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Chapter 1

Introduction

Nowadays the study of new transport phenomena is one of the most exciting

and growing areas of research. Some examples can be found in the study

of biological systems where finding physical explanations for most of these

phenomena has represented a challenge. Until now, the optimal mechanisms

of transport are still being sought. Nevertheless, several attempts have a-

ppeared during the last years with different trends.

One emergent branch is related to a new way of producing transport, the

so-called ratchet systems [1, 2]. A ratchet system is a system that is able to

transport particles with nonzero macroscopic velocity although on average

no macroscopic force is acting (see also another definition of ratchet systems

in chapter 2). Precisely, the role of certain proteins with unidirectional trans-

port in muscular contraction, cellular division, cellular traffic, and material

transport along the axons of nerve cells [3, 4] has encouraged the study of

systems where motion rectification processes take place as in ratchet systems

.
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Consequently, during the last decade a lot of research has been devoted

to the understanding of the motion of single particles, or an ensemble of par-

ticles in ratchet systems. More recently, the research has also been extended

to the analysis of the propagation of nonlinear coherent localized structures

in spatially extended systems. In particular, the main interest has been

focused on studying certain nonlinear waves, the solitary waves, which con-

serve their identity while they propagate. Among the solitary waves, special

attention has been given to the soliton, which has the additional property

that its shape and velocity are preserved asymptotically upon collisions with

other solitary waves [5, 6]. Moreover, the interest has been specifically con-

centrated on systems which exhibit propagation of topological solitons, i.e

kinks and antikinks whose amplitudes are not affected by the dissipation.

As a consequence their topological charges are conserved. This conservation,

among other reasons, makes topological solitons the best candidates for the

mentioned applications.

In general the investigation of these ratchet systems has been object of a

continuous growing because of its potential in applied areas like nano- and

micro-scale technologies [7, 8]. The main reason is the generation of directed

transport from deterministic forces or random forces with zero time average.

A typical example is found in extended systems for long Josephson junctions

(LJJ) where instead of a direct current input a microwave generator is used

as an alternating current to drive the motion of fluxons in one direction.

The main goal of the present work is to study some of the mechanisms

which make the solitons move similar to a single particle in a ratchet system.

Different ways of generating unidirectional transport will be the main focus
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of this thesis.

In order to understand the main aspects of ratchet systems a general

overview is presented in chapter 2. There an introduction is followed by a

classification according to the ratchet mechanism with extension to different

systems. Some of their applications are also given.

Usually, one starts from basic principles for constructing a ratchet system.

Therefore the ratchet models for point particles are the best scenarios starting

from which one can develop new ideas.

However, one should be careful when designing a ratchet with the same

features as that for point particles. Intuitively, one tends to use models with

similar structure to those for point particles. This assumption seems natu-

ral since in some approximations the dynamics of these localized structures

presents a point-like particle behavior. Nevertheless, this assumption does

not always lead to a correct conclusion. It is valid if one considers the same

form of the ratchet potential from point particles for the substrate potential

of extended systems.

There are other ways of producing directed transport in these system.

First, one has to keep in mind that we are dealing with nonlinear complex

systems, where the nature of motion differs from single point-particles, the

dynamics being much more complicated since the nonlinearity of these sys-

tems plays the major role. The presence of many degrees of freedom that

can be in principle infinite and their strong interactions are some of the es-

sential characteristics in nonlinear extended systems. In addition the loss of

symmetries and its interplay with the nonlinearity may give rise to systems

with novel transport properties.
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On the other hand, the assumption of regarding the solitons as point

particles is only valid for some exceptional cases such as when one has an

unperturbed system; or very small perturbations. In the latter case it is

commonly assumed that only the center of mass motion is affected. This

assumption is valid in an adiabatic approximation. Concerning this issue a

lot of research has been devoted in the last years to demonstrate that this

assumption fails for moderate and large perturbations.

Although such perturbations or external forces do not destroy the form

of the soliton, they change its shape as a consequence. The perturbations

are usually introduced by adding a driving force or impurities in the case of

homogeneous systems. The most common response to such perturbations is

the emission of linear waves (phonons). These phonons represent a simple

case of deformation with respect to the unperturbed solitonic solution, when

the system is driven by a force or when the soliton interacts with inhomo-

geneities. Although the phonons are damped when dissipation is taken into

account, there are other features which can not be neglected which survive

under perturbation even for high damping. A fundamental feature is the

change of the width of the soliton when the soliton is driven by external

forces or when it propagates along the chain with inhomogeneities. In such

cases the width of these localized excitations becomes very important, and

its consideration, as we shall show in this work, is not only crucial for descri-

bing properly the dynamics of solitons but also decisive for the occurrence of

unidirectional motion. The importance of the kink width for the dynamics

results from the strong interaction with the translational degree of freedom.

Indeed, such an interaction has been object of research in a wide context,
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and as we will show in this thesis, it leads to new ways of ratchet dynamics

not observed before for single particle ratchet systems.

In order to have a deeper understanding of the soliton dynamics it is very

convenient to concentrate the analysis on the fundamental degrees of freedom

instead of following the soliton motion in its full details [9]. The formulation

which reduces the large number of degrees of freedom of the original system

(usually given by a partial differential equation (PDE) to a few “effective”

degrees of freedom, is called the collective coordinate approximation. This

method provides a system of ordinary differential equations (ODE) for these

“effective” degrees of freedom. Such an approximation will help to unveil the

ratchet mechanisms behind the dynamics of the solitons.

In chapter 3 we study the propagation of solitons under the presence of

ac forces with harmonic mixing (biharmonic case). We will base our analy-

sis on previous results concerning the appearance of a drift mechanism for

kinks, where the dynamics shows a dependence on the phases of the harmonic

forces. By using the collective coordinate (CC) framework, which in addi-

tion to the translational mode involves the kink width oscillations, we will

explain the underlying physics behind the symmetry conditions discussed in

previous works and also the consequences for the motion. Particularly, from

the theoretical analysis of the collective coordinate equations a resonance

condition between the driving force and the oscillation of the kink width

for the occurrence of unidirectional motion is obtained. We also explain in

the same CC framework different situations for which the dynamics shows

a non-monotonic dependence on the damping coefficient. Specifically for

relatively high damping, the average velocity decays drastically. In such a
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situation we have also observed a slowing down for the oscillations of the kink

width. Moreover, we see from our CC approach that, if we keep the kink

width variable constant, the motion becomes purely oscillatory, a situation in

which the soliton behaves like a point particle. This is a particular example

where the role of the kink width is crucial for the motion. It also proves how

much different the behavior of point particles is in contrast to our nonlinear

excitations.

Chapter 4 is devoted to the study of a new kind of ratchet system. We

present a novel design for a ratchet system which is made from a lattice of

point-like inhomogeneities. The study is mainly focused on a rocking ratchet

soliton behavior. Its analysis is done for the overdamped regime, albeit it

is also possible to observe ratchet dynamics for a wider range of damping

values.

Once again, but this time using different CC approaches, we show the im-

portance of taking into account the kink width as a second degree of freedom.

Its inclusion allows to capture the whole mechanism of motion. Furthermore,

in this framework, we are able to show the similarity of our system with o-

thers, which are used for modeling molecular motors.

A similar analysis is also done in the presence of noise where unidirec-

tional motion is observed even for cases where the motion is absent in the

deterministic case. In all the cases, in spite of the possible differences with

simple ratchet systems, the interplay of the two degrees of freedom leads

to a ratchet behavior indistinguishable from that observed for single point

particles.

Subsequently, an analysis of the dependence for the dynamics on the
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damping coefficient is presented. In this case a significant unidirectional

velocity in the weak underdamped regime is obtained.

Next, in order to extend our formulation to other ratchet mechanisms

a brief presentation of a diffusive ratchet is shown and an analysis of the

motion mechanisms is done.

At the end of this chapter different lattices of inhomogeneities for which

the ratchet dynamics is possible are presented and some perspectives for this

ratchet system are outlined.

Finally in chapter 5 the main results collected in the present thesis are

summarized. Part of the results of this thesis have been published in [10, 11].
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Chapter 2

Ratchet systems: From point

particles to extended systems

A ratchet is a device which allows propagation in one direction, while it

hinder the reverse motion. Based on such a mechanism, Feynman proposed a

ratchet and pawl machine as a molecular gadget (Fig. 2.1). For this particular

problem, when the temperature T2 is greater than T1, the axle will rotate due

to the skewed shape of the teeth in the ratchet. The shape allows rotation

clockwise but is hindering a counter-clockwise rotation. However, when the

temperature T1 is greater than T2 the fluctuations or vibrations of the pawl

dominate the motion. In this case the displacement of the teeth is greater

in the counter-clockwise direction than in the clockwise direction. The main

conclusion is that such a device only performs usable work in the presence

of a temperature gradient, namely when we are out of the equilibrium, in
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Figure 2.1: The ratchet and pawl machine: two reservoirs are connected by

an axle that is attached to the ratchet in heat bath T2 and to vanes in heat

bath T1. When T1 > T2 a small weight can be lifted.

agreement with the second law of thermodynamics 1.

More recently, such nonequilibrium ratchet systems have gained much

interest in view of the possible role in describing the physical aspects that are

involved in the working principles of motor proteins (the so-called molecular

motors). Likewise, such devices have shown potential for novel technological

applications on the nano- and micro-scale level. In order to proceed in the

understanding of ratchet mechanisms, we define the term ratchet according

to Leibler [21] as a system that moves the particles or conglomerates of

particles with non-zero macroscopic velocity without any macroscopic forces

on average and without field gradients . In view of this general definition

we can define different types of ratchets. Some of them are exposed in this

chapter as a background for understanding the results to be presented in the

sequel.

1For a full discussion of this problem we refer the reader to the Lectures of Feynman

[12] and some criticism made to the Feynman’s analysis of this ratchet as an engine [13].
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2.1 Ratchets for point particles

In this section we define some of the simplest examples of ratchets for point-

particles and their basic principles, which take over to the ratchets in spatially

extended systems.

2.1.1 Rocking ratchets

Let us consider an overdamped particle under the presence of a periodical

force ( F (t) = F (t + T ) ) with zero average over the period 〈F (t)〉T = 0,

which additionally moves in an asymmetric periodic potential 2 like the one

depicted in Fig. 2.2. In this case the equation of motion in the overdamped

limit can be written as

ẋ = −∂xU + F (t). (2.1)

We assume the simplest periodical force F (t) ≡ A sin(ωt).

The asymmetry of the ratchet particularly leads to two threshold values

for the amplitude A, i.e., for |Fmax|. Let us analyze the case when the particle

rocks the sawtooth potential shown in Fig. 2.2 back and forth between the

limits

−min ∂xU < |Fmax| < max ∂xU. (2.2)

On one hand, the potential decreases monotonically to the left when the

force is +Fmax but on the other hand, when the force is −Fmax there remain

minima (signaled by arrows in Fig. 2.2) that trap a particle when it moves to

2In what follows we shall refer to a ratchet potential as an asymmetric periodic poten-

tial.
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Figure 2.2: Illustrative sketch of the rectification mechanism in a rocking

ratchet. Because of the asymmetry of the potential, starting at the bottom

of any well, the force required for the particle to move to the right is greater

than the force necessary to move to the left.

the right in response to the applied force. Accordingly, it will appear a net

motion to the left direction that is determined by the orientation of the teeth

in the sawtooth potential. Such a behavior is characteristic for overdamped

systems where the inertial effects are negligible. Otherwise the particle can

overcome the barrier moving to the next well and so on. In such a case the

hindering mechanism does not work and therefore there is no rectification of

motion.

In case when Fmax lies below these two threshold values there will be

no motion since a minimum force is required to overcome the barrier. On

the contrary, when the maximum threshold value is exceeded, the ratchet is

overdriven and the efficiency is reduced [66].
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This mechanism persist even in the presence of small and moderate noise

as we shall show in the next chapters.

2.1.2 Flashing ratchets

Let us consider the motion of a particle in a ratchet potential described by

the equation

ẋ = −ζ(t)∂xU +
√

2Dξ(t), (2.3)

where ζ(t) is a periodical function ζ(t) = ζ(t + T ),T is the time period,

D = kBT is the diffusion constant and ξ(t) represents a Gaussian white

noise with the correlation function 〈ξ(t)ξ(t′)〉 = δ(t− t′).

Usually one is particularly interested in the situation when the function

ζ(t) is given by

ζ(t) =





1, 0 < t < T
2

0, T
2 < t < T ,

i.e, when a switch between on and off takes place every half of the period

(Fig. 2.3).

Particularly, for the ratchet potential depicted in Fig. 2.3, one has for the

first half of the period a particle distribution localized in the minimum po-

tential. However, during the second half of the period for which the ratchet

potential is switched off, the distribution will spread out symmetrically by

diffusion. When the potential is switched on again, a net part of the distri-

bution will settle in the minimum towards the left. Consequently, we shall

have a directed current of particles towards the left.

At a first glance, this ratchet appears as a perpetuum mobile of second

type, assuming that the energy is taken from the thermal bath. However,
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Figure 2.3: The noise induced transport mechanism in a ratchet potential

that is periodically switched on and off with period T . Sketch taken from

[1].

this assumption is completely false because the energy does not come from

the thermal bath but from the ratchet potential when it is switched on.

In the spirit of the second example we can realize a variety of different

ratchet systems. Note that this changes not only the mechanism of mo-

tion with respect to the previous one, but also the transport takes place in

opposite direction.

2.1.3 Diffusive or thermal ratchets

The diffusive ratchet which actually turns out to be closely related to the

previous flashing ratchet has also been called a Brownian motor. This is

because its design was inspired by the dynamics of molecular motors. In
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order to explain the mechanism, let us consider Eq. 2.1 but now adding a

Gaussian white noise, namely

ẋ = −∂xU + F + ξ(t) (2.4)

with 〈ξ(t)ξ(t′)〉 = 2kBTδ(t − t′), where the temperature is subjected to

temporally periodic modulations with period T , i.e.

T (t) = T (t+ T ).

Here we have chosen F as a constant external load. When this system reaches

higher temperatures, the particles are able to spread without a preferential

direction due to the diffusion, and when the temperature decreases the par-

ticles move to the minima of the potential. The particles in this ratchet

system on average climb uphill the ratchet potential, thereby they perform

work against the load force F . For the calculation of the net work and the

efficiency of this system and in general for other systems, the ratchet system

is usually considered as a thermodynamic motor 3.

In contrast to the previous model where the potential is switched off

in order to allow the diffusive motion of particles, here the thermal noise

as energy source enables the upward motion of the particles. Nevertheless,

despite of such differences, it is possible to map one system into the other

[18].

3An analysis of the efficiency of ratchet systems can be found in [19].
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Figure 2.4: Symmetric Two-Dimensional Potentials. The figure shows con-

tour graphs of the 2D dimensional function V (x, y) = V0 cos(4πx/Lx) +

u(y) cos(2πx/Lx) + ε(y) sin(2πx/Lx) with u(y) = u0 cos(2πy/Ly), ε(y) =

ε0 cos(2πy/Ly + φ). (a) φ = π/2. (b) φ = 0. Figure taken from [20].

2.1.4 Two-dimensional ratchets

The ratchet systems considered so far have been confined to one spatial di-

mension. Following the previous ideas about flashing ratchets one intuitively

can develop a two-dimensional ratchet by mapping time modulated poten-

tials into static potentials, i,e (x, ωt) → (x, y). The modulation which was so

far a function of time is now characterized by functions of the coordinate y.

The nonequilibrium features are introduced by external forces in the x and

y directions.

There exist two main classes of 2D ratchet potentials. In the first one

proposed by Duke and Austin [22], the symmetry is broken in two directions

(Fig. 2.4a). For this case a driving force in the x, y directions can cause a

drift in the y, x directions where the variations in the force directions change
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the resulting velocities.

A second device, suggested by Derényi and Astumian [23], possesses a

broken symmetry in one direction Fig. 2.4b. This device leads to a constant

drift in the x direction with zero net velocity in the y direction if one applies

a driving force in the y direction with constant magnitude and periodically

alternated sign. On the contrary, a force in the x direction does not produce

a net flux in the y direction.

The fact that the oscillating force in the y direction can drive unidirec-

tional motion in the x direction but not vice versa, allows to build much

smaller devices, which is certainly desirable.

2.2 Ratchets in spatially extended systems

Following the previous ideas for point particles moving in asymmetric poten-

tials and considering in a very preliminary approach the analogy of soliton-

bearing excitations with point-particles in the same situation, it is expected

that ratchet effects take place for solitons in asymmetric periodic on-site

potentials, i.e substrate potentials with broken reflection symmetry.

This is the main reason why during the last 10 years many investigations

have been devoted to the study of solitonic ratchet motions for different

asymmetric on-site potentials. The first implementation of this ratchet idea

for soliton-bearing systems was suggested by Marchesoni [24]. In this pio-

neering work he describes how time correlated noise induces current of kinks

and antikinks in opposite directions for an asymmetric sine-Gordon poten-

tial. Later similar studies were carried out for asymmetric bistable potentials
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[25]. Recently, in the same context a novel way of introducing the asymmetry

for the on-site was developed [26]. The authors formulated the study for the

generalized double sine-Gordon equation

φtt + βφt − φxx + sin(φ) + λ sin(2φ+ θ) = f(t) + η(x, t),

where λ is the asymmetry parameter and θ is a constant phase. The term

f(t) is a sinusoidal driving force composed of one harmonic and η(x, t) is

Gaussian white noise. This system reduces for λ = 0 to the sine-Gordon

equation, a system well known from the literature that does not have inter-

nal mode. For this particular situation the authors did not obtain ratchet

dynamics. Therefore the authors concluded from their preliminary results

that ratchet dynamics is produced because of the coupling between the dri-

ving force via a translational mode and the internal mode introduced by the

second term of the double sine-Gordon potential. According to them, mainly

the damping is responsible for the coupling between the translational and in-

ternal (or shape) modes of the kink. They also showed the existence of an

optimal value of damping for which a maximum mean velocity is obtained.

