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Abstract 

(Driving) simulators offer a cost-effective and time-efficient way to test new systems 

and human-machine interfaces under controlled, safe, and standardized conditions. To 

be considered a valid research tool, however, simulator-based results must be 

comparable to those obtained in real-world environments, a premise that requires 

empirical confirmation. This dissertation addresses three central research gaps: (1) 

Most existing simulator validation studies primarily focus on driving performance 

parameters, while intraindividual processes such as physiological and cognitive stress 

responses remain largely underexplored. (2) While the acceptance of autonomous 

shuttle systems has been studied extensively, most investigations rely solely on self-

report measures without offering participants direct experience with the technology. (3) 

Although multimodal stress indicators promise a more holistic understanding, the 

integration of heterogeneous single indicators often leads to inconsistent results and 

limited interpretability. 

This dissertation is structured into two main parts. Part A investigates simulator validity 

with a particular focus on cognitive and physiological stress reactions to provide a more 

comprehensive understanding of user responses. Part B examines whether the 

acceptance of autonomous shuttles can be validly assessed in a simulator using an 

extended UTAUT2 model, and to what extent the inclusion of cognitive and 

physiological stress indicators enhances the model’s explanatory power. Furthermore, 

it develops two robust composite indicators (Physiological Reaction and Cognitive 

Reaction) based on multiple individual measures, aiming to improve the reliability and 

validity of stress assessments in user experience research. 

The findings show that 1) while the simulator is subjectively perceived as more stressful 

than real driving, physiological responses demonstrate a high degree of similarity 

across both environments. 2) Moreover, the use of a shuttle bus simulator proved to 

be a valid approach for acceptance research, and the integration of cognitive and 

physiological stress indicators significantly increased the explanatory strength of the 

acceptance model. 3) The developed composite indicators showed consistent loading 

patterns across a variety of conditions and offer a practical, scalable approach for 

analyzing stress-related responses in mobility contexts. 

Despite these positive results, the study also highlights certain limitations. The general 

application of findings to other user groups or mobility formats remains limited and 

requires further empirical investigation. Future research should apply more fine-

grained, segment-specific data collection methods to better capture situational stress 

responses and explore the applicability of the composite indicators in real-world 

mobility scenarios. 

 

 

 

  

 



  

6 
 

Table of contents 
List of tables ............................................................................................................... 7 

1 Motivation ................................................................................................................ 8 

2 Theoretical background ........................................................................................... 9 

2.1 Driving simulators as a research tool ................................................................ 9 

2.2 Cognitive and physiological (stress-)reactions ................................................ 13 

2.3 User acceptance of technical systems ............................................................ 17 

2.4 Challenges of using stressindicators in ux-research ....................................... 20 

3 Research questions and methodologies ................................................................ 20 

4 Results ................................................................................................................... 29 

4.1 Part A: Driving simulator validity ...................................................................... 29 

4.1.1 Summary of Research Paper No.1 .............................................................. 29 

4.1.2 Summary of Research Paper No. 2 ............................................................. 29 

4.1.3 Summary of Research Paper No. 3 ............................................................. 30 

4.2 Part B: Acceptance and stress measurement using simulators ...................... 31 

4.2.1 Summary of Research Paper No. 4 ............................................................. 31 

4.2.2 Summary of Research Paper No. 5 ............................................................. 32 

4.2.3 Summary of Research Paper No. 6 ............................................................. 33 

5 Conclusion ............................................................................................................. 33 

Appendix A: Driving simulator validity ....................................................................... 41 

A.1 Research Paper No. 1: Investigating simulator validity by using physiological 

and cognitive stress .............................................................................................. 41 

A.2 Research Paper No. 2: Comparison of gaze behavior in real and simulated 

driving ................................................................................................................... 77 

A.3 Extended Abstract Research Paper No. 3: User Interaction with digital twins: 

how comparable are simulation and reality ........................................................... 89 

Appendix B: Acceptance and stress measurement using simulators ........................ 96 

B.1 Extended Abstract Research Paper No. 4: User Acceptance of autonomous 

shuttle systems: A UTAUT2 -based analysis with simulated driving tests and 

physiological measurement ................................................................................... 96 

B.2 Extended Abstract Research Paper No. 5: Single measurement vs composite 

indicators for user experience research .............................................................. 104 

B.3 Research Paper No. 6: Scent and stress: The role of lavender and perception 

in simulated driving scenarios .............................................................................. 113 

Appendix C ............................................................................................................. 126 

References ............................................................................................................. 127 

 



  

7 
 

List of tables 

Table  1. Key studies on (cognitive and physiological) driving simulator validation .. 12 
Table  2. Key studies on (physiological and cognitive) stress measurement during 

driving ....................................................................................................................... 15 
Table  3. Key studies on technology acceptance models regarding autonomous 

shuttle buses ............................................................................................................ 18 
Table  4. Submissions and publication status of the research papers ...................... 23 
Table  5. In-depth summary of included studies: objectives, methodology, and results

 ................................................................................................................................. 26 
Table  6. Additional papers and publications .......................................................... 126 
 
  



  

8 
 

1 Motivation 

Vision Zero is an internationally recognized guiding principle in transport policy with a 

clear goal: zero traffic fatalities. While many countries have seen a decline in the road 

death rate, the numbers remain high. In Germany alone, around 2,780 people died in 

road traffic in 2024 (Statistisches Bundesamt, 2025), while in the United States the 

figure was 39,345 (Sheperdson, 2025). The reported fatalities don`t include accidents 

causing severe injuries. 

Approximately 90% of all car accidents are attributable to human error (Singh, 2018). 

Autonomous driving aims to counteract this issue. Autonomous vehicles (AVs) promise 

to significantly reduce this risk through precise sensors, vehicle communication, and 

the extensive elimination of human error (Abdel-Aty & Ding, 2024; Stoma et al., 2021)  

On the path towards AVs, the automotive industry is undergoing major change due to 

technological advances in the field of Driver Assistance Systems (DAS) (Stoma et al., 

2021). Nevertheless, these systems are spreading more slowly than expected. A key 

reason is limited user acceptance, often caused by poor usability or inadequate user 

guidance (Riedl et al., 2024). Increasing acceptance requires a customer-centered 

development approach, making customer centricity a key factor (Gummesson, 2008; 

Kleinaltenkamp et al., 2022). By placing users at the center of the development 

process, technical innovations can better align with user expectations, resulting in 

improved usability, safety, and satisfaction, which ultimately supports the adoption of 

both DAS and new mobility concepts such as autonomous shuttles. 

A major part of the development of DAS is covered by driving tests. However, traditional 

driving tests face limitations. They are expensive, usually take place in late 

development stages, and are typically conducted with professional test drivers 

(Mohajer et al., 2015), which means the perspective of typical end users is often 

excluded. 

Driving simulators offer a promising alternative. They enable standardized, controllable 

test scenarios in a safe environment (Caird & Horrey, 2016; Winter et al., 2012), 

including with laypeople and in very early development phases (Xue et al., 2023). 

Moreover, they allow for scenarios that would be ethically or practically difficult to test 

in real life (Caird & Horrey, 2016). In addition to the benefits in terms of cost and time, 

this also creates scientific value. 

For simulators to be used as a valid research tool, behavior in the simulator must be 

comparable to that in real driving situations (Czaban & Himmels, 2025). The 

comparability between a driving simulator and a real vehicle is referred to as simulator 

validity. This generally refers to the extent to which the behavior and reactions of 

participants in the simulator correspond to those in real driving situations on a 

behavioral, physiological, or cognitive level (Himmels, 2025).  

Previous validation studies have focused heavily on driving dynamics such as e.g. 

braking, often without sufficiently considering the human perspective (Wynne et al., 

2019). In a similar vein, traditional technology acceptance models have increasingly 

been criticized for their limitations in explaining user behavior (Blut et al., 2022). This 

work goes beyond the original approaches by systematically integrating physiological 
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and cognitive (stress-related) indicators. Including these physiological and cognitive 

parameters provides a more comprehensive picture of user responses, as it captures 

unconscious, emotional, and stress-related reactions that cannot be adequately 

assessed through traditional methods. The integration of these indicators is intended 

to enhance the explanatory power of the model. 

Across all studies in this work, a consistent approach is applied, incorporating cognitive 

and physiological indicators into both the validation studies and the acceptance study. 

Moreover, this dissertation develops aggregated indicators that integrate individual 

measurements into interpretable metrics. 

This thesis addresses three interrelated problem areas: the validity of simulators, the 

measurement and explanation of acceptance of autonomous shuttle buses using a 

simulator, and the question of how complex stress responses can be reliably captured. 

This gives rise to six central research questions, which are structured along these three 

thematic areas (see Chapter 3). 

Each part of this work is based on the central approach of integrating cognitive and 

physiological indicators. In Part A, their relevance is demonstrated within validation 

studies, while in Part B they are employed as an extension to existing acceptance 

models to enhance explanatory power and beyond this these indicators are combined 

into a composite measure, which is intended to increase both usability and 

interpretability. 

The thesis is structured as follows: Chapter 2 provides the theoretical framework 

necessary for this work. Part A (Appendix A) addresses the issue of simulator validity 

in three papers (Papers 1–3), focusing on cognitive and physiological responses. Part 

B (Appendix B) uses a shuttle bus simulator in Paper 4 to investigate user acceptance 

under realistic conditions. Finally, it deals with the development of an overall indicator 

that meaningfully integrates individual cognitive and physiological response indicators 

(Paper 5 and 6). 

2 Theoretical background 

2.1 Driving simulators as a research tool 

The first driving simulators were already used in the 1930s (Lauer, 1960). Their goal 

remains to this day to develop vehicles more safely and to better understand user 

driving behavior (Carroll et al., 2023). Driving simulators have been a fixed component 

of automotive research for decades and offer a number of clear advantages. 

They provide a safe, standardized, and therefore controllable test environment 

(Galante et al., 2018; Hussain et al., 2019; Pawar & Velaga, 2020; Winter et al., 2012),  

an aspect that is especially crucial in critical driving situations. They also enable tests 

with laypersons, while real-world prototype tests may only be conducted with trained 

drivers (Brookhuis & Waard, 2010). This results in high potential for time and cost 

efficiency in research and development (Drosdol & Panik, 1985; Pawar et al., 2022). 

At the same time, it becomes possible to involve end users at an early stage of the 

development process (Xue et al., 2023). 
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Moreover, driving simulators allow for targeted comparisons of different scenarios 

while controlling external variables that could influence driving behavior (Hussain et 

al., 2019). All these factors make the simulator a versatile and powerful research tool. 

In order for findings from simulator studies to be transferable to real-world driving 

environments, the simulated environment must reflect relevant aspects of reality 

(Himmels et al., 2024; Pawar et al., 2022). Such transferability is only ensured if 

behavior in the simulator is at least similar to that in real driving situations. Empirical 

validation is essential for this. 

Simulator validity, in the sense of the transfer-of-training theory (Blume et al., 2010; Liu 

et al., 2023) is achieved when behavior in the simulator is comparable to that in reality 

or at least elicits comparable reactions (Donkor et al., 2014; Himmels et al., 2024; Y. 

Wang et al., 2010; Wynne et al., 2019). Only then can reliable conclusions be drawn 

about user behavior in the real world. 

Several validity concepts exist in the literature to evaluate this transferability. The most 

common are physical and behavioral validity (Bella et al., 2014). In addition, 

psychological validity also plays a role in this work (Vienne et al., 2014). In these 

concepts, relevant outcome variables are compared between real and simulated 

driving (Klüver, 2016; Zöller, 2015). 

Physical validity (also called “fidelity”) refers to the degree to which the simulator 

technically and visually corresponds to a real vehicle (Klüver, 2016). However, high 

fidelity does not automatically mean higher simulator validity. Valid results can also be 

obtained with so-called low-fidelity simulators and vice versa. The choice of simulator 

type should therefore be based on the specific research question. The most cost-

effective suitable configuration should be preferred (Himmels et al., 2024). 

In contrast to physical validity, psychological validity focuses on ensuring not only that 

the external environment appears realistic, but also that internal cognitive processes 

(e.g., hazard assessment, decision-making) occur in the simulator as they would in 

real situations  (Vienne et al., 2014). If thought and reaction patterns are comparable, 

psychological validity can be assumed. It is closely related to behavioral validity. 

Behavioral validity is considered the central aspect of simulator validity overall (Godley 

et al., 2002; Terumitsu et al., 2007). Within behavioral validity, a distinction is made 

between absolute and relative validity (Blaauw, 1982). Absolute validity exists when 

numerical values (e.g., speed, reaction time) are identical between reality and 

simulation (Blaauw, 1982; Kaptein et al., 1996). Relative validity, on the other hand, 

means that effects go in the same direction in both conditions (e.g., speed increases 

in the real scenario and increases in the simulated scenario). Due to practical 

limitations (e.g., time, costs), absolute validity is often not achievable (Branzi et al., 

2017). Relative validity is therefore considered sufficient for drawing valid conclusions 

(Pawar et al., 2022; Törnros, 1998). The required degree of validity ultimately depends 

on the specific research objective (Himmels et al., 2024; Mullen et al., 2011). 

The outcome variables used for validation can be roughly divided into three categories: 

psychological, physiological, and objective measurements. 
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Psychological variables (e.g., NASA-TLX, Perceived Stress State Questionnaire) are 

usually easy to collect via questionnaire. However, a limitation is that such 

measurements are typically only possible before or after the driving scenario and are 

prone to biases such as social desirability bias  (Nederhof, 1985). 

Physiological measurements such as galvanic skin response or the use of 

electrocardiograms provide a more objective supplement. They can be continuously 

recorded during the drive and offer insights into unconscious responses, as they 

bypass cognitive filters (Healey & Picard, 2005; Lohani et al., 2019). However, their 

use requires special equipment and expertise. They may also be difficult to interpret 

due to competing influencing factors (e.g., stress vs. simulator sickness) (Dużmańska 

et al., 2018). Simulator sickness is a particularly relevant confounding factor. It involves 

a dissonance in the human vestibular system, resulting in symptoms such as nausea, 

dizziness, or discomfort, which may influence physiological responses. 

Finally, objective parameters relate directly to observable driving behavior, such as 

lane keeping or braking behavior (Wynne et al., 2019). They provide indications of 

whether the simulator elicits realistic driving behavior (Blaauw, 1982; Blana, 1996). 

The validity of simulator studies varies depending on the use case (Ahlström et al., 

2012; Bella, 2008; Engen, 2008; Parduzi, 2021; Wynne et al., 2019), the outcome 

variables used (Himmels et al., 2024; Wynne et al., 2019)  and the simulator 

configuration (Fischer et al., 2015; Himmels, 2025). 

Since application scenarios and target groups vary greatly depending on the research 

objective, each simulator must be empirically validated for its specific use case (Blana, 

1996).  

While most previous validation studies have focused on vehicle dynamics parameters 

(e.g., acceleration, braking; see Wynne et al., 2019), relatively few studies have 

incorporated physiological and cognitive (stress-related) measures. Table 1 provides 

an overview of studies that extend the classical stimulus-response approach by 

including physiological indicators, thereby adopting a stimulus-organism-response 

framework (Davis & Granić, 2024). In some cases, these physiological measurements 

are complemented or even fully replaced by cognitive assessments. The use of 

physiological and cognitive indicators shifts the focus more strongly toward the 

individual. 

At the physiological level, most studies primarily employ electrocardiogram (ECG) 

parameters and galvanic skin response (GSR). At the cognitive level, workload and 

stress questionnaires dominate, particularly the NASA-TLX and the Short Stress State 

Questionnaire. 

Data analysis is predominantly conducted using frequentist methods, especially null 

hypothesis significance testing (NHST), an approach that has been increasingly 

questioned. NHST allows only for the detection of effects, a non-significant result, 

however, does not provide evidence for equivalence nor for sufficient statistical power 

(Himmels et al., 2024). This limitation is particularly problematic in validation studies 

with small sample sizes, which are common in driving simulator research. Himmels et 

al. (2024) therefore recommend the use of Bayes factors, which allow for inferences 
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about both differences and equivalence. Unlike p-values, Bayes factors provide 

relative probabilities for competing hypotheses (H₀ vs. H₁), enabling interpretable 

conclusions even in the presence of ambiguous findings. 

Table  1. Key studies on (cognitive and physiological) driving simulator validation 

Source Research Question Method n Results 

Mueller, 
2015 

To what extent can 
driver behavior, 
performance 
measures, and 
physiological 
responses under high 
mental workload in the 
driving simulator be 
compared with those 
in real road traffic, and 
which variables are 
best suited for a valid 
transfer? 

Test persons drive high- 
and low-complex sections 
in a simulator and in a real 
car. NASA-TLX is used for 
cognitive measurement. 
Heart rate, heart rate 
variability, galvanic skin 
response, and pupil 
diameter are used for 
physiological 
measurement. Measures 
are compared using 
MANOVA and ANOVA 

34 Heart rate, heart rate 
variability, and gaze-
related variables provide 
valid results across 
sections. Skin 
conductance level and 
pupil diameter do not 
provide valid results. Most 
NASA-TLX subscales 
show relative validity. 

Reimer & 
Mehler, 
2011 

How well can 
physiological 
measures detect 
changes in cognitive 
workload, and to what 
extent can findings 
from driving simulators 
be transferred to real 
driving situations? 

Test persons drive on a 
highway in a simulator and 
in a real car. Driving tasks 
include single task driving 
and a secondary task with 
three levels of difficulty. 
Heart rate and skin 
conductance level are 
measured. Data are 
analyzed using General 
Linear Models and 
pairwise t-tests. 

26 Heart rate shows absolute 
and relative validity. Skin 
conductance level shows 
relative validity 

Carter & 
Laya, 
1998 

How do driving 
experience, task type 
(straight driving vs. 
overtaking), and 
environment (road 
traffic vs. simulator) 
affect drivers’ visual 
search strategies? 

Test persons drive in a 
simulator and in a real car. 
Tasks include straight 
driving and overtaking 
maneuvers. Eye-tracking 
measurement is used. 
Data are analyzed using 
ANOVA. 

16 Scan paths show relative 
validity. More fixations are 
observed in the simulator 
compared to real driving. 

Milleville-
Pennel & 
Charron, 
2015 

How do cognitive 
workload, affective 
experience (e.g., 
stress, enjoyment), 
and sense of presence 
differ when driving in a 
simulator compared to 
real driving conditions 
(driving school vehicle 
vs. personal car)? 

Test persons drive in a 
simulator and in a real car 
for 30–50 minutes under 
four different conditions. 
NASA-TLX and the 
Questionnaire of 
Psychological Feeling are 
used for cognitive and 
affective measurement. 
Data are analyzed using t-
tests, Multiple Factorial 
Analysis, RV-Index, and 
squared correlations. 

14 Stress levels are higher in 
the simulator. Heart rate 
is also higher in the 
simulator. NASA-TLX 
shows relative validity, 
though not for all items. 
Questionnaire of 
Psychological Feeling 
shows relative validity, 
though not for all items. 

Galante et 
al., 2018 

To what extent is a 
driving simulator 
suitable for 
investigating mental 
workload compared to 
real road conditions? 

Test persons drive a 78 
km loop in a simulator and 
in a real car, including car-
following, controlled 
approaching maneuvers, 
and rural single-
carriageway driving. A 

100 The sum score of NASA-
TLX shows relative 
validity. All dimensions of 
the Short Stress State 
Questionnaire show 
relative validity. The 
distress subscale of the 
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rotated figures task is 
used as a secondary task. 
NASA-TLX and the Short 
Stress State 
Questionnaire are used for 
cognitive measurement. 
Data are analyzed using 
ANOVA. 

Short Stress State 
Questionnaire shows 
absolute validity. 

2.2 Cognitive and physiological (stress-)reactions 

To comprehensively capture stress responses, the literature recommends combining 

cognitive and physiological measurements (Dimoka et al., 2012). This multimodal 

approach is now considered standard in stress research, as it allows for better 

explanation of variance and more reliable prediction of stress (Becker et al., 2023; 

Tams et al., 2014). 

Based on Selye‘s (1950) original definition, stress describes a nonspecific 

physiological response to demands for change. Later work shows that stress is a 

complex response pattern with psychological, cognitive, and behavioral components 

(Crosswell & Lockwood, 2020; Feuerstein et al., 2013). These responses indicate a 

disruption of physical or psychological balance, known as homeostasis (Cannon & 

Rosenberg, 1932; Chrousos, 1992; Robinson, 2018). A situation is perceived as 

stressful when the required resources for coping are judged as insufficient (Lazarus, 

1990), making the situation feel overwhelming or threatening (Lee & See, 2004). The 

greater the discrepancy between demands and available resources, the more intense 

the measurable stress response becomes (Cohen et al., 2016). 

Stress can be experienced as both positive (“eustress”) and negative (“distress”) 

(Lazarus, 1966; Selye, 1976). Eustress can enhance performance, whereas distress 

is perceived as burdensome. The transition between the two is individually variable. In 

relation to performance, the Hebbs curve is often cited, which describes a U-shaped 

relationship between stress and performance (Hebb, 1955). In research, however, the 

term “stress” is most often used synonymously with “distress.” 

In addition to direction and intensity, duration also plays a key role. Acute stress occurs 

within seconds to days, while chronic stress can last for months or years (Baum, 1990; 

Crosswell & Lockwood, 2020). Stressors, internal or external stimuli, trigger a stress 

response when their intensity or duration exceeds a critical threshold. The resulting 

reaction involves the activation of the so-called "fight-or-flight" response (Cannon, 

1939). The body attempts to restore disrupted homeostasis through physiological and 

psychological adaptation mechanisms (Boucsein, 2012; Giannakakis et al., 2022; 

Sapolsky, 2004). Affected functions include heart rate, blood pressure, respiration, and 

body temperature (Giannakakis et al., 2022). 

Biologically, two primary stress systems are involved: the hypothalamic-pituitary-

adrenal (HPA) axis and the sympathoadrenal medullary (SAM) system, the latter being 

part of the sympathetic branch of the autonomic nervous system (Cacioppo et al., 

2017; Chrousos, 1992). The HPA axis responds to stressors with the release of 

corticotropin from the hypothalamus, leading to the secretion of adrenocorticotropin. 

This in turn stimulates the adrenal gland to produce cortisol, adrenaline, and 
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noradrenaline. These hormones raise blood glucose levels and temporarily supply 

muscles and the brain with more energy (Chrousos, 2009; Giannakakis et al., 2022). 

The SAM system is responsible for the unconscious activation of the body. It increases 

sympathetic nervous system (SNS) activity while inhibiting the parasympathetic 

nervous system (PNS). Typical reactions include elevated heart rate, increased blood 

pressure, bronchodilation, and reduced activity of less acute functions such as 

digestion. While the SNS has an activating function, the PNS promotes relaxation and 

recovery through opposing mechanisms (Hall & Hall, 2020). 

Central method for measuring physiological stress responses is skin conductance 

(Galvanic Skin Response (GSR)), particularly due to its ease and low cost of use 

(Caruelle et al., 2019). GSR measures changes in the electrical conductivity of the skin 

caused by activity in the eccrine sweat glands, which are solely controlled by the 

sympathetic nervous system and activated during emotional arousal (Boucsein, 2012; 

Setz et al., 2010). An increase in skin conductance is associated with emotional 

arousal, regardless of whether it is perceived as positive (e.g., eustress) or negative 

(e.g., anxiety) (Lang et al., 1993). Either the tonic level (skin conductance level (SCL)) 

or the phasic response to individual stimuli (skin conductance response (SCR)) is 

measured. Research shows that both values increase with rising stress levels (Ren et 

al., 2013; Setz et al., 2010). 

One advantage of GSR is that it can be recorded continuously without interrupting task 

flow  (Healey & Picard, 2005). For this reason, it is often used in combination with self-

reports to obtain a more complete picture of the stress response. 

Another common method for stress measurement is the electrocardiogram (ECG), 

which records the heart’s electrical activity. The heart beats autonomously via electrical 

impulses generated in the sinus node and transmitted through a specialized 

conduction system (Hall & Hall, 2020). Both the sympathetic and parasympathetic 

nervous systems influence heart rate: parasympathetic activity reduces it via 

acetylcholine, while sympathetic activation increases frequency and contractility via 

noradrenaline (Giannakakis et al., 2022). In stress situations, sympathetic activity 

dominates: heart rate increases, contractile force rises, blood pressure and oxygen 

supply improve, typical characteristics of the fight-or-flight response (Engert et al., 

2014; Hall & Hall, 2020). 

To holistically assess a stress response, physiological measurements should be 

complemented by psychological assessments (Dimoka et al., 2012). The psychological 

component is usually measured via questionnaires and focuses on emotional or 

cognitive evaluation criteria, such as perceived mental or physical workload 

(Kabilmiharbi et al., 2022; Kelly et al., 2009), arousal level (Roos et al., 2021), 

subjective experience of stress (Qu et al., 2016; Rowden et al., 2011; Zhong et al., 

2022) or acceptance of the deployed technology (Albers et al., 2020). 

These cognitive assessments complement physiological data by adding a perception-

based layer (Cohen et al., 1983)  thereby aiding the interpretation of measured 

responses (Witte et al., 2021). 
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Common questionnaires for assessing subjective workload or stress include the NASA 

Task Load Index (NASA-TLX), the Short Stress State Questionnaire (SSSQ), and 

single-item scales. The NASA-TLX (Hart, 2006; Hart & Staveland, 1988)  measures 

perceived workload across six dimensions: mental, physical, and temporal demands, 

perceived performance, effort, and frustration. The resulting workload is closely related 

to perceived stress (Alsuraykh et al., 2019; Rubio et al., 2004). The SSSQ is a 24-item 

questionnaire that captures short-term changes in stress perception (Helton, 2004; 

Ringgold et al., 2024). The items can be grouped into three subdimensions: worry, 

distress, and engagement. In addition to validated multi-item questionnaires, single-

item measures can also be used to assess perceived workload or stress. These often 

correlate strongly with more extensive scales (Barré et al., 2017). A widely used 

instrument is the Visual Analogue Scale for Stress (VASS), where perceived stress is 

indicated on a continuum, typically ranging from “no stress” to “maximum stress” (Arza 

et al., 2019; Kabilmiharbi et al., 2022). 

Table 2 provides an overview of studies investigating stress while driving in either a 

simulator or a real vehicle. Both frequentist methods (e.g., correlation analyses, 

ANOVA) and machine learning approaches are employed for analysis. These studies 

utilize both physiological and cognitive indicators. 

