML and
ML + SPM models replicated the experimental voltages with exceptional
precision. The mean RMSE,, is equal to 0.28 % and 0.11 % for the ML
and ML + SPM, respectively, while the corresponding mean RMSEytoreg
is equal to 2.68 % and 0.67 %. The contour plots of the normalized
voltage deviations (see Eq. (8)) are shown in panels (c) and (d) of Fig. 5.
Specifically, Fig. 5(c) and (d) displays the results when autoregression is
applied to the last 20 % and 80 % of the total cycle numbers, respec-
tively. Voltage prediction appears less accurate towards the last cycles
and at extreme normalized discharge times (<0.2 and > 0.8). This is
confirmed in Fig. 5(d), which exhibits higher voltage discrepancies
when compared to Fig. 5(c).
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4.3. Influence of the prediction window

Next, the influence of the prediction window on the models for all
batteries was investigated using autoregression on the last 20 % or 80 %
of Nior. Fig. 6(a) shows the RMSE,ycoreg Obtained with the SPM (yellow),
ML (blue), and ML + SPM (red) models for both autoregression windows
(light and dark colors are used to distinguish the 20 % and 80 %
autoregression windows, respectively). In all scenarios, except for the
EVE batteries, the ML model's accuracy diminishes for longer autore-
gression windows (i.e., in the 80 % window scenario represented in dark
blue). For the EVE batteries, we note that the RMSE for autoregression
for the 20 % window scenario is comparable and slightly higher than
that for the 80 % scenario. The ML + SPM model (red bars) consistently
outperformed both the SPM (yellow bars) and ML (blue bars) models for
autoregressed windows across all batteries except the EVE cells (a
possible explanation is provided in Section 4.1.1). The ML model's lower
performance with LISHEN, CHAM, and SAMSUNG batteries is likely due
to its inability to independently identify the unique shape of the voltage
profile based solely on input currents. This limitation leads to decreased
accuracy when the ML model is trained and tested on diverse cycling
protocols. A more detailed analysis is presented in Fig. 6, where panels
(b) and (c) depict the normalized voltage (%, see Eq. (8)) over
discharge time and cycle life, respectively, for one of the LISHEN cells
using the ML model under 20 % and 80 % window. A slight degradation
in prediction performance is observed towards the end of life with larger
autoregression windows (panel (c)). Panels (d) and (e) of Fig. 6 illustrate
the same metrics for the ML + SPM model under 20 % and 80 % window
scenarios, respectively. Notably, the discrepancy between the prediction
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Fig. 5. For one Oxford cell, (a) experimental voltages and (b) voltages regressed with the SPM, ML, and ML + SPM models with the experimental voltages also shown
at the first cycle. The contour plots of the normalized voltage deviation as a function of the normalized discharge time and cycle number obtained using the ML +
SPM model with regression and autoregression only on the last (c) 20 % and (d) 80 % of the total cycle number are also shown.
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Fig. 6. (a) RMSEayoreg Values obtained using the SPM, ML, and ML + SPM models for the Oxford dataset and each manufacturer of the HKUST batteries. For a
LISHEN battery, the normalized voltage deviations obtained with the ML model and an autoregression window of (b) 20 % and (c) 80 % are also shown. The

corresponding plots for the ML + SPM model are displayed in panels (d) and (e).

modalities is less pronounced in these cases compared to those obtained
with the ML model alone (panels (b) and (c)), except for the final cycles.
Importantly, this new hybrid model also outperforms the standalone
SPM and ML models when predicting battery voltages under various
experimental conditions. As outlined in the introduction (Section 1) and
conclusion (Section 5), this improvement stems from the ML + SPM
model's ability to combine the advantages of each individual model.
Specifically, the SPM model incorporates the physics principles missing
in ML models, while the latter are more flexible and adaptable than the

SPM model.

5. Conclusions

In this work, two established approaches for analyzing the voltage
and aging states of batteries were combined, namely physical and ML-
based models. We proposed a new hybrid model that integrates a sin-
gle particle model with both a neural-ODE and an LSTM neural network.
Using a new cycling dataset collected by our group, encompassing a
broad range of battery voltages, chemistries, and capacities, the hybrid
ML + SPM model was shown to be more accurate than the individual ML
models in most cases. This result was further confirmed using the Oxford
dataset. Additionally, the hybrid model demonstrated improved per-
formance with longer prediction windows compared to the SPM and ML

models in isolation.



S. Pepe et al.

While the precise mechanisms underlying its superior performance
should be further investigated, the ML 4+ SPM model likely derives its
advantages from a combination of the adaptability inherent in the ML
model and the physical insights offered by the SPM model. This synergy
enables the model to accurately predict future states by initializing
voltage profiles based on the SPM model and subsequently refining them
with the ML model, thereby optimizing the forecasting process. Future
work should further elucidate these mechanisms by examining the in-
fluence of varying cycling temperatures on model performance, as well
as the degradation at a downsampled frequency of cycle numbers.
Another promising avenue of research is the analysis of large datasets to
address practical situations, such as battery management systems in
electric vehicles.

This work establishes a foundation for the development of next-
generation physics-supported battery models, characterized by
reduced computational demands suitable for integration into battery
management systems. Our findings underscore the value of machine
learning techniques, particularly when knowledge of underlying phys-
icochemical mechanisms is limited. However, the incorporation of
fundamental physical principles remains essential for maintaining high
predictive accuracy and reliability. The proposed approach facilitates
real-time battery state estimation, diagnosis, and future state prediction,
enabling continuous monitoring of voltage responses to 26 applied
currents. This capability is crucial for mitigating safety risks associated
with battery operation, including malfunction prediction and state-of-
health assessment.

List of symbols

APy Aging parameters at the k-th cycle
Nieg Number of points used for regression
Niot Maximum number of cycles
RMSEautoreg Root mean square for the autoregression
RMSEeg Root mean square for the regression
SOHj State of health at the k-th cycle
tck Total charging time at constant current at the k-th cycle
tock Total discharging time at constant current at the k-th cycle
' Experimental voltage at the k-th cycle
Vi Modeled voltage at the k-th cycle
AV Normalized voltage deviations at the k-th cycle
<V>

List of abbreviations

LSTM Long-short-term memory

ML Machine learning

NCA Nickel cobalt aluminum

NMC Nickel manganese cobalt

ODE Ordinary differential equation
PyBAMM Python battery mathematical modelling
RMSE Root mean square error

SOH State of health

SPM Single particle model
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