Another way to get directed kink transport is to break the spatial symme-

try using an inhomogeneous chain. As a first realization we have the study

of LJJ in presence of an inhomogeneous magnetic field [27] for which an in-

homogeneous junction profile is created for fluxons to propagate under an ac

driver.

In chapter 4 a new proposal for the propagation of solitons in presence

of point-like inhomogeneities is developed. The study is presented for Klein-

Gordon systems, sG and φ4. In this case the ratchet profile for the mo-

tion of solitons is created using a periodic and asymmetric lattice of point
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like-inhomogeneities [11]. The study is mainly focused on rocking ratchet

dynamics. Nevertheless, other type of ratchets are also proposed.

In the literature also extended ratchet systems composed of single pieces

have been described [28, 29]. One example is the use of a parallel array

of Josephson junctions with alternating physical properties of the junctions,

such as self-inductances or the variations of critical currents. With such

tools the authors have created a substrate potential with ratchet shape for

the soliton propagation. The corresponding experiment was realized by Trias

et al. [30].

So far we have made reference to ratchet systems with broken spatial

symmetry. Nevertheless, it is possible to generate unidirectional motion using

certain combinations of ac drivers [31, 32, 10]. In this case the net motion

takes place when the time symmetry is broken. The next chapter is devoted

to the analysis of the reasons and necessary conditions for the motion of

topological nonlinear excitations under two mixing harmonic forces. This

particular design has the advantage that we can choose the direction of the

kink motion by changing the relative phase of the harmonic drivers. Recent

experiments have confirmed the applicability of this idea in the context of

LJJ devices [33].

2.3 Some remarkable applications of ratchet

systems

As already mentioned before many works concerning ratchet systems have

found various applications in different areas such as superconducting devices,
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Figure 2.5: The white spots are tiny colloidal spheres trapped at the narrow

necks between electrodes. Each on-off cycle of electric field produces a net

particle motion from the left to right. Picture taken from [21].

separation methods, growing of surfaces, etc.

The main applications started, when an experimental pioneer work reali-

zed by Rousselet et al. [34] showed, beyond the pure academic interest, the

great potential of such devices for moving tiny particles. They built a micro-

electrode system whose working principle corresponds to the flashing ratchet

mechanism (see 2.1.2), where the electrodes are arranged in such a way that

they produce an electrical sawtooth potential, which appears and disappears

periodically following an external control. They were able to move colloidal

particles with this device (Fig. 2.5). They also could prove within a certain

approximation the consistency of the experimental results with theoretical

models corresponding to flashing ratchet systems. A better quantitative

agreement between theory and experimental results was obtained in further



2.3. Some remarkable applications of ratchet systems 21

works with a refined technique.

Actually, the design of such devices was inspired in the locomotion process

of motor enzymes within the cell. A cascade of important investigations on

ratchet systems was triggered since starting the studies of motor proteins

motion. In fact, applications in biological systems have been become the

most significant branches of research. Nowadays, sophisticated devices can be

fabricated because of the advances in nanotechnology, such as the synthesis

of molecular motors for the information processing at molecular level [35].

A practical application in this field is, for instance, the electrophoresis of

DNA molecules in a submicrometer maze structure in a silicon wafer [36].

The authors constructed microlitographically obstacle arrays for studying

the fractioning of large polymers of molecules with different topologies, like

pieces of DNA. The improvement of such a technique might not only lead

to separation of megabases pieces of DNA but also of whole cells for which

the usual gel methods are inefficient. One interesting historical aspect is

that such a device whose features undoubtedly fit with a ratchet device was

designed even before starting the first theoretical works on ratchets.

Another area with outstanding applications is related with the design of

superconductor devices. The first device proposed with ratchet dynamics

was the SQUID, designed for the rectification of voltage [37]. For such a

device the authors theoretically showed the appearance of Shapiro-like steps

for the current-voltage characteristic with and without thermal fluctuations

at large driving frequency, a typical feature of rocking ratchets. Nevertheless,

only for a new variant of the design the ratchet mechanism was confirmed

experimentally [38]. Other interesting devices have been built like, for in-
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Figure 2.6: Diagram of a superconductor in the presence of an external field

H. A current density J flowing along the y direction induces a Lorentz

force FL that moves the vortex in the x direction. The superconductor is

patterned with a pining potential U(x, y) = U(x)(lower panel). The potential

is periodic and asymmetric along the x direction. Picture taken from [39].

stance, the one proposed by C.S Lee et al. in [39], wherein a ratchet potential

formed by pining sites is employed to clean the superconductor sample from

vortices when an alternating current perpendicular to the magnetic field is

applied (Fig. 2.6). In this case the presence of an alternating current gene-

rates a Lorentz force on the vortices which moves them in a ratchet potential

created by a modulation of the pining sites density. More recently, a device

in two dimension has been developed, designed again with the same goal of

manipulating and controlling the vortices motion [40]. By means of the elec-

tron beam lithography technique, the authors fabricating arrays of triangular

blind anti dots (Fig. 2.7). Using such device they could direct the motion
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Figure 2.7: Scanning electron microscope image of an array of Ni triangles

on top of Si (100) substrate. The triangle hight (Ni thickness) is typically 35

nm. Figure taken from [40].

of fluxons in a preferential direction. With this result the authors confirmed

theoretical predictions obtained in preliminary studies on the rectification of

vortex motion for an ac driven system with triangular blind anti dots pinning

arrays [41].

These are some of the main applications of ratchet systems. There exist

many more, which can be found in extensive reviews on this topic [2, 17,

42]. We have only addressed some prominent main applications of ratchet

systems.
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Chapter 3

Ratchet: Time

symmetry-breaking

As was pointed out in the previous chapter, the appearance of ratchet-like be-

havior requires two ingredients: departure from thermal equilibrium (either

by using correlated stochastic forces or deterministic forces) and breaking of

spatial inversion symmetry [2]. This is actually the setup for the majority

of ratchet models. However, it has recently been realized that the use of an

asymmetric driving can play the same role as the spatial asymmetry. Such

an effect was first proposed for one-particle systems in [43]. The analysis

presented by Flach and coworkers indicated that a directed energy current

appears if f(t) breaks the symmetry f(t) = −f(t + T/2), T being the pe-

riod of the external driving. Later it was extended to the study of extended

systems, both quantum [44] and classical systems [31, 32].

In [31, 32], the previous symmetry considerations were generalized to the

sG model. Again, it was found that if f(t) breaks the symmetry f(t) =



26 3. Ratchet: Time symmetry-breaking

−f(t + T/2), and if the total topological charge in the system is nonzero,

a directed current should be observed whose direction and magnitude will

depend on the driving and damping parameters. It is important to realize

that the condition of a topological charge implies that at least one kink or

one antikink must exist, and that the numbers of both types of nonlinear

excitations should differ at least by 1. In the case when there is just one

kink (or antikink) in the system, we are faced with an analogy to the point-

like ratchet proposed in [43]. Indeed, as in many other instances [9], kinks

behave basically as point-like particles, and the fact that their presence in the

extended system is needed to have directed current reinforces this analogy.

However, as we shall show in this chapter, the scenario is not that simple,

and in fact the point-like particle picture is not enough to understand the

general features in spatially extended systems.

From the symmetry analysis of the force one can deduce that in the

case of one harmonic a directed of motion of sG kinks is not possible. This

conclusion was confirmed years ago in [45, 46]. For that problem, a collective

coordinate description in terms of the motion of the kink center showed a

quantitative agreement with the numerical simulation results.

Let us now return to the case of a biharmonic mixing. In the first two

examples for the sG system, Flach et al. [31] and Salerno and Zolotaryuk [32]

considered f(t) ≡ ε1 cos(δt)+ ε2 cos(2δt+ θ). For this choice, they performed

numerical simulations that confirmed the symmetry analysis results. In view

of the fact that the system did exhibit ratchet-like behavior, i.e., it rectified

ac current, as kinks moved towards one direction in space, the authors in

[32] tried to implement a collective coordinate approach (see [9] for a review
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on this technique), in which the kink motion was reduced to a description

in terms of an ordinary differential equation for the motion of its center.

However, the approach turned out to be not satisfactory [32].

In this chapter we present a complete description of the ratchet phe-

nomenom using a new Collective Coordinate framework. This new approach

considers two collective variables which represent the center and the width

of kink. We also generalize the study extending the formulation to the φ4

model.

For investigating the dynamics in the presence of the biharmonic force

we consider a more general form for the ac driving, namely f(t) = ε1 sin(δt+

θ1) + ε2 sin(mδt + θ2) where ε1 and ε2 are the amplitudes of the respective

harmonics with frequencies δ and mδ and phases θ1 and θ2. These phases can

also be expressed as θ1 = δ0 and θ2 = δ0 + θ (see [10]). For the case θ1 = 0

and θ2 = θ we recover the original formulation [31]. In any case we can take

this formulation to the original one, since the use of θ1 and θ2 is equivalent

to a relative phase θ′ = θ2 −mθ1 with a time shift t′ = t+ t0 where θ1 = δt0.

It would be a challenge in experiments to adjust the phases properly.

For the sG system the model reduces to

φtt − φxx + sin(φ) = −βφt + f(t), (3.1)

and for the φ4 system we have

φtt − φxx + φ3 − φ = −βφt + f(t), (3.2)

where β is the damping coefficient for both systems.
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3.1 Collective coordinate approach

By using the variations of the energy and the momentum and taking into

account the Rice Ansatz (see [47]) one can obtain two ODE for the collective

coordinates, one for the position of the kink center, X(t), and another for

the width of the kink, l(t), like

dP

dt
= −βP − qf(t), (3.3)

l̇2 − 2ll̈ − 2βll̇ = Ω2
Rl

2

[
1 +

P 2

M2
0

]
− 1

α
, (3.4)

where the momentum P (t) = M0l0Ẋ/l(t) and ΩR = 1/(
√
αl0) is the Rice’s

frequency. The parameters M0, q, α and l0 take different values accor-

ding to the model, sG or φ4 (see Table 3.1). The same equations can

Effective parameters sG φ4

q 2π 2

M0 8 2
√

2/3

l0 1
√

2

α π2/12 (π2 − 6)/12

Table 3.1: Effective

parameters for the sG

and φ4 models.

be obtained using a projection technique with a Generalized Traveling Wave

Ansatz (GTWA) (see details in the appendix A).

Eq. (3.3) is linear and can be solved exactly, so that we can obtain the

evolution of P (t). Notice that, for long enough time (t� 1/β) the expression

for the momentum becomes

P (t) =
qε1[δ cos(δt + θ1) − β sin(δt+ θ1)]

(β2 + δ2)
+
qε2[mδ cos(mδt + θ2) − β sin(mδt+ θ2)]

(β2 +m2δ2)
,

(3.5)
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which can be properly written as

P (t) = −
√
ε[a1 sin(δt + θ1 − χ1) + a2 sin(mδt + θ2 − χm)], (3.6)

where ε is a rescaling parameter which can be defined as the min(ε1, ε2). The

other terms read:

χ1 = arctan

(
δ

β

)
, χm = arctan

(
mδ

β

)

and

a1 =
q√

β2 + δ2

ε1√
ε
, a2 =

q√
β2 +m2δ2

ε2√
ε
.

The change of variable g(t)2 = l(t) in (3.4), leads to an Ermakov-type

equation for the function g(t), given by

g̈ + βġ +

[(
ΩR

2

)2

+

(
ΩR

2M0

)2

P 2(t)

]
g =

1

4αg3
, (3.7)

which can only be solved analytically for β = 0 (see [47] and references

therein). Therefore, in order to study Eq. (3.4) we propose an expansion of

l(t) around the unperturbed kink width l0, in powers of ε as follows

l(t) = l0 + εl1(t) + ε2l2(t) + ... . (3.8)

Substituting Eq. (3.8) into Eq. (3.4) we get a hierarchy of equations for

different order of powers in ε:

For O(ε),

l̈1(t) + βl̇1(t) + Ω2
Rl1(t) = − Ω2

R

2εM2
0

P 2(t)l0, (3.9)

For O(ε2),

l̈2(t) + βl̇2(t) + Ω2
Rl2(t) = − Ω2

R

2εM2
0

P 2(t)l1 +
l̇21
2l0

+
Ω2

Rl
2
1

2l0
, (3.10)
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For O(ε3),

l̈3(t)+βl̇3(t)+Ω2
Rl3(t) = − Ω2

R

2εM2
0

P 2(t)l2+
l̇1l̇2
l0

+
Ω2

Rl1l2
l0

− l̇21l1
2l20

−Ω2
Rl

3
1

2l20
. (3.11)

These equations can be solved analytically. Let us take the first order of the

expansion. In order to solve Eq. (3.9) we substitute the expression for the

momentum (3.6) into (3.9), i.e.,

l̈1(t) + βl̇1(t) + Ω2
Rl1(t) = − ΩR

2ε
√
αM2

0

P 2(t) = A1 + A2 cos(2δt+ 2θ1 − 2χ1)

+A3 cos(2mδt+ 2θ2 − 2χm) + A4 cos[(m− 1)δt+ θ2 − θ1 − (χm − χ1)]

−A4 cos[(m+ 1)δt+ θ1 + θ2 − (χm + χ1)], (3.12)

where

A1 = −A2 − A3,

A2 =
ΩRa

2
1

4
√
αM2

0

,

A3 =
ΩRa

2
2

4
√
αM2

0

,

A4 = − ΩR

2
√
αM2

0

a1a2.

Notice in the r.h.s of the previous equation, the presence of harmonics with

frequencies 2δ, 2mδ and (m± 1)δ. After transients have died out, we find

l1(t) =
A1

Ω2
R

+
A2 sin(2δt+ 2θ1 − 2χ1 + θ̃2)√

(Ω2
R − 4δ2)2 + 4β2δ2

+
A3 sin(2mδt+ 2θ2 − 2χm + θ̃2m)√

(Ω2
R − 4m2δ2)2 + 4m2β2δ2

+
A4 sin[(m− 1)δt+ θ2 − θ1 − (χm − χ1) + θ̃m−1]√

(Ω2
R − (m− 1)2δ2)2 + β2(m− 1)2δ2

−A4 sin[(m + 1)δt+ θ1 + θ2 − (χm + χ1) + θ̃m+1]√
(Ω2

R − (m + 1)2δ2)2 + β2(m+ 1)2δ2
, (3.13)
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where

θ̃m = arctan

(
Ω2

R −m2δ2

mβδ

)
.

As is expected we get a solution with the harmonics 2δ, 2mδ and (m± 1)δ.

That means that we do not need to solve the equation in order to know the

possible harmonics.

From a similar analysis for Eqs. (3.10) and (3.11), one can deduces the

harmonics that appear in the second and third order of the expansion, i.e., for

l2(t) and l3(t). In Table 3.2 are shown the harmonics that appear in the first

order of the expansion of l(t) for different values of m. In order to compute

2nd harmonic(δ) l1 l2

m 2δ, 2mδ, (m± 1)δ 2δ, 4δ, 4mδ, (m± 1)δ,

2(m± 1)δ, (m± 3)δ, (3m± 1)δ

2 δ, 2δ, 3δ, 4δ δ, 2δ, 3δ, 4δ, 5δ, 6δ, 7δ, 8δ

3 2δ, 4δ, 6δ 2δ, 4δ, 6δ, 8δ, 10δ, 12δ

4 2δ, 3δ, 5δ, 8δ δ, 2δ, 3δ, 4δ, 5δ, 7δ,

9δ, 10δ, 11δ, 13δ, 16δ

Table 3.2: Harmonic content of the first contributions to the perturbative

expansion of l(t). Notice that δ and mδ are the driven frequencies of the ac

force (or in the momentum).

the average velocity over one period T = 2π/δ, we use the previous expression

for the momentum P (t) = M0l0Ẋ/l(t). Such an expression can be obtained

by substituting the Rice’s ansatz into the definition of the momentum P (t) =

−
∫

∞

−∞
dx φtφx. Consequently, the mean velocity of the kink in the Collective
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Coordinate framework can be expressed as

〈Ẋ(t)〉 =
1

T

∫ T

0

P (t)l(t)

M0l0
dt. (3.14)

Taking into account the expansion (3.8), this expression can be written as

〈Ẋ(t)〉 =
1

T

∫ T

0

P (t)(l0 + εl1(t) + ε2l2(t) + ...)

M0l0
dt

= 〈Ẋ0(t)〉 + ε〈Ẋ1(t)〉 + ε2〈Ẋ2(t)〉 + ... (3.15)

Therefore the mean velocity can be analytically calculated with some a-

pproximation taking into account the expression (3.6) for the momentum

and the first terms of the expansion for the width of the kink. For O(ε0),

the average of the momentum is zero [see Eq. (3.6)], and therefore 〈Ẋ0(t)〉
vanishes. Accordingly, the net motion of the kink can only arise in next order.

We proceed to solve the integral for ε〈Ẋ1(t)〉. By means of straightforward

calculations of Eqs. (3.15) and (3.13) we get for m = 2:

ε〈Ẋ1〉 =
q3Ω2

Rε
2
1ε2

8M3
0 (β2 + δ2)

√
β2 + 4δ2

(
2 cos[2θ1 − θ2 + (χ2 − 2χ1) − θ̃1]√

(Ω2
R − δ2)2 + β2δ2

−cos[2θ1 − θ2 + (χ2 − 2χ1) + θ̃2]√
(Ω2

R − 4δ2)2 + 4β2δ2

)
. (3.16)

This approximation describes well the behavior of the average velocity in

the limit εi/
√
β2 +m2

i δ
2 � 1, i = 1, 2; where m1 = 1 and m2 = m. In the

following we will refer to this case as the limiting condition for the validity

of the perturbation theory.