At the physiological level, common measures include electrocardiogram (ECG) 

parameters (heart rate, heart rate variability), galvanic skin response (GSR), and eye-

tracking metrics. In some studies, additional physiological indicators such as 

respiratory rate, muscle activity, or salivary amylase are also recorded. At the cognitive 

level, workload and stress questionnaires, particularly the NASA-TLX and the Short 

Stress State Questionnaire, are predominantly used, sometimes complemented by 

single-item measures, for example in the form of visual analog scales. 

Table  2. Key studies on (physiological and cognitive) stress measurement during driving 

Source Research 
Question 

Method n Results 

Rendon-
Velez et al., 
2016 

How does time 
pressure affect 
driving behavior, 
physiology, and 
drivers’ 
adaptation 
strategies? 

Test persons drive in a 
simulator under conditions 
with and without time 
pressure. Cognitive 
measurements include the 
Mini Driver Behavior 
Questionnaire, the 
Multidimensional Driving Style 
Inventory, NASA-TLX, a 
confidence questionnaire, and 
a perceived time pressure 
questionnaire. Physiological 
measurements include eye 
tracking, electrocardiogram, 
respiration rate, and limb 
movement. Data are analyzed 
using correlations. 

56 Physiological activity 
increases under time 
pressure, with higher heart 
rate, respiration rate, and 
pupil diameter. Blink rate 
decreases under time 
pressure. 

Foy & 
Chapman, 
2018 

How do different 
road types affect 
drivers’ mental 
workload, and to 
what extent can 
these changes 

Test persons drive in a 
simulator on different road 
types. Cognitive 
measurements include 
NASA-TLX and an inhibitory 
control task. Physiological 

30 Galvanic skin response 
increases with rising 
workload. Heart rate and 
respiration rate do not show 
significant changes. Fixation 
duration decreases and 
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be detected 
through 
behavior, 
subjective 
assessments, 
physiological 
measurements, 
eye movements, 
and prefrontal 
cortex activity? 

measurements include 
functional near-infrared 
spectroscopy, eye tracking, 
heart rate, galvanic skin 
response, and respiration 
rate. Data are analyzed using 
repeated measures ANOVA. 

horizontal scanning 
increases with higher 
workload. Subjective 
perception is significantly 
related to physiological 
responses. 

Yamaguchi 
& 
Sakakima, 
2007 

Is salivary 
amylase activity 
(sAA) a reliable 
and rapid 
biomarker for 
detecting acute 
psychological 
stress 
responses 
during simulator 
driving, and how 
does sAA 
compare to 
subjective 
questionnaires 
and oculomotor 
measurements? 

Test persons drive in a 
simulator. Cognitive 
measurement is conducted 
with a self-developed 
questionnaire containing 
seven adjectives (relaxed, 
fun, anxious, refreshed, 
stressed, uplifted, tired). 
Physiological measurements 
include salivary amylase and 
electrooculography. Data are 
analyzed using paired t-tests. 

20 Questionnaire results do not 
show significant changes. 
Salivary amylase increases 
significantly during driving, 
indicating stress. Stress 
during driving can be 
detected through salivary 
amylase. 

Healey & 
Picard, 
2005 

Can driver’s 
workload and 
stress during 
real driving 
situations 
(urban, highway, 
resting periods) 
be reliably 
detected and 
classified using 
physiological 
measurements, 
and are these 
signals suitable 
for continuously 
and 
automatically 
recognizing 
driver states so 
that adaptive 
vehicle systems 
can respond? 

Test persons drive in real 
traffic on urban and highway 
routes with resting periods. 
Physiological measurements 
include galvanic skin 
response, electrocardiogram, 
respiration rate, skin 
temperature, and 
electromyography. Data are 
analyzed using video coding, 
pattern recognition, and 
correlation analysis. 

16 Low, medium, and high 
stress levels can be 
distinguished with 97.4% 
accuracy. Galvanic skin 
response is the most 
reliable stress marker. Heart 
rate and heart rate variability 
are reliable markers for 
stress detection. 
Electromyography and 
mean respiratory rate are 
less suitable. 

Daviaux et 
al., 2020 

Can acute 
stress in realistic 
driving 
situations be 
objectively 
quantified using 
phasic 
components of 
electrodermal 
activity, 
particularly 
during 

Test persons drive in a 
simulator and are exposed to 
unexpected, stress-inducing 
traffic events. Mechanical 
driving data such as braking 
force are collected. Cognitive 
measurements include the 
Visual Analogue Scale, the 
Arousal Predisposition Scale, 
and the Edinburgh 
Handedness Inventory. 
Physiological measurement is 

12 Stressful scenarios lead to 
increased galvanic skin 
response values. Galvanic 
skin response correlates 
with subjective stress 
ratings. Phasic galvanic skin 
response components are 
better suited than tonic 
components to quantify 
acute stress. 
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unexpected 
stress-inducing 
events in traffic? 

conducted with galvanic skin 
response. Data are analyzed 
using repeated measures 
ANOVA, paired samples t-
tests, and correlation 
analysis. 

2.3 User acceptance of technical systems 

For novel technical systems such as autonomous vehicles to successfully establish 

themselves in the transport sector, user acceptance is just as crucial as technological 

advancement. Various theoretical models and constructs exist in the literature to study 

this acceptance. In general, technology acceptance is understood as the willingness 

to use new technologies and integrate them into everyday life (Davis, 1989; Venkatesh 

et al., 2003). 

The theoretical foundations of technology acceptance are based on behavioral 

psychology models, particularly the Theory of Reasoned Action (TRA) by Fishbein et 

al. (1975), and the subsequent Theory of Planned Behavior (TPB) by Ajzen (1991). 

The TRA posits that behavior is determined by behavioral intention, which in turn is 

influenced by subjective norms and personal attitudes toward the behavior. The TPB 

extends this model by adding the concept of perceived behavioral control, i.e., a 

person’s assessment of whether they are actually capable of performing a given 

behavior. 

A model specifically tailored to technology acceptance is the Technology Acceptance 

Model (TAM) by Davis (1985, 1989). It is based on the constructs of Perceived 

Usefulness, the user’s subjective perception of the technology’s benefit, and Perceived 

Ease of Use, the perceived effortlessness of using it. The model assumes that 

technologies perceived as easy to use are also regarded as more useful, which in turn 

increases acceptance. 

Building on TAM,  Venkatesh et al. (2003) developed the Unified Theory of Acceptance 

and Use of Technology (UTAUT), which identifies four key influencing factors: 

Performance Expectancy, i.e., the belief that using the technology will provide personal 

benefit; Effort Expectancy, the perceived ease of use; Social Influence, the effect of 

others’ opinions; and Facilitating Conditions, the perceived availability of supporting 

resources such as technical infrastructure or assistance. These relationships are 

moderated by factors such as gender, age, experience, and voluntariness of use. 

The UTAUT2 model (Venkatesh et al., 2012) expands the original UTAUT by adding 

three constructs: Hedonic Motivation, i.e., enjoyment and user experience; Price Value, 

the perceived trade-off between cost and benefit; and Habit, the extent to which using 

the technology has become habitual. In contrast to the original UTAUT, the moderator 

voluntariness of use is no longer included in UTAUT2. 

For technologies such as autonomous driving, which are still in early stages of 

adoption, traditional acceptance models are often insufficient. Particularly relevant in 

this context are the constructs of trust and perceived risk. Trust refers to the belief that 

a technology is reliable, safe, and functional, which reduces uncertainty and 

strengthens the intention to use it (Gefen et al., 2003). Perceived risk describes the 

subjective evaluation of potentially negative consequences associated with using a 
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technology. In the case of autonomous vehicles, it is considered a common barrier to 

acceptance (Featherman & Pavlou, 2003; Menon, 2017). Both constructs, trust and 

perceived risk, are closely interconnected (Featherman & Pavlou, 2003)  and form 

important extensions to existing acceptance models, particularly in evaluating 

innovative technologies within the mobility context. 

Table 3 presents key studies in which acceptance models have been applied to 

investigate the use of autonomous shuttles. Nearly all of these studies are based on 

(extended) UTAUT models, with analyses predominantly conducted using structural 

equation modeling. Notably, data collection in most cases relies exclusively on 

questionnaires. Since autonomous shuttles are still only available in limited quantity on 

the mass market, respondents’ answers often reflect expectations and perceptions 

rather than actual experiences, a point that should be considered critically. 

Table  3. Key studies on technology acceptance models regarding autonomous shuttle buses 

Source Research Question Method n Results 

Korkmaz 
et al., 
2022 

Which factors influence 
individuals’ behavioral 
intention to use 
autonomous public 
transport systems, and 
how can an extended 
acceptance model (based 
on UTAUT2) explain this 
behavior? 

Participants complete online 
surveys and paper-pencil 
interviews. Used constructs 
include performance 
expectancy, perceived 
usefulness, perceived value, 
facilitating conditions, 
hedonic motivation, effort 
expectancy, trust and safety, 
habit, perceived risk, and 
behavioral intention. Data are 
analyzed using exploratory 
factor analysis, confirmatory 
factor analysis, and structural 
equation modeling. 

303 Trust and safety 
show the strongest 
influence on 
behavioral intention, 
followed by social 
influence, 
performance 
expectancy, and 
habit. The model 
explains 72% of the 
variance in 
behavioral intention. 

Rejali et 
al., 2024 

Which factors influence 
the public’s willingness to 
use Autonomous Modular 
Transit in the future? 

Participants complete an 
online survey. Used 
constructs include 
performance expectancy, 
effort expectancy, social 
influence, facilitating 
conditions, hedonic 
motivation, perceived value, 
habit, trust, green perceived 
usefulness, and behavioral 
intention. Data are analyzed 
using structural equation 
modeling. 

1662 Performance 
expectancy has the 
strongest influence 
on behavioral 
intention to use 
autonomous 
modular transit. 
Additional 
significant 
influences are found 
for social influence, 
hedonic motivation, 
and trust. 

Nordhoff 
et al., 
2018 

How do potential users 
accept automated 
shuttles – both with 
regard to the shuttle itself 
and its role as a feeder in 
public transport – and 
which factors determine 
usage intention and 
willingness to pay? 

Participants complete a 
questionnaire after a ride in a 
real automated shuttle. Used 
constructs include perceived 
enjoyment, performance 
expectancy, perceived safety, 
control, social influence, 
environmental attitudes, 
intention to use, and 
willingness to pay. Data are 
analyzed using principal 
component analysis and 
Pearson correlations. 

274 Perceived 
enjoyment, service 
quality, 
environmental 
attitudes, and 
intention to use 
have the strongest 
influence on 
acceptance. 
Performance 
expectancy and 
perceived safety 
show moderate 
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influence. Control, 
social influence, 
and willingness to 
pay show little or no 
influence. 

Nordhoff 
et al., 
2021 

How do various factors 
from the UTAUT and DIT 
models, as well as trust 
and automated shuttle 
sharing, affect the 
behavioral intention to 
use automated shuttles in 
public transport? 

Participants complete a 
questionnaire after a shuttle 
ride. Used constructs include 
performance expectancy, 
facilitating conditions, social 
influence, trust, behavioral 
intention, trialability, 
compatibility, and automated 
shuttle sharing. Data are 
analyzed using confirmatory 
factor analysis and structural 
equation modeling. 

340 In the standard 
model, performance 
expectancy is the 
only predictor of 
behavioral intention, 
with an explanatory 
contribution of 
39.7%. In the 
extended model, 
compatibility, trust, 
and automated 
shuttle sharing have 
significant 
influence, 
increasing the 
explanatory 
contribution to 
48.5%. 

The table also illustrates that acceptance models are widely used in this field of 

research. Their application, however, is not limited to autonomous shuttles, but extends 

to many other domains. With their extensions, these models rank among the most cited 

theories in technology acceptance research and are also broadly applied in disciplines 

such as service management and marketing (Baier et al., 2025). 

At the same time, there is criticism that models like UTAUT are increasingly reaching 

their limits and no longer generate truly novel insights. While the constructs employed 

are helpful for explaining acceptance, they only partially cover central influencing 

factors (Blut et al., 2022). Since a large portion of studies still relies on TAM surveys, 

which evaluate products or services exclusively through self-reports (Baier et al., 

2025), a comprehensive understanding is lacking. Accordingly, it is recommended to 

integrate new predictors into the theory and to adopt methodologically broader 

research designs, for example, by including observational data, qualitative analyses, 

or longitudinal studies (Blut et al., 2022)  

An early alternative approach was developed by Rese et al. (2014) with so-called TAM 

dictionaries. In this approach, terms from online reviews were automatically classified 

as positive or negative to computationally analyze customer opinions. The results were 

comparable to classical TAM surveys, although data processing was labor-intensive 

and the statistical power was limited. Subsequent studies (Rese et al., 2017; Schreiber, 

2020)  were able to replicate the findings and confirm the usefulness of this approach. 

Another innovative avenue involves extending the models beyond consciously 

controlled processes. By incorporating physiological measurements, automatic and 

unconscious responses can also be captured (Dimoka et al., 2012). This opens the 

“black box” of the stimulus-response approach, allowing cognitive, emotional, and 

attention-related processes to be considered, processes that often remain undetected 

in classical surveys (Davis & Granić, 2024). The goal is to integrate neurophysiological 

methods and theories into the explanation of technology acceptance, thereby 
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developing individualized TAM models that account for differences in cognition, 

emotion, and neurobiology, enabling more precise predictions. 

2.4 Challenges of using stressindicators in ux-research 

As described in Chapter 2.2, the stress response involves a complex interplay of 

physiological and cognitive processes (Pinel & Barnes, 2021). Consequently, no single 

stress marker is capable of capturing the human experience of stress fully and validly 

(Arza et al., 2019). 

The exclusive use of subjective methods is influenced by cognitive appraisal 

processes, which can lead to distortions, for example, through conscious or 

unconscious self-regulation or misjudgment  (Lin et al., 2005). Moreover, many of these 

tools are not designed for continuous measurement during an experiment but instead 

provide only momentary assessments. 

Established biochemical markers such as cortisol do allow for the detection of actual 

physiological stress responses, but they require invasive methods (e.g., saliva 

samples) and do not support real-time continuous measurement (Arza et al., 2019). 

In contrast, physiological methods such as heart rate or skin conductance 

measurement allow for continuous data collection. However, their interpretation is often 

ambiguous. For instance, an increase in skin conductance can indicate either elevated 

stress or positive excitement (Boucsein, 2012; Cacioppo et al., 2017). Additionally, 

studies have shown that physiological parameters do not always respond consistently, 

some stressors may be clearly reflected in one signal, while others remain unchanged 

(Leis & Lautenbach, 2020). 

Combining multiple indicators can help generate a more comprehensive picture (Arza 

et al., 2019; L. Chen et al., 2017), even though discrepancies may arise between 

physiological and subjective results (Lin et al., 2005). A multivariate approach can 

support a more nuanced understanding of the breadth of the stress response and 

enable valid conclusions about users’ experience and behavior (Arza et al., 2019; L. 

Chen et al., 2017). In this context, composite indicators play a key role: they simplify 

complex data analyses by aggregating multiple measures into a single, interpretable 

index (Nurdianto et al., 2024). 

Given the complexity of human stress responses, it is therefore necessary to go 

beyond isolated single measurements. Multimodal approaches that combine various 

physiological and cognitive methods are essential for developing robust and reliable 

overall indicators (Apraiz Iriarte et al., 2021; Arza et al., 2019; L. Chen et al., 2017; Lin 

et al., 2005; Mauri et al., 2010). 

3 Research questions and methodologies 

Already in the 1970s, the first validation studies on driving simulators were conducted 

(e.g., Barker et al., 1978), and their relevance has steadily increased since then. 

However, most research has so far focused on objective driving data such as speed or 

braking behavior. Studies that examine physiological parameters (e.g. eye-tracking; 

Carter & Laya, 1998) or cognitive aspects (e.g. self-reports; Reimer et al., 2006) are 

comparatively rare. A systematic literature review by Wynne et al. (2019) supports this 
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pattern: out of 44 identified comparison studies, the majority focused on objective 

indicators. 

While objective driving data is technically easy to collect, its interpretation often follows 

a classical stimulus–response (S-R) model. In this model, the driving situation is 

considered the stimulus, and the resulting behavior the direct response. However, this 

approach neglects intra-individual cognitive and physiological processes that 

significantly influence behavior. For example, test subjects may behave similarly in 

simulated and real driving scenarios in terms of observable actions, while their 

underlying physiological responses differ fundamentally. These processes are crucial 

to reliably assess the validity of simulators compared to real-world driving. 

Measuring and interpreting cognitive and physiological stress indicators is far more 

complex than analyzing objective driving data (Czaban & Himmels, 2025). 

Nevertheless, such an approach is essential to expand the classical S-R model into a 

stimulus–organism–response (S-O-R) model. Multiple studies therefore emphasize 

the need to systematically assess emotional and cognitive responses (Blana, 2000; 

Boer, 2000). This leads to the following research questions: 

RQ1: To what extent do physiological stress indicators correlate between simulated 

and real-world driving? How valid are these indicators in the simulation context? 

RQ2: To what extent do cognitive stress indicators correlate between simulated and 

real-world driving? How valid are they? 

RQ3: To what extent does gaze behavior correlate between simulator and real-world 

driving? Can gaze behavior serve as a valid comparison indicator? 

Beyond the issue of simulator validity, another central challenge arises: to what extent 

are simulation environments suitable for studying the acceptance of new mobility 

technologies, especially autonomous shuttle buses? As a disruptive innovation, 

autonomous shuttles offer numerous potential advantages, including improved traffic 

safety (Dehghani et al., 2025), more efficient resource use (Bansal et al., 2016; 

Othman, 2023), better traffic flow (Mira Bonnardel et al., 2020) and demand-responsive 

public transport (Golbabaei et al., 2022; Mahmud et al., 2022). However, public 

acceptance is a critical factor for the successful diffusion of such technologies (Riedl 

et al., 2024). 

Although a substantial number of studies on the acceptance of autonomous shuttles 

exist (e.g. Cai et al., 2023; Madigan et al., 2017; Nordhoff et al., 2017), typically based 

on established models like UTAUT or UTAUT2, three core weaknesses can be 

identified: First, most studies are purely hypothetical, participants have not actually 

experienced the technology. Since experience has been shown to significantly 

increase acceptance (e.g. Eden et al., 2017; Salonen & Haavisto, 2019), the external 

validity of such studies remains limited. 

Second, the few empirical studies that include real  (e.g. Herrenkind et al., 2019; 

Madigan et al., 2017) or simulated driving situations typically focus on everyday 

scenarios. Critical driving situations, which are particularly relevant for perceived 

safety, have rarely been considered, although these scenarios are likely key in shaping 

acceptance.  
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Third, traditional acceptance models based on self-reports have methodological 

limitations: they capture only conscious evaluations, neglecting unconscious and 

emotional responses. Integrating physiological and cognitive indicators, in the sense 

of a NeuroIS approach, may offer a deeper understanding (Davis & Granić, 2024). 

This leads to two additional research questions: 

RQ4: Can an autonomous shuttle simulator serve as a valid tool for measuring real-

life acceptance of autonomous shuttles? 

RQ5: Does integrating physiological and cognitive stress indicators increase the 

explanatory power of acceptance models? 

To capture stress responses, this dissertation employs a multi-method approach 

combining subjective (e.g., NASA-TLX) and physiological indicators (e.g., skin 

conductance). While this method mix allows for a more holistic view of stress 

responses, previous studies have shown that the results are often heterogeneous or 

even contradictory (Li et al., 2013). In particular, discrepancies between subjective and 

physiological indicators frequently complicate interpretation. One potential solution lies 

in the development of composite indicators, which integrate diverse data sources into 

a valid overall metric. Several approaches of this kind have been proposed (e.g. Apraiz 

Iriarte et al., 2021; Lin et al., 2005) and partially tested (e.g. L. Chen et al., 2017; Mauri 

et al., 2010), but are still not widely used, mainly due to methodological, technological, 

and financial barriers. 

So far, literature lacks a systematic examination of which individual indicators, 

especially physiological and cognitive, are most suitable for creating valid composite 

indicators. This leads to a final research question: 

RQ6: Which physiological and cognitive indicators are suitable for forming a composite 

indicator that offers higher validity and explanatory power for assessing stress 

responses? 

This cumulative dissertation is structured as follows: Part A (Appendix A) presents 

three studies focusing on simulator validity, addressing research questions RQ1 

through RQ3. Paper 1 examines various cognitive and physiological stress indicators 

across different driving scenarios. Paper 2 analyzes the similarity of physiological 

stress patterns over the course of a drive. Paper 3 compares gaze behavior in real-

world and simulated environments. 

Part B (Appendix B) includes a fourth paper that investigates the acceptance of 

autonomous shuttles using an extended UTAUT2 model. A shuttle simulator is 

employed to enable realistic user experiences and to deliberately test critical driving 

situations. The integration of physiological and cognitive indicators serves to deepen 

and expand the model (addressing RQ4 and RQ5). 

Beyond that Part B is dedicated to the development and application of valid composite 

indicators. Paper 5 identifies suitable individual indicators and combines them into 

composite measures. In Paper 6, these are tested within an intervention context, 

specifically addressing whether the use of lavender scent in high-stress driving 

situations can contribute to a reduction in physiological stress responses (RQ6). 
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Table 1 provides an overview of the publications included in this dissertation and their 
current status. 

Table  4. Submissions and publication status of the research papers 

# Title Authors (CRediT 

authorship contribution 
statement) 

Journal (VHB 
Jourqual 4 
Rating) 

Status 

1 Investigating simulator validity 
by using physiological and 
cognitive stress indicators 

Marcin Czaban 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Project 
administration, 
Methodology, Investigation, 
Formal analysis, Data 
curation, Conceptualization) 
Chantal Himmels 
(Writing – review & editing, 
Writing – original draft, 
Validation, Methodology, 
Formal analysis) 

Transportation 
Research Part 
F: Traffic 
Psychology 
and Behaviour 
(VHB B) 

Published 

     
2 Comparison of gaze behavior 

in real and simulated driving 
Marcin Czaban 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Project 
administration, 
Methodology, Investigation, 
Formal analysis, Data 
curation, Conceptualization) 

Christian Purucker 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Methodology, 
Formal analysis) 

Proceedings of 
the NeuroIS 
Retreat 2025 
(VHB C) 

Published 

     
3 User interaction with digital 

twins: how comparable are 
simulation and reality 

Marcin Czaban 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Project 
administration, 
Methodology, Investigation, 
Formal analysis, Data 
curation, Conceptualization) 
Eldar Sultanow 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Methodology, 
Formal analysis, Data 
curation) 

Alina Chircu  
(Writing – review & editing, 
Writing – original draft) 
Christian Czarnecki 
(Writing – review & editing, 
Writing – original draft) 
Joachim Riedl 
(Writing – review & editing, 
Writing – original draft) 
Stefan Wengler 
(Writing – review & editing, 
Writing – original draft) 

Business & 
Information 
Systems 
Engineering 
(VHB B) 

Under 
Review 
(1st round) 

     
     
4 User Acceptance of 

Autonomous Shuttle Systems: 
A UTAUT2-Based Analysis 

Marcin Czaban 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Project 

Journal of 
Public 
Transportation 

Under 
Review (1st 
round) 
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with simulated driving tests 
and physiological 
measurement 

administration, 
Methodology, Investigation, 
Formal analysis, Data 
curation, Conceptualization) 
Daniel Baier 
(Writing – review & editing, 
Writing – original draft, 
Methodology, Formal 
analysis) 

(Not in VHB; 
Q1 rated) 

 

5 Single measurement vs. 
composite indicators for user 
experience research 

Marcin Czaban 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Project 
administration, 
Methodology, Investigation, 
Formal analysis, Data 
curation, 

Conceptualization), 
Joachim Riedl 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Methodology, 
Formal analysis) 

Stefan Wengler 

Behavior 
Research 
Methods 
(VHB B) 

Under 
Review 
(1st round) 

  (Writing – review & editing, 
Writing – original draft) 

 

  

6 Scent and stress: The role of 
lavender and perception in 
simulated driving scenarios 

Marcin Czaban 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Project 
administration, 
Methodology, Investigation, 
Formal analysis, Data 
curation, 
Conceptualization) 
Sarah Victoria 
Mohr 
(Writing – review & editing, 
Writing – original draft, 
Methodology, Formal 
analysis) 

Joachim Riedl 
(Writing – review & editing, 
Writing – original draft, 
Visualization, Methodology, 
Formal analysis) 

Stefan Wengler 
(Writing – review & editing, 
Writing – original draft) 

Proceedings 
of the NeuroIS 
Retreat 2025 
(VHB C) 

Published 

 

Table 5 provides a comprehensive overview of the studies listed in Table 4 of this 

dissertation, focusing on the research question, methodology, data basis, and key 

findings of each work.  

It becomes evident that this cumulative dissertation extends existing research 

approaches by systematically integrating physiological and cognitive (stress) indicators 

into both data collection and modeling. 

This extension is based on the assumption that intrapersonal processes should be 

systematically considered to obtain a holistic understanding of user experience and 

thereby increase the explanatory power of existing models. 
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Particularly in driving simulator validation studies, the focus has so far been on vehicle 

dynamics, largely overlooking the perspective and subjective experiences of users. 

Only a few studies explicitly examine the individual and their physiological and/or 

cognitive responses (e.g., Wynne et al., 2019; see table 1). 

In the field of technology acceptance research, classical survey-based models have 

also been criticized for providing an incomplete explanation of acceptance (Blut et al., 

2022). This dissertation addresses this gap by following the recommendation of Davis 

and Granić (2024) to extend traditional acceptance models with physiological 

variables, thereby transforming the classic stimulus-response approach into a 

stimulus-organism-response framework. 

The use of physiological and cognitive stress indicators can, however, lead to 

inconsistent results. The methodological innovation of this work lies in developing 

stable and valid composite indicators from these individual measures, which can be 

applied universally. 

Overall, the dissertation contributes on three levels: 

1. Expanding driving simulator validation studies to include the user perspective. 

2. Strengthening technology acceptance models through the integration of a 

NeuroIS approach. 

3. Developing a new methodological tool in the form of combined composite 

indicators for user research. 
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Table  5. In-depth summary of included studies: objectives, methodology, and results 

# Research Question Method n Results 

1 To what extent can physiological stress 
indicators obtained in a medium-fidelity 
driving simulator be transferred to real-
world driving (absolute and relative 
validity)? 
 