Notice the sinusoidal dependence on θ1 and θ2 in ε〈Ẋ1〉. Notice also,

that the terms χn and θ̃n with n = 1, 2 depend on the damping so that for

some cases the damping coefficient determines the direction of the motion.
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Similar analysis for m = 4 shows that ε〈Ẋ1〉 is zero. This happens because

the frequencies in l(t) that have contribution to the motion appear in higher

order corrections. So, in order to get a nonvanishing expression for the mean

velocity it is necessary to take into account the next order ε2〈Ẋ2〉. After

cumbersome calculations we get the expression

ε2〈Ẋ2〉 =
q5Ω4

Rε
4
1ε2

32M5
0 (β2 + δ2)2

√
(β2 + 16δ2)

x

{
sin(4θ1 − θ2 + χ4 − 4χ1 + θ̃2 − θ̃1)√

(Ω2
R − δ2)2 + β2δ2

√
(Ω2

R − 4δ2)2 + 4β2δ2

+
(6δ2 + Ω2

R) cos(4θ1 − θ2 + χ4 − 4χ1 − θ̃3 + θ̃2 − θ̃1)√
(Ω2

R − δ2)2 + β2δ2
√

(Ω2
R − 4δ2)2 + 4β2δ2

√
(Ω2

R − 9δ2)2 + 9β2δ2

− sin(4θ1 − θ2 + χ4 − 4χ1 − θ̃3 − θ̃1)√
(Ω2

R − δ2)2 + β2δ2
√

(Ω2
R − 9δ2)2 + 9β2δ2

− sin(4θ1 − θ2 + χ4 − 4χ1 + θ̃2 + θ̃4)

2
√

(Ω2
R − 4δ2)2 + 4β2δ2

√
(Ω2

R − 16δ2)2 + 16β2δ2

− (4δ2 − Ω2
R) cos(4θ1 − θ2 + χ4 − 4χ1 + 2θ̃2 + θ̃4)

4[(Ω2
R − 4δ2)2 + 4β2δ2]

√
(Ω2

R − 16δ2)2 + 16β2δ2

}
. (3.17)

For the case m = 3, the calculation of the average velocity gives zero for

all orders of the expansion. For this case the frequencies of the ac force (or

the momentum) are “odd harmonics” of δ (δ and 3δ), whereas only “even

harmonics” of δ are found in the kink width oscillations (2nδ, n ∈ N). The

complete selection rule for m = 2, 3, 4 appears in the Table 3.2. In principle

the analysis can be extended to any positive integer number of the frequency

for the second harmonic, i.e., for higher values of m.

We conclude from these preliminary results that the net motion occurs

because of the coupling between the translation of the kink and the internal

mode (oscillation of the kink width). As the most important result, we can
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say that this coupling is possible only when the harmonic part of the force is

able to resonate 1 with the kink width.

The previous reasoning can also cover the case m = 1. By looking at

the expression (3.6) we realize that only the frequency 2δ can appear in the

equation (3.4). In this case, for small frequencies, the oscillations of the

kink width do not influence on the dynamics and therefore the collective

coordinate approach for one degree of freedom (kink center) is sufficient to

describe the dynamics.

Let us discuss now, why the previous theory discussed in [32] fails. The

failure becomes visible when the authors tried to fit the analytical results

with the numerical simulations whose parameters differ from those predicted

by the theory. In this work [32] the authors considered the relativistic a-

pproximation for the CC for one degree of freedom. In this case the oscilla-

tions of the kink width are determined by the Lorentz contraction (see Eq.

(12) of [32] and compare with the expression Ẋ = P (t)l(t)/M0l0). However,

as we have observed in this chapter the dynamics is much more complicated

in the presence of ac forces, needing more than one collective variable for

catching the full dynamics of the system. This issue will be verified in the

next section where we compare the results of CC equations with the nume-

rical simulations.

1Some authors refer to this phenomenon as a synchronization between the ac force and

the oscillations of the kink width, i.e., that only a directional transport occurs when the

ac force locks the oscillations of the kink width.
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3.2 Numerical verification

The previous results were derived within the collective coordinate approach.

In order to check our predictions we have computed the numerical solution of

the partial differential equations (3.1) and (3.2) by using the Strauss Vázquez

scheme (see details in Appendix B), choosing a total length of L = 100, 300,

with steps ∆t = 0.01, ∆x = 0.1. We have used free boundary conditions

with a kink at rest as initial condition. We also implemented a fourth-order

Runge-Kutta method in order to verify our results. In the following we will

focus on the behavior of the ratchet dynamics and its variations with the

parameters.

Concretely speaking, we will investigate the dependence of the average

velocity on the harmonic phases of the biharmonic force (for different values

of m) and also on the damping coefficient. In order to do so, we shall separate

the analysis in two parts according to the model that we are going to deal

with.

3.2.1 Sine-Gordon model

In section 3.1 we established the phenomenology for the existence of net

motion. We argued that the time dependence of the kink width is not a

sufficient condition for the existence of a directed motion and that the net

motion appears only when at least one of the two harmonics of the ac driven

force is contained in the oscillations of the kink width. We have based our

arguments on the CC results (see Table 3.2 for frequencies that appear for

the first order corrections in the kink width expansion).
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In order to confirm these conjectures it is crucial to understand how the

kink width evolves when the soliton is driven by an external force.

In this respect we proceed to the computation of the kink width dyna-

mics. The evolution in time of the kink width obtained from the numerical

simulations and from the collective coordinate equations are depicted in the

left panel of Fig. 3.1.

Here for the numerical calculation of the center and width of the kink we

have followed the same procedure as proposed in [50], taking into account

the oscillations of the ground states due to the action of the ac driving.

There are different methods for the determination of the kink center.

Here we have used the linear interpolation method. In particular, for the sG

kink, this method reduces to search for each time interval, in the discrete

lattice, those points xn and xn+1 such that φn ≤ π + φvac and φn+1 ≥
π + φvac, where φvac represents the vacuum part of the sG field φ(±∞, t).

Then we estimate the corresponding point x̃n (the center of the kink X(t))

where φ = π by linear interpolation. Subsequently, in order to compute

the kink width, we search the value of l(t) that minimizes the expression
∑N

n=1

∣∣∣∣φn −
(
φK

[
n ∗ ∆x−X(t)

l(t)

]
+ φvac

)∣∣∣∣
2

with N = L/∆x, where L is

the length of the system, X(t) is the kink center position, φn is the numerical

value of the function in the nth lattice point, φK corresponds to the expression

for the kink, which in the sG case is given by Eq.A.22. In this case the vacuum

can be expressed as φ(L, t).

From this picture we observe an excellent agreement between simulations

and the CC framework. Subsequently in order to confirm our predictions we

proceed to the determination of the Fourier components for the kink width
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Figure 3.1: Left panel: Kink width vs time. Right panel: Discrete Fourier

Transform (DFT) of the width of the kink. For both panels dashed line:

numerical computation of Eqs. (3.3-3.4); solid line: Full simulation of Eq.

(3.1).The parameters are ε1 = ε2 = 0.2, β = 0.05, δ = 0.1, θ1 = −2.5

θ2 = π/2 − 2.5.

oscillations (see right panel of Fig. 3.1). The Discrete Fourier Transform

(DFT) shows an impressive agreement between the comparison of the full

simulation of Eq. (3.1) and the numerical calculus of Eqs. (3.3-3.4) validating

our resonance criterion. We can observe that for m = 2 the frequencies δ

and 2δ appear as was pointed out in the table. Consequently, because of the

presence of frequencies of the harmonic driving forces in the oscillation of

the kink width, one should expect a net motion of the soliton. We know in

advance for this particular situation, of the existence of a directional motion

for the kink center. A detailed analysis of the dynamics for m = 2 will be the



38 3. Ratchet: Time symmetry-breaking

0.00 0.03 0.06 0.09 0.12 0.15
frequency/(2π)

0.00

0.05

0.10

0.15

0.20

A
m

p
lit

u
d
e
 o

f 
D

F
T

2δ

4δ

6δ

8δ

0.00 0.03 0.06 0.09 0.12 0.15
frequency/(2π)

0.00

0.05

0.10

0.15

0.20

A
m

p
lit

u
d
e
 o

f 
D

F
T

δ

2δ

3δ

4δ

5δ

6δ
7δ

8δ 9δ

Figure 3.2: Discrete Fourier Transform of the kink width. Left panel: m = 3;

Right panel: m = 4. Solid line: amplitude measured in simulations. Dashed

line: numerical integration of the CC equations (3.3)-(3.4).The parameters

are the same as in Fig3.1.

object of discussion below. Let us discuss what happens for other values

of m. We proceed in the same way, calculating the Fourier mode of the kink

width oscillations. The DFT of the kink width for m = 3, 4 are collected

in Fig. 3.2. For m = 4 we observe the appearance of frequencies δ and 4δ.

Therefore, the occurrence of a net motion is expected.

On the contrary, for m = 3 neither δ nor 3δ appear to be present in

the ac driven force. In this case following our predictions we expect an

oscillatory motion similar to that obtained for a force with only one harmonic

component.

A definitive confirmation of our conjectures can be obtained from the
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Figure 3.3: Dependence of the average velocity on θ2 for different values of

m. m = 2 blue circles; m = 3 red diamonds; m = 4 black squares. The

parameters are ε1 = ε2 = 0.2, β = 0.05, δ = 0.1, θ1 = 0.

motion of the kink center of the soliton. In Fig. 3.3a the results for different

values of m are collected. In this picture the predictions on the existence

of motion for different values of m are confirmed. Notice the sinusoidal

dependence of the mean velocity function on the phases, an expected result

in view of the expressions (2.16) and (2.17).

A distinct feature is the difference for the mean velocity between the cases

m = 2 and m = 4. In principle such difference could be inferred from the fact

that in the case m = 4 the contribution to the velocity appears in a higher

order of the expansion than in the case m = 2 (see Table 3.2). However, such

reasoning could lead us to a misleading conclusion.

A possible explanation can be found in the analytical expression for the
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mean velocity. Taking a closer look at expressions (3.16) and (3.17) we realize

that the factor ε1 corresponding to the first harmonic has a power greater

than one whereas the factor ε2 for the second harmonic is linear. Therefore

the contribution of the first harmonic is determinant for the motion of the

kink.

From the comparison of the DTFs we observe that the peak corresponding

to the frequency δ for m = 2 has a higher intensity than its counterpart for

m = 4 (see right panel of the Figs. 3.1 and 3.2). This adjusts to our

predictions and is also consistent with the results presented in Fig. 3.3.

An important feature of the motion is the dependence of the mean ve-

locity on the phases of the harmonics of the ac force f(t). For this situation

a periodical behavior of the mean velocity as a function of the phases is ex-

pected from Eq. (3.16). Fig. 3.4 confirms the reliability of our theory since an

excellent agreement between the numerical computation of the CC equations

(3.3)-(3.4) and the full simulation of the Eq. (3.1) is obtained. We have also

plotted the expression (3.16). In the left panel of Fig. 3.4, the results for the

equation (3.16) are divided by a factor of 5. The factor was introduced in

order to adjust it to the results of the simulations and numerical computation

of CC equations. Otherwise a large deviation is obtained since for relatively

large amplitudes of the ac force, outside the range of the limiting condition,

the perturbation theory fails. Notwithstanding, it reproduces the sinusoidal

behavior correctly, thus validating the analytical results obtained from the

perturbation theory.

For very small amplitudes of the ac force in the range where our pertur-

bation theory is valid, Eq. (3.16) fits very well to the results of the mean



3.2. Numerical verification 41

-4 -2 0 2 4
θ2

-0.1

-0.05

0

0.05

0.1

0.15

<
d

X
/d

t>

-4 -2 0 2 4
θ2

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

<
d
X

/d
t>

Figure 3.4: Dependence of the average velocity on θ2 for m = 2. Left panel:

Parameters are ε1 = ε2 = 0.2. Right panel: ε1 = ε2 = 0.02. The rest of

the parameters are β = 0.05, δ = 0.1. In both panels two values for θ1 are

considered. Simulations: θ1 = 0 blue squares; θ1 = π/2 black circles; solid

line correspond to the numerical computation of the CC Eqs. (3.3)-(3.4); in

left panel dashed line correspond to ε〈Ẋ1〉/5 and in the right panel correspond

to ε〈Ẋ1〉 for the respective parameters of the simulations.

velocity obtained from the numerical calculus of the CC equations and of the

simulations as is shown in the right panel of the same Fig. 3.4.

For the case m = 4 again a very good agreement between the results

of the collective coordinates equations and the simulations is obtained (see

Fig. 3.5). In this figure the dependence of the mean velocity on the phases

of the force is plotted. The left and right panels show the behavior of the

mean velocity on θ2 and θ1 respectively. Notice the increasing number of
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Figure 3.5: Dependence of the average velocity on the harmonic phases for

m = 4. Left panel shows the dependence on θ2 for θ1 = 0; Right panel shows

the dependence on θ1 for θ2 = 0. In both cases circles are simulations; solid

line, numerical computation of CC Eqs. (3.3)-(3.4); dashed line, ε2〈Ẋ2〉/9.

The parameters taken are ε1 = ε2 = 0.2, β = 0.05, δ = 0.1.

oscillations from one situation to the other. This result can be deduced

from the dependence of the mean velocity on θ2 and θ1 in the analytical

expression (3.17). In Fig. 3.5 the analytical results of Eq. (3.17) are also

plotted. Although the results are obtained in a range of parameters where

the perturbation theory is outside the range of validity (the limiting condition

is not fulfilled), in both cases the sinusoidal behavior for the mean velocity

is correctly reproduced.
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Dependence on the damping: Harmonic Mixing

Another feature predicted by the CC theory is the dependence of the mean

velocity on the damping coefficients. According to the standard behavior

of point particles under friction, one should expect a monotonic dependence

for the velocity as a function of the damping coefficient. However, abnormal

behaviors like the existence of an optimal damping for the occurrence of net

motion have been observed in some works related to the motion of soliton

ratchets [26]. In this respect the authors of [31] have also pointed out

the sharp contrast to other results [32] concerning the behavior of the mean

velocity when the damping is changed.

Our expression for the mean velocity Eq. (3.16), deduced for the case

m = 2, sheds light on the dependence of the dynamics with the damping.

The dependence on the damping coefficient occurs in such a way that for

some cases the damping coefficient β determines the direction of motion. In

Fig. 3.6 are depicted three different situations where the velocity varies as

a function of the damping. The first case depicted in Fig. 3.6a corresponds

to the situation in which the velocity drastically decreases as β increases.

Typically, this is the expected behavior. The second situation corresponds

to the case when we can reverse the average velocity direction by changing

the damping; as was pointed out in [32]. This can be deduced from Eq. (3.16)

in which for certain relations between the phases one can change the sign of

the velocity by varying the damping coefficient. Finally, for some cases there

exist an optimal damping for the net motion (see Fig. 3.6c), i.e., there exist

a damping for which the kink center moves with the largest possible absolute

value of the mean velocity. It is also possible to find a value of the parameter
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Figure 3.6: The average velocity as a function of damping. Panel (a):ε1 =

ε2 = 0.02, δ = 0.1, θ1 = π/2; Simulations: θ2 = π (∗); θ2 = 0 (+). Panel (b):

ε1 = 0.04, ε2 = 0.026, δ = 0.25, θ1 = −π/2, θ2 = −π/2 + 0.8; Simulations:

(�). Panel (c): ε1 = 0.04, ε2 = 0.026, δ = 0.25, θ1 = −π/2, θ2 = −π/2;

Simulations: (♦). In all cases the solid line show results obtained from the

numerical solution of Eqs. (3.3)-(3.4) and the dashed line correspond to the

plot of Eq. (3.16) for the respective parameters of the simulations.
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Figure 3.7: The average velocity as a function of damping for two different

frequencies. δ = 0.1 squares; δ = 0.25 circles. The other parameters are

ε1 = 0.2, ε2 = 0.12, θ1 = −π/2, θ2 = −π/2. In both cases the solid line show

the results obtained from the numerical solution of Eqs. (3.3)-(3.4).

β that minimizes the expression (3.16) for a specific set of parameters.

Notice that we have taken small values for the amplitude of the force in

order to compare our numerical results with the analytical expression, where

very small values of the velocity are obtained. Our results may lead to an

interpretation that the strong variations with β are characteristic for small

values of the external force. In order to prove that such effect appears as an

intrinsic characteristic feature of our models we have plotted in Fig. 3.7 the

situation corresponding to the third case, for two different frequencies and

higher amplitudes of the forces, because of the interest and connection with

analogous problems discussed in the literature [26].
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We observe from the picture that the agreement is still good and the be-

havior remains basically the same as in the smaller amplitude case. However,

one notices that for a special situation, i.e., when the frequency is higher and

for small damping, the simulation results disagree with the numerical com-

putation of the CC equations. In fact, we observe that a reverse of current

takes place in the simulations, contrary to the CC results.

In order to understand such a behavior it is necessary to analyze the action

of the force on the system. The force contains δ and 2δ harmonics. For the

sake of simplicity let us to analyze separately the action of the harmonics

of the force. According to the expression (3.7) (see also previous studies

[47, 48]) the kink width will sense the action of P 2(t)2 with harmonics of

frequencies 2δ and 4δ for the respective harmonics δ and 2δ of the force,

i.e., that for a value of δ = 0.25 we will have in P 2(t) the harmonics with

2δ = 0.5 and 4δ = 1. Notice that the latter harmonic frequency coincides

with the bottom of the phonons band. Moreover, according to our DFT

diagrams, where a joint action of the harmonics takes place, one expects to

find even higher harmonics, already inside the phonons band. Therefore for

large enough force amplitude at small damping a strong excitation of phonons

is expected. Accordingly the phonons dynamics can reverse the direction of

motion. In this case our CC approach fails since it does not take into account

the phonons contribution to the motion. Nevertheless, for very small values

of the force, the phonons contribution is very small and therefore we obtain

a behavior like that depicted in Fig. 3.6c where a good agreement with the

2Here it is important to remind that the momentum P (t) contains the same harmonics

as the force f(t).
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CC is observed.

On the other hand, for small frequencies of the harmonic components of

the force like δ = 0.1 and 2δ = 0.2, following our previous reasoning, the

kink width will oscillate with the harmonics 2δ = 0.1 and 4δ = 0.4 which

are far from the frequency range of the phonons band, even if we regard the

next higher harmonics. Therefore the excitation of phonons is not significant

which explains the nice agreement between the CC approach and the results

from the simulations even for relatively large amplitudes of the forces.

In both cases we notice a decay of the absolute value of the average

velocity for a high damping. Correspondingly, we have observed a decay of

the kink width oscillations. This confirms the importance of the oscillations

of the width in the translational motion of the kink.

Experimental confirmation

One of the areas where the sG equation presents a practical application is in

the description of the propagation of fluxons along LJJ.

Recently, the motion of fluxons (a well known example of a topological

kink) under two harmonic drivers was realized by Ustinov et al. [33]. The

motion of fluxons gives rise to a dc voltage V across the junction, which is

proportional to the fluxon mean velocity. In general an external dc current

causes the fluxons to move with a certain velocity, which produces a dc

voltage. However, even in the absence of dc bias is possible to find a non-

zero voltage state, which clearly indicates the ratchet effect.

The ratchet-like effect induced by a biharmonic in the context of Joseph-

son junctions is reflected in the non-zero voltage state in the absence of dc
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Figure 3.8: Left panel: Current-voltage characteristics of a single fluxon in

annular Josephson junction with no ac drive (open symbols) and with single-

harmonic ac drive (solid symbols) having the frequency f1 = 4.8 GHz. Right

Panel: A single-fluxon current-voltage characteristics. The fluxon is driven

by bi-harmonic ac drive having the frequencies f2 = 2f1 = 2.4 GHz and

power P2 = +4 dB. The phase shift θ between the two harmonics is fixed to

π/2 (open symbols) and 3π/2 (solid symbols). Figure taken from [33].

bias.

In the sequel, we want to sketch the most important results obtained

in this experimental work, without going into the experimental details (for

details we refer to the original paper [33]). In order to confirm previous the-

oretical predictions the authors of Ref.[33] performed several experiments for

different situations. They first measured the current-voltage characteristic of

a fluxon in the junction with and without a microwave source. Subsequently,
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Figure 3.9: A dependence of the rectified dc voltage measured at zero dc

bias current on the phase shift θ between the two harmonics of ac drive.

f1 = 1.2 GHz and f2 = 2.4 GHz and power P2 = +4 dB. Solid line shows

results of numerical computation of the voltage for the dimensionless ac bias

amplitudes E1 = E2 = 0.1. Figure taken from [33].

they measured the current-voltage characteristic of the fluxons under the

influence of two microwave sources with 1 : 2 ratio for the frequencies. In

this case, the authors electronically controlled the phase shift between the

sources. The results of the two measurements are depicted in Fig. 3.8.

Two important features of this figure deserve to be highlighted. First from

the left panel one observes that in the presence of only one harmonic, the

voltage vanishes for a zero dc current. This confirms previous results about

the nonexistence of net motion of a kink for this situation. On the other

hand, in the right panel, a dc voltage at zero value of the dc current is ob-
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served. This result reveals the occurrence of a directional motion of fluxons

in the presence of harmonics driving with two frequencies, thus confirming

previous theoretical results.

Later, in order to corroborate previous theoretical predictions about the

dependence on the relative phase of the force harmonics, they measured the

voltage varying the relative phases. They also performed numerical simula-

tions in order to compare with the experimental results. For that purpose

they used a dimensionless sG equation, like Eq. (3.1) with the biharmonic

force f(t) = ε1 sin(δt) + ε2 sin(mδt + θ) as ac drivers for the description of

the fluxons propagation. Here δ = f/fp and εi ∼
√
Pi with i = 1, 2; fp = 120

GHz being the plasma frequency and Pi the respective ac power levels for the

sources. This representation of the force is equivalent to the choice θ1 = 0

and θ2 = θ in our notation. For the dimensionless equation with the parame-

ters ε1 = ε2 = 0.1, β = 0.05 and δ = 0.01, they obtained the picture depicted

in Fig. 3.9. Notice the sinusoidal dependence of the voltage on the relative

phase, in line with our previous results.

3.2.2 φ4 model

The phenomenology for the existence of a directed motion of kinks in the

φ4 model is the same as in the sG model. We observe in Fig. 3.10 the

same spectrum of frequencies as was in the sG model (see Figs. 3.1 and

3.2) obtained for the different values of m. We also performed additional

numerical simulations in order to support the results on the kink dynamics.

As before, we found in the case m = 2 and m = 4 unidirectional motion, in

contrast to m = 3 where an oscillatory motion takes place. Also the phase
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Figure 3.10: Discrete Fourier Transform of the kink width. Panel (a): m = 2;

Panel (b): m = 3; Panel (c): m = 4. Solid line: Simulations of Eq. (3.2).

Dashed line: numerical integration of the CC equations.
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dependence of the mean velocity was similar to the sG case.

However, for the φ4 model higher velocities compare to the sG system

are obtained, i.e., the mobility is enhanced. This is observed in Fig. 3.11,

where the values for the mean velocity are greater than their counterparts

depicted in Fig. 3.6 for the same parameters. Such a behavior can be deduced

from the relation between the effective parameters for the collective coordi-

nate equation (3.3), specifically from the relation between the normalized

effective amplitudes3 for the sG and φ4 models. These amplitudes depend

on the topological charge and the effective mass as AsG
ef = qsGAsG/M sG

0 and

Aφ4

ef = qφ4

Aφ4

/Mφ4

0 , for the respective systems. Because of the inequality

qsG/M sG
0 < qφ4

/Mφ4

0 (see Table 3.1) we conclude consequently that for the

same amplitude of the ac force, i.e., Aφ4

= AsG, a higher mobility for the

φ4 should takes place. Moreover, we have observed that for m = 2 such

differences in the mobility become more accentuated at low damping values.

This behavior finds an explanation in the possible phonons contribution to

the dynamics of the system, especially if we take into account the fact that

according to our previous analysis of the amplitude of the forces in the φ4

case a larger energy is deposited into the system than in the sG case.

3The normalization is realized by dividing Eq. (3.3) by the effective mass.
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Figure 3.11: The averaged kink velocity as a function of damping. Panel

(a):ε1 = ε2 = 0.02, δ = 0.1, θ1 = π/2. Simulations: θ2 = π (O); θ2 = 0 (M).

Panel (b): ε1 = 0.04, ε2 = 0.026, δ = 0.25, θ1 = −π/2, θ2 = −π/2 + 0.8.

Simulations: (+). Panel (c): ε1 = 0.04, ε2 = 0.026, δ = 0.25, θ1 = −π/2, θ2 =

−π/2; Simulations: (x). In all cases the solid lines show results obtained from

the numerical solution of Eqs. (3.3)-(3.4) and the dashed lines correspond to

the plot of the Eq. (3.16) for the respective parameters of the simulations.
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Chapter 4

Ratchet: Spatial

symmetry-breaking

(inhomogeneities)

In this chapter, we present a simple design for a spatially extended ratchet.

The new design implies a ratchet device consisting of a lattice of point-like

inhomogeneities. For this system net motion of solitons arises from the inter-

play between disorder1 and nonlinearity of the nonlinear spatially extended

system [49]. This makes the model more realistic for the description of di-

fferent phenomena and at the same time suitable for the study of different

ratchet mechanisms.

The study is mainly devoted to the analysis of a rocking ratchet since

we consider a system driven by an ac force. Nevertheless, at the end of

the chapter, a diffusive ratchet is implemented in order to demonstrate the

1By disorder we refer here to defects across the lattice.
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possible applicability of other ratchet mechanisms. In all cases the dynamic,

as we will show, is very similar to that exhibited by point particles.

Concerning the rocking ratchet system we would like to emphasize that, in

contrast to the previous ratchet model, this ratchet system works irrespective

of the symmetry of the ac force. We chose one harmonic driver for the study

of the rocking ratchet mechanism.

We focus our analysis specifically on nonlinear Klein-Gordon systems like

sine-Gordon (sG) and φ4 models because of their important applications. In

the case of the sG model the study is motivated from its potential appli-

cation in superconducting devices such as long Josephson Junctions (LJJ).

For the φ4 model, the motivation stems from research on models of energy

propagation along microtubule filaments inside a cell [51]. This application

is specially interesting in view of the possible connection to the dynamics of

transport in molecular motors in biological systems, with features similar to

those of solitons as extended objects.

The mechanism, we will present, is very general and it can be also applied

to other soliton-bearing systems where the interaction of kinks with point-

like inhomogeneities is similar to that occurring in the sG [52, 53, 54], to

mentioning an example.

4.1 Ratchet model and transport

Kink dynamics in the presence of inhomogeneities exhibits interesting and

qualitatively different behaviors compared to the homogeneous case, depend-

ing among other factors on the interplay between the inhomogeneities and the
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nonlinearity [52, 53]. The generation of net motion using a lattice of point-

like inhomogeneities is a good example of such a non-trivial phenomenon.

The model can be defined in principle for any nonlinear Klein-Gordon type

system. In order to be specific, for our analysis we formulate the model as

follows:

φtt + βφt − φxx +
∂Ũ

∂φ
[1 + V (x)] = A sin(ωt+ δ0), (4.1)

where Ũ(φ) is the potential for the nonlinear Klein-Gordon equations and

A sin(ωt + δ0) ≡ f(t) is an external ac force with the parameters A, ω and

δ0 representing the amplitude, frequency and phase of the periodic force,

respectively. In particular, for the φ4 and sG models the corresponding non-

linear potentials are Ũ(φ) = 1
4
(φ2 − 1)2 and Ũ(φ) = [1 − cos(φ)].

We choose V (x) to be spatially periodic, where the unit cell contains as a

basis an asymmetric array of delta function peaks (inhomogeneities) in order

to produce a ratchet-like phenomenon. The unit cell, of length L, is defined

by three inhomogeneities with the same intensity, the first one located at the

beginning of the cell, the second one at a distance a from the first one, and

the third one at a distance b from the second one as sketched in Fig. 4.1.

However, different configurations to that shown in Fig. 4.1, can be imple-

mented in order to break the spatial symmetry, as to be discussed at the end

of this chapter.

The mathematical expression corresponding to the array of delta peaks

depicted in Fig. 4.1 is given as:

V (x) = ε
∑

n

[δ(x− x1 − nL) + δ(x− x2 − nL)

+δ(x− x3 − nL)] , (4.2)



58 4. Ratchet: Spatial symmetry-breaking (inhomogeneities)

a

x
1

x
3x

2

b c

L

Figure 4.1: Schematical

representation of an asy-

mmetric array of point-like

inhomogeneities, that re-

peats periodically with pe-

riod L.

where the parameters (a, b, c) are chosen to be comparable to the static kink

width in absence of inhomogeneities l0. In addition the parameters should

fulfill the conditions a, b < c with a 6= b, where L = a + b + c, a = x2 − x1,

b = x3 − x2 and c = L + x1 − x3, with x1 < x2 < x3. For our study we

have taken ε > 0, where in the case of sG, specifically for LJJ the point-

like inhomogeneities represent microshorts [55, 56]. However, the case ε < 0

deserves attention as well, to which particularly for the sG model many

investigations have been devoted [57].

The choice of three inhomogeneities in the unit cell is motivated by bio-

logical polymers like DNA where the existence of three bases per codon

seems to be the ideal configuration for the occurrence of net transport [58].

In principle it is possible to get unidirectional motion by using an array

whose configuration presents more than three inhomogeneities per period L

if the distances between the delta functions are of the same length scale as

the kink‘s width (otherwise a qualitatively different behavior could arise as

demonstrated e.g. in [53]). However, the inclusion of more inhomogeneities

per unit cell diminishes the efficiency of the transport in terms of the speed
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as we will demonstrate later.

In contrast to the case of point particles, where a motion through point-

like inhomogeneities (delta functions) is physically meaningless, we deal with

kinks (extended objects) with a well determined width. The width is an

intrinsic characteristic feature of these nonlinear excitations and correspond-

ingly the competition between the width and the distance between the inho-

mogeneities is crucial for the kink motion. Interference effects induced by the

inhomogeneities [54] create an effective potential for the motion of the kink

center, where the locations of the inhomogeneities determine the direction of

motion. For the particular configuration of three inhomogeneities per unit

cell, directional motion takes place only under the condition a 6= b. This

is demonstrated in the top panel of Fig. 4.2, where results of simulations

of Eq. (4.1) in the sG case with different values of a and b are depicted.

This picture shows clearly that our ratchet device is a generic rectifier. The

rectification process results from the interaction of the kink with the inhomo-

geneities similar to what occurs for single particles in a ratchet potential. In

addition, as in ratchet systems for point particles, the directional motion of

the kink center takes place only for certain values of the amplitude of the ac

force (see bottom panel of Fig. 4.2), a behavior that depends on the ac force

frequency. A detailed picture of the dynamics of the mean velocity2 for the

kink center as a function of the ac force amplitude for different frequencies

can be observed in Fig. 4.3. Another distinctive feature of this ratchet

2The 〈dX/dt〉 means the average of the velocities over one period of time. In order to

be accurate, it is very convenient to make the average over many time periods instead of

averaging the velocities over one period. Another easy way and that we have mainly used

is by means of the computation of the slope for the curve trajectory versus time.
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Figure 4.2: Simulations of Eq. (4.1) for sG case: Position of kink center

vs time: Top panel: Different arrays with the same amplitude of the force

A = 0.35. x1 = 0.5, x2 = 1.8, x3 = 2.3 (a > b) (solid line); x1 = 0.5,

x2 = 1.4, x3 = 2.3 (a = b) (dashed line); x1 = 0.5, x2 = 1, x3 = 2.3 (a < b)

(dashed-dotted line). Bottom panel: For different amplitudes of the ac force:

A = 0.35 (solid line); A = 0.45 (dashed line); A = 0.50 (dashed-dotted line)

with the array x1 = 0.5, x2 = 1, x3 = 2.3. The other parameters used are

β = 1, ω = 0.05, ε = 0.8, δ0 = π and period L = 4.



4.1. Ratchet model and transport 61

0.2 0.4 0.6 0.8 1
A

-0.04

-0.03

-0.02

-0.01

0

<
d

X
/d

t>

a)

0.2 0.4 0.6 0.8 1
A

-0.04

-0.03

-0.02

-0.01

0

<
d

X
/d

t>

b)

0.2 0.4 0.6 0.8 1
A

-0.06

-0.04

-0.02

0

<
d

X
/d

t>

c)

Figure 4.3: sG: Mean kink velocity 〈dX/dt〉 vs driving amplitude A for diffe-

rent frequencies: a) ω = 0.015, b) ω = 0.05, c) ω = 0.1. The other parameters

are x1 = 0.5, x2 = 1, x3 = 2.3, ε = 0.8, β = 1 and period L = 4. Circles:

direct numerical simulation of Eq. (4.1), with the sG potential. The line is a

guide to the eye.
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system is the stair-step structure that shows the mean velocity as a function

of the amplitude of the ac force for relatively low frequencies close to the

adiabatic limit, i.e. for ω � 1 (see e.g. Fig. 4.3a). The peak observed in the

figure 4.3a indicates the amplitude of the driving force for which our ratchet

reaches a maximum efficiency.

A similar behavior for the φ4 case is observed in Fig. 4.4. In this case

the motion takes place in a different range of amplitudes of the ac force. A

discussion of the scaling relation between sG and φ4 systems will be given

further below. In addition, for the smallest frequency an increment of the

absolute value of the mean velocity with respect to sG system is noticed.

We have restricted ourselves to the overdamped case by taking β = 1,

where the inertial effects are small, thus reducing the generation and propa-

gation of phonons. The kink center moves then on a tilted effective potential

due to the external ac force. In this regime transients due to the initial

conditions quickly die out, contrary to what happens in the underdamped

regimen where the initial conditions can determine the motion [59]. However,

the overdamped regime is not always suitable for applications. Concerning

applicability, a brief analysis of the dynamics when varying the damping coe-

fficient will be shown later on. For the integration of Eq. (4.1) we have used

a Strauss-Vázquez numerical scheme (see details in Appendix B) with free

boundary conditions and spatial and temporal steps ∆x = 0.1 and ∆t = 0.01

respectively. We have validated our results with two different spatial steps

∆x = 0.05 and ∆x = 0.02. The spatial interval for the simulations was done

for [−30, 150] with inhomogeneities arranged periodically according to our

unit cell in [0, 120]. We have used the following step representation for the
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Figure 4.4: φ4: Mean kink velocity 〈dX/dt〉 vs driving amplitude A for diffe-

rent frequencies: a) ω = 0.015, b) ω = 0.05, c) ω = 0.1. Other parameters

are the same as in Fig. 4.3. Circles: direct numerical simulation of Eq. (4.1),

with the corresponding potential. The line is a guide to the eye.
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delta function

δ(x− xc) →





1/∆x, |x− xc| < ∆x/2

0, otherwise.
(4.3)

This representation is not unique but is presumably the simplest form to

implement in numerics (see e.g. [52, 54]). A simple derivation of the discrete

part of the PDE using the method of finite elements (see Appendix B) shows

that it is the suitable discrete representation for the delta function.

4.1.1 Collective coordinate approach

As a first step to justify our choice of the perturbative term V (x), we present a

simple collective-coordinate analysis of its effect on the soliton dynamics. The

idea of this well-known approximate technique for treating soliton-bearing

equations is to assume that perturbations affect mostly the motion of the

soliton center (and/or other parameters, as we will see below). This leads to a

drastic reduction of the number of degrees of freedom by deriving an effective

equation for the corresponding collective coordinate (see e.g. [9] for a recent

review and further references). One of the simplest procedures to derive

equations for the collective coordinate is by means of the conservations laws,

making use of the so-called adiabatic approach, first proposed by McLaughlin

and Scott [55].

For obtaining the equation of motion we exploit the close relation between

the calculus of variations and conservation laws. In order to do so we rewrite

Eq. 4.1 in a more general way as

φtt − φxx +
∂Ũ

∂φ
= F (x, t, φ, φt, φx), (4.4)
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where the perturbations are contained in the r.h.s term of the equation.