To what extent can cognitive stress 
indicators obtained in a medium-fidelity 
driving simulator be transferred to real-
world driving? 

Participants complete both a 23 km real-world and 
a simulator drive in a within-subject design. 
Physiological measurements include 
electrocardiogram-based variables, galvanic skin 
response-based variables, and salivary cortisol. 
Cognitive measurements include NASA-TLX, the 
Short Stress State Questionnaire (SSSQ), and a 
single-item stress measure. Data are analyzed 
using Bayesian ANOVA and Bayesian paired t-tests 

68 Skin conductance response, RMSSD, 
SDNN and skin conductance tonic level 
show absolute validity. Skin 
conductance response, skin 
conductance level, RMSSD, and 
SDNN. Peak Amplitude, heart rate, and 
RR-Interval show no validity. For 
cognitive measures, only the SSSQ 
worry dimension shows absolute 
validity. NASA-TLX, the SSSQ 
dimensions distress and engagement, 
and single-item stress measures show 
no validity. Subjective stress is 
perceived as higher in the simulator. 

2 Does gaze behavior (fixation patterns) 
systematically differ between real driving 
and simulator driving across different road 
types (urban, rural, highway)? 

Participants complete a 23 km real-world and 
simulator drive in a within-subject design. Eye-
tracking is used for physiological measurement. 
Data are analyzed with gaze-point-plot analysis and 
expert ratings. 

12 Overall fixation patterns are moderately 
similar between real-world and 
simulator driving. The highest similarity 
is found for the route as a whole, while 
the lowest similarity occurs in urban 
sections. Fixation density is highest in 
the center, with greater peripheral 
dispersion in the real vehicle. The 
simulator shows a slightly shifted field 
of view. Patterns are similar across 
segments, with low intrapersonal 
differences. 

3 What are the limitations of mean analysis 
across different segments? 
 

Participants complete a 23 km real-world and 
simulator drive in a within-subject design. 
Physiological measurements include 
electrocardiogram-based and galvanic skin 

68 Mean values obscure dynamics, peak 
values, and contextual differences. 
Variability, learning effects, and complex 
interrelations are lost in mean analysis. 
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What insights can be gained from time-
series analysis? 

response-based variables. Data are analyzed using 
t-tests for segments and time-series analysis with 
correlation for the whole drive. 

Time-series analysis shows a moderate 
correlation of skin conductance level 
between simulator and real driving. 
Mean comparisons indicate larger 
differences than time-series analysis. 

4 Is a shuttle bus simulator a suitable tool 
for acceptance studies? 
 
Which factors explain the intention 
behavior to use an autonomous shuttle 
bus? 
 
Is the explanatory power increased by 
integrating physiological and cognitive 
stress responses? 

Participants complete a simulated shuttle bus ride 
with critical situations. Physiological measurements 
include electrocardiogram-based and galvanic skin 
response-based variables. Cognitive 
measurements include the Perceived Stress Scale 
(PSS-10), NASA-TLX, single-item stress 
measurement, and the extended UTAUT2 model. 
Data are analyzed using partial least squares 
structural equation modeling. 

104 Social influence, facilitating conditions, 
trust, perceived risk, and perceived 
usefulness have a significant positive 
effect on behavioral intention. Cognitive 
reaction and hedonic motivation show a 
significant negative effect. Performance 
expectancy and effort expectancy show 
no significant effect. Cardiac activation 
has a significant positive effect on 
cognitive response, while electrodermal 
activation has a significant negative 
effect. 

5 How strongly do physiological and 
cognitive indicators of stress correlate 
with each other, and can stable combined 
stress indicators be derived from them? 
 
To what extent does a combined stress 
indicator increase with rising situational 
demands or the requirements of a stress 
condition? 
 
Does the composition of a combined 
stress indicator remain stable across 
different situational conditions, ensuring 
reliable measurement? 

Participants complete a 23 km real-world and 
simulator drive in a within-subject design. 
Physiological measurements include 
electrocardiogram-based variables, galvanic skin 
response-based variables, and salivary cortisol. 
Cognitive measurements include NASA-TLX, the 
Short Stress State Questionnaire (SSSQ), and a 
single-item stress measure. Data are analyzed 
using reliability analysis, correlation analysis, and 
principal component analysis. 

68 Higher demands during driving lead to 
stronger stress responses. Single 
physiological and cognitive indicators 
provide an inconsistent picture. 
Aggregated indicators form two 
dimensions, physiological response and 
cognitive response. This two-
dimensional structure remains stable 
across segments of both real and 
simulated driving. 
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Do individual physiological measures and 
aggregated indicators truly reflect 
participants’ subjective perception of 
stress, for example through correlation 
with objective biological stress markers 
such as cortisol? 

6 Does the controlled use of lavender scent 
during a driving task reduce measurable 
stress levels at the cognitive and 
physiological level compared to no scent 
exposure? 
 
Does the conscious perception of 
lavender scent influence its effect on 
stress levels? 
 

Participants complete a simulator ride with critical 
situations in a between-subject design with two 
groups. During the ride, lavender scent is applied. 
Physiological measurements include galvanic skin 
response-based and electrocardiogram-based 
variables. Cognitive measurements include NASA-
TLX and a single-item stress measure. Data are 
analyzed using reliability analysis, principal 
component analysis, and independent t-tests. 

26 Exposure to lavender scent does not 
generally reduce stress. When 
participants consciously perceive the 
scent, cognitive stress levels are 
significantly lower, while physiological 
stress levels do not differ. Conscious 
perception may positively influence 
stress processing through cognitive 
mechanisms such as placebo effects or 
Hawthorne effects. 
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4 Results 

4.1 Part A: Driving simulator validity 

4.1.1 Summary of Research Paper No.1 

Driving simulators have become indispensable in automotive research and 

development, offering cost and time efficiency as well as standardized testing 

procedures. However, for a simulator to serve as a meaningful tool, it must produce 

results that are comparable to those obtained in real vehicles, a concept referred to as 

simulator validity. 

Previous validation studies have primarily focused on driving dynamics such as 

acceleration and braking, while underlying behavioral responses such as stress have 

often been neglected. This paper investigates simulator validity in the context of stress 

research by comparing physiological and cognitive stress indicators between real-

world driving and a digital replication of the same route in a driving simulator. Since 

classical null hypothesis significance testing (NHST) faces limitations in this context, a 

Bayesian analytical approach was applied, which can provide evidence both for 

differences and for equivalence between conditions. 

A total of 68 participants took part in the study. Each participant completed a 23 km 

route (divided into 7 sections consisting of rural roads, urban roads and highway) both 

in a real vehicle and in a medium-fidelity simulator. On the physiological level, galvanic 

skin responses (skin conductance response(SCR), skin conductance level (SCL), peak 

amplitude(PA)), cardiac activity (heart Rate (HR) and heart Rate Variability (HRV): RR-

interval, RMSSD, SDNN), and salivary cortisol were recorded. On the cognitive level, 

data were collected using the NASA-TLX, the Short Stress State Questionnaire 

(SSSQ), as well as single-item measures on perceived stress, vehicle operation, and 

well-being. 

The results revealed a mixed picture: among physiological measures, SCR, RMSSD, 

and SDNN demonstrated both absolute and relative validity. Salivary cortisol showed 

absolute validity, while SCL demonstrated only relative validity. PA, HR, and RR-

interval failed to reach validity criteria. On the cognitive level, only the “Worry” 

dimension of the SSSQ showed absolute validity. All other cognitive measures scored 

higher in the simulator, suggesting that it was subjectively experienced as more 

stressful. 

Overall, the findings suggest that driving simulators are well-suited for analyzing 

intraindividual physiological stress responses, whereas cognitive stress indicators 

should be interpreted with greater caution. Limitations of the study include the absence 

of driving dynamics data, high interindividual variability, and the fixed order of drives 

(with the real drive always preceding the simulated one). 

4.1.2 Summary of Research Paper No. 2 

Driving simulators provide safe, efficient, and standardized testing environments, 

making them highly relevant for vehicle development. For simulator-based tests to 



  

30 
 

yield meaningful insights, their outcomes should be comparable to those obtained from 

real-world driving. Studies addressing such comparisons are referred to as simulator 

validation. 

Most existing validation studies have primarily focused on driving performance metrics 

such as lane keeping or speed. In contrast, gaze behavior, which is central to 

situational awareness, has received little attention to date, and the few available 

studies report inconsistent findings. This reveals a research gap regarding the validity 

of eye-tracking data in driving simulators. The present study therefore aimed to 

systematically examine whether gaze behavior differs between real and simulated 

driving conditions. Specifically, we investigated potential differences both across road 

types (urban, rural, highway) and between driving conditions (real vs. simulator). 

To address this research question, twelve participants completed a 23 km drive 

(comprising urban, rural, and highway sections) in both a real vehicle and a medium-

fidelity simulator using a digital replication of the route. Gaze behavior was recorded 

with eye-tracking glasses. Data analysis was conducted through gaze-point plots, 

supplemented by expert ratings assessing the similarity of gaze patterns. 

The results indicate a moderate similarity of gaze patterns between real and simulated 

drives. At the same time, fixation patterns differed systematically across road types. 

Compared to real driving, simulator drives showed reduced peripheral dispersion and 

a systematic downward shift of gaze points. Patterns were most similar in urban and 

rural sections, whereas highway driving yielded the highest similarity values but also 

the greatest interindividual variability. 

In summary, gaze patterns between real and simulated conditions can be considered 

largely comparable. The observed differences appear to be driven primarily by 

environmental and interface-related factors. Study limitations include the small sample 

size, potential learning effects due to the fixed order of drives, and the subjectivity of 

expert ratings. Future research should employ more advanced statistical approaches 

and compare simulators of different fidelity levels. 

4.1.3 Summary of Research Paper No. 3 

Digital twins are digital representations of physical entities designed to replicate their 

dynamics as accurately as possible. In this context, test tracks realistically reproduced 

in a driving simulator can be considered a digital twin, serving to virtually replicate real 

driving situations. Accordingly, the output of the digital twin should closely mirror that 

of real drives. The aim of the present study was to examine whether a driving simulator, 

in its role as a digital twin, elicits comparable physiological stress responses to those 

observed in real driving, and whether it may thus serve as a partial substitute. The 

research questions specifically addressed the limitations of segment-level mean 

analyses and the additional insights that can be gained from time-series analysis. 

To answer these questions, 68 participants completed a 23 km test route consisting of 

urban, rural, and highway sections, both in a real vehicle and in a medium-fidelity 

simulator. During the drives, indicators of electrocardiography (heart rate (HR), RR-

interval, RMSSD, SDNN) and galvanic skin response (skin conductance response 
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(SCR), skin conductance level (SCL), peak amplitude (PA)) were recorded. Data were 

analyzed both segment-wise using mean comparisons and across the entire driving 

duration in the form of time-series analysis. For the time-series analysis, SCL (tonic 

signal) was used. 

The mean comparisons revealed no significant differences between real and simulated 

driving for SCR, RMSSD, and SDNN. By contrast, SCL and PA were significantly higher 

in the simulator, while HR was higher in the real vehicle. The RR-interval was longer in 

the simulator than in the real drive. 

Because mean analyses smooth out fluctuations and thereby obscure temporal 

dynamics or extreme values, time-series analysis allows for a more fine-grained 

examination. Using SCL as an example, the time-series analysis revealed moderate 

correlations between conditions for urban and rural driving. Visual inspection of the 

trajectories also suggested a high similarity between curves. 

In summary, a driving simulator can, as a digital twin, reproduce fundamental patterns 

of physiological stress responses. It appears particularly suitable as a substitute for 

real driving in controlled and less complex scenarios, though it does not capture the 

full range of responses observed in reality. The observed differences are primarily 

attributable to environmental and interface-related factors. 

The study further highlights the limitations of mean analyses, as they smooth relevant 

dynamics of physiological responses. Time-series analysis thus represents a valuable 

complement. Another limitation lies in the absence of real-time bidirectionality between 

real and simulated driving environments: the digital twin currently functions only as a 

static replica without direct feedback. Future studies should therefore implement 

adaptive algorithms that allow for flexible real-time adjustments. 

4.2 Part B: Acceptance and stress measurement using simulators 

4.2.1 Summary of Research Paper No. 4 

To promote the diffusion of autonomous shuttle buses, a priori acceptance of the 

technology is required in order to identify potential influencing factors. The present 

study therefore investigates which factors affect the behavioral intention to use 

autonomous shuttles. Since these vehicles are not yet widely available in the market, 

most previous studies have relied on survey data from individuals without practical 

experience. However, it is well established that experience with such technologies can 

substantially influence acceptance. 

To address this research gap, a shuttle bus simulator was employed to present 

potentially critical driving scenarios and examine the impact of physiological and 

cognitive stress responses on technology acceptance. A total of 104 participants 

completed an approximately eight-minute simulated ride that included five potentially 

critical situations. Physiological measures included heart rate and RMSSD (cardiac 

activation) as well as skin conductance response and skin conductance level 

(electrodermal activation). Cognitive measures included an extended UTAUT2 
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questionnaire, the Perceived Stress Scale (PSS-10), NASA-TLX, and self-developed 

single-item measures. Data were analyzed using structural equation modeling (SEM). 

Results indicate significant positive effects of social influence, facilitating conditions, 

trust & perceived risk, and perceived usefulness on behavioral intention. Contrary to 

expectations, hedonic motivation had a significant negative effect. Cognitively 

perceived stress reduced behavioral intention and was primarily explained by cardiac 

activation. Overall, the model accounted for 61.1 % of the variance in behavioral 

intention. 

These findings suggest that acceptance of autonomous shuttles is influenced not only 

by technical and usability factors but also by users’ perceived safety and stress levels. 

Limitations of the study include a homogeneous participant group and a relatively small 

sample size. Additionally, participants were aware of the safety of a simulated 

environment, which may have affected physiological responses. Future research 

should apply these methods in real driving scenarios to further validate the findings. 

4.2.2 Summary of Research Paper No. 5 

In line with a customer-centered marketing approach, understanding users’ opinions 

and their usage experience is crucial for product development. A wide range of 

questionnaires and physiological measurements are available for use in product 

testing to capture users’ reactions. However, interpreting single measures often poses 

a challenge, and comparisons across individual indicators may even yield contradictory 

results. 

This study therefore investigates whether established (physiological and cognitive) 

single indicators for measuring stress and user reactions in technology interactions are 

suitable for providing reliable insights. The aim is to derive combined and more stable 

measures from individual indicators that offer higher explanatory power and reliability 

than single metrics. 

To address this question, 68 people participated in a test drive boasting a within-subject 

design. They completed a 23 km route divided into seven segments (14 “situations” in 

total) both in a real vehicle and in an identically modeled driving simulator. During the 

drives, physiological stress indicators (Galvanic Skin Response: skin conductance 

level (SCL), skin conductance response (SCR), peak amplitude (PA); 

electrocardiogram: heart rate (HR), RR-interval, RMSSD, SDNN) as well as cognitive 

stress indicators (NASA-TLX, Short Stress State Questionnaire, single items: stress, 

physical well-being, vehicle operation) were collected. The data were analyzed using 

correlation analyses as well as reliability and factor analyses. 

The results indicate that the simulator ride was perceived as more stressful than the 

real drive. Analyses of single indicators yielded partly inconsistent findings. However, 

the factor analysis revealed two stable composite factors: Physiological Reaction 

(comprising SCR and HR) and Cognitive Reaction (comprising NASA-TLX, single-item 

stress, and single-item physical well-being). These combined indicators remained 

stable across all situations and showed more consistent associations with situational 

coping and cortisol levels than the single indicators. 
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It is recommended that future user studies rely on these combined indicators, with 

cognitive measures in particular offering an efficient alternative to more elaborate 

physiological procedures due to their simplicity and validity. Limitations of the study 

include the homogeneity of the sample, the limited variance in driving difficulty, and 

missing controls in cortisol assessment. 

4.2.3 Summary of Research Paper No. 6 

Over 90% of traffic accidents are attributable to human error. Stress is a central risk 

factor, as it can impair driving performance and increase accident risk. While moderate 

stress in terms of eustress may support performance, excessive stress (distress) 

clearly has a negative impact on cognitive and motor abilities. It is well established that 

scents such as lavender can have calming and stress-reducing effects and are 

therefore discussed as potential interventions in critical driving situations. Against this 

background, the present study investigates whether the use of lavender scent in critical 

situations in a driving simulator can reduce participants’ stress levels. 

A total of 26 participants completed a simulator drive that included five stress-inducing 

events. In the experimental group, lavender scent was released during the drive, 

whereas the control group drove without scent. Physiological (skin conductance 

response (SCR); heart rate (HR)) and cognitive stress indicators (NASA-TLX, self-

reports) were measured. Based on a principal component analysis, the measures were 

aggregated into two factors: Physiological Reaction and Cognitive Reaction. 

For analysis, participants were divided into three groups: no scent, scent without 

perception, and scent with perception. Data were analyzed using t-tests. The results 

suggest that lavender scent does not automatically lead to stress reduction. 

Physiological stress values were even lower in the control group. A significant reduction 

in cognitive stress was observed only when participants consciously perceived the 

scent, whereas unconscious exposure was associated with higher stress values. 

In summary, scent interventions do not appear to be effective per se but require 

conscious perception, possibly due to a placebo mechanism. For practical 

applications, this implies that scents should be administered in a way that ensures 

participants are aware of them. 

The study’s limitations lie in the small sample size and the absence of baseline controls 

for physiological measures. The results should therefore be regarded as exploratory 

and require further validation in future research. 

5 Conclusion 

The present study pursued the goal of examining the suitability of a driving simulator 

as a valid substitute for real-world driving in terms of simulator validity. The focus was 

particularly on physiological and cognitive stress responses. Furthermore, it was 

examined whether an autonomous shuttle bus simulator is suitable for conducting 

acceptance studies and whether the inclusion of physiological and cognitive indicators 

can provide an additional explanatory contribution to acceptance measurement. 

Finally, an approach was developed for how complex stress responses can be validly 

represented by bundled indicators (so-called composite indicators). Based on six 
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research questions, three thematic blocks were addressed: simulator validity, 

acceptance research using a simulator, and indicator construction. Thec key findings 

are summarized and contextualized below along these research questions. 

RQ1: To what extent do physiological stress indicators correlate between 

simulated and real-world driving? How valid are these indicators in the 

simulation context? 

To answer the first research question, the results from Paper No. 1 (Appendix A.1) and 

Paper No. 3 (Appendix A.3) were used. While Paper No. 1 follows a segment-based 

analysis using a Bayesian approach, Paper No. 3 uses a time series analysis over the 

entire driving process. The combination of both methodological approaches enables a 

differentiated view: while the mean comparisons from Paper No. 1 allow conclusions 

to be drawn about section-specific differences between real and simulated driving, the 

time series analysis from Paper No. 3 allows for a dynamic evaluation of the 

physiological response course, thus avoiding potential distortions caused by mean 

formation. 

Overall, a heterogeneous picture emerges regarding the validity of the physiological 

indicators examined. Some metrics show both absolute and relative validity between 

real and simulated driving, while others show no or only limited alignment. 

In Paper No. 1, various indicators were considered: skin conductance-based measures 

such as skin conductance response, skin conductance level, and peak amplitude; 

ECG-based metrics such as heart rate, RR-interval, RMSSD, and SDNN; and salivary 

cortisol as an endocrine stress marker. For all parameters except cortisol, section 

comparisons were conducted using a Bayesian ANOVA; cortisol was compared using 

a Bayesian paired t-test due to the single measurement per drive. 

The results in the field of skin conductance show that both absolute and relative validity 

could be established for the skin conductance response. As this indicator has hardly 

been considered in comparable simulator studies so far, no direct comparative data is 

available. Relative but not absolute validity could be demonstrated for the skin 

conductance level, a finding consistent with the results of Reimer and Mehler (2011). 

In contrast, Mueller (2015) reports no validity for the same indicator. The Peak 

Amplitude, in turn, showed neither absolute nor relative validity; here, too, comparative 

studies that would enable classification are lacking. 

With regard to the ECG-based parameters, only RMSSD and SDNN, both measures 

of heart rate variability, show both absolute and relative validity. This finding is based 

on continuously recorded data that reveal consistent patterns between real and 

simulated driving. The RR-interval, on the other hand, proved not to be valid. For heart 

rate, no reliable evidence of validity was found in the present study. Thus, the results 

are consistent with studies by Johnson et al. (2011) and Milleville-Pennel and Charron 

(2015), which also report no validity for this parameter. Other studies, such as those 

by Reimer und Mehler (2011) or Mueller (2015), report partly contradictory results and 

indicate relative or absolute validity, suggesting a possible context or participant 

dependence. 
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Regarding salivary cortisol, absolute validity could be established: the values after real 

and simulated driving do not differ significantly. However, since only one measurement 

was taken per driving time point, relative validity in terms of section-related courses 

could not be examined. Comparable studies that use this parameter in a similar context 

are not yet known. 

The time series analysis conducted in Paper No. 3 focused on the skin conductance 

level within urban and rural road segments. The analysis revealed moderate linear 

correlations in the response course between simulator and reality. This result suggests 

that the physiological reactions over time are similar in their dynamics, an aspect that 

could not be captured by mean comparisons alone. 

In summary, with regard to RQ1, it can be stated that some continuously recorded 

physiological parameters, particularly SCR, RMSSD, and SDNN, show validity and are 

therefore suitable for use in simulator studies. These indicators offer a high degree of 

informative value, especially in intra-individual analyses. The salivary cortisol level also 

proves to be a robust parameter that shows no difference between real and simulated 

driving. Other indicators such as heart rate, peak amplitude, or RR-interval show less 

consistency and seem to be more influenced by contextual or individual factors. The 

time series analysis usefully complements the results by making parallels in the course 

of stress reactions visible. Overall, it appears that a driving simulator can represent a 

valid instrument, particularly in less complex environments or when examining general 

physiological reactions. 

RQ2: To what extent do cognitive stress indicators correlate between simulated 

and real-world driving? How valid are they? 

To answer the second research question, various cognitive stress indicators were 

analyzed in Paper No. 1. These included the NASA Task Load Index (NASA-TLX), the 

Short Stress State Questionnaire (SSSQ), as well as three single-item self-reports that 

captured perceived stress level (STRESS), vehicle operation, and physical wellbeing. 

Since all cognitive indicators were collected only retrospectively, i.e., after completion 

of the respective drives, only statements about absolute validity could be made. 

Section-related or time-dynamic analyses were not possible in this case. 

The results show that the NASA-TLX does not exhibit absolute validity, meaning that 

subjective workload was not rated equally in simulator and real driving. This result 

contradicts several earlier studies: Diels et al. (2011), Galante et al. (2018), Milleville-

Pennel and Charron (2015), Mueller (2015) and Lobjois et al. (2021) report relative 

validity for NASA-TLX, partly also for specific workload dimensions. One explanation 

for the deviation could lie in the retrospective collection, which may have led to 

distorted or context-dependent judgments. 

The SSSQ was evaluated in the three subscales distress, engagement, and worry. Of 

these, only the dimension worry showed absolute validity, while distress and 

engagement did not deliver consistent results between the two driving situations. 

Again, there is some deviation from previous findings: Galante et al. (2018) reported 

absolute validity for the distress dimension and also found relative validity for all three 

dimensions. In the present work, such a pattern was not observed, which could also 

be due to methodological or contextual differences. 
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For the self-developed single-item scales STRESS, vehicle operation, and physical 

wellbeing, no absolute validity could be demonstrated. In all three cases, the 

responses differed significantly between simulator and real driving, indicating different 

perceptions of the driving situations. 

Overall, a clear picture emerges: the drive in the simulator was subjectively perceived 

as more stressful and burdensome than the real drive. This result runs consistently 

through the various indicators and suggests that the simulator represented an 

unfamiliar, possibly even irritating situation for many participants. The increased 

cognitive stress in the simulator could therefore be explained less by the driving task 

itself and more by the unfamiliar environment, the lack of motion impressions, or other 

simulator-related factors. The overall inconsistent validity pattern could also be due to 

the fact that subjective assessments were given retrospectively for the entire drive, 

which may have blurred subtle differences between individual road segments. 

In summary, it can be stated that cognitive stress indicators correspond only to a limited 

extent validly between real and simulated driving. The only dimension with reliable 

agreement is worry from the SSSQ. All other indicators suggest a higher subjective 

burden in the simulator. For future studies, it may therefore be useful to collect cognitive 

indicators in a more differentiated way, e.g., section-wise or in real time, to better 

capture validity in higher resolution and control contextual influences. 

RQ3: To what extent does gaze behavior correlate between simulator and real-

world driving? Can gaze behavior serve as a valid comparison indicator? 

To answer the third research question, the results from Paper No. 2 (Appendix A.2) 

were used. In this study, gaze behavior in three route sections (urban, rural road, 

highway) as well as for the entire drive was compared between driving simulator and 

real-world driving, based on gazepoint plots and expert assessments of the similarity 

of fixation patterns. 

For the entire drive, there is overall a moderate visual similarity between the two 

experimental environments. Across all routes, typical gaze patterns were recognizable, 

which appeared in similar form in both settings. This supports the assumption of 

relative validity of gaze behavior. At the same time, however, systematic differences in 

the absolute gaze distribution occurred: gaze dispersion was generally more limited in 

the simulator, and fixations were positioned slightly lower in the image frame. These 

deviations can be explained by reduced environmental stimuli, the design of the 

interface, or a potentially lower degree of realism of the simulator, an effect also 

observed in previous studies (e.g. Fors et al., 2013). 

The differentiated analysis of individual route segments suggests that especially in the 

urban drive, high visual similarities were present, as the gazepoint plots with 

comparable fixation patterns in the central field of view and wide peripheral dispersion 

indicate. However, the expert ratings showed the highest average similarity value for 

the highway drive, with simultaneously the greatest interindividual variation. In both 

environments, fixations were strongly concentrated on the central field of view, 

supplemented by broad peripheral dispersion. On the rural road, a similar focus on the 

roadway was observed, with the difference that in the simulator, horizontal dispersion 

was lower, presumably due to fewer peripheral stimuli such as oncoming traffic. On the 
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highway, gaze was most centralized in both conditions, which can be attributed to the 

lower complexity and stimulus density of this driving situation. 

The expert assessments support these observations: the highest average similarity 

was awarded for the entire route, followed by the highway, whereby the highest 

interindividual variation occurred precisely in the latter. This result suggests that some 

participants showed very similar gaze behavior in both environments, while others 

showed greater differences. The variance could be due to individual differences in the 

perception of realism or a changed sense of risk during real-world driving, especially 

on the highway with real traffic. At the same time, the graphical design of the simulated 

highway was less complex, therefore potentially reducing visual exploration. 

Overall, it can be concluded that gaze behavior is fundamentally suitable as an 

indicator of comparability between simulated and real driving, particularly for the 

investigation of visual attention. Relative validity is supported by parallel gaze patterns 

across different environments. At the same time, systematic distortions such as 

reduced peripheral dispersion, vertical shifts, and context-dependent differences must 

be taken into account. These findings support using gaze behavior as a 

complementary indicator that provides valuable insights but also has limitations 

regarding its absolute validity. 

RQ4: Can an autonomous shuttle simulator serve as a valid tool for measuring 

real-life acceptance of autonomous shuttles? 

To answer RQ4, whether an autonomous shuttle bus simulator is suitable as a tool for 

realistically measuring the acceptance of autonomous shuttles, findings from Paper 

No. 4 (Appendix B.1) were used. Unlike many previous studies, which rely on surveys 

or experiences from rather everyday driving situations, the use of a simulator allows 

the targeted experience of critical driving situations. This enables the evaluation of 

acceptance based on actual, albeit simulated, experiences. To model acceptance, an 

extended UTAUT2 model was used, which examined the constructs Performance 

Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Hedonic 

Motivation, Trust & Perceived Risk, and Perceived Usefulness with regard to their 

influence on Behavioral Intention. 

The results show, deviating from Korkmaz et al. (2022) and Rejali et al. (2024), no 

significant effect of Performance Expectancy on the intention to use. A possible 

explanation lies in a content-related overlap with the construct of Facilitating 

Conditions. Effort Expectancy also showed no effect, unlike in Madigan et al. (2016), 

where a positive correlation was found. It is conceivable that in the present study, the 

subjectively perceived effort was rated higher due to the critical situations. 

The strongest predictor in the model was Social Influence: the social context, i.e., 

norms and group influences, played a central role for the intention to use, similar to 

Kapser and Abdelrahman (2020). Facilitating Conditions showed, in accordance with 

Madigan et al. (2017), a positive effect, although this construct was captured with only 

one item due to model fit. Unexpected was the significant negative effect of Hedonic 

Motivation. A possible explanation is that the experience of critical driving situations 

reduced the feeling of fun or pleasure, or that the simulation itself was perceived as 

unrealistic or emotionally detached. 
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The construct Trust & Perceived Risk, based on Korkmaz et al. (2022) showed a 

positive effect on Behavioral Intention. As also in Choi and Ji (2015) the results confirm 

that trust and a sense of safety are key factors for acceptance. The second strongest 

predictor in the model was Perceived Usefulness, which, analogous to C.-F. Chen 

(2019), was positively associated with the intention to use. Thus, perceived usefulness 

proves to be an important driver of acceptance. 

In summary, it can be said that Social Influence had the strongest impact on the 

intention to use, followed by Perceived Usefulness. Facilitating Conditions and Trust & 

Perceived Risk also contributed to the explanatory value, while Performance 

Expectancy and Effort Expectancy showed no significant effects. Hedonic Motivation 

had a negative effect, contrary to the original hypothesis. The results suggest that the 

use of a shuttle bus simulator, especially when including critical situations, is a valid 

and practice-oriented tool for capturing acceptance. It should be noted that participants 

were always aware that they were not in an actually life-threatening situation, which 

may have influenced their reactions. 

While traditional UTAUT studies are based on questionnaires and thus measure 

conscious, cognitively filtered response behavior, this study additionally followed the 

suggestion of Davis and Granić (2024), to integrate unconscious physiological stress 

responses. The aim was to examine whether these could provide an additional 

explanatory contribution to the acceptance model. Since stress is experienced not only 

physiologically but also cognitively, the model was expanded to include cognitive stress 

indicators to depict a more comprehensive picture of the stress response. 

RQ5: Does integrating physiological and cognitive stress indicators increase the 

explanatory power of acceptance models? 

RQ5, based on Paper No. 4, aimed to clarify whether the integration of physiological 

and cognitive stress indicators increases the explanatory contribution to acceptance. 

It is assumed that physiological activation influences the subjective stress experience 

(Cacioppo et al., 2017). A distinction was made between Cardiac Activation (heart rate 

and heart rate variability, controlled by the autonomic nervous system) and 

Electrodermal Activation (skin conductance, controlled by the sympathetic nervous 

system). Both systems together form the physiological stress response, which in turn 

influences cognitive stress experience, which acts as a predictor for Behavioral 

Intention. 

As expected, a significant positive effect of Cardiac Activation on the cognitive 

response was shown, which is in line with psychophysiological theories. Contrary to 

the assumption, however, a negative effect of Electrodermal Activation was found. This 

could be related to the fact that GSR responses in this study did not specifically reflect 

stress but were also influenced by unspecific activation such as attention, curiosity, or 

positive arousal. 

Overall, the model suggests that subjective stress is an inhibiting factor for the 

acceptance of autonomous shuttle buses. The physiological measurements provide 

objective evidence of individual response patterns, but their interpretation must always 

be made in context. The results support psychophysiological models that assume 

bodily responses influence cognition and behavior. The combination of physiological 
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(cardiac, electrodermal) and cognitive stress indicators increases the explanatory 

contribution of the acceptance model. The physiological reactions influence cognitive 

stress processing, which in turn influences the intention to use. 

The results suggest that cognitive load and stress, especially in critical driving 

situations, play an important role in the acceptance of autonomous shuttle buses. The 

integration of physiological and cognitive stress indicators not only provides additional 

insights into their direct effect on Behavioral Intention but also enables a deeper 

understanding of the underlying psychophysiological mechanisms. 

RQ6: Which physiological and cognitive indicators are suitable for forming a 

composite indicator that offers higher validity and explanatory power for 

assessing stress responses? 

To answer RQ6, which physiological and cognitive single indicators are suitable for 

forming a composite indicator that offers higher validity and explanatory power in 

capturing stress responses, established indicators were systematically examined 

within the context of real and simulated driving situations in Paper No. 5 (Appendix 

B.2). The starting point was the problem that single indicators often yield inconsistent 

or difficult-to-compare results when measuring situational activation and stress. The 

aim was therefore to identify valid and robust indicators suitable for constructing 

overarching, stable stress composites. 

On the physiological level, parameters of galvanic skin response (skin conductance 

level and skin conductance response), electrocardiogram measures (including heart 

rate), and salivary cortisol values were used. The cognitive level was represented by 

the NASA-TLX, the Short Stress State Questionnaire (SSSQ), and two self-developed 

single-item scales on physical wellbeing” and self-reported stress. 

The analysis of correlations and an exploratory factor analysis showed that the skin 

conductance response (SCR) is the most promising physiological single indicator: it 

correlates best with cognitive stress perceptions. While there was a stronger 

correlation between skin conductance level and cortisol level, SCR was overall more 

consistent. Among cardiovascular parameters, heart rate proved to be the most robust 

indicator and was therefore selected for further modeling. Other physiological 

measures such as respiratory rate or invasive procedures were not pursued further 

due to limited validity or high practicality requirements. 

Although salivary cortisol is a very reliable biological stress marker, it was not continued 

as part of a continuously measurable indicator due to its limited temporal resolution but 

served for external validation of the identified stress composites. 

On the cognitive level, NASA-TLX, the assessment of physical wellbeing, and self-

reported stress emerged as suitable single indicators. The subscales of the SSSQ, on 

the other hand, showed lower consistency and were excluded. 

Using principal component analysis, two stable factors were extracted based on the 

valid single indicators: a physiological stress dimension consisting of skin conductance 

response and heart rate, and a cognitive stress dimension consisting of NASA-TLX, 

Physical Wellbeing, and self-reported stress. These aggregated composite indicators 

showed stable loading patterns across 14 different test conditions. Thus, compared to 
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single measures, they offer improved explanatory strength, higher reliability, and more 

consistent correlations with situational demands. Their validity was further supported 

by their relation to salivary cortisol. 

The transferability and reproducibility of the two stress composites were validated in 

Paper No. 6 (Appendix B.3). In this study, it was examined whether lavender scent had 

a stress-reducing effect during critical simulator drives. The two dimensions, Cognitive 

Reaction and Physiological Reaction, replicated with the same loading structure as in 

Paper No. 5. The analysis showed that lavender scent particularly reduced the 

cognitive stress response, but only when the scent was consciously perceived. 

Overall, the results show that the integration of physiological and cognitive single 

indicators into the two composite indicators Cognitive Reaction and Physiological 

Reaction offers significant added value for practical stress measurement. The cognitive 

indicator consists of only eight items and can be easily integrated into studies while 

providing high interpretive power regarding subjective stress responses. If a multi-

method approach is feasible, the physiological composite indicator also offers a more 

reliable and less disturbance-prone way to capture objective stress responses than 

individual physiological metrics. 

In conclusion, the results of the present study show that the use of (driving) simulators 

represents a conceptually viable alternative to real-world driving, especially with regard 

to the measurement of physiological and cognitive (stress) responses. The findings 

provide differentiated insights into the validity of driving simulators, their application 

potential in the acceptance research of new mobility technologies, and the potential of 

forming valid composite indicators for physiological and cognitive responses. This 

dissertation thus contributes to the further development of multimodal approaches in 

mobility research and opens up perspectives for future studies in which human–

machine interactions can be analyzed realistically under controlled conditions. 

In view of rapid digitalization and the growing need for resource-efficient solutions, 

such valid and simulated test environments are becoming increasingly relevant for both 

basic research and the user-centered development and evaluation of existing and new 

mobility concepts. 
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Appendix A: Driving simulator validity 

A.1 Research Paper No. 1: Investigating simulator validity by using 

physiological and cognitive stress 

Authors: Czaban, M. & Himmels, C. (2025) 

Citation: Czaban, M., & Himmels, C. (2025). Investigating simulator validity by using 

physiological and cognitive stress indicators. Transportation Research Part F: Traffic 

Psychology and Behaviour, 114, 831–851. 

Doi: https://doi.org/10.1016/j.trf.2025.07.006 

Abstract: Driving simulators are indispensable tools in modern automotive research 

and development. However, the transferability of findings to real-world driving, and 

thus, the validity of simulator-based results, cannot be assumed without empirical 

validation. 

In this study, we examined physiological (Galvanic Skin Response-based measures, 

Electrocardiogram-based measures, salivary cortisol) and cognitive (NASA Task Load 

Index, Short Stress State Questionnaire, single-item ratings) stress indicators by 

comparing a real-world driving circuit with seven distinct sections to a medium-fidelity 

driving simulator, applying a Bayesian analytical approach. The results present a mixed 

picture, with both absolute and relative validity observed for certain physiological and 

cognitive stress indicators. Overall, our findings suggest that stress responses in the 

simulator and real-world driving are comparable, although the simulator was 

subjectively perceived as more stressful. 

These results provide valuable insights into the validity of simulators for stress research 

and underscore the need to consider individual differences, experimental conditions, 

and methodological approaches in future studies. 

Keywords: Driving Simulator Validation, Physiological Measurement, Stress 

Measurement, Cognitive Workload, Galvanic Skin Response, Electrocardiogram, 

Salivary Cortisol 

1 Introduction 

The automotive industry has advanced rapidly over the past decades, with significant 

advancements particularly in the areas of driving automation and electrification. Today, 

purchasing decisions are often influenced not only by the technical capabilities of a 

vehicle, but the user experience has become increasingly relevant. Customer centricity 

is a key element in designing systems that reflect the expectations, attitudes, and 

behaviors of users. According to the User-Centered Design Process (ISO 13407), 

users must be incorporated into the development process at very early stages. User 

studies are key to this end.  

Driving simulators are commonly used to enable user studies due to several 

advantages. User behavior can be studied in an inherently controllable and safe test 

environment here (Caird & Horrey, 2016; Winter et al., 2012), which is often not 

possible on real roads. Furthermore, driving simulators allow testing at early 

development stages, relieving the requirement for physical prototypes (Xue et al., 
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2023). To derive meaningful insights about user behavior in the real world, however, it 

must be guaranteed that results achieved in the simulator can be transferred to the 

real world. The matter at hand is understood as driving simulator validity.  

Driving simulator validity has been subdivided into different constructs. The literature 

distinguishes between physical and behavioral validity (e.g., Bella et al., 2014). While 

physical validity describes the alignment of the simulator with a real car (Klüver et al., 

2016), behavioral validity concerns the correspondence of driver behavior. Behavioral 

validity has been further subdivided into absolute and relative validity (Blaauw, 1982). 

Absolute validity is given when the numerical observation values in both environments 

are identical (Blaauw, 1982; Kaptein et al., 1996). Relative validity exists when the 

effects in the simulator take the same direction as in the real world (Blaauw, 1982). 

Behavioral validity has been suggested to be the more important quality compared to 

physical validity (Blaauw, 1982; Blana, 2001; Godley et al., 2002; Terumitsu et al., 

2007). 

To examine the validity of a simulator, validation studies are usually performed in which 

relevant outcome variables are compared between corresponding simulator and real-

world drives (Klüver, 2016; I. M. Zöller, 2015). Validity hereby depends on the use case 

(Ahlström et al., 2012; Bella, 2008; Engen, 2008; Parduzi, 2021; Wynne et al., 2019), 

the outcome variables of interest (Himmels, Venrooij, et al., 2024; Wynne et al., 2019), 

and the simulator (Fischer et al., 2015; Himmels, Venrooij, et al., 2024). In a recent 

systematic literature review, Wynne et al. (2019) identified 44 studies directly 

comparing simulator and real-world driving. While the considered outcome variables 

largely varied across these 44 studies, the vast majority of studies considered driver 

output variables, such as speed or speed variation (21 studies), lane position or 

variation in lane position (13 studies), line crossing and lane change behavior (four 

studies), or overall driving performance and errors (10 studies). Few studies 

considered outcome variables underlying the observed driving behavior.  

This is understandable, as variables underlying behavior are naturally more difficult to 

observe and interpret than driver behavior directly. However, several authors also 

noted the requirement to consider variables underlying behavior. The correspondence 

of perception between the driving simulator and the real world, for instance, is 

frequently mentioned (Blana, 2001; Boer, 2000). The simple idea here is that if the 

perception in the simulator corresponds to that in reality, the same driver’s behavior 

should result. Vienne et al. (2014) suggested the term psychological validity, referring 

to the correspondence of processes underlying behavior.  

Generally, different sensoric inputs can produce the same driver behavior (Espié et al., 

2005). Meanwhile, perceptual biases can distort driver behavior (Espié et al., 2005). If 

existing biases in perception are disregarded or even exploited, the risk is that this will 

have unforeseeable effects on variables other than the particular considered ones, 

which ultimately leads to invalid results. In fact, invalid results occur frequently and the 

causes for this can often not be conclusively clarified. Taking into account variables 

underlying driver behavior could contribute to a better understanding of invalid 

outcomes and, in the long run, to closing the gap between reality and simulation. 
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Addressing the current research gap, stress will be considered in the present study. 

Stress is understood as a physiological and cognitive response to situations where a 

discrepancy is perceived between one’s own capabilities and the external demands of 

a task (Cannon, 1929; Koolhaas et al., 2011; Selye, 1950, 1978, 1983; Zhou et al., 

2022). Stress is typically categorized into positively perceived eustress and negatively 

perceived distress (Lazarus, 1966; Selye, 1976), with the latter being the predominant 

form in simulator studies (e.g., Daviaux et al., 2020; Matthews et al., 1998; Perello-

March et al., 2022). In the context of a driving task, stress is defined as a situation 

perceived as challenging or dangerous (Francis, 2018; Gulian et al., 1989; Healey & 

Picard, 2005; Zhong et al., 2022).  

While a driving task in a test is objectively the same for all participants, it can be 

experienced and evaluated differently depending on the individual’s predisposition. 

This situational experience of stress can influence driver behavior and perception. 

Stressed drivers are more likely to make incorrect decisions (Kontogiannis, 2006; 

Westerman & Haigney, 2000). 

2. Theoretical background 

2.1 Validation studies related to variables underlying behavior 

Table 1 provides an overview of previous physiological and cognitive validation studies 

investigating the validity of driving simulators. Notably, the sample sizes in most studies 

are relatively small, limiting the generalizability of the findings. 

Table 1. Previous validation studies with a focus on physiological and/or cognitive indicators;  

Legend: EEG = Electroencephalogram; HR = Heart Rate; HRV = Heart Rate Variability; SCL = Skin 

Conductance Level 

 

Authors Validation Variables n Validity? 

Johnson et al. 
(2011)  

Physiological HR; Oxygen 
Consumption; 

Ventilation 

9 None for HR 
Absolute & Relative for 
Oxygen Consumption and 
Ventilation 

Mueller 
(2015)  

Physiological HR; HRV (Not 
specified); 
SCL; Pupil 
Diameter; 

Gaze-related 
Variables 

34 Relative for HR, HRV, Gaze-
related Variables 
None for SCL, Pupil 
Diameter 

Reimer and 
Mehler (2011) 

Physiological HR; SCL 26 Absolute & Relative for HR 
Relative for SCL 

Fors et al. 
(2013)  

Physiological EEG; Blink 
Duration, ECG; 
Gaze-related 

Variables 

20 None (only blink data and 
gaze data reported) 

Milleville-
Pennel and 

Charron 
(2015)  

Physiological HR 14 None 



  

44 
 

Lobjois et al. 
(2021)  

Physiological Blinkrate 24 Relative 

Li et al. 
(2013)  

Physiological EEG; HR 15 Absolute  

Carter and 
Laya (1998)  

Physiological Scan Paths 16 Relative  

Mueller 
(2015)  

Cognitive NASA-TLX 34 Relative (not for all items) 

Lobjois et al. 
(2021) 

Cognitive NASA-TLX 24 Relative 

Milleville-
Pennel and 

Charron 
(2015)  

Cognitive NASA-TLX; 
Questionnaire 

of 
Psychological 
Feeling (QPF) 

14 Relative for NASA-TLX (not 
for all items) 
Relative for QPF (not for all 
items) 

 

Diels et al. 
(2011)  

Cognitive NASA-TLX 10 Relative (not for all items) 

Galante et al. 
(2018)  

Cognitive Rotated 
Figures Task 

(RFT); NASA-
TLX; SSSQ 

100 Relative for NASA-TLX 
(Sumscore) 
Relative for all Dimensions 
of SSSQ; Absolute for 
Distress (SSSQ)  

The overview reveals substantial variation in the validity results: some studies report 

relative or absolute validity for specific parameters (e.g., Johnson et al., 2011, for 

oxygen consumption), while others fail to demonstrate validity (e.g., Fors et al., 2013, 

for EEG). Additionally, there is a strong focus on isolated road segments or specific 

traffic contexts, without addressing a broader range of driving situations such as rural, 

urban, and highway driving. Johnson et al. (2011) identified this as a critical research 

gap that has been inadequately addressed in previous studies. 

2.2 Measurement of stress 

Stress responses can be assessed both physiologically (Perello-March et al., 2022) 

and cognitively (de Witte et al., 2021). Among the most frequently used physiological 

indicators are the Galvanic Skin Response (GSR; Bitterman & Holtzman, 1952; 

Sharma & Gedeon, 2012; Shi et al., 2007) and Electrocardiogram (ECG; Lohani et al., 

2019). GSR measures the skin's electrical conductivity, which is influenced by minute 

sweat secretion (Boucsein, 2012; Giorgos Giannakakis et al., 2022). This sweating, 

referred to as arousal sweating (Darrow, 1933; Wilcott, 1967), is linked to stimuli that 

are novel, intense, and emotionally charged (Dawson et al., 2011). The intensity of 

emotional arousal triggers sweat gland activity (Kyriakou et al., 2019), making the skin 

more conductive and promoting electrical current flow (Caruelle et al., 2019; Navea et 

al., 2019; Stern et al., 2001). The activity of the eccrine sweat glands, one of three 

types of sweat glands, is measured and is solely innervated by the sympathetic 

nervous system (SNS; Critchley, 2002; Setz et al., 2010). The SNS is responsible for 

fight or flight responses, which is why GSR measurements exclusively reflect 

sympathetic activation, with no recording of relaxation responses regulated by the 

parasympathetic system (Fowles, 1986; Poh et al., 2010). Therefore, changes in GSR 

clearly indicate arousal and physiological preparation for stress (Boucsein, 2012; 
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McCorry, 2007; Norman et al., 2016). However, it should be noted that GSR activity, 

initially understood as a measure of arousal, only becomes a stress indicator in the 

context of a stressful situation (Healey & Picard, 2005; Labbé et al., 2007). GSR 

measurements are frequently used in automotive research (Caruelle et al., 2019). 

The GSR measurement can be divided into two main components: tonic level (skin 

conductance level (SCL)) and phasic response (skin conductance response (SCR); 

Andreassi, 2010; Boucsein, 2012). SCL represents the slowly changing trend in skin 

conductivity and is calculated as an average over a specific period (Boucsein, 2012; 

Sharma & Gedeon, 2012), whereas SCR is a time-specific response to a particular 

stimulus. This reaction is reflected in a sudden increase in skin conductivity, known as 

GSR peaks, which represent short-term arousal. A related parameter, Peak Amplitude 

(PA), measures the magnitude of a GSR peak, indicating the intensity of the 

physiological response to a stimulus (Boucsein, 2012; Giannakakis et al., 2022). 

ECG measurement allows the recording of electrical impulses generated by the 

autonomic heart rate (Shaffer et al., 2014), enabling the calculation of heart rate (HR) 

and heart rate variability (HRV), essential parameters for describing heart activity and 

frequently used as stress indicators (Andreassi, 2010; Cacioppo et al., 2017; 

Giannakakis et al., 2022). 

Heart activity is regulated by the autonomic nervous system (ANS), which includes 

both sympathetic and parasympathetic nerves. The parasympathetic system reduces 

heart rate (Giorgos Giannakakis et al., 2022; Hall & Hall, 2020), while sympathetic 

nerves increase heart rate, enhancing blood flow and oxygen supply, preparing the 

body for a fight or flight response (Giannakakis et al., 2022; Hall & Hall, 2020). This 

means that during stress, the SNS dominates, leading to increased heart activity, 

improving blood circulation, and preparing the organism for heightened energy 

demand (Andreassi, 2010; Engert et al., 2014; Hall & Hall, 2020; Selye, 1950; Sharma 

& Gedeon, 2012). 

In terms of parameters, HR refers to the number of heart beats per minute. Previous 

findings indicate that stress significantly increases heart rate (Engert et al., 2014; 

Giannakakis et al., 2017; Reinhardt et al., 2012). HR is a simple and widely used 

parameter for measuring the arousal state and physiological response to stress 

(Reinhardt et al., 2012; Taelman et al., 2011). 

In contrast, HRV (Berntson et al., 2008) examines fluctuations in the time intervals 

between successive heartbeats (Electrophysiology, 1996). HRV is assessed using the 

mean RR-Interval, which measures the time between two R-peaks in the heart rate in 

milliseconds (RR-Int), as well as the Root Mean Square of Successive Differences 

(RMSSD) and the Standard Deviation of the intervals between R-peaks (SDNN) (Hall 

& Hall, 2020). While HR is an indicator of arousal, increasing with higher levels of stress 

(Reinhardt et al., 2012), HRV tends to decrease as internal arousal increases (Bernardi 

et al., 2000). 

In addition to the physiological measurements of GSR and ECG, a stress reaction can 

also be assessed biologically. When a person experiences stress, two primary 

pathways in the body are activated: the sympathetic adrenal medullary system (SAM) 

and the hypothalamus-pituitary-adrenal axis (HPAA; (Andreassi, 2010; Reinhardt et 
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al., 2012). Activation of the HPAA triggers the release of the hormone corticotropin, 

which in turn stimulates the release of adrenocorticotropic hormone (ACTH). This leads 

to the release of the stress hormones adrenaline, noradrenaline, and cortisol from the 

adrenal glands. These hormones increase blood sugar levels, providing energy to the 

body in stressful situations (Chrousos, 2009), and a rise in cortisol levels is considered 

a direct indicator of stress (Dickerson & Kemeny, 2004). Cortisol can be measured in 

saliva (Salivary cortisol; SCT). 

2.3 The present study 

In the present study, a multi-method approach was employed to measure stress, 

including cognitive measures and objective physiological indicators. Experiments will 

be conducted in the driving simulator and the real world, employing a diverse mix of 

traffic scenarios (urban, rural, highway) that realistically reflect the situational cognitive 

demands of various driving situations. The study is aimed at determining to what extent 

driving simulators can replicate the driving experience in the real world, considering 

physiological and cognitive stress indicators.  

We hypothesize:  

• Physiological stress indicators correspond between the simulator and the real world 

(H1). We considered both absolute (H1a) and relative validity (H1b).  

• Cognitive stress indicators correspond between the simulator and the real world (H2). 

3. Method 

3.1 Participants 

A total of 72 participants were recruited. After excluding incomplete datasets due to 

device malfunctions, the final analysis included 68 participants. The sample consisted 

of 39 females (54.20 %) and 33 males (45.80 %) aged between 18 and 63 years (M = 

30.07, SD = 11.58). 

Regarding the participants' residential backgrounds, 43.1 % identified as living in rural 

areas, 44.4 % in small to medium-sized towns, and 12.5 % in urban environments. 

Data collection was conducted using a convenience sampling approach with quotas 

based on age and gender to ensure diversity. The study employed a within-subject 

design and was conducted in the third quarter of 2023. Participants received 

compensation in the form of a travel reimbursement of 30 euros for their participation. 

3.2 Route and Simulator 

A circular route spanning approximately 23 kilometers was chosen for the study, 

comprising seven distinct test sections designed to include urban driving (5.3 km), rural 

roads (9.7 km), and highway driving (8 km). This segmentation was intentionally 

structured to reflect diverse environmental conditions, each imposing unique demands 

on the driver and influencing both physiological and cognitive load. The sequence of 

the individual segments was as follows: Rural 1, Urban 1, Rural 2, Highway, Rural 3, 

Urban 2, Urban 3.  
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Figure 1. Abstract route with segment subdivision 

  

A circular route spanning approximately 23 kilometers was chosen for the study, 

comprising seven distinct test sections designed to include urban driving (5.3 km), rural 

roads (9.7 km), and highway driving (8 km). This segmentation was intentionally 

structured to reflect diverse environmental conditions, each imposing unique demands 

on the driver and influencing both physiological and cognitive load. The sequence of 

the individual segments was as follows: Rural 1, Urban 1, Rural 2, Highway, Rural 3, 

Urban 2, Urban 3.  