Starting with the total momentum expression

P (t) = −
∫

∞

−∞

dx φtφx, (4.5)

we arrive immediately to

dP

dt
= −

∫
∞

−∞

dx (φttφx + φtφxt) . (4.6)

Then substituting Eq. (4.4) into Eq. (4.6) we obtain the expression

dP

dt
= −

∫
∞

−∞

dx

[
φxxφx −

∂Ũ

∂φ
φx + φtφxt + F (x, t, φ, φt, φx)φx

]
. (4.7)

After suitable rearrangement, the latter expression can be reformulated

as

dP

dt
= −

∫
∞

−∞

dx
∂

∂x
[
1

2
φ2

t +
1

2
φ2

x − Ũ(φ)] −
∫

∞

−∞

dx F (x, t, φ, φt, φx)φx. (4.8)

Here we have exploited the interchangeability of the derivatives, i.e., φxt =

φtx, which is not true in the case of considering delta functions as inhomo-

geneities due to the singularities introduced. However, in our approximation,

we will use only the undistorted kink-like shape as solution so that this prob-

lem is circumvented.

Under the same assumption it is straightforwardly derived that the first in-

tegral of the r.h.s of Eq. (4.8) vanishes, taking into account that the function

Ũ(φ) is zero in the ground states. Consequently the equation of motion can

be expressed as:

dP

dt
= −

∫
∞

−∞

dx F (x, t, φ, φt, φx)φx. (4.9)
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For obtaining the equation of motion in terms of the kink center coordinate

we introduce the Ansatz

φ(x, t) = φ(0)[γ(x−X(t))] = 4 arctan (exp [γ(x−X(t))]) , (4.10)

as solitonic solution of the Eq. (4.4) with γ = 1/
√

1 − Ẋ2. Notice that

our ansatz corresponds to an undistorted kink3 whose variables position and

velocity are the quantities which pick up the effects of the external pertur-

bations.

Then inserting the ansatz into Eq. 4.9 and taking into account the ex-

pression for the momentum given by

P (t) = −
∫

∞

−∞

dx φtφx = γM0Ẋ, (4.11)

we finally obtain the equation of motion

γ3M0Ẍ = −
∫

∞

−∞

dx F (x, t, φ(0), φ
(0)
t , φ(0)

x ) φ(0)
x , (4.12)

where M0 = 8 is the mass or the energy of the kink at rest.

Then Eq. 4.12 with the perturbation F (x, t, φ, φt, φx) = −βφt−∂Ũ∂φ V (x)+

f(t) becomes

γ3M0Ẍ + γM0Ẋ = −qf(t) +

∫
∞

−∞

dx
∂Ũ

∂φ
V (x)φ(0)

x . (4.13)

By the use of φ
(0)
x = −φ(0)

X we get the expression

γ3M0Ẍ + γM0Ẋ = −qf(t) −
∫

∞

−∞

dx
∂Ũ

∂φ
V (x)φ

(0)
X . (4.14)

3The only deformation of the kink is a Lorentz contraction due to the relativistic effects.
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Then taking into account the expression for V (x) from Eq. 4.2 and after

some manipulations Eq. 4.14 transforms into

γ3M0Ẍ + βγM0Ẋ = −qf(t) − ∂U

∂X
. (4.15)

We can see that this result is identical to that obtained in the Appendix

A for D = 0 using the GTWA method. The latter method has the advantage

that it allows to get directly the expression for the effective potential avoiding

some assumptions made in the above procedure.

For the non-relativistic approximation Ẋ2 � 1 we get the equation

M0Ẍ + βM0Ẋ = −qf(t) − ∂U

∂X
, (4.16)

where the effective potential is given by

U(X) = 2ε
∑

n

[
1

cosh2(X − x1 − nL)
+

1

cosh2(X − x2 − nL)
+

1

cosh2(X − x3 − nL)

]
. (4.17)

The expression (4.17) is depicted in Fig. 4.5a for the perturbation V (x)

defined in Eq. (4.2) with the three delta peaks introduced in the previous

section, with positions at x1 = 0.5, x2 = 1, x3 = 2.3 and with period

L = 4. This corresponds to an asymmetric potential characteristic for ratchet

systems as it can be observed from the figure 4.5a. In fact, equation (4.15)

is the same as that for a point particle in a rocking ratchet. As in the

simulations we restrict ourselves to the overdamped case where there is no

dependence on the initial conditions in the dynamics.

Due to the tilt of this ratchet potential, one expects a soliton movement

towards the left side, in agreement with the simulations results. We can also
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Figure 4.5: sG: a) Effective potential for the kink center within the adiabatic

approach, originating from the perturbation V (x) defined in Eq. (4.2) with

ε = 0.8, x1 = 0.5, x2 = 1., x3 = 2.3 and period L = 4. b) Mean kink velocity

〈dX/dt〉 vs driving amplitude A for the frequency ω = 0.1. Circles: direct

numerical simulation of Eq. (4.1), the line being only a guide to the eye;

dashed line: adiabatic approach.
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Figure 4.6: sG: Mean ve-

locity vs driving ampli-

tude A for the frequency

ω = 0.1 Circles: di-

rect numerical simulation

of Eq. (4.1) (sG case), the

line being only a guide to

the eye; dashed line: 1- co-

llective variable, relativis-

tic approach, Eq.4.15. We

have used the same para-

meters as in Fig. 4.5.

estimate from the slopes of the potential the amplitude range of the force

for which the motion reaches a maximum efficiency. With such elements one

can understand the underlying physics of this ratchet system in the simplest

way, connecting it to the known rocking ratchet for point particles.

However, the agreement with the collective coordinate theory presented

above is not quite satisfactory because neither the number of windows nor

their locations are correctly predicted, see Fig. 4.5b. Such a result is expected

taking into account that our first proposal for the CC does not consider the

deformation of the kink under relatively strong perturbations. Even the

inclusion of the possible relativistic effects for high values of the ac force

does not change the previous situation (see Fig. 4.6).

A deeper look at the simulations explain the main reason for this discrep-
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ancy, that the soliton shape changes during its motion in the inhomogeneities

array (namely, its width is oscillating with a dynamics determined by the in-

teraction with the inhomogeneities). This feature can not be accounted for

within the framework of our theory above and therefore we set out to improve

our scheme in the following.

A good candidate for explaining the interaction of the kink with the

inhomogeneities is the formulation of the CC introduced in the previous

chapter, which considers a coupling between the translational mode and the

kink width dynamics. In the present case the deformation of the kink is

mainly caused by the interaction with the inhomogeneities rather than with

the ac-field.

The new approach whose collective variable equations describe the dy-

namics of the two main degrees of freedom of the system 4.1 (see Appendix

A for details) take the form

M0l0
Ẍ

l
+ βM0l0

Ẋ

l
−M0l0

Ẋl̇

l2
= − ∂U

∂X
− qf(t), (4.18)

αM0l0
l̈

l
+ βαM0l0

l̇

l
+

1

2
M0l0

Ẋ2

l2
− 1

2
αM0l0

l̇2

l2

= −∂U
int

∂l
− ∂U

∂l
, (4.19)

where the internal potential energy of the kink is

U int =
1

2
M0

(
l0
l

+
l

l0

)
. (4.20)

In particular for the sG case M0 = 8, l0 = 1, α = π2/12, q = 2π and the
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effective potential is given by

U(X, l) = 2ε
∑

n

[
1

cosh2[(X − x1 − nL)/l]

+
1

cosh2[(X − x2 − nL)/l]
+

1

cosh2[(X − x3 − nL)/l]

]
. (4.21)

As we can see from the previous equations the kink width dynamics is

coupled to the motion of the center of the kink. Therefore, changes in the

kink width directly affect the translational motion. It is possible to observe,

for instance, that decreasing the kink width decreases the effective ac force,

making necessary to increase the amplitude of the ac force in order to com-

pensate such an effect. This is an important factor that explains in part

the shift observed in the locations of the windows of motion of the simu-

lations with respect to those obtained from the 1-CC approach. Another

relevant conclusion is the feedback between the effective potential landscape

and the kink width, determined in turn by the potential. In this fashion,

the 2-CC approach reflects the non-trivial interaction of the kink with the

inhomogeneities, which is otherwise known to exhibit many counterintuitive

phenomena [54].

In fact, the picture observed in Fig. 4.7, shows that the comparison be-

tween our improved collective coordinate theory and the simulations is quite

satisfactory, as the window numbers and locations are correctly estimated,

thus confirming our previous analysis.

We thus see that although the point particle approximation (collective

coordinate X(t)) is sufficient to predict the appearance of a ratchet phe-

nomenon, the detailed dynamics requires the inclusion of an additional de-

gree of freedom l(t) arising from the fact that we have a spatially extended
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Figure 4.7: Mean kink velocity 〈dX/dt〉 vs driving amplitude A for different

frequencies: a) ω = 0.015, b) ω = 0.05, c) ω = 0.1. Other parameters are the

same as in Fig. 4.3. Circles: direct numerical simulation of Eq. (4.1), the line

being only a guide to the eye; dashed line: improved collective coordinate

theory.
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Figure 4.8: sG: Amplitude of the kink width versus kink center. Simulation

(solid line); 2-CC Approach Eqs. (4.18-4.19) (dashed line). The parameters

are ω = 0.1, A = 0.44, for the array x1 = 0.5, x2 = 1, x3 = 2.3, period L = 4

and ε = 0.8. See text for a discussion of the loop. Inset: enlargement of the

loop indicated by an arrow in the main figure. The motion of the kink center

is indicated by numbered arrows.

system. Even then, the interplay of the two degrees of freedom, lead eventu-

ally to a behavior truly indistinguishable from a rocking ratchet mechanism

for point-particles.

To deepen our understanding of the dynamics, let us look into the osci-

llations of the kink width. As in the case of simulations we restrict ourselves

to the overdamped case (taking β = 1). A picture of the kink width

oscillations versus the kink center position is shown in Fig. 4.8. As we can
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see, the agreement with the CC approach is excellent, confirming the validity

of our predictions. The existence of loops is particularly interesting, which

arises as a consequence of the kink center motion rocking back and forth in

the wells of the effective potential (see Fig. 4.9), which takes roughly half an

oscillation before overcoming the barrier.

Interestingly, another feature that stands out clearly is that the oscilla-

tions are around a value different from l0 = 1, the width of the unperturbed

kink. Figure 4.8 shows that they take place around l̄ ≈ 0.8 and, furthermore,

that l0 is not even included in the range of oscillations.

This phenomenon is the result of the balance between two opposite effects.

a) On one hand, the inclusion of inhomogeneities increases the potential

energy of the system. This fact is reflected in the effective potential energy

landscape Fig. 4.9. Such picture shows that when the kink width decreases,

the potential energy decreases as well. Taking two points with the same value

for X but with different kink widths l, for example M and O in the bottom
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panel of Fig. 4.9, we see clearly this difference in potential energy, i.e., UM >

UO where lM > lO. Therefore, as the system tends to move to the minimum

of the potential energy, the kink width would decrease. b) On the other hand,

the kink internal potential energy, Eq. (4.20), has a minimum at l0, and hence

the energy increases when the kink width decreases (see Fig. 4.10 for l < l0);

notice that the first term of this equation accounts for a repulsive interaction

while the second is for an attractive interaction. As a result of the balance

between a) and b), a new minimum will appear for the oscillations of the

kink width. It is important to note that the difference ∆U int of the internal

potential energy for the kink width l = 0.7 with respect to the value l0 = 1

(inset of Fig. 4.10) is of the same order as the energy difference UM − UO

between the points mentioned before for the effective potential introduced

by the inhomogeneities, in agreement with this discussion.

4.1.2 Related point particle models.

A problem closely related to our 2-CC approach, given by a point particle

ratchet with two degrees of freedom, has been studied in [61]. This model

was designed for describing molecular motor dynamics consist of two par-

ticles joined by a spring moving in a ratchet potential. The corresponding

equations of motion are given by

u̇1 = −∂V (u1)

∂u1
− ∂W (u2 − u1)

∂u1
+ A sin(ωt) + ξ1(t), (4.22)

u̇2 = −∂V (u2)

∂u2

− ∂W (u2 − u1)

∂u2

+ A sin(ωt) + ξ2(t), (4.23)

where V is a sawtooth potential and W is the internal potential energy.

Here ξi with i = 1, 2 are Gaussian white noises. Ignoring the noise terms
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and their influence on the net motion, we see that the change of variables

X = 1
2
(u1 + u2) and l = u2 − u1 casts the system into a similar shape as

Eqs. (4.18-4.19) in the overdamped case, where in good approximation the

inertial terms could be neglected. In this new context the variables X, l can

be interpreted as the center of mass and the elongation (distance between

the particles), respectively, and obviously resemble to the center of mass and

width of the kink variables in our system.

Notice that in both models we have an asymmetric potential. In our

case it is given by Eq. (4.21), which is asymmetric at the CC level if the

already mentioned conditions for the distances between the inhomogeneities

are satisfied. In both systems, there are internal potential energies that char-

acterize their elastic properties. In the model in [61], the internal potential

is expressed via a harmonic function (in the original variables):

W (u1, u2) =
1

2
k [(u2 − u1 ) − l0 ]2 , (4.24)

which in our collective coordinates can be rewritten as

W (l) =
1

2
k [l(t) − l0 ]2 . (4.25)

where k is the elasticity constant. The links between the two models can

be made more explicit by using a value for l0 close to the minimum around

which the kink width oscillates in our simulations (cf. the discussion in the

preceding subsection). However, what the quantity l actually means is the

distance at which the kink shape approaches its asymptotic values, measured

from the center. This means that l in our notation is half the “real kink

width”. Consequently the ratio (real kink width)/(period of the effective
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potential) becomes 2l̄0/L ≈ 0.4 for which a very interesting dynamics for

point particles dynamics has been reported in related 2-particle model [63].

This comparison between our model and that in [61] allows to point out

their main differences as well. It is particularly important that in our frame-

work, the internal energy can describe satisfactorily the repulsive interaction

between real molecules where a wan-der-Waals like-force prevents their over-

lap. This is very close to what occurs in molecular motors: if we take again

the motion of kinesin as an example, this molecule has two dimer heads that

act as ‘feet’, allowing the molecule to ‘walk’ along a microtubule [60]. The

repulsion would then appear when the two dimer heads are too close. Such

a repulsive interaction can not be naturally accounted for within the model

of two particles. For solving this problem the authors of [61] resort to fix ar-

bitrary values for l0 which in our case is not necessary. Note, however, that

in spite of the technical differences between both models, phenomenologi-

cally they are very similar: both of them try to understand how the motion

of molecular motors, which proceeds in steps accompanied by deformations

(in the case of kinesin, when one step advances in front of the other) can

arise. The common conclusion is that a point particle ratchet would not be

a good model because the second degree of freedom is needed to capture

the whole mechanism of the motion. The advantage in our approach is that

this second degree of freedom arises by its own, without a priori construc-

tions, as an emergent property of the nonlinear excitation. Recent studies

[62, 63] show similar phenomena for the two degrees of freedom point particle

ratchet of [61] when the ratchet is of flashing type. The close relationship of

the model of [61] to ours suggests that nonlinear Klein-Gordon models not
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only can exhibit rectification working as flashing ratchets but also as diffusive

ratchets. This last ratchet mechanism will be discussed in a section of this

chapter.

4.1.3 Length scales and quantization of transport

It should be clear from the results discussed so far that in order to obtain

a ratchet device for extended nonlinear systems with topological nonlinear

excitations, the configuration of the inhomogeneities should be designed in

such a way that the distance between the inhomogeneities is of the order of

the kink width. However, this picture is somewhat too simple, and as we will

see below, another important factor to be taken into account is the existence

of interference effects.This is borne out clearly by considering the φ4 model.

Naively, one may try to design a similar ratchet system for the φ4 equa-

tion. Considering only the kink width factor, it would seem that enlarging

the sG array by a factor of
√

2 (the ratio between the kink widths in both

models) similar phenomena would be observed. Let us make a more specific

comparison between both models. To this end, we use the 1-CC framework

in the nonrelativistic approach, where the equation of motion for the center

of mass coordinate X can be written as

Ẍ + βẊ = − du

dX
− qA

M0
sin(ωt+ δ0), (4.26)

where u = U/M0 is the normalized effective potential. For the sG case we

have the following expression

u(X) =
2ε

M0

∑

n

3∑

i=1

1

cosh2[(X − xi − nL)/l0]
(4.27)
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Figure 4.11: Normalized

effective potential for the

kink center coordinate

within the CC approach,

Eq. (4.27-4.28), for two

different delta peak a-

rrays with ε = 0.8. (a):

x1 = 0.5, x2 = 1., x3 = 2.3

and L = 4. (b): x1 = 0.7,

x2 = 1.4, x3 = 3.2,

L = 5.6. In both panels

sG (solid line); φ4 (dashed

line).

with l0 = 1 and M0 = 8, whereas for the case of φ4 we have

u(X) =
ε

4M0

∑

n

3∑

i=1

1

cosh4[(X − xi − nL)/l0]
(4.28)

with l0 =
√

2 and M0 = 2
√

2/3. The normalized effective potential for

two different arrays of inhomogeneities are depicted in Fig. 4.11. Panel a)

shows standard asymmetric potentials for rachet systems obtained with an

array that satisfies the conditions mentioned above for the location of the

inhomogeneities in the sG case. However, in case b) the effective potentials

obtained for an array approximately given by the multiplication of the factor
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√
2 of the first one, shows a local minimum similar to an array of asymmetric

double-well traps. This potential has been used for studying the motion of

vortices in superconductor materials [64].

According to the our previous arguments based on the important role of

the kink width, a similar picture is expected for the normalized effective po-

tential of φ4 and sG if the arrays verify the same length scale ratio as the full

systems. Strikingly, Fig. 4.11 shows that the normalized effective potentials

are almost the same but for the same array length. This apparent discre-

pancy can be explained if we take a detailed look at the potential given by

Eqs. (4.27-4.28) for both cases (sG and φ4). It is clear from those expressions

that, while in the case of φ4 we have a cosh4 factor in the denominator, sG

has a cosh2 factor. Therefore, the peaks and valleys in the effective potential

for the φ4 system are much narrower than for sG, thus compensating for the

increment in length scale. In addition, as in the sG model, we will have dy-

namical changes of the effective potential due to the kink width variations,

making the dynamics of motion more complicated. In any case, the effective

potentials obtained in the simple approach highlight the importance of in-

terference effects (see also [53, 54]) and make it clear that the kink width is

not the only quantity to take into account.