Rural 3 is briefly interrupted by Urban 2, which consists of a small urban section 

belonging to a residential district that intersects the rural road.  

All participants followed the same route in the same sequence (Figure 1).  

The naming of the segments (e.g., Rural 1–3) was based on their chronological 

appearance along the route and reflects the classification of the road type at that point 

(e.g., rural, urban, or highway), not geographical proximity or functional differences. 

The naming follows the actual course layout. 

The route was designed as a closed loop to ensure both practical feasibility and a high 

degree of situational variety. This approach made the course suitable for accurate 

replication in the driving simulator. The high situational variability was intended to help 

assess which types of driving environments are more or less suited for simulation. 
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Figure 2. Real (top) and simulated (bottom) sections 

 

By including various driving sections, driver stress can be evaluated in diverse driving 

scenarios. Weather conditions during the real-world study were favorable, with smooth 

traffic flow throughout the testing period. 

The driving task was intentionally designed as a regular, non-manipulated drive 

through real traffic environments to capture naturally occurring stress responses. The 

use of stress inducing methods was deliberately avoided due to ethical and safety 

considerations associated with real-world traffic.  

The simulated route was programmed using Silab 7.1, a driving simulation software 

developed by the Würzburg Institute of Traffic Sciences (WIVW). SILAB is a 

professional simulation environment that allows the realistic replication of driving 

routes and complex traffic scenarios. The software is not publicly available, but further 

information can be found at: https://wivw.de/en/silab-2/ 

The virtual route was implemented as a digital twin of the real-world test course. 

Reconstruction was based on OpenStreetMap data and preserved original dimensions 

and topographical features. Figure 2 illustrates a comparison between the real and 

virtual versions of the route.  

A medium-fidelity driving simulator (as defined by Wynne et al., 2019) was used for the 

simulator study (Figure 3). The simulator featured: 

• An original driver’s seat,  

• A force-feedback steering wheel, pedals, turn signals, and dashboard,  

• A mockup mounted on a D-Box system with 3 degrees of freedom, simulating 

road surface feedback, and 
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• Three 55” LCD screens providing a 180° horizontal field of view, offering an 

immersive driving experience. 

The D-Box system is a professional motion platform using hydraulic actuators to 

simulate physical road feedback (https://www.d-box.com/en#tab_2). It provides motion 

cues such as vibrations or tilting to replicate road texture, acceleration, and braking. 

For example, during braking, the rear actuators lift slightly, pushing the driver forward 

to mimic real vehicle deceleration. This enhances the sense of realism during 

simulated driving. 

Figure 3. Medium fidelity driving simulator used for the study 

 

3.3 Measurements 

3.3.1 Physiological measurements 

On the physiological measurement side, we selected GSR measurements (including 

SCR, SCL, PA) as well as ECG  measurements (HR and HRV). These measures have 

been established as reliable stress indicators in prior driving simulation studies (e.g., 

Daviaux et al., 2020; Manseer & Riener, 2014; Milardo et al., 2022; Scherz et al., 2023). 

To capture the biological stress response, we employed salivary cortisol tests. Cortisol 

reflects Hypothalamic-Pituitary-Adrenal (HPA) axis activity and is considered a direct 

hormonal stress indicator (Kirschbaum & Hellhammer, 1994), whereas elevated HR 

and GSR activity serve as situational markers of stress (Lohani et al., 2019).  

Concerning GSR, we collected the skin conductance response (SCR; peaks per 

minute), peak amplitude (PA), and the tonic skin conductance level (SCL). 

Measurements were conducted using the exosomatic method with direct current 

(Boucsein et al., 2012), utilizing a Shimmer 3 GSR+ sensor. Two electrodes were 

placed on the palm of each participant. 
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For ECG measurements, we recorded standard parameters, including heartbeats per 

minute (heart rate, HR) and various heart rate variability (HRV) metrics. These included 

the mean RR-interval (RR-Int), the root mean square of successive differences 

(RMSSD), and the standard deviation of NN intervals (SDNN). 

Physiological responses were recorded using iMotions software (version 9.4).  

Salivary cortisol (SCT) was collected using Salivettes. Sample analysis was carried 

out by Dresden Labservice GmbH Saliva samples were frozen and stored at -20 

degrees Celsius until analysis. After thawing, samples were centrifuged at 3,000 rpm 

for 5 min, which resulted in a clear supernatant of low viscosity. Salivary concentrations 

were measured using commercially available chemiluminescence immunoassay with 

high sensitivity (Tecan - IBL International, Hamburg, Germany; catalogue number 

R62111). The intra and interassay coefficients of variance were below 9%. 

Due to high inter-individual variability of GSR (SCR is more robust than SCL) and 

cortisol values (Boucsein, 2012; Hellhammer et al., 2009), interpretation of absolute 

levels is limited. Consequently, our analyses focus on intra-individual changes within a 

within-subject design. Each participant serves as their own reference point, enabling 

detection of relative stress reactivity across driving conditions. 

3.3.2 Cognitive stress related variables 

To assess the participants' cognitive responses, we measured various variables and 

constructs related to perceived stress using a semantic differential. 

For measuring cognitive reactions, we employed an 11-point scale ranging from 0 (not 

at all) to 10 (very much). This scale is intuitive for participants to understand (Lewis, 

2021), enhances data variance (Dawes, 2002), tends to produce normally distributed 

data (Leung, 2011), and facilitates the use of parametric tests (Chyung et al., 2018). 

Table 2 presents the items used in the applied scales. The questions were translated 

from English to German by the authors. The self-formulated single-item measurements 

we developed were originally created in German and were translated to English for 

demonstration in this paper. 

According to the Short Stress State Questionnaire, which consists of 24 items 

measuring three subdimensions—Engagement, Distress, and Worry—we shortened 

the questionnaire for our study by selecting the four items with the highest factor 

loadings for each dimension, as suggested by Helton (2004). 

Table 2. Scales and single items used and their translation 

Scale (Abbr.) English Wording German Wording Source  

Vehicle 
Operation 
(VO) 

• How well did you 
manage operating 
the vehicle? 

• Wie gut sind Sie 
mit der Bedienung 
des Fahrzeuges 
zurechtgekommen
? 

Self-
developed 
Single 
Item 

Physical 
Wellbeing 
(PW) 

• How was your 
physical well-being 
during the ride? 

• Wie war Ihr 
körperliches 
Wohlbefinden 

Self-
developed 
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während der 
Fahrt? 

Single 
Item 

STRESS • To what extent did 
you experience 
stress during the 
drive? 

• In welchem 
Ausmaß haben Sie  
während der Fahrt 
Stress 
empfunden? 

Self-
developed 
Single 
Item 

Short State 
Stress 
Questionnaire 
(SSSQ)  

1. I feel dissatisfied 
2. I am committed to 

attaining my 
performance goals 

3. I’m trying to figure 
myself out 

4. I feel impatient 
5. I am motivated to 

do the task 
6. I’m reflecting about 

myself 
7. I feel angry 
8. I feel confident 

about my abilities 
9. I feel concerned 

about the 
impression I am 
making 

10. I feel irritated 
11. Generally, I feel in 

control of things 
12. I thought about 

how others have 
done on this task 

1. Ich bin 
unzufrieden. 

2. Ich bin 
entschlossen, 
meine 
Leistungsziele zu 
erreichen. 

3. Ich versuche, mir 
selbst auf die Spur 
zu kommen. 

4. Ich empfinde 
Ungeduld. 

5. Ich bin motiviert, 
die Aufgabe zu 
erledigen. 

6. Ich denke über 
mich selbst nach. 

7. Ich bin wütend. 
8. Ich bin mir sicher 

über meine 
Fähigkeiten. 

9. Ich frage mich, 
welchen Eindruck 
ich hinterlasse. 

10. Ich fühle mich 
irritiert. 

11. Im Allgemeinen 
habe ich das 
Gefühl, die Dinge 
im Griff zu haben. 

12. Ich überlege, wie 
andere bei dieser 
Aufgabe 
abschneiden. 

Helton, 
2004 

NASA-TLX 1. How mentally 
demanding was 
the task? (Mental 
Demand) 

2. How physically 
demanding was 
the task? (Physical 
Demand) 

3. How hurried or 
rushed was the 

1. Wie viel geistige 
Anforderung war 
bei der Fahrt 
erforderlich? 
(Mental Demand) 

2. Wie viel 
körperliche 
Anforderung war 
bei der Fahrt 

Hart, 
2006; 
Hart & 
Staveland, 
1988 
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pace of the task? 
(Temporal 
Demand) 

4. How successful 
were you in 
accomplishing 
what you were 
asked to do? 
(Performance) 

5. How hard did you 
have to work to 
accomplish your 
level of 
performance? 
(Effort) 

6. How insecure, 
discouraged, 
irritated, stressed, 
and annoyed were 
you? (Frustration) 

erforderlich? 
(Physical Demand) 

3. Wie viel Zeitdruck 
empfanden Sie 
während der 
Fahrt? (Temporal 
Demand) 

4. Wie zufrieden 
waren Sie mit Ihrer 
Leistung im 
Zusammenhang 
mit der Fahrt? 
(Performance)  

5. Insgesamt 
betrachtet: Wie 
groß war die von 
Ihnen empfundene 
Anstrengung bei 
der Fahrt? (Effort) 

6. Wie frustriert 
fühlten Sie sich 
während der 
Fahrt? 
(Frustration) 

3.4 Procedure 

At the beginning of data collection, the participant was welcomed, and the first salivary 

cortisol sample was collected (SCT/0). Subsequently, an introductory pre-survey was 

conducted to assess the participant's current stress state (SSSQ/0). 

The next step involved attaching the physiological measurement devices to the 

participant. 

 Before the driving session, participants were informed that the route would be a 

circular course of approximately 25 minutes, consisting of different segments including 

urban, rural, and highway sections. The driving task itself was structured similarly to a 

driving school setup: participants were guided in real time by the experimenter, who 

gave timely navigation instructions (e.g., turn left, continue straight) throughout the 

entire drive. In the simulator there were also navigation arrows. 

Following this, the participant accompanied the experimenter to the vehicle and 

completed the real-world driving session (GSR/1; ECG/1). 

After completing the drive, a post-drive survey was conducted inside the vehicle. This 

survey assessed perceived stress (SSSQ/1; STRESS/1), perceived workload (NASA-

TLX/1), situational strain related to vehicle operation (VO/1), and physical well-being 

(PW/1). 

Upon returning to the laboratory, a second salivary cortisol sample was collected 

(SCT/1). Participants were then introduced to the driving simulator following the 

protocol outlined in the introduction package by Hoffmann et al. (2003). This 

introduction included three practice tracks (about 15 min) to familiarize participants with 
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the simulator. After the practice sessions, the placement of the physiological devices 

was checked to ensure they remained correctly attached. The participant then 

completed a simulated drive on a digital replica of the previously driven real-world route 

(GSR/2; ECG/2). 

Upon completing the simulated drive, a post-simulation survey was conducted to 

capture cognitive responses (NASA-TLX/2; SSSQ/2; STRESS/2; VO/2; PW/2). Before 

the participant was dismissed, a final salivary cortisol sample was collected (SCT/3). 

The total testing time per participant was approximately two hours, with an average 

driving duration of around 25 minutes for the real-world drive and 23 minutes for the 

simulated drive. The difference in duration between the real and simulated journey can 

be attributed to the traffic flow, which was standardized in the simulator (e.g. traffic 

lights) but could not be influenced on the real route. The order of the drives was fixed, 

with the real-world drive always preceding the simulated drive. 

Before the start of the study, participants received a standardized oral briefing about 

the purpose, procedure and data protection regulations. Informed consent was 

obtained orally, in accordance with the approved procedure. The study was approved 

by the Ethics Committee of the University of Bayreuth. Participation was voluntary, and 

participants were informed that they could withdraw at any time without giving reasons. 

3.5 Statistical analysis 

Previous studies on simulator validation employed null-hypothesis significance tests 

(NHSTs), such as t-tests or regression analyses (Klüver et al., 2016; Losa et al., 2013; 

Törnros, 1998; I. Zöller et al., 2019). However, NHSTs can only identify effects. Non-

significant results may result from either low statistical power or true equivalence, an 

important distinction that NHSTs cannot make. This limitation is particularly problematic 

in studies with small sample sizes. 

To address these issues, we adopt a Bayesian approach (Himmels, Weigl, et al., 2024). 

In contrast to frequentist p, the Bayes factor BF10 is a relative indicator for the 

probability of H0 compared to H1. In this way, evidence can be provided not only for 

differences, but also for equivalence, which would indicate simulator validity.  

We conducted Bayesian repeated-measures ANOVA using JASP (van Doorn et al., 

2021) and predefined priors (Rouder et al., 2017) for Bayesian analyses. 

Evidence from the Bayes Factor will be interpreted following (Jeffreys, 1998). 

Accordingly, a BF10 (or BFincl) > 3 is considered evidence for an effect, and a BF10 

(or BFincl) < 0.3 is considered evidence for equivalence. Since Bayes Factors are 

relative indicators unlike p-values, they are informative even when they do not precisely 

follow these recommendations. If a measurement yields a BF10 (or BFincl) > 0.3 but 

< 1, this is referred to as anecdotal evidence of equivalence (van Doorn et al., 2021). 

A BF10 (or BFincl) of  > 1 and < 3 signifies anecdotal evidence for an effect, which 

means that the evidence is considered weak or inconclusive, but still leans slightly in 

favor of the alternative hypothesis. In both cases, the term "anecdotal" reflects the 

limited strength of the statistical support, rather than anecdotal in a colloquial sense. 



  

54 
 

Furthermore, for the physiological variables, absolute validity was inferred from 

absence of a main effect of the environment (real vs. simulator), and relative validity 

from the absence of an Environment*Section interaction, as indicated by the 

corresponding BFincl values. 

4. Results 

Summarizing, SCT and the SSSQ were inquired before the real-world drive, after the 

real-world drive and after the simulator drive, GSR and ECG were inquired throughout 

the drives, and STRESS, the NASA-TLX, and PW were inquired after the real-world 

drive and after the simulator drive.   

Bayesian dependent t-tests including the factor test environment (real vs. simulator) 

were conducted for cortisol, SSSQ, STRESS, NASA-TLX, VO, and PW. For this 

variables we can only consider absolute validity. 

As GSR and ECG were recorded continuously throughout the drive, these were 

analyzed in a two-factor Bayesian repeated-measures ANOVA including the factors 

environment and Scenario. This approach allowed us to also consider relative validity 

for ECG and GSR. 

Note that relative validity could only be assessed for continuously recorded 

physiological measures, as these allowed comparisons across driving sections. In 

contrast, the cognitive variables and de cortisol measures were only collected after the 

entire drive, thus preventing any within-drive section-level analysis. 

Physiological  

The physiological data (e.g., noise filtering, HRV calculation) was performed using R 

Notebooks in iMotions. As GSR and ECG were recorded continuously throughout the 

drive, mean scores for SCR, SCL, PA, HR, RR-Interval, RMSSD, and SDNN were 

calculated section-wise (Rural 1, Urban 1, Rural 2, Highway, Rural 3, Urban 2, Urban 

3).  

Prior to each driving environment (real and simulated), baselines were recorded for all 

physiological indicators (SCR, SCL, PA, HR, RR-Interval, RMSSD, and SDDN). For 

SCL (μS) (real: 12.08 simulator:13.92; p<.001), PA (μS) (real: 0.25 simulator: 0.33  

;p<.001) HR (bpm) (real:79.88 simulator: 77.30  ;p=.005) and RR-Interval (ms) (real: 

777.44 simulator: 803.12 ;p=.007) small but statistically significant differences were 

observed, possibly indicating anticipators responses. However, since our primary 

analyses relied on within-subject comparisons across scenarios, the baseline 

differences do not confound the observed intra-individual physiological patterns. 

For SCR, there is evidence for the absence of an effect of the test environment, 

indicating that values do not differ between the real world and the simulator (Table 3, 

Figure 4). Furthermore, there is evidence for the absence of an interaction between 

environment and section (Table 3).  

Regarding SCL, there is evidence for a main effect of environment, indicating a 

significant difference between real and simulated driving, with higher SCL values in the 

simulator (Table 3, Figure 5). However, there is evidence for equivalence concerning 

the interaction between environment and section (Table 3). 
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For PA, the data indicate evidence of an effect of the test environment (Table 3). PA is 

higher in the simulator compared to the real world (Figure 6). Additionally, there is 

evidence for an interaction effect between environment and section (Table 3). 

Differences between the real world and the simulator are larger in Highway, Rural 3, 

and Urban 2, while there are only marginal differences in Urban 3 (Figure 6).   

Regarding HR, there is evidence for both an environment effect and an interaction 

effect between environment and section (Table 3). HRs are higher in the real world 

compared to the simulator (Figure 7), while the differences are differently pronounced 

across the scenarios.  

For RR-Interval, evidence suggests both an environment effect and an interaction 

effect between environment and section (Table 3). The RR-Intervals are higher in the 

simulator than the real car (Figure 8), with especially large differences in Rural 1. 

For RMSSD, the data provide anecdotal evidence for equivalence across 

environments (Table 3; Figure 9). Additionally, there is moderate evidence for the 

absence of an interaction effect (Table 3).  

Regarding SDNN, the data indicate evidence for equivalence across environments 

(Table 3; Figure 10). Furthermore, there is evidence for the absence of an interaction 

effect between environment and section (Table 3). 

Since SCT was collected only after each complete drive (rather than after each 

section), only the environment effect could be examined here. The data provide 

evidence for the absence of an effect of the environment (Table 3; Figure 11). 

Table 3. Statistical results for Bayesian ANOVAs, Post Hoc tests, and Bayesian paired t-test. Evidence 

for equivalence is marked green, evidence for effects is marked red. 

      
SCR 
BANOVA 

 
P(incl) 

 
P(excl) 

 
P(incl|data) 

 
P excl|data) 

 
BFincl 

Environment 0.600 0.400 0.125 0.875 0.095 
Section 0.600 0.400 0.125 1.110x10-16 6.005x10+15 

Environment*Section 0.200 0.800 0.001 0.999 0.006 
Post Hoc 
Comparison - 
Environment 

 Prior 
Odds 

Posterior 
Odds 

BF10,U error % 

Real vs. Simulator  1.000 0.050 0.050 0.437 

      

SCL 
BANOVA 

 
P(incl) 

 
P(excl) 

 
P(incl|data) 

 
P(excl|data) 

 
BFincl 

Environment 0.600 0.400 0.971 0.029 22.073 
Section 0.600 0.400 0.968 0.032 20.288 
Environment*Section 0.200 0.800 0.009 0.991 0.037 
Post Hoc 
Comparison - 
Environment 

 Prior 
Odds 

Posterior 
Odds 

BF10,U error % 

Real vs. Simulator  1.000 4.765x10+10 4.765x10+10 4.122x10-17 
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PA 
BANOVA 

 
P(incl) 

 
P(excl) 

 
P(incl|data) 

 
P(excl|data) 

 
BFincl 

Environment 0.600 0.600 1.000 6.695x10-14 9.958x10+10 

Section 0.600 0.400 1.000 0.000 ∞ 
Environment*Section 0.200 0.800 1.000 2.073x10-9 1.029x10+9 

Post Hoc 
Comparison - 
Environment 

 Prior 
Odds 

Posterior 
Odds 

BF10,U error % 

Real vs. Simulator  1.000 1.530x10+21 1.530x10+21 7.542x10-28 

      

      

HR 
BANOVA 

 
P(incl) 

 
P(excl) 

 
P(incl|data) 

 
P(excl|data) 

 
BFincl 

Environment 0.600 0.400 1.000 0.000 ∞ 
Section 0.600 0.400 1.000 0.000 ∞ 
Environment*Section 0.200 0.800 1.000 1.315x10-11 3.043x10+11 

Post Hoc 
Comparison - 
Environment 

 Prior 
Odds 

Posterior 
Odds 

BF10,U error % 

Real vs. Simulator  1.000 2.974x10+44 2.974x10+44 5.673x10-47 

      

RR-Int 
BANOVA 

 
P(incl) 

 
P(excl) 

 
P(incl|data) 

 
P(excl|data) 

 
BFincl 

Environment 0.600 0.400 1.000 2.309x10-9 2.887x10+8 

Section 0.600 0.400 1.000 2.662x10-4 2504.136 
Environment*Section 0.600 0.400 1.000 2.664x10-4 15010.813 
Post Hoc 
Comparison - 
Environment 

 Prior 
Odds 

Posterior 
Odds 

BF10,U error % 

Real vs. Simulator  1.000 7.347x10+28 7.347x10+28 7.172x10-36 

      

RMSSD 
BANOVA 

 
P(incl) 

 
P(excl) 

 
P(incl|data) 

 
P(excl|data) 

 
BFincl 

Environment 0.600 0.400 0.325 0.675 0.322 
Section 0.600 0.400 1.000 2.330x10-13 2.861x10+12 

Environment*Section 0.200 0.800 0.002 0.998 0.009 
Post Hoc 
Comparison - 
Environment 

 Prior 
Odds 

Posterior 
Odds 

BF10,U error % 

Real vs. Simulator  1.000 3.592 3.592 0.007 

      

SDNN 
BANOVA 

 
P(incl) 

 
P(excl) 

 
P(incl|data) 

 
P(excl|data) 

 
BFincl 

Environment 0.600 0.400 0.214 0.786 0.181 
Section 0.600 0.400 1.000 1.179x10-9 5.654x10+8 

Environment*Section 0.200 0.800 0.001 0.999 0.005 
Post Hoc 
Comparison - 
Environment 

 Prior 
Odds 

Posterior 
Odds 

BF10,U error % 

Real vs. Simulator  1.000 0.227 0.227 0.100 
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SCT 
Bayesian paired t-
test 
(Factor: 
Environment) 

   BF10 error% 

    0.134 0.097 
 

Figure 4. Descriptives for Skin Conductance Response (with 95% credible interval) 

 

Figure 5. Descriptives for Skin Conductance Level (with 95% credible interval) 
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Figure 6. Descriptives for Peak Amplitude (with 95% credible interval) 

 

 
Figure 7. Descriptives for Heart Rate (with 95% credible interval) 
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Figure 8. Descriptives for RR-Interval (with 95% credible interval) 

 

Figure 9. Descriptives for Root Mean Square of Successive Differences (with 95% credible interval) 
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Figure 10. Descriptives for Standard Deviation of the NN Interval (with 95% credible interval) 

 

Figure 11. Descriptives for Salivary Cortisol (with 95% credible interval) 
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Cognitive  

The subdimensions of the SSSQ (Worry, Engagement, and Distress) were calculated 

following Helton (2004). For the NASA-TLX, a mean index was calculated, showing an 

internal consistency of α = .72 (real) and α = .79 (simulator), respectively.  

For VO, the NASA-TLX, Distress, Engagement, STRESS, and PW, there was evidence 

for an effect of the test environment (Table 4). VO and PW were rated higher in the real 

world compared to the simulator (Figures 12, 18). The NASA-TLX, Distress, 

Engagement, and STRESS achieved lower scores in the real world compared to the 

simulator (Figures 13,15-17). For Worry, there was evidence for equivalence across 

the real world and the simulator (Table 4; Figure 14). 

Table 4. Statistical results for Bayesian paired t-test. Evidence for equivalence is marked green, 

evidence for effects is marked red. 

Bayesian paired t-test 
(Factor: Environment) 

BF10 error % 

VO 4.269x10+22 4.104x10-26 

NASA-TLX 2.375x10+12 2.427x10-18 

Worry  0.186 0.078 

Distress 8450.038 5.213x10-11 

Engagement 36081.394 6.757x10-7 

STRESS 4.088x10+7 1.071x10-13 

PW 1.505x10+12 2.522x10-18 

 

Figure 12. Descriptives for Vehicle Operation (with 95% credible interval) 
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Figure 13. Descriptives for NASA Task Load Index (with 95% credible interval) 

 

Figure 14. Descriptives for dimension Worry (SSSQ) (with 95% credible interval) 

 

 



  

63 
 

Figure 15. Descriptives for dimension Distress (SSSQ) (with 95% credible interval) 

 

Figure 16. Descriptives for dimension Engagement (SSSQ) (with 95% credible interval) 
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Figure 17. Descriptives for Stress (with 95% credible interval) 

 

Figure 18. Descriptives for Physical Wellbeing (with 95% credible interval) 
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5. Discussion 

In the present study, we investigated the validity of physiological (H1) and cognitive 

stress indicators (H2) relying on a within-subject design using a multi-method approach 

on a 23 km driving route (comprising urban, rural, and highway segments) between a 

real vehicle and a medium-fidelity simulator. In contrast to the majority of previous 

studies, we employed a Bayesian analysis approach and considered various driving 

scenarios.  

For physiological data, which was recorded continuously throughout the drive, both 

absolute (H1a) and relative validity (H1b) were considered. Absolute validity was 

concluded from the absence of an effect of the test environment (real world vs. 

simulator), while relative validity will be concluded from the absence of an interaction 

effect between the test environment and the driving scenario.  

Our results regarding GSR-related variables indicate both absolute and relative validity 

for SCR, meaning that physiological responses do not differ between simulated and 

real-world driving for this parameter. No absolute validity was found for SCL. However, 

we found evidence for relative validity for SCL, similar to the findings reported by 

Reimer and Mehler (2011), whereas Mueller (2015) did not report validity. For PA there 

was no absolute nor relative validity. To our knowledge, no prior validation studies 

considered SCR and PA, making it difficult to compare our results to existing literature. 

Regarding ECG parameters, our results suggest anecdotal evidence for absolute 

validity for RMSSD, as well as absolute validity for SDNN. Furthermore, both HRV 

parameters (RMSSD and SDNN) demonstrated relative validity. Consequently, for 

these parameters, a drive in the simulator elicits comparable physiological responses 

to a drive in a real vehicle. However, no such findings were observed for RR-interval, 

as neither absolute nor relative validity was confirmed. Similarly, we could not establish 

absolute or relative validity for HR. 