The consequences of choosing either the original or the rescaled one for

the kink dynamics are revealed in Fig. 4.12. We have chosen for the analysis

the φ4 model with a relative low frequency of the ac force, for which the mean

velocity as a function of the ac force amplitude shows a staircase structure.

The range of the amplitude values were taken from the following rescaling

expression: qφ4

Aφ4

/Mφ4

0 = qsGAsG/M sG
0 . This relation is deduced from the
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Figure 4.12: φ4: Mean velocity vs driving amplitude A for the frequency

ω = 0.015.(a) ε = 0.8, x1 = 0.5, x2 = 1, x3 = 2.3, L = 4.(b) ε = 0.6,

x1 = 0.5, x2 = 1, x3 = 2.3, L = 4. (c) ε = 0.8, x1 = 0.7, x2 = 1.4, x3 = 3.2,

L = 5.6. (d) ε = 0.6, x1 = 0.7, x2 = 1.4, x3 = 3.2, L = 5.6. The thin lines

connecting the points serve as guides for the eye.
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comparison between the 1-CC approaches for sG and φ4 models, considering

the similarity of the normalized potentials discussed above. Fig. 4.12 shows

the dependence of the kink mean velocity as a function of the amplitude

for two different arrays and heights of the perturbations introduced by the

inhomogeneities. As we can see, the motion is quantized as in standard

ratchet systems [16, 15] and is characterized by the existence of gaps for

which the net motion is absent (i.e., pure oscillating states). The absolute

value of the mean velocity can be expressed as |〈dX/dt〉| ≡ |〈V 〉| = Lω
2π

m
n as

usual [65], where the indexes m, n ∈ N quantize the motion.

Using the expression for |〈V 〉| we can characterize the motion for each

frequency and period of the array. Comparing the values obtained from the

simulations with the results derived from the expression for |〈V 〉| with corres-

ponding parameters L and ω, we find that m and n can take the following

values: For panel a), m = 1, 2, 3, 4, 5 and n = 1; for panel b), m = 1, 2, 3, 4

and n = 1; for panel c), m = 1, 2 with n = 1 and n = 2, and for panel

d), m = 1, 2 with n = 1 and n = 2 . Although the absolute value of the

mean velocity increases with the spatial period, the index m significantly

decreases, leading to a global decrease of the velocity. These results prove

that the inclusion of more inhomogeneities per unit cell, which obviously

enhances the period L, is not a good option if we want to reach high velocities.

Furthermore, a very low frequency would be required to obtain windows

of motion. In the case of the dependence on the inhomogeneities height,

the starting point of the stair-steps structure shows a shift towards greater

amplitude of the ac force when increases the height, which is a natural trend

in order to overcome the barrier. Nevertheless, a higher speed is found,
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arising from a higher m and observable also as a broadening in the windows

of motion.

4.2 Dynamics under the influence of noise

So far, we have analyzed the ratchet-like behavior of our system in the deter-

ministic case. However, it is clear that for our model to be more realistic, for

instance, in the context of LJJ, the effect of the temperature has to be taken

into account. The behavior of ratchet systems for nonzero temperature has

been extensively studied both for point particles [15, 1, 66, 67, 68, 69] and

for nonlinear extended systems [24, 29]. However no investigation concerning

ratchet-like phenomena in the presence of spatial inhomogeneities has been

performed. Therefore, to address this issue here is of considerable impor-

tance. In the present thesis, we will focus on the robustness of our rocking

ratchet mechanism under the influence of thermal fluctuations. Another rele-

vant issue would be the possibility of activation, resonances or modifications

of the transport features induced by noise, but this topic deserves a further

detailed analysis and will be the subject of a future work.

4.2.1 The model

For the sake of definiteness, we consider the sG model under the influence of a

Gaussian white noise; the results for the φ4 equation are similar. Introducing

the effect of the temperature through the fluctuation-dissipation relationship

and considering the overdamped case as before, (β = 1), we start with the
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following equation:

φtt + φt − φxx + sin(φ)[1 + V (x)] = f(t) + η(x, t), (4.29)

where

〈η(x, t)〉 = 0,

〈η(x, t)η(x′, t′)〉 = Dδ(x− x′)δ(t− t′). (4.30)

with f(t) ≡ A sin(ωt+ δ0) and the noise intensity D = 2kBT .

For the numerical simulations of the full partial differential equation as

well as for the numerical solution of the collective variables approximation

(to be discussed in the next subsection), we have used the Heun method with

the Box-Muller-Wiener algorithm for generating Gaussian random numbers

of mean zero and variance one [70]. In Fig. 4.13 we show the behavior of the

kink center dynamics under thermal fluctuations. Hereafter, we have set the

array parameters to be x1 = 0.5, x2 = 1., x3 = 2.3, L = 4 and ε = 0.8 for our

study (see Fig. 4.1). The mean velocity was calculated using the expression

in [2], namely

〈Ẋ〉 = lim
t→∞

〈X(t) −X(0)〉
t

, (4.31)

where the average is to be understood over many realizations of the noise.

From Fig. 4.13 we see that the steps of the deterministic case are now

smoothed, a typical feature for the dynamics under noise. It is important to

realize that this smoothing affects the regions between the windows, which

become minima of the absolute value of the mean velocity |〈Ẋ〉| instead of

gaps with zero mean velocity (see Fig. 4.13a). This phenomenon is directly

related to the strength of noise, i.e., when the noise increases the absolute
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Figure 4.13: Mean kink velocity 〈dX/dt〉 vs driving amplitude A for different

intensities of the noise. (a) ω = 0.05. (b) ω = 0.1. In both cases red circles

correspond to D = 0; blue filled squares to D = 0.005; black squares to

D = 0.05. The lines serve as guides for the eye. The inset in (b) shows

several realizations for the motion of the kink center with A = 0.43, δ0 = π

and D = 0.05 as function of time.
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Figure 4.14: Mean kink ve-

locity 〈dX/dt〉 vs intensity

of noise D. Circles: ω =

0.1 and A = 0.70; squares:

ω = 0.11 and A = 0.75.

Inset shows one realization

for the motion of the kink

center for ω = 0.1, A =

0.70, δ0 = 0 and D =

0.005.

value for the mean velocity decreases but simultaneously the connection be-

tween the windows becomes more evident and the windows of motion become

less pronounced.

As in most other ratchet systems, in our model the stochastic fluctuations

due to temperature assist the jumps of the kink center from one well to

the next one, allowing in some cases jumps in the direction opposite to the

rectification (see the inset graph in Fig. 4.14) which is not possible in the

absence of noise. Accordingly, the thermal fluctuations affect the mechanism

of rectification whereas, on the other hand, they destabilize the dynamics of

the pure oscillating states of the kink center (i.e., they destabilize the regions

with locked directional motion at zero temperature). The combined action

of both effects leads to the smoothing of the windows and the connection of

the deterministic gaps. For relatively high temperatures the thermal kink

energy is sufficient to overcome the barriers of the effective potential, and the
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kink dynamics is practically diffusive, the influence of the barriers becoming

negligible. For this reason the rectification of motion takes place only for not

too large values of the noise intensity (see discussion in [71]).

A remarkable feature observed in the simulations is shown in Fig. 4.13b

for frequency ω = 0.1, where new windows (absent in the deterministic case)

appear. This scenario is very similar to the one reported in [29] where a

similar surprising and intriguing phenomenon was reported. There, the au-

thors discussed that these new windows arose due to jumps of the fluxons

between stable and unstable pinned fixed points of the deterministic dy-

namics. Considering the interest for this purely stochastic phenomenon, we

carried out a careful analysis of the corresponding zone. To summarize this

investigation, in Fig. 4.14 we have plotted the mean velocity as a function

of the noise intensity for different values of the frequency, showing the exis-

tence of an optimal value for the intensity of the noise for which a maximum

absolute value of the mean velocity is obtained. The inset in Fig. 4.14 makes

clear that, as expected and suggested in [29], the mechanism of activation

occurs through jumps between multistable states (states of the kink center

which in absence of noise are purely oscillating). Therefore, a higher velocity

is obtained when the residence time in these multistates is reduced or, in

other words, when the intervals between consecutive jumps decrease. Once

again, this process of activation becomes more effective when the noise inten-

sity increases, but above a certain value of the noise intensity the kink center

starts to jump in the direction opposite to that of the rectification, leading

to a global loss in efficiency. This explains the existence of an optimal value

for the noise intensity for which the modulus of the mean velocity reaches a
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maximum value.

On the contrary, for the φ4 model with the corresponding value of frequency,

a second window of motion appears for the deterministic case (see Fig. 4.4c).

In this case only a decay of the modulus of mean velocity was observed when

the intensity of the noise increased.

Another interesting characteristic observed in Fig. 4.14 is the dependence of

the maximal mean velocity on the frequency. Specifically, for a frequency

value slightly larger than ω = 0.1, the absolute value of 〈Ẋ〉 decreases, the

peak moving towards greater values of the noise strength and the corres-

ponding window of motion moving towards greater values of the ac force.

Accordingly, for relatively large values of the frequency, above ω = 0.11, the

window of motion induced by noise disappears. On the other hand, for fre-

quencies slightly smaller than ω = 0.1, a new window in absence of noise is

obtained. With all these results, it is clearly established that the unidirec-

tional motion induced by noise occurs only for a narrow window of frequency

values.

We will show in the next subsection that this phenomenon seems to be a

general feature, since at the CC level the system behaves very much like the

dynamics of point particles.

4.2.2 Collective coordinates in presence of noise

In order to understand the behavior observed in the previous section we re-

sort again to the CC approach. As a first step, we take only into account the

fundamental degree of freedom. Although, as discussed above, this frame-

work is inaccurate for describing quantitatively the kink motion on a lattice
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Figure 4.15: CC approach:

Mean kink velocity

〈dX/dt〉 vs driving am-

plitude A for different

intensities of the noise and

frequency ω = 0.1. Solid

line: D = 0, dotted line:

D = 0.005, dashed line:

D = 0.05. Inset: Mean

kink velocity 〈dX/dt〉 vs

intensity of noise D for

A = 0.7625.

of inhomogeneities, it does help understand qualitatively most of the features

observed in the simulations, without unnecessary analytical complications.

After some algebra (see Appendix A for details), with β = 1, we find the

following stochastic equation for the kink center coordinate X:

M0Ẍ +M0Ẋ = −d U
dX

− qf(t) +
√
DM0 ξ(t) (4.32)

with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t−t′). For sake of simplicity we have taken the

nonrelativistic approach Ẋ2 � 1, for which the noise contributes additively.

Figure 4.15 presents the results of the numerical integration of Eq. (4.32).

Much as we did in the simulations, we calculate the mean velocity using Eq.

(4.31), taking up to 500 realizations. From this plot two main features also

observed in the simulations can be seen. First, smooth curves are obtained for

the mean velocity as a function of the amplitude of the ac force, with values
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Figure 4.16: CC Approach for two degrees of freedom (Eqs. (A.36)-(A.37)

of the appendix). Mean kink velocity 〈dX/dt〉 vs driving amplitude A for

different intensities of the noise. (a) ω = 0.05. (b) ω = 0.1. In both cases

solid line: D = 0; dotted line: D = 0.005; dashed line: D = 0.05. Inset in

(b) shows the mean kink velocity 〈dX/dt〉 vs noise intensity D for A = 0.72

and ω = 0.1.
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that decrease when the noise strength is increased. Second, new windows

appear, and inside them there is a value of the noise intensity for which

the module of the mean velocity reaches a maximum value (inset in Fig.

4.15). It is thus evident that, in spite of the quantitative differences with

the simulations, this simple approach does predict correctly the qualitative

behavior of the full system.

In order to improve the results presented so far, we have extended the

framework to two collective variables. By doing so (see Appendix B) we arrive

at Eqs. (A.36)-(A.37) with two uncorrelated multiplicative white noise, which

mean that the stochastic driving terms depend on the kink width dynamics.

The results for this improved approach are collected in Fig. 4.16. Com-

paring with the simulations (Fig. 4.13), we can observe the excellent agree-

ment, with the locations of the windows correctly predicted. As expected

the curves are again smooth, a feature correctly accounted for already in the

1-CC framework. For the frequency ω = 0.1, a new window is predicted,

whose location is also in very good agreement with its corresponding window

in the simulations. These results confirm the importance of considering the

kink width dynamics in the framework of the collective coordinates in order

to achieve correct quantitative results as compared to the simulations.

On the other hand, this 2-CC approach can be used in a wide context.

For instance, the results derived of our system as a diffusive ratchet can be

correctly interpreted since the framework of 2- CC (see below). Concerning

the role of the width kink for the motion we can say that is becoming more

and more evident the crucial contribution of internal degrees of freedom in

the functioning of molecular motors [60]. In this respect, our framework can
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ty vs damping coefficient

β for different frequencies.

red squares: ω = 0.015;
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be very useful for describing the transport of proteins assisted by a thermal

bath provoked by ATP molecules hydrolization.

4.3 Ratchet behavior: Dependence on damp-

ing

Throughout this chapter we have taken β = 1 in order to show the functioning

of ratchet mechanisms for this system, i.e., we have done our study over the

basis of an overdamped system. The main reason is that the motion for small

damping may result in chaotic dynamics. Nevertheless, ratchet dynamics for

this system is also possible in the weakly underdamped regime. It is very

important in view of covering a wide range of applications.

Certainly, the overdamped regime is not suitable for some applications.
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For instance standard Josephson junctions work usually for small damping.

The reason is the following: If one has to work in the overdamped or in the

weakly underdamped regime and we use conventional technology to fabricate

LJJ, it means that the working temperature should be close to Tc (critical

temperature). As an alternative variant one can use junctions with in-

trinsically high damping such as superconductor insulator normal-conductor

insulator-superconductor LJJ or high-Tc LJJ technology, like for instance

YBa2Cu3O7−δ(YBCO, Tc = 90K) junctions [72]. The first experimental in-

vestigation of ratchet effects with the mentioned materials was carried out in

asymmetric dc SQUIDS [38]. The authors achieved to fabricate such a device

for the overdamped regime. They also studied the transition from strong to

intermediate damping.

Here, with a similar purpose we proceed to the computation of the mean

velocity, varying the damping coefficient. The results of the numerical simu-

lation of Eq.4.1 are collected in Fig. 4.17. This figure shows the dependence

of the mean velocity on the damping coefficient for different frequencies. As

expected, the module of mean velocity values are quantized, reaching their

highest values for a lower frequency. We can also observe from the Fig. 4.17,

a significant increase of the module of the mean soliton velocity as the dam-

ping coefficient decreases. The dynamics depicted in Fig. 4.18, shows how

the center of mass of the soliton moves. As we can observe during one part

of the period of the ac force, the soliton moves in one direction but during

the other part the soliton does not move, behaving as if it would be trapped.

This is because of the rectification mechanism, that hinder the motion in the

opposite direction. With the presentation of these results we have extended
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Figure 4.18: Top panel: Plot of the kink center position versus time. Bottom

panel: Evolution of the derivative of the kink profile: The parameters are

ω = 0.015 β = 0.25, δ0 = 0, A = 0.2, x1 = 0.5, x2 = 1, x3 = 2.3, ε = 0.5 and

L = 4.
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our framework to the weak underdamped regime, where a higher efficiency

is obtained.

4.4 Diffusive ratchets

So far we have studied the motion dynamics of solitons for a rocking ratchet.

Nevertheless, the same framework can be extended to diffusive ratchets or

even flashing ratchets. In this section we show a simple realization for a

diffusive ratchet. We retake the Eq.4.1, but this time, instead of using an

alternating force we consider a periodic behavior for the temperature. Such

an equation can be written as

φtt + φt − φxx + sin(φ)[1 + V (x)] = η(x, t), (4.33)

with

〈η(x, t)〉 = 0,

〈η(x, t)η(x′, t′)〉 = Dδ(x− x′)δ(t− t′), (4.34)

where D(t) is a periodic function of the time given by D(t) = D0[1 +

q sin(ωt)]2. We consider for the function V (x) a similar asymmetric confi-

guration as that represented in Fig. 4.3 with additional inhomogeneities per

unit cell. We take four inhomogeneities per period, whose configuration

fulfills the condition x2 − x1 < x3 − x2 < x4 − x3 in order to preserve the

asymmetric profile for the effective potential.

The Fig. 4.19 shows the existence of a net motion towards the right side.

In this figure one can observe the existence of points where the soliton spends
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Figure 4.19: Simulations

of Eq. 4.33: Two realiza-

tions for the motion of the

kink center. The parame-

ters are x1 = 0.5, x2 =

1.1, x3 = 2.3, x4 = 3.6.

The other parameters used

are D = 0.4, ω = 0.12,

q = 0.5, ε = 0.6 and pe-

riod L = 5.4.

some time before jumping over the barrier and moving to the next well. They

correspond to the minima of the asymmetric potential. This motion is closely

related with the relaxation time, i.e., the necessary time for the soliton motion

towards the minima, after jumping over the barriers. Therefore it is strongly

dependent on the frequency of the temporal fluctuations of the temperature

ω and also of the intensity of the thermal fluctuations D0 and q.

Let us make a simple analysis for the motion dynamics of solitons in terms

of the probabilities for overcoming the barriers. In order to do so we resort

to the Kramer expression given by P ∼ exp(−∆U/kbT ), where ∆U is the

necessary energy for overcoming the barrier [73]. This expression quantifies

the probability for jumping over the barrier. The question is how to proceed

for the soliton framework.

From previous works on kink diffusion, there is controversy about the
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tendency of an increment of the kink width while the time passes [74, 75].

As regards our system, rather than an increment, a diminution of the kink

width is expected because of the presence of inhomogeneities (see end of

section 4.1.1 for noiseless case). On the other hand, we know from the 2-

CC framework, that the soliton energy not only depends on its position but

also on its width (see Eqs. (4.20-4.21)). Therefore, one should expect the

influence of this factor on the dynamics.