For HRV parameters RMSSD and SDNN, our findings align with Mueller (2015), who 

also reported relative validity for HRV. However, it should be noted that this study did 

not specify which HRV parameter was investigated. For HR, Reimer and Mehler (2011) 

and Li et al. (2013) reported absolute validity, while Reimer and Mehler (2011) and 

Mueller (2015) also found relative validity. In contrast, Johnson et al. (2011) and 

Milleville-Pennel and Charron (2015) found no validity for HR. Fors et al. (2013) 

reported collecting ECG data but did not analyze ECG parameters in their study. 

Furthermore, there was absolute validity regarding SCT, indicating a similar biological 

stress level after driving in the two environments. To the best of our knowledge, SCT 

has not been empirically compared across simulator and real world driving in the past.  

One potential reason why PA did not show valid results could be that it is an intensity-

based measure, especially sensitive to sudden and unexpected stimuli. For most 

participants, this study was their first experience with a driving simulator, which could 

have been perceived as a novel stimulus and hence may have increased PA. On the 

other hand, this result also corresponds to the fact that cognitive stress indicators also 

indicated a higher stress level in the simulator.  
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A possible explanation for the lack of validity concerning RR-Int could be that RR-Int is 

more susceptible to artifacts, such as micro-movements within the vehicle (e.g., 

braking, turning), whereas the other two parameters (RMSSD and SDNN) are more 

stable as they are averaged over longer time periods. 

The reason for higher HR values in the real vehicle could result from perceived risk. 

While participants are theoretically exposed to real dangers during a real drive, they 

are likely aware that there are no physical consequences to accidents in the simulator 

(Caird & Horrey, 2016; Vlakveld, 2005). 

Concluding our findings regarding the stated hypotheses, we cannot generally accept 

H1a or H1b in light of inconsistent findings. Absolute validity (H1a) was given for SCR, 

RMSSD, SDNN, and SCT, while there was no absolute validity regarding SCL, PA, HR, 

and RR-Int. Relative validity (H1b) was given for SCR, SCL, RMSSD, and SDNN but 

must be rejected for PA, HR, RR-Int, and SCT. Caird and Horrey (2016) already 

emphasized that validity at least in parts depends on the dependent variables 

considered, which we can hence confirm regarding physiological stress.  

Regarding the cognitive stress indicators, we found absolute validity only for the Worry 

dimension of the SSSQ. A comparable study by Galante et al. (2018), however, found 

absolute validity for the Distress dimension instead.  Meanwhile, Galante et al. (2018), 

Diels et al. (2011), Milleville-Pennel and Charron (2015), Mueller (2015), and Lobjois 

et al. (2021) found relative validity for the overall NASA-TLX score. While we did not 

directly test for relative validity, no absolute validity was found regarding the NASA-

TLX in our study.  

Absolute validity was neither confirmed regarding VO and PW. Since these items were 

developed by us, they cannot be directly compared with previous research. 

Participants reported significantly higher cognitive stress in the simulator, which could 

be due to various factors. For most of the sample, driving a simulator was a completely 

new situation, where steering, braking, and speed perception differ from real vehicles, 

which is also reflected in the VO variable. Although we did not assessed simulator 

sickness using standardized tools, a certain degree could have influenced stress 

perception.  

Summarizing, regarding H2, we can neither make a final conclusion. While absolute 

validity was given for Worry, the other cognitive stress indicators point at higher stress 

in the simulator compared to the real world.  

Table 5 summarizes the results regarding the validity of the dependent variables and 

allows for an integrative interpretation. A pattern emerges: physiological indicators 

such as SCR, RMSSD and SDDN show consistent validity on both absolute and 

relative levels. This supports their applicability in driving simulators, particularly for 

analyzing intra-individual responses. Other measures, such as HR or PA, demonstrate 

less consistency, which may indicate greater context sensitivity or interindividual 

variability. 

In contrast, the cognitive measures show a more inconsistent pattern. This may be due 

to the fact that the data were not collected after each section, but retrospectively for 

the entire drive. Section-specific results might have turned out differently. The overview 
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of table 5 thus highlights that continuously recorded physiological data are more 

suitable for validating driving simulators, whereas cognitive measure may require 

methodological adoption to yield comparably robust results. 

Table 5. Overview of the validation results found 

“Level” Parameters Absolute Relative 
    

Physiological SCR ✓ ✓ 

SCL X ✓ 

PA X X 
HR X X 

RR-Int X X 
RMSSD ✓ ✓ 

SDNN ✓ ✓ 

SCT ✓ / 

Cognitive VO X / 
 NASA-TLX X / 

Worry ✓ / 
Distress X / 

Engagement X / 
STRESS X / 

PW X / 

 

6. Limitations 

Objective performance data (driving data) were not considered in our analysis as intra-

individual processes were the focus. Hence, we cannot conclude whether differences 

in stress actually would have induced differences in driving behavior. Note, however, 

that driving parameters have been frequently considered in driving simulator validation 

studies in the past (Wynne et al., 2019).  

The decision not to include behavioral driving data was primarily due to technical 

constraints. The laptop system used for data acquisition was battery-powered and 

already processing multiple physiological signals in real-time. Adding additional data 

streams, such as driving behavior, would have risked overloading the system, 

particularly in the real-world driving context, where no fixed power supply was 

available. 

Nevertheless, we acknowledge the value of integrating both physiological and 

behavioral data to better understand the relationship between stress and driving 

performance. Future studies should aim to include driving performance measures in 

combination with physiological and cognitive stress data for a more comprehensive 

analysis. 

There are mixed results for the physiological and cognitive stress indicators. While 

SCR shows both absolute and relative validity, this is not the case for PA although 

these indicators are linked to each other. This may suggest that some indicators are 

more strongly influenced by factors such as unfamiliarity with the simulator, leading to 

stronger reactions in the participants. However, this variability is more likely due to 

situational sensitivity and individual differences rather than a systematic error of the 
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simulator. Nevertheless, future studies should consider exploring the potential effects 

of simulator novelty and the influence of individual differences more closely to better 

understand their impact on stress indicators. 

For cortisol measurements, a setting is recommended in which participants complete 

the two tests on different days, ideally at the same time of day, as the degradation of 

stress hormones that occurs can influence the results of multiple tests within a day. 

Since cortisol secretion follows a circadian rhythm, with the highest levels in the 

morning and a gradual decline throughout the day, variations in measurement timing 

could significantly affect the outcomes. While our sample was larger than those in other 

studies, the stability of the indicators we found needs to be empirically verified in further 

studies.  

Furthermore, simulator sickness was not systematically assessed in the present study. 

Although none of the participants showed overt symptoms or had to discontinue the 

experiment due to simulator sickness, we cannot rule out the possibility that some 

individuals experienced mild discomfort, which may have influenced their stress 

responses. Future studies should systematically measure simulator sickness to better 

understand its potential impact on physiological and subjective stress indicators. 

Additionally, there is variance in the real-world driving environment induced by 

variations in the weather, traffic, or similar, that is systematically absent in the simulator, 

which limits the comparability of the two test environments.  

Moreover, the order of the simulator and real vehicle conditions was not 

counterbalanced for practical reasons. We acknowledge that this may introduce a 

potential order effect. This should be addressed in future studies. 

The study was conducted on public roads with traffic conditions typical for this semi-

rural area. While the traffic volume remained consistently low during the test, this 

reflects the usual traffic patterns for the area, where high congestion or heavy traffic is 

not commonly encountered. This controlled traffic environment ensured safety and 

comparability between real-world and simulated driving scenarios. However, it may 

limit the ecological validity when extrapolating the findings to more stressful traffic 

conditions, such as those encountered in urban areas or during rush hours. Stressors 

such as heavy congestion, unpredictable driver behavior or adverse weather were not 

present and were not simulated in the study. Therefore, repeating the test under 

varying environmental conditions, including those that induce greater stress, such as 

heavy traffic or poor weather conditions, would be advisable. 

In addition to this, while the current study did not focus on age or gender effects, future 

research should examine whether and how these factors moderate physiological 

stress responses in different driving environments. 

7. Conclusion 

In our study, we examined the validity of physiological and cognitive stress indicators 

in a medium-fidelity driving simulator compared to real-world driving, with the simulated 

drive being an exact replica of the real route. Using a multi-method approach and a 

Bayesian analysis, we assessed both absolute and relative validity for various 

parameters. 
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Our results indicate absolute validity for the physiological stress indicators SCR, 

RMSSD, SDNN, and SCT, suggesting that these measures reflect similar physiological 

responses in the simulator as in real-world driving. Additionally, we found relative 

validity for SCL, RMSSD, and SDNN, supporting the intra-individual comparability 

between simulated and real driving. However, no validity was found for PA, HR, and 

RR-Int. 

Regarding cognitive stress indicators, only the Worry dimension of the SSSQ 

demonstrated absolute validity, whereas all other cognitive parameters, except for our 

single-item measure of stress, exhibited relative validity. Overall, our findings suggest 

that stress experiences in the simulator are comparable to those in real-world driving, 

although the simulator is subjectively perceived as more stressful. 

Despite certain limitations, such as the lack of environmental variability in the simulator 

and an unbalanced sequence of real and simulated drives, our study provides valuable 

insights into the validation of physiological and cognitive stress indicators. Future 

research should further investigate these findings under varied driving conditions and 

consider individual differences more explicitly. 
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Abstract: Driving simulators are essential for the development of vehicle systems, as 

they enable safe and efficient user engagement. Their validity determines the extent 

to which the results from empirical user studies obtained in driving simulators can be 

transferred to real-world driving situations. 

This study examines the gaze behavior of participants in a within-subject design, both 

in a real vehicle and in a driving simulator with a digital road replica. Using gaze-point 

plots and expert ratings, we compare fixation patterns across three road sections (City 

Drive, Rural Drive, Highway). The results visually indicate a moderate to high similarity 

in gaze distributions, suggesting consistent fixation patterns in both environments, with 

some notable exceptions on an individual level and generally highest matches in the 

City Drive. 

However, further statistical analyses are necessary to quantitatively con-firm 

similarities and assess systematic differences. 

Keywords: Driving Simulator Validity, Eye-Tracking, Gaze Behavior, Fixation 

Patterns 

1 Introduction 

The automotive industry is undergoing a major transition toward automation, 

accompanied by rapid advancements in driver assistance systems (Stoma et al., 

2021). For these innovations to gain public acceptance, they must align with user 

needs in accordance with the principle of customer centricity (Kleinaltenkamp et al., 

2022; Riedl et al., 2024). 

Driving simulators are widely used in automotive research, providing cost-efficient, 

safe, and standardized environments for the development and evaluation of driver 

assistance systems (Drosdol & Panik, 1985; Pawar et al., 2022). Simulator studies are 

intended to support the design of safer vehicles and to improve our understanding of 

driver behavior—ultimately contributing to accident reduction (Carroll et al., 2023). 

However, the use of simulators is not without challenges. Despite extensive re-search 

over the past two decades, the impact of confounding variables, such as the complexity 

of the road environment, traffic density, or visibility, on driver behavior (e.g., vehicle 

control, monitoring of the driving scene) remains only partially understood. Moreover, 

even if these influences were fully known, replicating them accurately in simulation 

environments is often not feasible due to technical or cost-related constraints. This 
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raises a central question: which variables can, and should, be realistically reproduced 

in simulators to ensure meaningful research outcomes (Caird & Horrey, 2011). 

It is generally accepted that the validity of a driving simulator depends on whether the 

behavior observed in the simulation corresponds to that observed in real-world driving 

(Wang et al., 2010; Wynne et al., 2019). According to transfer-of-training theory, 

knowledge gained through simulations can only be generalized to real-world contexts 

if behavioral patterns, such as gaze behavior, are comparable across both settings 

(Blume et al., 2010; Liu et al., 2023). 

Gaze behavior plays a central role in driving, as visual attention is essential for 

maintaining situational awareness and performing driving tasks (Martin et al., 2018). 

While simulator validity research has traditionally focused on performance metrics 

such as speed or lane keeping (Wynne et al., 2019), gaze behavior has received 

comparatively less attention. Only a few studies (Carter & Laya, 1998; Fors et al., 2013; 

Mueller, 2015) have attempted to validate eye-tracking data between simulated and 

real driving conditions, and while overall, they found differences between the real car 

and the simulator, their findings are inconsistent: some report narrower fixation 

patterns in simulators, while others observe increased gaze dispersion. These 

discrepancies point to a gap in understanding the ecological validity of simulator-based 

eye-tracking data. 

To address this gap, the present study investigates whether gaze behavior 

systematically differs between simulated and real-world driving conditions. Based on 

the assumption that visual attention is influenced by environmental fidelity and task 

complexity, we compare gaze behavior using eye-tracking data in a within-subject 

design. Participants drove the same 1:1 replicated route—including urban (City Drive), 

rural (Rural Drive), and highway (Highway Drive) segments—in both a real vehicle and 

a high-fidelity driving simulator. Our research question is: 

RQ: Does gaze behavior systematically vary between different road types (urban, rural, 

highway) and between real and simulated driving conditions? 

2 Theoretical background and hypothesis development 

2.1 Driving simulator validity 

The primary goal of simulator validation studies is to determine whether a simulated 

driving environment provides a valid representation of reality, allowing reliable insights 

to be drawn for real vehicles (Himmels et al., 2024; Pawar et al., 2022). To achieve 

this, relevant outcome variables are compared between real and simulated driving 

(Klüver, 2016; Zöller, 2015). 

The validity of driving simulators is divided into physical validity and behavioral validity 

(Bella et al., 2014). Physical validity describes the degree of correspondence between 

the simulator and the real vehicle (Klüver, 2016) though a higher level of similarity does 

not necessarily lead to valid study results (Himmels et al., 2024). 

Behavioral validity refers to participants' driving behavior and response data (Blaauw, 

1982).  
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Naturally for studies on driver behavior, behavioral validity is considered to be more 

important than physical validity, as driving behavior is crucial for the transferability of 

results, whereas an exact physical replication is not always necessary (Blana, 2001; 

Terumitsu et al., 2007). 

One behavioral parameter, which is discussed in the context of driving simulator validity 

is gaze behavior, assessed via eye-tracking. In terms of our study behavior validity 

refers to whether gaze patterns observed in the simulator resemble those in real-world 

driving. 

2.2 Eye-Tracking in driving simulations  

Eye-tracking enables detailed analysis of drivers’ visual attention and cognitive 

processing by capturing fixations and saccades (Calvi et al., 2023; Duchowski, 2002). 

Especially in complex, fast-changing traffic scenarios, drivers rely primarily on foveal 

vision to identify relevant objects and events, while peripheral vision supports spatial 

orientation and scene organization (Fisher et al., 2011). The rule of thumb that only 

directly fixated elements are typically recognized and cognitively processed is 

therefore widely accepted for eye-tracking measures employed in traffic and driver 

research. 

In the context of simulator validation, eye-tracking metrics offer valuable insights into 

behavioral realism. Commonly used indicators include fixation duration, gaze 

dispersion, and the spatial distribution of fixations, particularly in high-relevance areas 

such as the central roadway (Johansson et al., 2001). These parameters enable direct 

comparisons of attention allocation between real and simulated environments and are 

critical for assessing ecological validity (Calvi et al., 2023). 

While prior studies consistently show that gaze behavior differs between real-world 

and simulated driving, the form of these deviations remains inconsistent. Some studies 

report more concentrated fixations and reduced dispersion in simulators (Carter & 

Laya, 1998), while others observe broader scan paths or increased fixation frequency 

(Mueller, 2015). In this sense, the existence of a discrepancy appears robust, but the 

direction and nature of these differences vary across findings. This heterogeneity may 

stem from variations in simulator fidelity, interface design, and the perceived cognitive 

demands of the simulated task (Angell, 2011). 

Additionally, research suggests that these deviations tend to diminish as simulator 

fidelity increases, particularly for metrics like glance durations and visual scanning 

behavior (Angell, 2011). Accordingly, high-fidelity simulations with realistic 

environmental modeling are more likely to evoke gaze behavior that mirrors real-world 

driving. 

In the present study, we use gaze-point plots to compare visual attention patterns 

between real and simulated driving across three distinct road types (urban, rural, 

highway). By analyzing similarities and differences in fixation distributions, we aim to 

assess whether gaze behavior in the simulator reflects real-world patterns in a context-

sensitive and differentiated manner. 
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2.3 Research gap and research question 

Most validation studies on driving simulators focus on performance data like speed or 

lane position (Wynne et al., 2019), with fewer examining physiological parameters such 

as heart rate (e.g., Johnson et al., 2011) or skin conductance (e.g., Reimer & Mehler, 

2011). However, eye-tracking data are rarely validated (Calvi et al., 2023). Wynne et 

al. (2019) call for greater emphasis on these measures, as some researchers believe 

cognitive demands in simulation mirror those in real driving. 

Studies comparing gaze behavior in simulation and reality consistently report 

differences, yet these vary in direction and magnitude, depending on factors such as 

simulator fidelity and task context. According to Angell (2011), lower-fidelity simulators 

may lead to altered visual behavior due to reduced realism and cognitive engagement. 

For example, Carter & Laya (1998) observed more concentrated fixation areas in the 

simulator than in real traffic. Similarly, Fors et al. (2013) reported more frequent 

fixations, albeit within a narrower visual radius. In contrast, Mueller (2015) found 

greater gaze dispersion in the simulator, both horizontally and vertically. These 

divergent outcomes suggest that gaze patterns between real and simulated driving are 

not directly interchangeable and point to unresolved questions regarding the ecological 

validity of simulator-based eye-tracking data. 

Besides simulation fidelity associated to the graphics and dynamic properties involved, 

these differences might result from the simulated traffic environment or even varying 

road sceneries. As our research environment replicates the exact properties of the road 

scenery around the campus in Hof, Bavaria, we chose to address the following 

research question: RQ: Does gaze behavior systematically vary between different road 

types (urban, rural, highway) and between real and simulated driving conditions? 

To answer this RQ, we compare participants' gaze-point plots while driving the same 

route in both a real vehicle and a driving simulator with a digital twin. We distinguish 

between the road sections City Drive (CD), Rural Drive (RD), and High-way (HD). By 

incorporating sections with distinct visual and task-related demands, we aim to 

examine whether simulator validity is consistent across different types of real-world 

scenarios. This approach enhances the ecological validity of the study and improves 

the potential generalizability of the findings. 

3 Method 

3.1 Experimental design 

Participants. The study follows a within-subject design with 12 participants (7 women, 

58.3%; 5 men, 41.7%), averaging 29.3 years (SD = 12.9, range: 18–59). Regarding 

residence, 58.3% live in rural areas, 41.7% in small or medium-sized towns. 

Eye-Tracking Device. To record eye movements, the Pupil Labs Invisible was used, 

which are mobile eye-tracking glasses with a scene camera resolution of 1088 × 1080 

pixels at a frame rate of 30 Hz. The scene camera's field of view is 82° horizontally and 

82° vertically. The system's gaze accuracy is 4.6° (uncalibrated). 
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3.2 Materials, procedure and data processing 

Vehicles. The real-world test vehicle used in this study was a VW Golf 8 with 110 kW. 

The driving simulator, classified as a medium-fidelity simulator in accordance with 

Wynne et al. (2019) (Wynne et al., 2019), was equipped with a VW Golf 7 steering 

wheel and pedals, as well as a three-degree-of-freedom motion platform to enhance 

realism during simulated driving. 

Track. The driving route covered a 23 km loop and included three different road types: 

urban roads (5.3 km), rural roads (9.7 km), and highways (8.0 km). For maximum 

comparability, the route was replicated in the simulator as a digital twin of the real-

world track. Figure 1 shows representative images of urban, rural, and highway 

sections, each displayed for both the driving simulator (left) and the real vehicle (right 

row). All participants started the drive at the same location and followed the same 

sequence of road sections. As the track was designed as a closed loop, it was not 

feasible, without disproportionate effort and logistical complexity, to randomize or 

counterbalance the order of the road segments. Additionally, all participants first 

completed the real drive before performing the same route in the simulator. This fixed 

order was chosen to ensure that participants had a real-world reference, minimizing 

disorientation in the simulator. Although this introduces a potential learning effect, the 

analysis focused on spatial gaze patterns rather than performance metrics, which are 

more susceptible to such effects. 

Figure 1. Comparison of visual scenes from the simulator (left row) and the real vehicle (right row) 

across highway (top), rural (middle) and urban (down) segments. 
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Procedure. Upon arrival at the lab, participants were first introduced to the real vehicle 

and fitted with mobile eye-tracking glasses. They then completed the real-world drive 

while refraining from speaking, except when receiving instructions. After returning to 

the lab, participants completed a short familiarization drive in the simulator to minimize 

the risk of simulator sickness. Following this, they completed the full simulated drive, 

again wearing the eye-tracking glasses and driving the same route as before. On 

average, the real-world drive lasted 25 min, the simulator drive 23 min, and the entire 

experimental session took approximately 90 minutes per participant. 

Data Processing. Gaze-point plots were generated for each participant to visualize 

fixation density across the three road sections (City Drive, Rural Drive, Highway Drive). 

These visualizations were based on horizontal and vertical gaze coordinates and 

illustrated the distribution of visual attention in each condition. The data were analyzed 

both descriptively and exploratorily. 

In addition, an expert rating procedure was conducted. Three independent experts 

reviewed the gaze-point plots for each participant, comparing the real-world and 

simulated conditions for the entire route as well as for each road section individually. 

Each expert assigned a similarity score from 0 (no similarity in gaze distribution) to 10 

(very high similarity). The average of the three expert ratings was calculated for each 

participant and for each condition (whole route and individual road sections). 

4 Results and discussion 

Figure 2 exemplary shows the gaze distributions of Participant 4 and Participant 7 in 

the road sections CD, RD, and HD. The gaze data are represented in pixel coordinates 

relative to the scene camera image, where the X-axis denotes the horizontal and the 

Y-axis the vertical position of the gaze within the video frame, with (0,0) located in the 

top-left corner of the image. 

The plots for CD show similar fixation patterns, with high density in the central visual 

field and wide dispersion in the periphery. The focus was primarily on the roadway and 

other road users in both real and simulated drives. However, the real drive had wider 

fixation dispersion, possibly due to more frequent and richer peripheral stimuli, such 

as pedestrians. In the simulator, the fixation density appeared more compact, 

indicating reduced environmental stimuli or a stronger focus on the road. Additionally, 

the values seemed vertically shifted downward, showing a notable downward spread, 

suggesting differences in the human-machine interface: in the simulator, relevant 

driving information may be further from the road scene. 

Similar fixation patterns were observed in the RD, with the primary focus again on the 

roadway. Once again, the horizontal dispersion was smaller in the simulator, likely 

because more environmental stimuli, such as oncoming traffic, were observed in the 

real environment. Compared to CD, the gaze dispersion seemed somewhat reduced 

in both the real vehicle drive and the simulator drive. 

On the HD, the gaze in both driving environments was even more focused on the 

central area than in the other two conditions. The peripheral dispersion was notably 

lower, suggesting that the focus was primarily on vehicles ahead or lane markings. 
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Across all driving conditions, both participants showed changes in gaze patterns, 

observed in both the real vehicle and the simulator, supporting the assumption of 

relative validity between the two environments. However, when examining the absolute 

gaze distribution values, systematic differences between the two environments 

become evident: gaze dispersion in the simulator is generally more restricted, and the 

horizontal gaze points are systematically shifted downward. 

When comparing both participants, the corresponding experimental environments and 

driving conditions appear more similar, with participant-specific patterns being less 

distinguishable. This observation is mostly consistent across the entire sample, though 

a few participants exhibit distinct gaze patterns, which are more isolated cases. 

Overall, the gaze-point plots show a high degree of similarity between real and 

simulated driving. Slight differences in horizontal and vertical fixation dispersion can 

be explained by context-dependent environmental factors. A similar pattern was 

observed with other participants as well. 

Figure 2. Comparison of the gaze data from participant 4 and participant 7 in the sections City Drive, 

Rural Drive, and Highway Drive between real vehicle and simulator (The X- and Y-axes represent pixel 

coordinates). 
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To systematically evaluate the visual impression of the gaze-point plots, three 

independent experts assessed the similarity of gaze patterns between real and 

simulated driving for each participant. They provided ratings on a scale from 0 (no 

similarity) to 10 (very high similarity) for the entire route as well as for the individual 

segments (city, rural, highway). The resulting mean scores and standard deviations 

are presented in Table 1. 
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Overall, the average scores, ranging between approximately 5 and 6, suggest a 

moderate level of similarity between real and simulated gaze behavior. As a tendency, 

the highest similarity ratings were found for the entire route, followed closely by the 

highway section. City and rural segments showed slightly lower average similarity 

scores. 

Interestingly, although the highway segment received the highest mean similarity 

rating, it also exhibited the largest standard deviation. This indicates substantial 

interindividual variability in gaze similarity for this segment. One possible explanation 

is that while some participants displayed nearly identical gaze behavior in both 

conditions, others adapted their gaze patterns more strongly depending on whether 

they were driving in the simulator or in the real car. 

This variability might be partly explained by the nature of the highway section, which is 

typically more monotonous than urban or rural environments. In the real vehicle, 

participants may still have experienced a heightened sense of risk due to the presence 

of other vehicles and real-world consequences of failure, whereas in the simulator, this 

sense of risk was likely diminished. The relatively neutral visual design of the simulated 

highway may also have resulted in reduced visual exploration for some participants, 

thereby increasing perceived similarity. However, the large standard deviation 

suggests that this effect was not consistent across the sample. 

Table 1. Expert ratings for the similarity of the gaze-point plots. 

Participant Whole 
Track 

City Country Highway 

1 7.67 6.67 6.00 6.67 
2 7.33 7.33 6.00 4.67 
3 7.00 6.67 4.00 7.00 
4 7.33 5.00 6.67 4.67 
5 6.33 5.33 6.67 5.00 
6 3.67 2.33 1.67 1.00 
7 6.00 5.67 5.00 5.33 
8 6.67 5.67 5.67 4.33 
9 7.67 4.00 6.33 6.33 
10 6.33 7.33 7.33 7.33 
11 6.67 5.67 3.33 2.67 
12 4.67 6.33 5.33 5.00 

MeanExperts 5.58 4.92 4.92 5.00 
SDExperts 1.38 1.80 1.85 2.20 

 

Overall, the combination of visual inspection and expert ratings suggests that gaze 

behavior in real and simulated driving is largely comparable. At the same time, intra- 

and interindividual differences—particularly pronounced on the highway segment—

likely reflect varying perceptions of task relevance and environmental realism. Minor 

differences in fixation dispersion and vertical gaze orientation are more plausibly 

attributed to environmental and interface-related factors (e.g., dis-play resolution, 

realism of scenery) rather than fundamental behavioral divergence. 
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5 Conclusion and limitations 

The gaze-point analysis revealed a moderate degree of visual similarity in fixation 

patterns between real and simulated driving, yet with a progressive narrowing of gaze 

distributions from the CD through the RD to the HD. At the same time, two clear 

absolute differences emerged: simulated gaze data exhibited reduced peripheral 

dispersion and a consistent downward shift. These observations reconcile apparently 

contradictory reports in the literature, which have documented both more centralized 

(Fors et al., 2013) and more widely dispersed fixations (Mueller, 2015) in simulation 

studies. 

Collectively, our findings underscore the context dependence of gaze behavior: both 

the experimental environment and the driving scenario (CD, RD, HD) exert a influence 

on fixation distribution. Participant‑specific effects, while modest on average, can be 

substantial in individual cases and therefore warrant consideration in studies of driver 

state or personalized assistance systems. Notably, the lowest similarity between real 

and simulated conditions was observed in the highway segment likely a consequence 

of the simulator’s perceived monotony and absence of genuine risk, which diminished 

visual exploration compared to the real‑world drive. 

A primary limitation of this study is its relatively small sample size, which constrains the 

generalizability of our results. Furthermore, potential learning effects may have 

influenced the results, as all participants completed the road segments in the same 

order and always began with the real-world drive. This fixed sequence could have 

introduced systematic biases. Future studies should at least counterbalance the order 

of driving conditions (real vs. simulated), and ideally also vary the sequence of road 

segments, although the latter may be difficult to implement in practice. 

Moreover, the lack of robust statistical analysis of the gaze data represents a further 

constraint: although exploratory spatial scan statistics (Benjamin Allévius, 2018; 

Purucker et al., 2013) were applied, these methods are overly sensitive to central‑field 

differences and ill‑suited for peripheral pattern analysis. While expert ratings provided 

valuable qualitative insights, their inherent subjectivity underscores the need for 

objective, quantitative similarity metrics in future work. 

For future research, we recommend (1) evaluating simulators of varying fidelity to 

determine whether higher realism promotes closer convergence of simulated gaze 

patterns with those observed in real driving, or whether extreme fidelity levels produce 

larger divergences, and (2) adopting advanced statistical approaches (e.g., heatmap‑
based similarity measures, cluster analyses etc.) to rigorously validate and extend the 

visually and experientially derived findings reported here. 
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A.3 Extended Abstract Research Paper No. 3: User Interaction with digital 

twins: how comparable are simulation and reality 

Authors: Czaban, M.; Sultanow, E.; Chircu, A.; Czarnecki, C.; Riedl, J.; Wengler, S. 

– Under review  

Abstract: This paper investigates the physiological responses of individuals driving 

both on a real route and within a simulator designed as a digital twin of that route. The 

analysis of observed data patterns in stress response bio signals provide sufficient 

evidence of similarity to validate the driving simulation digital twin as a reliable 

replacement for real-world experiences in controlled and consistent settings, or when 

overall trends of physiological variables, rather than specific variable levels, are of 

interest. The findings also stress the need for optimizing the precision of digital twins 

in complex settings. These findings support the broader application of digital twins in 

fields where real world interactions are unfeasible, providing foundational insights for 

future digital twin design and use. 

Keywords: Digital twins; Physiological measurement; Vehicle Simulation; Stress 

response 

1 Introduction 

The concept of the Digital Twin (DT) has gained increasing importance across various 

industries (Apte & Spanos, 2021; Barricelli et al., 2019; Jones et al., 2020). A DT 

represents the digital replication of a physical entity, process, or system that can 

accurately reflect real-world dynamics. This enables interaction with the virtual model 

as if it were the physical counterpart (Semeraro et al., 2021). 

This concept holds transformative potential, as it opens up new possibilities for 

analysis, prediction, and performance optimization under different conditions—without 

the need for physical testing in every scenario. The advantages of a DT therefore lie 

not only in cost and risk reduction but also in providing new insights that can enhance 

decision-making processes (Attaran et al., 2023; Singh et al., 2022). 

For the application of DTs to be meaningful and for their potential to be fully realized, 

it is essential to understand how users interact with such digital models—and whether 

this interaction can replicate or replace real-world experience. This leads to the central 

research question of whether interaction with a DT is sufficiently realistic to substitute 

direct experience with the physical entity. 

In fields such as healthcare, manufacturing, or the automotive industry, physical testing 

is often time-consuming, costly, and resource-intensive (Piromalis & Kantaros, 2022; 

Atalay et al., 2022; Voigt et al., 2021). If DTs can serve as realistic replications, this 

would offer significant advantages—they could be used as flexible alternatives or 

complements to physical tests. Especially in early development stages, DTs can 

reduce costs and accelerate processes (Attaran et al., 2023). Moreover, they enable 

testing of complex or extreme scenarios in a safe, controlled environment that would 

be difficult or costly to realize in the real world (Mihai et al., 2022). The data obtained 

can provide valuable insights for product optimization and improvement of user 

experience (Lo et al., 2021). 
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To address the research question, this study employs a driving simulator. The 

physiological responses of participants were examined while driving on a real track 

and while driving within the DT of the same track in the simulator. The aim was to 

determine the degree of similarity between physiological stress responses in both 

environments (real-world driving vs. simulated driving) using mean value and time 

series analyses. 

The results indicate significant correlations between both environments, supporting the 

applicability of the DT concept in the context of driving simulation. 

2 Theoretical background and research questions 

2.1 Digital twins: concept and application 

Digital Twins (DTs) are understood as virtual systems or computer-generated models 

that replicate or “mirror” the lifecycle of a physical entity—such as an object, process, 

or person. A key characteristic of the DT concept is the continuous, bidirectional data 

integration between the physical entity and its digital counterpart (Fuller et al., 2020; 

Barricelli et al., 2019). 

In the literature, different maturity levels of data integration are distinguished (Fuller et 

al., 2020; Botín-Sanabria et al., 2022): 

• Digital Model: Simulates the physical system but without real-time data 

transfer.  

• Digital Shadow: Includes a unidirectional data transfer from the physical entity 

to the virtual system to improve the simulation. 

• True Digital Twin: Features bidirectional data flows, allowing the virtual system 

to accurately represent the physical entity, predict its behavior, and send 

decisions back to the real system. 

DTs enable cost- and time-efficient simulations and are particularly suitable for 

analyzing complex or risky scenarios that are difficult or impossible to replicate in the 

real world (Chircu et al., 2023). The range of DT applications is broad, spanning from 

smart cities, transportation, manufacturing, healthcare, and product design to 

agriculture and societal modeling (Barricelli et al., 2019; Semeraro et al., 2021; Jones 

et al., 2020). For instance, in the medical field, DTs are used to develop personalized 

treatment strategies (Voigt et al., 2021). 

In the automotive industry, DTs support vehicle design development, traffic 

management, and the validation of vehicle systems (Deng et al., 2023). Driving 

simulators are often used in this context—for example, for component testing (e.g., 

batteries), validation of autonomous driving functions, or studies of driver behavior 

such as distraction or stress (Shoukat et al., 2024; Ma et al., 2024). 

Despite significant progress, challenges remain in modeling real-world complexity, 

validating models, and ensuring data security. Moreover, standardized reference 

frameworks are often lacking (Sharma et al., 2020). In many domains, the fidelity of 

DTs has not yet been fully achieved. For example, driving simulators often fail to 

capture the subtleties of real driving environments—such as sudden traffic patterns or 

the unpredictable behavior of pedestrians—accurately enough (Piromalis & Kantaros, 
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2022). This so-called simulation-to-reality gap therefore represents a central challenge 

(Stocco, 2022). 

2.2 Simulation vs. reality 

Virtual Environments (VEs) and Virtual Reality (VR) enable the replication of real-world 

scenarios under controlled conditions. They are used in disciplines such as 

psychology, design, medicine, and training to systematically study behavior and 

perception (Bishop & Rohrmann, 2003). This approach allows researchers to combine 

ecological validity (as in field studies) with experimental control (as in laboratory 

studies) (Loomis et al., 1999; Weibel et al., 2018). 

A key criterion for the quality of a simulation is behavioral realism—the extent to which 

reactions within the simulation correspond to reactions in the real environment 

(Freeman et al., 2000; IJsselsteijn et al., 2000). Studies have shown that physiological 

responses in simulations often resemble those observed in real environments, while 

psychological responses sometimes differ considerably (Higuera-Trujillo et al., 2017; 

Hu et al., 2011). 

In the context of driving behavior, driving simulators are already widely used. They 

serve to investigate parameters such as driving dynamics, attention, or stress 

responses (Bella, 2014; Veldstra et al., 2015). These can be validated using subjective, 

objective, and physiological measures (Johnson et al., 2011; Li et al., 2013). A 

distinction is made between absolute and relative validity (Törnros, 1998; Pawar et al., 

2022): While absolute validity requires identical values in both environments, relative 

validity is achieved when the trends between environments are consistent. 

Previous studies have shown that driving simulators elicit similar physiological patterns 

in heart rate, gaze behavior, and skin conductance as real driving (Johnson et al., 2011; 

Carter & Laya, 1998). 

This leads to the research question of the present study: 

To what extent do the physiological stress responses of users while driving in a Digital 

Twin reflect those observed in real driving contexts? 

3 Method 

The study was conducted using a within-subject design with a total of n = 68 

participants. The sample consisted of 37 women (54.4%) and 31 men (45.6%) (M = 

30.07, SD = 11.58).  

For the experiment, a Digital Twin (DT) of a 23 km driving route was created, including 

urban, rural, and highway sections. To achieve a high level of simulator realism and to 

replicate the real vehicle (VW Golf 8) as accurately as possible, components from a 

VW Golf 7 (steering wheel, pedals, seat) were integrated into the driving simulator. 

These components were mounted on a D-Box motion system with three degrees of 

freedom. The driving environment was displayed on three 55-inch screens. 

Physiological measurement: 

• ECG (Electrocardiogram): Heart Rate (HR) and Heart Rate Variability (HRV; RR 

interval, RMSSD, SDNN) 
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• GSR (Galvanic Skin Response): Skin Conductance Response (SCR), Skin 

Conductance Level (SCL) und Peak Amplitude (PA) 

Participants first completed the real-world drive, followed by the simulated drive in the 

DT. 

Data analysis: 

The data were analyzed using descriptive statistics, t-tests for individual segments, 

and time series analyses for the entire drive. Correlations between real and simulated 

measurements were also computed. 

4 Results 

4.1 Mean value analysis 

The mean comparisons between real-world driving and driving simulation revealed 

nuanced differences. The GSR indicators (SCR, SCL, PA) were overall higher during 

the simulated drive, indicating stronger sympathetic activation and increased emotional 

arousal. 

In contrast, heart rates (HR) were higher in certain segments of the real drive, 

suggesting greater physical exertion and more intense physiological strain. The RR 

intervals were longer during the simulation, indicating a more relaxed cardiovascular 

response. 

The HRV parameters (RMSSD and SDNN) showed no significant differences between 

the two environments, suggesting comparable autonomic regulation. Overall, the 

findings indicate that real driving induces higher physical strain, while simulated driving 

elicits stronger emotional responses. 

4.2 Time series analysis 

To capture dynamic patterns that are smoothed out by mean values, the time series—

exemplified by the SCL—were normalized. Subsequently, the Pearson correlation 

coefficient was calculated between the time series of the real-world drive and the 

simulated drive for urban and rural sections. 

The results show a moderate linear similarity: the correlation for rural sections was r = 

0.34, and for urban sections r = 0.31. The visual analysis of the time series revealed 

strong parallels in shape and progression, indicating similar dynamics of physiological 

stress responses in both environments. 

5 Discussion and conclusion  

The aim of this study was to examine the extent to which physiological parameters 

during real-world driving and simulated driving in a Digital Twin are comparable. The 

results reveal both significant similarities and differences but indicate that the driving 

simulator serves as a reliable tool for capturing general trends and dynamic patterns 

of physiological responses—though less so for exact absolute values. 

The higher GSR responses in the simulation can be attributed to emotional or slightly 

unsettling aspects of the virtual environment, whereas the higher HR observed during 

the real drive reflects greater physical strain. This suggests that stress perception in 
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the simulator is more cognitively and emotionally driven, while in the real environment 

it is more physiologically and physically induced. 

Mean value analyses provide initial insights but do not capture the temporal dynamics 

and contextual dependence of physiological processes. Time series analyses are 

therefore particularly suitable for identifying similarities between real and simulated 

drives, especially regarding temporal patterns and trends—a finding supported by the 

present results. 

From a practical perspective, Digital Twins can complement or partially replace real-

world tests, particularly in controlled, standardized, and low-risk environments. 

However, discrepancies still exist in complex urban scenarios, highlighting the need for 

further development of adaptive simulations with real-time data integration and 

bidirectional feedback. 

Overall, the results demonstrate that Digital Twins can reproduce key physiological 

patterns observed in real driving. While absolute values in some parameters differ, 

overarching trends and stress responses can be reliably examined under controlled 

conditions. Based on these findings, this study contributes to the advancement and 

validation of Digital Twins as a tool for research, development, and training. 
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Appendix B: Acceptance and stress measurement using simulators 

B.1 Extended Abstract Research Paper No. 4: User Acceptance of autonomous 

shuttle systems: A UTAUT2 -based analysis with simulated driving tests 

and physiological measurement 

Authors: Czaban, M. & Baier, D. (20xx) – Under review 

Abstract: Autonomous shuttle buses offer significant potential for improving public 

transportation, enhancing traffic safety, and reducing environmental impact. However, 

their successful implementation depends not only on technological development but 

also crucially on user acceptance. While previous studies have primarily investigated 

acceptance based on surveys of individuals without direct experience, especially in 

critical traffic situations, our study addresses this gap through a simulated driving test 

incorporating such scenarios. 

Using an extended UTAUT2 model and including both physiological 

(electrocardiogram, galvanic skin response) and cognitive (Perceived Stress Scale, 

NASA-TLX, and self-developed items) stress indicators, we examined factors 

influencing the behavioral intention to use autonomous shuttle buses. The results show 

that social influence, trust and perceived risk, and perceived usefulness positively 

affect usage intention, while cognitive stress has a negative impact. Physiological 

indicators also play a role: heart-related parameters show the expected negative 

association with usage intention, while electrodermal activity demonstrates a positive 

relationship, suggesting it may reflect general arousal rather than stress alone. 

These findings highlight the importance of social context and emotional responses in 

the acceptance of new mobility technologies. In practical terms, users' subjective 

sense of safety, especially in stressful situations, may be as critical as actual technical 

safety. This study provides a more realistic contribution to understanding user 

acceptance and forms a basis for further research under real-world conditions. Future 

studies should explore physiological responses in real-life testing environments. 

Keywords: UTAUT2, User Acceptance, Autonomous Shuttle Buses, Simulation Study, 

Streass measurement, Physiological Measurement 

1 Introduction 

The use of autonomous shuttle buses offers numerous advantages. In addition to 

improving traffic safety and reducing emissions, they can contribute to increasing the 

efficiency of public transportation systems (Bansal et al., 2016; Fagnant & Kockelman, 

2015; Othman, 2023). As the use of such vehicles eliminates the need for driving 

personnel, automated and demand-responsive operations become possible, making 

public transport more flexible, cost-efficient, and inclusive (Ma et al., 2021; Othman, 

2020; Millonig & Fröhlich, 2018). 

However, a central challenge lies in the still limited public acceptance of autonomous 

vehicles (Korkmaz et al., 2022; Rejali et al., 2024). Concerns about safety, a lack of 

trust in the technology, and the perceived loss of control contribute to a pronounced 

technological skepticism that hinders the diffusion of such systems. Therefore, 

researching the acceptance of autonomous mobility solutions is essential. 
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Most existing studies examine acceptance through surveys in which participants have 

no real user experience and base their assessments on assumptions or mental 

images. Furthermore, traditional questionnaire-based acceptance models are 

increasingly criticized for offering limited new insights and for requiring extensions 

through new methodological approaches (Blut et al., 2022). 

The present study addresses this research gap by providing participants with an actual 

usage experience through a shuttle bus simulator. It combines the theoretical 

framework of an extended UTAUT2 model (Venkatesh et al., 2012) with physiological 

and cognitive stress measurements to better understand which factors influence the 

behavioral intention to use autonomous shuttle buses in critical situations. 

In doing so, this work follows the call by Davis & Granic (2024) to extend the classical 

acceptance model with a NeuroIS approach while simultaneously examining whether 

simulators are suitable for realistic acceptance research in the field of autonomous 

mobility.  

2 Theoretical background and research questions 

2.1 Acceptance models 

The study of technology acceptance has a long tradition and encompasses various 

theoretical models. Early approaches include the Theory of Reasoned Action (TRA; 

Fishbein & Ajzen, 1975) and the Theory of Planned Behavior (TPB; Ajzen, 1991), which 

emphasize that behavior is determined by attitudes, subjective norms, and perceived 

control. 

The Technology Acceptance Model (TAM; Davis, 1989) is considered one of the most 

influential models and is based on the core constructs of Perceived Usefulness and 

Perceived Ease of Use, which directly influence the intention to use a technology. The 

later Unified Theory of Acceptance and Use of Technology (UTAUT; Venkatesh et al., 

2003) integrates several earlier models and defines four key constructs: Performance 

Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions. 

For consumer contexts, this model was extended to UTAUT2 (Venkatesh et al., 2012) 

by adding the factors Hedonic Motivation, Price Value, and Habit. The constructs Price 

Value and Habit are not included in the present study, as autonomous shuttle buses 

are not yet available on the mass market, making a realistic assessment of these 

factors impossible. 

Since the use of autonomous transport involves handing over control of the vehicle to 

the system, the model was extended by the variables Trust and Perceived Risk (Gefen 

et al., 2003; Featherman & Pavlou, 2003). These factors play a crucial role, particularly 

in the early stages of technological diffusion (Korkmaz et al., 2022; Salonen, 2018). 

Trust represents the feeling of safety and reliability, whereas Perceived Risk reflects 

the perceived uncertainty or potential danger. 

2.2 Physiological and cognitive stressreactions 

Stress arises when a situation is perceived as threatening and the available resources 

are considered insufficient to cope with it (Lazarus & Folkman, 1985). The resulting 
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stress response serves to restore physiological balance (homeostasis) and can be 

assessed both cognitively and physiologically (Witte et al., 2021). 

Cognitive stress responses can be measured using established questionnaires such 

as the Perceived Stress Scale (PSS-10) (Cohen et al., 1983) or the NASA-TLX (Hart 

& Staveland, 1988), which primarily measures workload but is closely related to the 

experience of stress. However, subjective measures are prone to biases, such as 

social desirability bias (Nederhof, 1985). 

To complement cognitive assessments, physiological indicators can be used, as they 

capture unconscious emotional responses in real time and are more objective (Dawson 

et al., 2007). The most common include: 

• Electrocardiogram (ECG; cardiac activity): Records cardiac activity, particularly 

heart rate (HR) and heart rate variability (HRV). An increased HR and decreased 

HRV indicate sympathetic activation and thus stress (Reinhardt et al., 2012). 

• Galvanic Skin Response (GSR): Measures changes in the electrical 

conductance of the skin caused by sweat gland activity. Since this activity is 

exclusively controlled by the sympathetic nervous system (SNS), GSR is 

considered a direct indicator of emotional arousal. It is differentiated into tonic 

and phasic skin conductance (Boucsein et al., 2012). 

2.3 Research gap and questions 

Numerous studies investigate the acceptance of autonomous shuttle buses using 

established models such as TAM or UTAUT. However, most of these studies are based 

on hypothetical assumptions, as participants have no real usage experience. 

Moreover, traditional acceptance models are often criticized for providing limited 

explanatory insights. 

Therefore, the present study extends the acceptance model by incorporating cognitive 

and physiological stress responses to examine whether these factors enhance the 

predictive power of the behavioral intention to use autonomous shuttle buses. 

Based on the UTAUT2 model and previous research, the following hypotheses were 

formulated: 

• H1: Performance Expectancy has a positive influence on Behavioral Intention  

• H2: Effort Expectancy has a positive influence on Behavioral Intention  

• H3: Social Influence has a positive influence on Behavioral Intention  

• H4: Facilitating Conditions have a positive influence on Behavioral Intention  

• H5: Hedonic Motivation has a positive influence on Behavioral Intention  

• H6: Trust & Perceived Risk has a positive influence on Behavioral Intention  

• H7: Perceived Usefulness has a positive influence on Behavioral Intention  

Furthermore, the following hypotheses are derived to address the research question: 

• H8: Cognitive Reaction (CR) has a negative influence on Behavioral Intention  

• H9: Cardiac Activation (CA) has a positive influence on Cognitive Reaction  

• H10: Electrodermal Activation (EA) has a positive influence on Cognitive 

Reaction (CR) 
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3 Method 

3.1 Sample and simulator situations 

A total of n = 104 individuals participated in the study (58 women, 46 men; M = 29.6 

years, SD = 13.0). 

The experiment was conducted using a custom-developed autonomous shuttle bus 

simulator modeled after the Navya Arma. The simulation was built on the open-source 

platform CARLA and displayed on a 75-inch screen, complemented by two additional 

monitors providing relevant information to participants. 

The virtual route included four critical driving scenarios specifically designed to elicit 

physiological stress responses: 

1. Violation of right of way by another vehicle, 

2. Blocked roadway, 

3. Sudden pedestrian crossing, 

4. Interaction task using gesture control. 

In addition to the four situations that occurred during the drive, a stress-inducing 

situation also took place before the drive began. Before starting the drive, participants 

were required to book a ticket on a smartphone and validate it in the form of a QR code 

at the correct location to unlock the door and be allowed to enter. Thus, the participants 

were exposed to a total of five situations that had the potential to induce stress. 

3.2 Measurements 

Physiological measurements: 

• ECG indicators (Cardiac Activation, CA): Heart rate (HR), Heart rate variability 

(RMSSD) 

• GSR indicators (Electrodermal Activation, EA): Skin Conductance Response 

(SCR), Skin Conductance Level (SCL) 

Cognitive measurements: 

• UTAUT2-Constructs (extended): (Performance Expectancy, Effort Expectancy, 

Social Influence, Facilitating Conditions, Hedonic Motivation, Trust & Perceived 

Risk, Perceived Usefulness, Behavioral Intention) 

• PSS10, NASA-TLX, Single item stressmeasurement,  Single item physical 

wellbeing 

3.4 Procedure and data analysis 

After a preliminary survey, measurement sensors were attached, and a two-minute 

baseline of physiological data was recorded. Participants then completed the simulated 

test drive with the five critical scenarios. Following the drive, a post-survey was 

conducted to assess the cognitive indicators. 

Combining the five scenarios with 104 participants resulted in 520 observations. 

Physiological values were normalized to the baseline. To test the hypotheses, a 

structural equation model (SEM) was calculated.  
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4 Results 

4.1 Descriptives 

On the physiological level, the strongest reactions were observed in Scenario 1 

(violation of right of way by another vehicle). Both heart rate (HR), skin conductance 

response (SCR), and skin conductance level (SCL) reached their highest values, 

indicating strong activation. 

Cognitively, the ride was evaluated as a whole experience, since the corresponding 

variables were measured ex post. Overall, the results show a positive evaluation of the 

technology and low levels of perceived stress and workload. The highest mean scores 

were obtained for Facilitating Conditions (M = 8.41) and Effort Expectancy (M = 8.37).  

4.2 Path analysis 

The final model showed good fit indices (AVE > 0.5; Cronbach’s α > 0.7). 

The results of the structural equation model (SEM) indicate that Behavioral Intention is 

significantly and positively influenced by: 

• Social Influence (H3: β = 0.391, strongest effect) 

• Perceived Usefulness (H7: β = 0.309) 

• Facilitating Conditions (H4: β = 0.128) 

• Trust & Perceived Risk (H6: β = 0.114) 

The cognitive stress response (CR) showed the expected negative effect on behavioral 

intention (H8: β = –0.179). 

Hypotheses H1 (Performance Expectancy) and H2 (Effort Expectancy) were not 

supported. 

Unexpectedly, Hedonic Motivation (H5: β = –0.106) showed a negative effect, contrary 

to the hypothesis. 

Regarding physiological stress variables, a significant positive relationship was found 

between cardiac activation (CA) and cognitive response (H9: β = 0.112). In contrast, 

electrodermal activation (EA) showed a negative relationship (H10: β = –0.191). 

The overall model explained 61.1% of the variance in behavioral intention (R² = 0.611). 

5 Discussion and conclusion  

This study examines the acceptance of autonomous shuttle buses by simulating critical 

driving situations in a realistic environment and integrating cognitive and physiological 

stress responses into an extended UTAUT2 model. 

The findings support previous evidence regarding the importance of classical 

acceptance factors: Social Influence emerged as the strongest predictor, suggesting 

that the social environment plays a key role in the acceptance of autonomous systems 

(Kapser & Abdelrahman, 2020). Similarly, Perceived Usefulness as well as Trust & 

Perceived Risk were confirmed as significant influencing factors (Chen, 2019; Choi & 

Ji, 2015). 
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The integration of stress responses provides an important new contribution. As 

expected, higher cognitive load (CR) reduced the intention to use autonomous shuttle 

buses, highlighting that mental strain during the ride can be a critical barrier to 

acceptance. 

For physiological indicators, differentiated findings emerged: increased cardiac 

activation (CA, higher HR, lower HRV) was associated with greater subjective stress, 

while increased electrodermal activation (EA) was unexpectedly linked to lower 

perceived stress. This suggests that GSR measurement in this study reflected not 

specific stress, but rather general emotional arousal—potentially triggered by curiosity, 

attention, or positive excitement. 

The unexpected negative effect of Hedonic Motivation may indicate that the critical 

driving situations suppressed elements of enjoyment or curiosity. Alternatively, 

participants who found the ride entertaining may have been more aware of its 

simulated nature, leading them to evaluate real-world usage differently. 