Following the previous arguments and considering an energy landscape for

the motion of the kink center like the ratchet potential depicted in Fig. 4.9,

one should expect for the kink jumps over the barriers a dependence on

the width. Therefore the probability for overcoming the barrier has to be

expressed in terms on the kink width. In order to quantify such a value

we propose as a first approximation, the modified Kramer expression P ∼
exp(−[U2(l2)−U1(l1)]/kbT ). According to this expression the probability for

overcoming the barrier depends on the kink width at the beginning and at

the end of the jump event. A similar analysis can be done for two particles

coupled by one spring.

We conclude from this preliminary study the existence of a diffusive

ratchet motion. Such a dynamics shows features indistinguishable from a

diffusive ratchet behavior for point particles like the one presented in chapter

2. Nevertheless, an influence of the kink width to the dynamics is expected.
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4.5 Asymmetrical configurations

In contrast to the previous configuration with three inhomogeneities per unit

cell, we have chosen two, i.e.,

V (x) =
∑

n

[ε1 δ(x− x1 − nL) + ε2 δ(x− x2 − nL)] (4.35)

where ε1 6= ε2 and x2 − x1 6= L− x2.

The possibility of breaking the symmetry with two instead of three in-

homogeneities per unit cell is mainly determined by the difference between

the strengths of the inhomogeneities. In the framework of Eq. (4.35) one

can design different configurations. In Fig. 4.20 two different variants for the

lattice configuration are depicted. The combination of such configurations

gives rise to a new configuration. Likewise from the combination of the new

configuration with other configurations new complex asymmetric arrays are

obtained and so forth. Therefore a transition from a periodical to a disorder

array of inhomogeneities is expected.

It is also possible to design an asymmetric array with random intensities

of the inhomogeneities. A detailed analysis of disorder supported by an ana-

lytic study was done for a single particle ratchet system [76]. In this work it is

proved that disorder quenches the rectifying power of the ratchet system, as

expected. However, some remarkable transport properties were detectable.

In this respect, our system can serve as a benchmark for understanding re-

alistic problems like the dynamics of motor proteins. In particular it could

help to understand the transport of polymerase along the DNA backbone.
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Figure 4.20: Schemati-

cal representation for a

periodic and asymmetric a-

rray of point-like inhomo-

geneities. Top panel: ε1 >

ε2. Bottom panel: ε1 =

−ε2. In both cases x2 −
x1 < L− x2.

4.6 Perspectives

We have pointed out several issues in this chapter. However, the discussion

was far from being completed. There is the case of our rocking ratchet when

it is influenced by the action of more than one harmonic component in the

external force. We know from the results for one harmonic obtained in this

chapter that the direction of the net motion is determined by the spatial

arrangement of the inhomogeneities. Therefore only changes in the position

of the inhomogeneities can reverse the direction of motion.
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This represent a drawback compared to the first ratchet model, where

by changing the phases one can reverse the direction of motion. However,

recently, theoretical predictions in ratchet systems for point particles have

shown the possibility of obtaining a current reversal with the use of a bihar-

monic force [77] irrespectively of its symmetry. We have tested that this is

also possible in our system. Furthermore, in the overdamped regime we have

observed that such a ratchet system exhibits a greater efficiency in terms of

the mean velocity compared to previous one. Recall that the directed mo-

tion in the previous ratchet systems is determined by the resonant coupling

between the external force and the kink width oscillations. Consequently

the mean velocity decays as the oscillations are damped. The previous ar-

guments lead us to propose this ratchet system as a candidate for ratchet

devices constructed of materials with intrinsic high damping like the one

mentioned above. This will be object of a future report.

On the other hand, the investigation reported here, opens new perspec-

tives in the design of ratchet devices for more complicated extended nonlinear

systems, such as general coupled chains [78]. Of particular interest in this

class are stacked LJJ [79], apart from many other systems with potential

applications in different areas.
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Chapter 5

Summary

In this work we have investigated the ratchet dynamics of topological solitons

for some Klein-Gordon systems. The study was realized taking into account

different symmetry-breaking mechanisms.

In Chapter 3 we have reported the results of a study of the dynamics of

solitons in the presence of a biharmonic force. The analysis was based on

previous studies on sG systems in the presence of an asymmetric biharmonic

force. We explained the reasons for the breaking of symmetry and especially

the ratchet motion in the sG system using a collective coordinate approach

which regards two main degrees of freedom, the translational mode and the

kink width dynamics (internal mode).

As an important result, our study has shown that unidirectional mo-

tion only takes place when the external force resonates with the harmonics

contained in the kink width oscillations. This was first predicted by an ana-

lytic expression obtained from a multiscale perturbative expansion and was

verified later by the numerical results of the CC equations and by the full

103
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simulations of the PDE equation. The analysis of the harmonic modes of

the oscillations of the kink width was based on the results obtained from the

DFT of CC equations and from the simulations. The agreement obtained

between both results was impressive, validating our resonant CC criterion.

Such a behavior was proven for asymmetric and symmetric biharmonic

forces, in particular for biharmonic forces composed by two harmonics with

a frequency δ for the first harmonic and frequencies mδ with m = 2, 3, 4 for

the second harmonic.

As a main conclusion we have shown that net motion occurs when an

effective coupling between the translation and the internal mode (oscillations

of the kink width) takes place.

Another important observation was the sinusoidal dependence of the kink

center motion on the independent phases of the harmonics of the force, gen-

eralizing previous results about the dependence on the relative phase. In

all the cases our theory predicted the correct behavior of the ratchet dy-

namics. This was supported by numerical solutions of CC equations and by

the simulations of the full system.

We also emphasized on the motion dependence on the damping. Particu-

larly, using the analytical results we could explain the apparent contradictions

in former studies about the dependence of the mean velocity on the damping

coefficient. Three different situations were analyzed. First the appearance of

a current reversal; second the existence of an optimal value for the damping

coefficient for which a maximum for the absolute value of mean velocity takes

place and third the decaying monotonic behavior of the mean velocity takes

place as the damping increases. In all the cases a decay of the maximum
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velocity for higher values of the damping was observed. The explanation

was found in the oscillations of the kink width, which decay as the damping

increases.

We also extended the analysis to the φ4 model where a similar dynamics to

the sG model was obtained. As regards the mobility, a higher mean velocity

in the φ4 model compared to the sG model was observed. The explanation

of such effect was based on the relation between the effective parameters for

the CC equations of both systems. All the previous results were supported

by numerical simulations.

In Chapter 4 we conceived a new form of ratchet systems by means of a

lattice of point-like inhomogeneities. With a particular design of a periodic

and asymmetric array of the inhomogeneities we could rectify the motion

dynamics of the kink center where we showed that the undirectional mo-

tion depends on the locations of the inhomogeneities. An interesting result

derived from the previous rectification dynamics were the discrete values

obtained for the absolute value of the mean velocity, whose values can be

computed by the expression |〈dX/dt〉| ≡ |〈V 〉| = Lω
2π

m
n where the indexes

m, n ∈ N quantize the motion. Particularly, for small frequencies close to

the adiabatic limit, the dynamics showed shapiro-like steps, contrary to the

much higher frequencies situation where windows of motion separated by

gaps were obtained. These previous features, characteristics of a rocking

ratchet for single particles allowed us to infer that the ratchet dynamics ob-

served here for spatially extended systems corresponds to the analogous of a

rocking ratchet for point particles. The study was focused on the sG and φ4

models. Also a comparative analysis between both systems was realized.
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Later, in order to support this study, we implemented different collective

coordinate approaches, taking as a benchmark the sG model. With a first

approach that regards the center mass as the only degree of freedom we

were able to account for the physical reasons for the occurrence of ratchet

motion. The main success of this approach resided in the fact that it allowed

us to connect the behavior of our rocking ratchet with the basic rocking

ratchet dynamics for single particles, thus confirming our previous inference.

Consequently, we were able to predict the direction of the motion, as well

as to estimate the regime of the force amplitude for which the kink motion

reaches the highest efficiency. Nevertheless, a quantitative agreement was not

found. The explanation for such a discrepancy we found in the deformation

of the kink solution, which changes its shape during its motion along the

inhomogeneities. Later, we implemented a second approach which included

the oscillation of the kink width and the motion of the kink center mass.

With such formulation we achieved to describe most of the features of the

dynamics.

We also extended the analysis to the case when the motion is affected

by the thermal fluctuations. As a consequence of the noise a reduction of

the mean velocity was observed and the sharp boundaries for the windows of

motion obtained for the noiseless case became smooth. Also for this situation

new windows of motion arose from the thermal fluctuations. This process of

activation of motion became enhanced for an optimal value of the noise inten-

sity, for which a maximum value for the mean velocity modulus was found.

The location of the new windows as well as the maximum value obtained for

the absolute value of the mean velocity turned out to be dependent on the
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frequency.

A similar study as in the noiseless case was carried out, using the two

previous CC approaches in presence of a Gaussian white noise. In both cases

we got smooth curves for dependence of the mean velocity on the amplitude

of the force. Also in both cases the CC equations predicted the appearance of

new windows of motion. Furthermore, the theory showed the same behavior

for the dependence of mean velocity on the noise intensity. An excellent

prediction for the location of the new window of motion was obtained in the

CC framework which regards the kink width as second degree of freedom.

We also extended the functioning of our ratchet system to other damping

regimes. An important result obtained from this study was the significant

increment of the mean velocity for small damping.

Subsequently, we pointed out the possibility of implementation of different

ratchet mechanisms in our framework. Specifically, we showed the use of our

framework for describing the dynamics of the kink motion as a diffusive

ratchet.

Finally, at the end of the chapter 4, forthcoming investigations were out-

lined.
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Appendix A

Collective coordinates:

Generalized traveling wave

ansatz

In this appendix we present a detailed explanation of how to obtain the co-

llective coordinate equations. In order to do so, we appeal to the use of a well

known projection technique called Generalized Traveling Wave Ansatz. It has

been used in a wide context of solitons bearing systems. A first proposal, in

order to explain the motion of magnetic vortices, was introduced by Mertens

et al. [85]. Later, it was extended to unidimensional systems for the study of

solitons motion in nonlinear Klein-Gordon (NKG) systems. Essentially such

a technique rest on variational principles. A recent work, using a Lagrangian

formulation, has shown the equivalence with this technique [86].
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A.1 Collective coordinates, first approach

In order to show the projection technique we take for the analysis, the

Eq.(4.1) in addition of Gaussian white noise. This represent a general model

that regards all the perturbations contained in the thesis. By proceeding as

in [85] we rewrite the full system as

φ̇ =
δH

δψ
, (A.1)

ψ̇ = −δH
δφ

− βφ̇− ∂Ũ

∂φ
V (x) + f(t) + η(x, t) (A.2)

with

〈η(x, t)〉 = 0,

(A.3)

〈η(x, t)η(x′, t′)〉 = Dδ(x− x′)δ(t− t′),

where ψ = φ̇, f(t) ≡ A sin(ωt+ δ0), D = 2βkBT and H is the Hamiltonian

corresponding to the unperturbed form of Eq. (4.1) given by

H =

∫ +∞

−∞

dx
{1

2
ψ2 +

1

2
φ2

x + U(φ)
}
. (A.4)

As starting point we assume that the solution has the form

φ(x, t) = φK[x−X(t), Ẋ], (A.5)

and therefore by definition of ψ we have that

ψ(x, t) = ψK [x−X(t), Ẋ, Ẍ]. (A.6)

The index K refers to the kink shape, but in the following we will omit

it for simplicity.



A.1. Collective coordinates, first approach 111

Following the procedure in [85], inserting φ̇, ψ̇ into Eqs. (A.1)-(A.2) we

get the expressions
∂φ

∂X
Ẋ +

∂φ

∂Ẋ
Ẍ =

δH

δψ
, (A.7)

∂ψ

∂X
Ẋ +

∂ψ

∂Ẋ
Ẍ +

∂ψ

∂Ẍ

...
X = −δH

δφ
− β

(
∂φ

∂X
Ẋ +

∂φ

∂Ẋ
Ẍ

)

−∂Ũ
∂φ

V (x) + f(t) + η(x, t). (A.8)

Multiplying Eq. (A.7) by
∂ψ
∂X

and Eq. (A.8) by
∂φ
∂X

, and then subtracting

both expressions and integrating we arrive at the following equation

N
...
X +MẌ = −βC1Ẋ − βC2Ẍ + F ac + F stat + F inh + F st, (A.9)

whose values for the coefficients and forces are given by

N =

∫
∞

−∞

dx
∂φ

∂X

∂ψ

∂Ẍ
, F ac =

∫
∞

−∞

dx f(t)
∂φ

∂X
,

C1 =

∫
∞

−∞

dx

(
∂φ

∂X

)2

, F inh = −
∫

∞

−∞

dx
∂Ũ

∂φ
V (x)

∂φ

∂X
,

C2 =

∫
∞

−∞

dx
∂φ

∂X

∂φ

∂Ẋ
, F st =

∫
∞

−∞

dx η(x, t)
∂φ

∂X
,

M =

∫
∞

−∞

dx

(
∂ψ

∂Ẋ

∂φ

∂X
− ∂φ

∂Ẋ

∂ψ

∂X

)
,

F stat = −
∫ +∞

−∞

dx

{
δH

δφ

∂φ

∂X
+
δH

δψ

∂ψ

∂X

}

= −
∫ +∞

−∞

dx
∂H
∂X

= −∂E

∂X
,

where E represents the energy of the system, H is the Hamiltonian density

of Eq. (A.4) and F stat is the static force due to the external field, equal to

zero for the above Hamiltonian.
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Next we consider the sG potential for the system Eqs. (A.1)-(A.2) for

which we assume as solution the ansatz

φ(x, t) = φ(0)[γ(x−X(t))] = 4 arctan (exp {γ[x−X(t)]}) , (A.10)

where φ(0) = 4 arctan {exp [(x−X0)/l0]} is the static kink solution of the sG

system, centered in X0 and of width l0. Here γ = 1/
√

1 − Ẋ2 where we have

put l0 = 1 for the sG case.

Considering the previous statement for the static force and taking into

account V (x) from Eq. (4.2), we obtain

N = 0, F ac = −qf(t),

M = γ3M0, F stat = 0,

C1 = γM0, F inh = − ∂U

∂X
,

C2 = 0,

where M0 = 8 is the kink mass, q = 2π is the topological charge and U(X, Ẋ)

given by

U(X, Ẋ) = 2ε
∑

n

3∑

i=1

1

cosh2[γ(X − xi − nL)]
(A.11)

is the effective potential. In the non-relativistic limit Ẋ2 � 1, U(X, Ẋ) '
U(X).

A representation for the stochastic force F st can be obtained from the

calculation of the variance. In the case of additive noise it is allowed to make

the following assumption
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〈
∂φ(0)(x, t)

∂X

∂φ(0)(x′, t′)

∂X
η(x, t)η(x′, t′)

〉

=
∂φ(0)(x, t)

∂X

∂φ(0)(x′, t′)

∂X
〈η(x, t)η(x′, t′)〉. (A.12)

Hence the correlation function for F st can be written as

〈F st(t)F st(t′)〉

=

∫
∞

−∞

∫
∞

−∞

dxdx′
∂φ(0)(x, t)

∂X

∂φ(0)(x′, t′)

∂X
〈η(x, t)η(x′, t′)〉,

(A.13)

for which, taking into account the expression (A.2), after some algebra we

get

〈F st(t)F st(t′)〉 = 2βkBTγM0δ(t− t′), (A.14)

i.e., F st(t) is a white noise with kink diffusion constant

DK = γM0D.

As a consequence we obtain a non-additive noise term due to the factor

γ(Ẋ), i.e, we arrive at a problem with multiplicative noise.

Then the equation of motion (A.9) can be rewritten as

γ3M0Ẍ + βγM0Ẋ = −qf(t) − ∂U

∂X
+
√
DK ξ(t) (A.15)

with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′). The Eq. (A.15) in absence of

inhomogeneities and noise agrees with the results presented in [48]. The other
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r.h.s. terms that appear in (A.15) are in correspondence with those already

obtained in [53, 87] in the presence of impurities (non-relativistic approach)

and Gaussian white noise, respectively. The procedure used here is equivalent

to the so-called adiabatic approach by using modified conservation laws [56].

A.2 Collective coordinates, second approach

In order to get the CC equations we follow a similar procedure as in the

previous section but this time we propose a solution with the form

φ(x, t) = φ[x−X(t), l(t)], (A.16)

ψ(x, t) = ψ[x−X(t), l(t), Ẋ, l̇] (A.17)

with ψ = φ̇, which considers the kink width as a new collective variable (see

e.g. [47]).

Inserting Eqs. (A.16) and (A.17) in our system Eqs. (A.1)-(A.2) and then

multiplying the first equation by
∂ψ
∂X

and the second one by
∂φ
∂X

; subtracting

both expression and integrating we arrive at the following equation

∫ +∞

−∞

dx
∂φ

∂X

∂ψ

∂Ẋ
Ẍ +

∫ +∞

−∞

dx[φ, ψ]l̇ +

∫ +∞

−∞

dx
∂φ

∂X

∂ψ

∂l̇
l̈

−F stat =

∫ +∞

−∞

dx F (x, t, φ, φt, ...)
∂φ

∂X
(A.18)

with F (x, t, φ, φt, ...) = −βφ̇− ∂Ũ
∂φ

V (x) + f(t) + η(x, t), and
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[φ, ψ] =
∂φ

∂X

∂ψ

∂l
− ∂φ

∂l

∂ψ

∂X
, (A.19)

F stat = −
∫ +∞

−∞

dx

{
δH

δφ

∂φ

∂X
+
δH

δψ

∂ψ

∂X

}

= −
∫ +∞

−∞

dx
∂H
∂X

, (A.20)

where H is the Hamiltonian density of Eq. (A.4) for which, as was seen

before, a null value for F stat is obtained.

Repeating the same procedure, but now with
∂ψ
∂l

and
∂φ
∂l

, we get the

expression

∫ +∞

−∞

dx[ψ, φ]Ẋ +

∫ +∞

−∞

dx
∂φ

∂l

∂ψ

∂Ẋ
Ẍ +

∫ +∞

−∞

dx
∂φ

∂l

∂ψ

∂l̇
l̈

−Kint =

∫ +∞

−∞

dx F (x, t, φ, φt, ...)
∂φ

∂l
. (A.21)

Following Rice [88] for the particular case of sG

φ(x, t) = φ(0)[x−X(t), l(t)] = 4 arctan

(
exp

[
x−X(t)

l(t)

])
, (A.22)

Eq. (A.18) becomes

M0l0
Ẍ

l
+ βM0l0

Ẋ

l
−M0l0

Ẋl̇

l2
= F ac + F inh + F st (A.23)

with
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F ac =

∫
∞

−∞

dx f(t)
∂φ(0)

∂X
= −2πf(t) = −qf(t), (A.24)

F inh = −
∫

∞

−∞

dx sin(φ(0))V (x)
∂φ(0)

∂X
= − ∂U

∂X
, (A.25)

F st =

∫
∞

−∞

dx η(x, t)
∂φ(0)

∂X
, (A.26)

and

U(X, l) = 2ε
∑

n

3∑

i=1

1

cosh2[(X − xi − nL)/l]
. (A.27)

On the other hand, Eq. (A.21) is transformed into

αM0l0
l̈

l
+ βαM0l0

l̇

l
+M0l0

Ẋ2

l2
= Kint(l, l̇, Ẋ) +Kinh +Kst (A.28)

with

Kinh = −
∫

∞

−∞

dx sin(φ(0))V (x)
∂φ(0)

∂l
= −∂U

∂l
, (A.29)

Kst =

∫
∞

−∞

dx η(x, t)
∂φ(0)

∂l
, (A.30)

Kint(l, l̇, Ẋ) = −
∫ +∞

−∞

dx
∂H
∂l

= −∂E
∂l
, (A.31)

where α = π2/12, M0 = 8, l0 = 1 and

E =
1

2

l0
l
M0Ẋ

2 +
1

2

l0
l
αM0l̇

2 +
1

2
M0

(
l0
l

+
l

l0

)
. (A.32)
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As in the previous section we use the variances of the stochastic forces in

order to obtain approximate expressions for them. Taking the assumption

given by the expression (A.12) we find for (A.26) the correlation function

〈F st(t)F st(t′)〉

=

∫
∞

−∞

∫
∞

−∞

dxdx′
∂φ(0)(x, t)

∂X

∂φ(0)(x′, t′)

∂X
〈η(x, t)η(x′, t′)〉

= Dδ(t− t′)

∫
∞

−∞

dx

(
∂φ(0)

∂X

)2

= Dδ(t− t′)
l0
l
M0. (A.33)

In what follows similar expressions to the Eq. (A.12) valid for additive

noise are used in order to calculate other correlation functions like

〈Kst(t)Kst(t′)〉

=

∫
∞

−∞

∫
∞

−∞

dxdx′
∂φ(0)(x, t)

∂l

∂φ(0)(x′, t′)

∂l
〈η(x, t)η(x′, t′)〉

= Dδ(t− t′)

∫
∞

−∞

dx

(
∂φ(0)

∂l

)2

= Dδ(t− t′)
l0
l
αM0,

(A.34)

and

〈F st(t)Kst(t′)〉

=

∫
∞

−∞

∫
∞

−∞

dxdx′
∂φ(0)(x, t)

∂X

∂φ(0)(x′, t′)

∂l
〈η(x, t)η(x′, t′)〉

= Dδ(t− t′)

∫
∞

−∞

dx
∂φ(0)

∂X

∂φ(0)

∂l
= 0. (A.35)

From the delta-function correlation for the stochastic forces the absence of

cross-correlation is obvious.

Finally, collecting all the previous results we can rewrite Eqs. (A.23),
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(A.28) as follows

M0l0
Ẍ

l
+ βM0l0

Ẋ

l
−M0l0

Ẋl̇

l2
= − ∂U

∂X
− qf(t)

+

√
DM0l0

l
ξ1(t), (A.36)

αM0l0
l̈

l
+ βαM0l0

l̇

l
+M0l0

Ẋ2

l2
= −∂U

∂l
+Kint(l, l̇, Ẋ)

+

√
DαM0l0

l
ξ2(t) (A.37)

with 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t− t′), for i, j = 1, 2.

A feature of particular interest in these new equations is the presence of

stochastic forces which are of the multiplicative white noise type dependent

on the kink width variable.

The method described here using the technique of projection is equivalent

to the variational calculations of the momentum and the energy of the system

for perturbed nonlinear Klein-Gordon systems of the form of Eqs. (A.1) and

(A.2) and with a Hamiltonian of the form of Eq. (A.4) (see [47] for details).

Another procedure and derivation has been recently presented in [86].

Now let us analyze the particular case when there are no stochastic forces

present in the system. Following the same notation as in [47], and using

definition P (t) = M0l0Ẋ/l(t) for the momentum, our equations transform

into

dP

dt
+ βP = − ∂U

∂X
− qf(t), (A.38)

α[l̇2 − 2ll̈ − 2βll̇] =
l2

l20

[
1 +

P 2

M2
0

]
− 1 +

2l2

M0l0

∂U

∂l
, (A.39)
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When the inhomogeneities are absent we get then

dP

dt
= −βP − qf(t), (A.40)

α[l̇2 − 2ll̈ − 2βll̇] =
l2

l20

[
1 +

P 2

M2
0

]
− 1. (A.41)

The coupling in this case between both equations is only through the

expression for the momentum. The CC equations for the φ4 model present the

same form as those appearing above with the respective effective parameters

of the φ4 system [50].
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Appendix B

Numerical schemes and

integration procedures

There are different procedures and schemes of integration. The choice of the

numerical procedure for the integration depends on the stability, convergence

of the numerical method, type of the equation, integration time, among other

factors. In case of partial differential equations the boundary conditions and

also the length of the system become important. The methods used for

solving these equations are of finite difference. Therefore the integration is

determined by the mesh size and of the form of the scheme. The stability of

the numerical method depends on the relation between the spatial and tem-

poral steps for a specific scheme. Consequently, some schemes of integration

are more robust than others under changes of the mesh size. The methods

of integration for solving such schemes are classified in implicit and explicit

ones. Usually, the implicit methods are more robust against instabilities for

a wide range of the mesh size because of the scheme. Among the implicit

121
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schemes, we highlight the Strauss-Vázquez scheme [89]. This is a well known

scheme, generally used for problems which involve the integration of NKG

systems.

B.1 Strauss-Vázquez scheme and some mod-

ifications

Next we consider the original Strauss-Vázquez integration scheme

φl(t + ∆t) − 2φl(t) + φl(t− ∆t)

∆t2
+
φl+1(t) − 2φl(t) + φl−1(t)

∆x2
+

+
U [φl(t+ ∆t)] − U [φl(t− ∆t)]

φl(t+ ∆t) − φl(t− ∆t)
= 0. (B.1)

This system have the advantage to conserve the energy. On the other

hand, its stability and convergence have been proven [89].

Here l is the spatial grid index. U is the potential for the corresponding

NKG system. From previous equation the values for φl(t) and φl(t − ∆t)

can be deduced from the initial conditions of the kink profile. Therefore the

integration reduces to finding the values φl(t + ∆t). In order to determine

the values φl(t + ∆t) one can use the Newton-Raphson, the secant method,

or another method for finding roots [90].

However, the original Strauss-Vázquez scheme does not consider the pres-

ence of perturbations. Therefore for our purpose a more general formulation

of the Strauss-Vázquez scheme is required.
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We take for the integration of the Eq. (4.1), the simplest modified Strauss-

Vázquez scheme

φl(t + ∆t) − 2φl(t) + φl(t− ∆t)

∆t2
+
φl+1(t) − 2φl(t) + φl−1(t)

∆x2

+
U [φl(t+ ∆t)] − U [φl(t− ∆t)]

φl(t + ∆t) − φl(t− ∆t)
+ β

φl(t+ ∆t) − φl(t− ∆t)

2∆t
+ F (t) = 0,

(B.2)

where β is the damping coefficient and F (t) is equivalent to −f(t) in our

formulation. A more sophisticated scheme with a generalized expression for

the external force F (t) which include parametric and stochastic forces can

be found in [91].

Concretely speaking, we use this implicit scheme since it is very robust

against instabilities for different mesh sizes. However, explicit schemes are

usually faster than the implicit ones and much of the time are used. In our

case we have used a fourth-order Runge-Kutta method [90] in order to verify

the numerical results obtained with the Strauss-Vázquez scheme.

B.2 Integration of nonlinear Klein-Gordon

systems with delta functions as pertur-

bations.

In this section we proceed to the calculus of the partial differential equa-

tion in presence of point-like inhomogeneities, which are in our formulation

represented by delta functions.
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We derive the form for the spatial part of the numerical scheme in presence

of delta-like functions using the method of finite elements. We take as an

example the sG model. Notwithstanding, it can be used as general procedure

for other models.

In order to integrate the sG equation, perturbed by a delta function

φtt = φxx − sin(φ)[1 +Qδ(x− a)], (B.3)

it is necessary to split the interval of integration in two parts.

Namely, an interval which contains the point a and another without the point

a where the delta function vanishes.

By convenience we integrate in a neighborhood of a, namely in the interval

(a− h, a+ h) where h represents a small value
∫ a+h

a−h

dx φtt =

∫ a+h

a−h

dx φxx −
∫ a+h

a−h

dx sin(φ)[1 +Qδ(x− a)]. (B.4)

Using the properties of the delta functions the previous equation then be-

comes
∫ a+h

a−h

dx φtt = φx|a+h − φx|a−h −
∫ a+h

a−h

dx sin(φ) −Q sin[φ(a, t)]. (B.5)

Taking into account that h is assumed to be very small, the integrals of the

latter expression are reduced to
∫ a+h

a−h

dx sin(φ) ≈ sin[φ(a, t)] 2h

and ∫ a+h

a−h

dx φtt ≈ φtt|a 2h.

Accordingly the expression (B.4) can be rewritten as

φtt|a =
φx|a+h − φx|a−h

2h
− sin[φ(a, t)] − Q

2h
sin[φ(a, t)], (B.6)
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where the first r.h.s term represent the second order spatial derivative.

According to this definition we express the first order derivative functions as

φx|a+h =
φ|a+2h − φ|a

2h
,

φx|a−h =
φ|a − φ|a−2h

2h
.

Therefore the second order spatial derivative can be expressed as

φx|a+h − φx|a−h

2h
=
φ|a+2h − 2φ|a − φ|a−2h

4h2
. (B.7)

Applying the transformation 2h→ ∆x we rewrite Eq. (B.6) as

φtt|a =
φ|a+∆x − 2φ|a + φ|a−∆x

∆x2
−
(

sin[φ(a, t)] +
Q

∆x
sin[φ(a, t)]

)
. (B.8)

For the interval O = {x ∈ (−∞, h − a]; [h + a,∞)}, where the delta

function vanishes, the equation simply results in

φtt|x =
φ|x+∆x − 2φ|x + φ|x−∆x

∆x2
− sin[φ(x, t)] ∀x ∈ O . (B.9)

We can then rewrite Eq. (B.3) concisely as

φtt|x = Lφ(x, t) − sin[φ(x, t)] [1 +Q ϑ(x− a)] , (B.10)

where Lφ(x, t) =
φ|x+∆x − 2φ|x + φ|x−∆x

∆x2 is the discrete Laplacian and

the function ϑ(x− a) is defined as

ϑ(x− a) ≡





1/∆x, |x− a| < ∆x/2

0, otherwise,

which corresponds to the discrete representation for the delta function

[92, 93].
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Different methods can be implemented for the integration of the latter

equation. One can use implicit methods similar to in the previous section

with the Strauss-Vázquez scheme. In this case taking into account the ex-

pression for the scheme (B.2) and considering in addition the presence of an

array of inhomogeneties we obtain

φl(t+ ∆t) − 2φl(t) + φl(t− ∆t)

∆t2
+
φl+1(t) − 2φl(t) + φl−1(t)

∆x2
+

+
U [φl(t+ ∆t)] − U [φl(t− ∆t)]

φl(t+ ∆t) − φl(t− ∆t)

[
1 +Q

∑

i

ϑ(l∆x − xi)

]
+

+β
φl(t + ∆t) − φl(t− ∆t)

2∆t
+ F (t) = 0, (B.11)

where xi corresponds to the points where the inhomogeneities are located

and l denote the number of points in the grid for the spatial dimension as

before. For this problem the four-order Runge-Kutta fails because of the

presence of irregular functions like delta functions. As alternative one can

use a modified Runge-Kutta integrator. We have used the Heun method (see

next section) in order to verify our numerical results.

B.3 Numerical solution of stochastic differ-

ential equations

For our purpose we start with a set of coupled differential equations in the

generalize Langevin form

dAi

dt
= qi([A], t) +

∑

j

gij([A], t)ξj(t), (B.12)
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where [A] ≡ (A1, . . . , AN) and gij denote the coefficients of the matrix

G =




g11 g12 . . .

g21 g22 . . .
...

...
. . .


 .

Let us consider a physical system with a set of independent stochas-

tic white noise processes, i.e., certain functions ξi(t) so that 〈ξi(t)〉 = 0,

〈ξi(t)ξj(t′)〉 = δijδ(t− t′), for i, j = 1, ..N .

We can solve the above stochastic differential equations by using the Heun

method [70]. The main reason for the use of the Heun method is because we

are dealing with highly irregular and therefore not differentiable functions.

This is the case of the white-noise term where we have nothing but a series

of delta functions spread over the full interval of integration.

Let us make the analysis of the system (B.12) for the simplest case, i.e.,

for one variable

dA

dt
= q(t, A) + g(t, A)ξ(t). (B.13)

After implementing the Heun algorithm for the previous equation we obtain

the reformulation in finite differentials

Ã(t+ ∆t) = A(t) + ∆t q(t, A(t)) + ∆t1/2 u(t)g(t, A(t)) (B.14)

A(t+ h) = A(t) +
∆t

2

[
q(t, A(t)) + q(t+ ∆t, Ã(t + ∆t))

]

+
∆t1/2u(t)

2

[
g(t, A(t)) + g(t+ ∆t, Ã(t+ ∆t)

]
,

where u(t) is a set of random numbers with a Gaussian distribution with

mean zero and variance one. Following the previous procedure we rewrite
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the equations (A.36)-(A.37) as

dA1

dt
= A2 (B.15)

dA2

dt
= −βA2 +

A2A4

A3
+

A3

M0l0

[
− ∂U

∂A1
− qf(t)

]

+

√
DA3

M0l0
ξ1(t) (B.16)

dA3

dt
= A4 (B.17)

dA4

dt
= −βA4 −

A2
2

αA3

− A3

αM0l0

∂U

∂A3

+
A3

αM0l0
Kint(A2, A3, A4)

+

√
DA3

αM0l0
ξ2(t). (B.18)

This set of coupled differential equations take the form in the matrix nota-

tion

dA

dt
= q(t, [A]) +




0 0 0 0

0
√
D1

√
A3 0 0

0 0 0 0

0 0 0
√
D2

√
A3







ξ̃1

ξ̃2

ξ̃3

ξ̃4



, (B.19)

where AT = (A1, A2, A3, A4), q(t, [A]) is the vector formed by the qi(t, [A])

terms, corresponding to the noiseless part of the respective equations (B.15)-

(B.18); D1 = αD2 = D
M0l0

, and ξ̃2 = ξ1, ξ̃4 = ξ2. Notice in the previous Eq.

(B.19) that only appear diagonal terms depending on the variable A3. This

results from the fact that no cross-correlation function was obtained from

the collective variable equations. The details can be seen in the appendix A.

Following the Heun method of one variable and taking into account that

we have only diagonal terms, the system of equations (B.19) reduces to the
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discrete numerical scheme

Ãi(t+ ∆t) = Ai(t) + ∆t qi(t, [A](t)) + ∆t1/2 ui(t)gi(t, A3(t))

Ai(t+ h) = Ai(t) +
∆t

2

[
qi(t, [A](t)) + qi(t + ∆t, [̃A](t+ ∆t))

]

+
∆t1/2ui(t)

2

[
gi(t, A3(t)) + gi(t+ ∆t, Ã3(t+ ∆t))

]

where [̃A](t + ∆t) ≡ (Ã1(t + ∆t), Ã2(t + ∆t), . . .) and ui(t) are a set of

independent Gaussian random variables that satisfy the following relations

〈ui(t)〉 = 0, 〈ui(t)uj(t)〉 = δij

〈ui(t)uj(t
′)〉 = 0, t 6= t′

which are generated by the Box-Müller-Wiegner algorithm.

For the integration of the partial differential equation similar equations can

be deduced using the Heun method, like the following

φ̃l(t+ ∆t) = φl(t) + ∆t ψl(t), (B.20)

ψ̃l(t+ ∆t) = ψl(t) + ∆t

{
Lφl(t) − sin[φl(t)]

[
1 +Q

∑

i

ϑ(l∆x − xi)

]

− βψl(t) + F (t)

}
+
√
D

√
∆t

∆x
ul(t), (B.21)
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φl(t+ ∆t) = φl(t) +
∆t

2

[
ψl(t) + ψ̃l(t+ ∆t)

]
, (B.22)

ψl(t+ ∆t) = ψl(t) +
∆t

2

{
Lφl(t) + Lφ̃l(t + ∆t) − β[ψl(t) + ψ̃l(t+ ∆t)]

−(sin[φl(t)] + sin[φ̃l(t+ ∆t)])

[
1 +Q

∑

i

ϑ(l∆x− xi)

]
+

+F (t) + F (t+ ∆t)

}
+
√
D

√
∆t

∆x
ul(t), (B.23)

where l are the nodes of the grid for the spatial dimension. ul are a set of

independent Gaussian random numbers generated for each node of the grid

in every step of time. These were generated using the Box-Müller-Wiegner

algorithm.

Here as before the Heun method is suitable for the integration since for

this system we have delta functions spread over the interval of the integration

and also along the spatial coordinate. One can use an implicit method with

the Strauss-Vázquez scheme but it has the disadvantage that it take great

amount of time for the integration of stochastic partial differential equations.

This is because the calculus is made on the average over many realizations.
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