Overall, the study shows that acceptance decisions are not solely driven by rational 

factors but are also significantly influenced by emotional and physiological processes. 

Integrating physiological indicators into acceptance models thus provides a valuable 

approach to expanding and enhancing the realism of future research on autonomous 

mobility. 
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B.2 Extended Abstract Research Paper No. 5: Single measurement vs 

composite indicators for user experience research 

Authors: Czaban, M.; Riedl, J.; Wengler, S. (20xx) – Under review 

Abstract: This study examines the suitability of established single indicators for 

measuring physical and cognitive user reactions to technology interactions. Driving 

tests serve as the application example, conducted both with a real vehicle on a real 

driving route with seven segments and on an identically modeled route using a 

professional driving simulator. 

Data were collected on galvanic skin response, electrocardiogram, salivary cortisol, 

and various cognitive user reactions measured via questionnaires, including measures 

of demand, stress, and physical well-being. 

The single indicators generally showed parallel, though not entirely consistent, 

measurements of participants' situational activation and stress, a pattern also observed 

in many other studies. 

Aggregating indicators to enhance stability revealed two new dimensions: 

physiological reactions and cognitive reactions. In the driving tests, participants 

perceived the simulated drive as more challenging than the real drive; however, 

regardless of the variations in the reaction data observed, the two dimensions, 

physiological reactions and cognitive reactions, remained stable in their composition 

across 14 different test conditions, providing a reliable basis for analyzing reaction 

data. 

These two composite indicators are therefore recommended for use in future user tests 

of all types, particularly when measuring participant activation and demand. 

Keywords: User Experience Measurement; Physiological Reactions; Cognitive 

Reactions; Composite Indicators; Stress and Activation; Human Factors 

1 Introduction 

User activation during technology interaction is a central topic in user experience 

research. Especially for emerging technologies, the empirical investigation of user 

expectations, attitudes, and behaviors is essential. 

An example of this can be found in driving tests within the automotive industry, which 

are increasingly conducted in simulators (Caird & Horrey, 2011). Driving simulators 

offer several advantages: in addition to providing controlled conditions (Hussain et al., 

2019; Winter et al., 2012), they eliminate the need for specially trained test drivers. 

Moreover, critical driving situations can be reproduced under standardized conditions 

(Brookhuis & Waard, 2010; Mansi et al., 2021). 

Driving tests are often perceived as stressful by participants (Engström et al., 2005). 

Accordingly, reactions are typically assessed through a combination of self-reported 

stress experiences (Hill & Boyle, 2007) and physiological measurements such as heart 

based measures, galvanic skin response, or cortisol (Koohestani et al., 2019; Li et al., 

2013). 
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However, current research shows heterogeneous results across measurement 

methods, revealing a research gap regarding integrated and reliable composite 

indicators. The aim of the present study is therefore to develop composite indicators 

with higher explanatory power and stability for both academic and applied research. 

2 Theoretical background and research questions 

Usability is defined according to ISO as the effectiveness, efficiency, and satisfaction 

with which a system enables users to achieve specific goals. The measurement of user 

experience (UX) is based on objective user data, satisfaction assessments, and/or 

strain indicators.  

In the automotive sector—particularly regarding Human-Machine Interfaces (HMIs)—

these measurements play a crucial role, as usability strongly influences user 

acceptance (Albers et al., 2020; Biassoni & Gnerre, 2024). However, many HMIs are 

only partially intuitive for first-time users (S.-C. Lin et al., 2018; Orlovska et al., 2019). 

There are various approaches to measuring user experience, each with its own 

advantages and limitations (Ganglbauer et al., 2009). Objective data such as braking 

behavior, for example, neglect intra-individual processes (Wynne et al., 2019). 

Physiological measurements (e.g., heart rate, galvanic skin response, cortisol) reflect 

activation or stress and are free from perception bias, but they require higher effort and 

do not always produce consistent results (Arza et al., 2019; Mauri et al., 2010). 

Questionnaires such as the NASA-TLX (Hart, 2006) or the Short Stress State 

Questionnaire (Helton, 2004) provide valuable insights into cognitive reactions but are 

susceptible to bias (Nederhof, 1985). 

Previous research often reports inconsistent results across methods, posing a 

challenge for interpretation. Therefore, current studies advocate combining 

performance-based, subjective, and physiological data into valid, multidimensional UX 

indicators (Apraiz Iriarte et al., 2021; Leis & Lautenbach, 2020; Yu et al., 2016). 

The assessment of stress responses is particularly suitable for analyzing participant 

reactions. Stress arises when situational demands exceed an individual’s capabilities 

(Lazarus, 1990; Selye, 1980). It can be experienced as positive (eustress) or negative 

(distress). In the context of driving tests, stress is generally understood as distress—

strain associated with loss of control and overload (Francis, 2018; Healey & Picard, 

2005). The individual stress experience varies between persons and can be assessed 

on both cognitive and physiological levels (Witte et al., 2021). 

The most commonly used physiological indicators in driving tasks are the galvanic skin 

response (GSR) and the electrocardiogram (ECG). The GSR measures arousal and 

indicates activation independent of valence (Caruelle et al., 2019). It can be divided 

into a phasic component (Skin Conductance Response, SCR) and a tonic component 

(Skin Conductance Level, SCL) (Andreassi, 2010). 

The ECG allows for the measurement of heart rate (HR) and heart rate variability 

(HRV). HR refers to the number of heartbeats per minute, which increases under stress 

(Reinhardt et al., 2012). HRV reflects the variation in heartbeat intervals, which 

decreases as stress increases (Bernardi et al., 2000). On a biochemical level, cortisol 

serves as a direct marker of stress (Liebherr et al., 2021; Dickerson & Kemeny, 2004). 
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On the cognitive level, instruments such as the NASA-TLX (Hart, 2006), the Short 

Stress State Questionnaire (Helton, 2004), and visual analogue scales (Arza et al., 

2019; Kabilmiharbi et al., 2022) are commonly used. 

The main challenge in using physiological and cognitive indicators lies in the high 

heterogeneity of measurement methods, which limits reliability (Böhler et al., 2021). 

Therefore, the present study aims to develop stable combined indicators that integrate 

physiological and cognitive responses. 

The study is based on the following hypotheses:  

• H1: Physiological and cognitive stress indicators correlate positively with each 

other. 

• H2: As situational demands increase, the combined stress indicator also 

increases. 

• H3: The composition of the combined stress indicator remains stable across 

different situations. 

• H4: The combined stress indicator and its physiological subcomponents 

correlate positively with cortisol levels. 

The aim of this study is to establish robust, situation-dependent stress indicators that 

strengthen future UX research methodologically and improve the validity of user 

studies. 

3 Method 

The study sample consisted of n = 68 participants, making it larger than in comparable 

studies (e.g., Fors et al., 2013: n = 20; Li et al., 2013: n = 15; Johnson et al., 2011: n = 

24). The sample included 37 women (54.4%) and 31 men (45.6%). Participants were 

between 18 and 63 years old (M = 30.07; SD = 11.58). The study followed a within-

subject design, meaning that all participants completed both a real-world drive and a 

simulator drive, with the real drive always taking place first. 

To capture different situational demands in the driving context (Healey & Picard, 2005), 

the driving route consisted of a 23 km circuit divided into seven defined segments of 

varying complexity (urban, rural, and highway sections). The real route was replicated 

1:1 in a professional driving simulator.  

Assessed cognitive constructs/indicators: 

• Perceived situational demand: Single-item question “How well did you manage 

operating the vehicle?” (Vehicle Operation). 

• Cognitive Load: NASA-TLX (6 items: mental, physical, temporal demand, 

performance, effort, frustration) (Hart, 2006; Yahoodik et al., 2020). 

• Stress: Shortened SSSQ, 12 items across three subdimensions (Distress, 

Worry, Engagement) based on Helton, 2004; items selected based on highest 

factor loadings. 

• Self-reported stress: Single-item  visual analogue scale (“To what extent did you 

experience stress during the ride?”) (Barré et al., 2017). 

• Physical Wellbeing: Single-item (“How was your physical wellbeing?”) – 

allowing differentiation between eustress and distress. 
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Scaling was conducted on a decimal scale from 0–10, enabling parametric 

analyses, increasing variance, and providing intuitive understanding for participants 

(Lewis, 2021; Chyung et al., 2018; Dawes, 2002; Leung, 2011). 

Assessed physiological indicators: 

• GSR: Skin Conductance Level (SCL, tonic), Skin Conductance Response 

(SCR, phasic), Peak Amplitude (PA) (Boucsein et al., 2012).  

• ECG: Heart rate (HR) and heart rate variability parameters: RR interval, 

RMSSD, SDNN. 

• Salivary cortisol 

For data analysis, each of the seven route segments per person and condition was 

treated as a separate event, resulting in n = 476 observations per condition. To develop 

composite indicators, exploratory principal component analyses (PCA) were 

conducted. 

4 Results  

The descriptive analyses show that participants experienced the simulated drive as 

significantly more demanding and stressful than the real drive. This was reflected in 

higher NASA-TLX scores, lower physical wellbeing, and noticeably stronger 

physiological stress responses (e.g., SCL). 

Testing H1: 

The correlation analyses largely supported the hypothesis. Most physiological and 

cognitive single measures correlated significantly in the expected direction. However, 

the SSSQ subdimensions Worry and Engagement proved unsuitable for valid stress 

measurement. Therefore, the following valid single indicators were used for further 

analyses: SCR, HR, NASA-TLX, Physical Wellbeing, and Self-reported Stress. 

Testing H2 and H3: 

These hypotheses concern the formation of the composite indicators. Based on the 

previously selected individual indicators, the principal component analysis revealed an 

identical and stable two-factor structure: 

1. Physiological Reaction (PR): composed of SCR and HR. 

2. Cognitive Reaction (CR): composed of NASA-TLX, Physical Wellbeing (recoded so 

that higher values indicate stronger discomfort), and Self-reported Stress. 

The stability of this structure was confirmed both across the entire drive and for all 14 

route segments (7 real and 7 simulated). Both indicators correlated significantly with 

situational demand, thereby supporting H2: the poorer the driving task was performed, 

the stronger the stress responses on both cognitive and physiological levels. 

Testing H4: 

For validation, the developed indicators were correlated with cortisol levels. The 

hypothesis was supported only under the sufficiently demanding condition of the 

simulated drive: both PR and CR showed highly significant positive correlations with 

cortisol levels. In contrast, no significant correlations were found during the real drive, 
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which was less demanding. Overall, the cognitive indicator CR (r = .420) showed a 

markedly stronger correlation with cortisol levels than the physiological indicator PR (r 

= .196). 

5 Discussion and conclusion 

The findings of this study highlight the methodological weaknesses and limitations of 

relying solely on single indicators in UX research. The heterogeneity of individual 

variables can lead to misinterpretations.  

Based on the results, the aggregation of valid single measures allows for the 

identification of overarching, stable, and reliable dimensions of user response. The use 

of the composite indicators Physiological Reaction (PR) and Cognitive Reaction (CR) 

is therefore recommended. 

Across 14 different situations, this robust two-factor structure consistently emerged, 

providing researchers and practitioners with a reliable and methodologically sound 

foundation for measuring strain and stress. The use of the CR indicator, in particular, 

is recommended for future UX testing, as it can be assessed with only eight questions, 

is easy to administer, and minimizes participant burden. 

Interestingly, the questionnaire-based indicator CR proved to be a better predictor of 

the biochemical stress marker cortisol than the physiologically measured indicator PR. 

Consequently, it can be concluded that, when a multimodal approach is not feasible, a 

carefully designed questionnaire may still yield valid insights into users’ stress 

responses. 

This study provides a practical, application-oriented solution for assessing 

physiological and cognitive user experience responses and offers a solid foundation 

for addressing the measurement challenges associated with single indicators. 
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Abstract: Stress increases the risk of road accidents by impairing driving performance. 

Although lavender is known for its calming effects, it remains unclear whether its use 

can reduce both cognitive (self-reported) and physiological stress in driving situations.  

In a simulated driving scenario, participants were randomly assigned to an 

experimental group exposed to lavender or to a control group. Physiological responses 

were measured via skin conductance response (SCR) and heart rate (HR), while on 

subjective level the NASA-TLX and a single-item self-report measure were attached. 

Contrary to expectations, lavender exposure generally elevated both physio-logical 

and self-reported stress levels. However, conscious perception of the scent moderated 

this effect, with participants who were aware of the lavender reporting significantly 

lower subjective stress. 

These findings suggest that the effectiveness of lavender depends on cognitive 

awareness, offering novel insights into olfactory interventions in high-stress 

environments. 

Keywords: driving simulation · stress measurement · olfactory stimulation · lavender 

scent · cognitive load 

1 Introduction 

Over 90% of traffic accidents are attributable to human error (Singh, 2015), with 

elevated stress levels playing a significant role (Brookhuis & Waard, 2010; Magaña et 

al., 2020). According to the Yerkes-Dodson law (Yerkes & Dodson, 1908), moderate 

stress (eustress) enhances performance, whereas high stress, known as distress, 

impairs cognitive and motor functions, thereby increasing accident risk (Beanland et 

al., 2013; Pluut et al., 2022). 

Stress can be understood as a psychological and biological/physiological phenomenon 

(Riedl, 2012), and manifests physiologically, for example, through increased heart rate 

and altered skin conductance (Andreassi, 2010).  

Sensory stimuli, particularly scents, influence psychophysiology (Li et al., 2024): While 

peppermint has been shown to have a cognitively stimulating effect (Raudenbush et 

al., 2009), studies indicate that lavender has stress-reducing properties (Ludvigson & 

Rottman, 1989; Moss et al., 2023). This raises the research question of whether the 

targeted use of scent in critical driving situations can reduce drivers' stress levels 
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(Castiello et al., 2006). The effect of scents in the driving context remains insufficiently 

explored (X. Jiang et al., 2023; Moss et al., 2023). 

Driving simulators provide an alternative to examine critical scenarios without 

endangering participants (Galante et al., 2018; Pawar & Velaga, 2020). To capture 

stress responses more holistically, recent research in the NeuroIS field has 

emphasized the complementary use of physiological and psychological measures 

(Dimoka et al., 2012), as this combination can improve the explanation and prediction 

of (techno)stress (Tams et al., 2014). 

These theoretical considerations lead to the central research question of this study: 

Can the targeted use of lavender scent reduce physiological and cognitive stress 

during critical driving situations, and does conscious perception of the scent moderate 

this effect? 

In our study, one group was systematically exposed to lavender scent during the driving 

task without being informed. The control group drove without scent exposure. Stress 

levels were measured during the test, and at the end of the test, participants were 

asked whether they had perceived the scent. 

This approach follows calls in IS research to combine behavioral and physiological 

data in order to better understand the dynamic interaction between person and 

environment, also referred to as “measurement pluralism” (Fischer & Riedl, 2017). 

Furthermore the usage of physiological measurements allows the provision of real-

time information on user’s stress state (vom Brocke et al., 2020). 

2 Theoretical background and hypothesis development 

2.1 Stress measurement 

Stress arises when there is an imbalance between individual capabilities and 

situational demand (Cannon, 1929; Koolhaas et al., 2011; Zhou et al., 2022). 

Depending on the extent, a distinction is made between eustress (positive) and distress 

(negative) (Lazarus, 1966; Selye, 1950). Various physiological and subjective methods 

exist to measure stress responses (Witte et al., 2021). Among the most frequently 

studied physiological measurement methods are Galvanic Skin Response (GSR) and 

Electrocardiogram (ECG) (Caruelle et al., 2019; Giannakakis et al., 2022; Sharma & 

Gedeon, 2012) which can capture emotional and cognitive states (Riedl et al., 2010). 

GSR measures skin conductance, which is influenced by the activity of eccrine sweat 

glands and is exclusively controlled by the sympathetic nervous system. Stress 

induced activation is reflected in short-term changes in conductance (skin conductance 

response, SCR) or an increased average skin conductance level over time (skin 

conductance level, SCL) (Andreassi, 2010; Boucsein, 2012). 

ECG records the electrical activity of the heart, allowing for the analysis of heart rate 

(HR) and heart rate variability (HRV). An increased HR reflects heightened sympathetic 

activation, whereas a reduced HRV correlates with decreased parasympathetic 

regulation and an elevated stress level (Berntson et al., 2008; Riedl & Léger, 2016).  

In stress research, physiological measurements are combined with subjective, 

questionnaire-based data to achieve more reliable results (Becker et al., 2023) 
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because physiological tools can provide reliable data which are difficult or impossible 

to record through traditional tools as e.g. self-reports and can capture unconscious 

processes with direct responses from the human body (Dimoka et al., 2012; Riedl et 

al., 2010). Furthermore, the validity of research findings can be improved by combining 

two or more methods (Riedl et al., 2010). The combination of physiological data and 

self-reported data is common in NeuroIS research to examine systems (vom Brocke 

et al., 2020). 

 A commonly used questionnaire in this context is the NASA Task Load Index (Hart & 

Staveland, 1988), which measures mental workload, a factor correlated with stress 

(Hines Duncliffe et al., 2018). Additionally, self-assessments using single-item 

measurements can be employed (Arza et al., 2019). Various authors have applied 

these indicators in the context of real or simulated driving (GSR e.g.: Daviaux et al., 

2020; Healey & Picard, 2005; Lanata et al., 2015; ECG e.g: Darzi et al., 2018; Kerautret 

et al., 2023; Zhou et al., 2022; NASA-TLX e.g.: Foy & Chapman, 2018; Sugiono et al., 

2018; Yahoodik et al., 2020; Single Items e.g.: Dogan et al., 2019; Lazaro et al., 2022; 

Lee & Chung, 2017). 

2.2 The effect of scent 

Scents influence emotions, cognitive processes, and behavior. They can activate 

memories (Lopis et al., 2023) enhance mood (Rachel S. Herz, 2009; Rachel S. Herz 

et al., 2004) and modulate cognitive functions (Deivanayagame et al., 2020; Ilm-berger 

et al., 2001; Michael et al., 2003). Scent molecules are absorbed with each breath and 

directly reach cortical regions (Royet et al., 2003). Unlike visual or auditory stimuli, 

scents act directly on the limbic system, explaining their unconscious effects and 

measurable physiological responses (Alaoui-Ismaïli et al., 1997; Bensafi et al., 2002; 

R. S. Herz & Engen, 1996; Nomura et al., 2016; Torii et al., 1988).  

Accordingly, the effect of the scent is expected to manifest independently of 

instrumental means-end relationships, as conceptualized in expectancy-based models 

of motivation (Vroom, 1964; Wigfield & Eccles, 2000).  

Due to their link to the autonomic nervous system, scents can trigger various re-

actions. Pleasant scents affect both mood (Dmitrenko et al., 2020; Jeon et al., 2014; 

Roschk & Hosseinpour, 2020) and arousal levels (Joussain et al., 2014; Tisserand, 

1988; Warm et al., 1991). While peppermint has a stimulating effect, vanilla and 

lavender are considered calming (Buchbauer et al., 1991; Ghavami et al., 2022; Luca 

& Botelho, 2021; Moss et al., 2003; Mustafa et al., 2016).  

Several empirical studies have found that scents can positively influence driving 

behavior, for example, by enhancing attention (Raudenbush et al., 2009), reducing 

drowsiness (X. Jiang et al., 2023; X. Jiang et al., 2024; Yoshida et al., 2011), 

decreasing anger, and improving well-being (Dmitrenko et al., 2020; Moss et al., 2023). 

Some studies report a sedative physiological effect of lavender (Diego et al., 1998; 

Heuberger et al., 2004; Koulivand et al., 2013; Kuroda et al., 2005) 

2.3 Research gap & hypothesis building 

Although stress affects driving performance, empirical data on the effect of scent on 

driver stress are lacking. This study addresses this gap by examining the impact of 
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lavender scent, which has been associated with a reduction in heart rate (Heuberger 

et al., 2004), decreased sympathetic activation (Koulivand et al., 2013) and lower 

subjective stress levels (Lehrner et al., 2005; Moss et al., 2023). We therefore expect 

differences between experimental groups with and without scent exposure. During a 

simulated drive, participants are confronted at defined time intervals with five 

potentially stress-inducing driving situations (e.g., “a child unexpectedly runs onto the 

road”). Although alternative effects of lavender (e.g., stress-enhancing effects) cannot 

be entirely ruled out, we formulate a directed hypothesis based on prior empirical 

findings suggesting an anxiolytic effect. This approach follows the principles of 

hypothesis-driven experimental research and allows for a clear test of theoretical 

predictions. 

We postulate: 

H1: The controlled use of lavender scent during a driving task reduces measurable 

stress levels in participants, in the form of a decrease in H1.1: physiological stress 

indicators and H1.2: self-report stress indicators. 

In addition to testing the direct effects of lavender scent, this study examines the 

moderating role of conscious scent perception. According to expectancy theory and 

cognitive appraisal models, the conscious perception and interpretation of a stimulus 

can shape its emotional and physiological impact (Kirsch, 1997; Lazarus & Folk-man, 

1984). We therefore hypothesize: 

H2: The conscious perception of the lavender scent does not moderate its effect on 

stress levels (R. S. Herz & Engen, 1996; Nomura et al., 2016), 

H2.1: in physiological stress indicators; H2.2: in self-report stress indicators. 

3 Method 

3.1 Experimental design 

Participants The study follows a between-subjects design with 26 participants 

randomly assigned to two groups. One group was exposed to lavender scent, while 

the control group was not subjected to any scent exposure. The sample consists of 14 

women (53.8%) and 12 men (46.2%) with an average age of 25.8 years (SD = 7.84; 

range: 19–61). Regarding place of residence, 34.6% identify as rural residents, 46.2% 

as residents of small and medium-sized towns, and 19.2% as city dwellers. While the 

sample size of 26 participants is relatively small, it provides preliminary insights into 

the effects of lavender scent on stress responses in driving contexts. Future research 

with larger sample sizes is needed to validate these findings and improve 

generalizability. For the analysis we divided the sample into three groups: No scent, 

scent with perception and scent with no perception. There were no statistically 

significant differences between the groups with respect to age, gender, or place of 

residence (age: F(2, 23) = 1.118, p = .344; gender: χ²(2) = 0.63, p = .731; residence: 

χ²(4) = 0.69, p = .952). 

Physiological Measurement The GSR data were recorded using a Shimmer 3 GSR+ 

device (Exosomatic, direct current; Boucsein et al., 2012). Electrodes were placed on 

the palm. Skin conductance response (SCR) was measured as peaks per minute. 
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Heart rate (HR) in beats per minute (bpm) was recorded via ECG using a Polar H10 

chest strap sensor. 

Furthermore, additional indicators such as skin conductance level and heart rate 

variability were collected. However, previous studies conducted by our group suggest 

that, in particular, SCR and HR tend to cluster together as a single indicator of 

physiological reaction (Czaban et al., 20XXb).  

Cognitive Measurement To assess cognitive stress perception, we used the NASA-

TLX (Hart, 2006; Hart & Staveland, 1988) as well as a single-item measurement 

(stress), in which participants were asked: "How much stress did you experience during 

the entire drive?". It is important to note that the NASA-TLX is designed to assess 

cognitive workload. Although cognitive workload and stress represent conceptually 

distinct constructs, prior research has shown that they are often positively correlated 

(Alsuraykh et al., 2019). 

All questions were recorded on a decimal scale (0–10) to enhance intuitive 

understanding (Lewis, 2021), increase data variance (Dawes, 2002), ensure normal 

distribution (Leung, 2011) and enable the application of parametric test (Chyung et al., 

2018). 

Perception At the end of the test, participants were asked dichotomously whether they 

had perceived the scent by questioning: ”Did you notice a scent during the 

experiment?”. It should be noted that the survey was conducted in the presence of the 

test administrators, allowing participants to openly discuss any notable observations. 

At no point were the perception of other scents or potential confounding variables 

raised, suggesting that the participants either perceived the test stimulus (lavender 

scent) or no scent at all.  

Additionally, participants were asked about the type of scent they perceived, how 

pleasant they found it, how familiar the scent was to them, and how intense they 

perceived it to be. However, these aspects are not discussed further in the manuscript, 

as they were not part of our research question. 

The cold nebulization scent diffuser was set to an intensity level that, based on prior 

pilot studies, was perceived as pleasant by participants and ensured that at least half 

of them detected the scent. 

3.2 Materials, driving task and data processing 

The experiment was conducted using a medium-fidelity driving simulator (Wynne et 

al., 2019). Aroma Conditioning: In the test group, lavender scent was dispersed 

during the experiment using an “AromaStreamer 450” (Reima Air Concept). 

Procedure: After a preliminary survey, measurement devices were attached. To 

reduce simulator sickness, the experiment began with an adaptation phase (Hoffmann 

et al., 2003), followed by a 1.5-minute baseline recording. The drive lasted an average 

of 7.5 minutes and included five critical events designed to induce and control stress 

situations (see Table 1). The critical driving scenarios used in this study were 

developed for a previous study by our research group. Both an expert rating conducted 

to select the scenarios and user data indicated that the situations were discriminative 

with respect to the level of stress they induced (Czaban et al., 20XXa). A scenario-
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specific analysis was not conducted in the present study, as the focus was on the 

overall effect of scent exposure, which did not vary across the different driving 

scenarios. However, the deliberate inclusion of driving situations with varying levels of 

user demand ensures that the observed effects of scent exposure cannot be attributed 

to a methodological artifact resulting from the arbitrary selection of a single scenario. 

The total experiment duration was approximately 40 minutes per participant. 

Table 1. Overview of the critical driving situations 

Order Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 

Event 
Child runs on 

the road 
Driving over 
speedbumps 

U-turn Driving over 
a pothole 

Car taking 
the right of 

way 

Picture 

     

Feedba

ck 

Person 

screaming 

Shaking of 

driver’s seat 
- 

Shaking of 

driver’s seat 

Honking of 

the car 

Mean 

Stressle

vel 

Rating 

(0-10) 

7.08 3.92 5.72 2.78 7.88 

 

Cognitive workload was assessed once at the end of the test for all 26 participants. 

Since no technical difficulties (e.g., sensor Bluetooth disconnection) were encountered 

during data collection, the dataset was complete and no participants had to be 

excluded from the analysis. Due to the five critical driving situations per person, a total 

of 130 physiological single episodes could be analyzed (unpivoting). 

 Data analysis (SPSS 29) was conducted using Principal Component Analysis (PCA), 

Levene’s test, and t-tests. 

4 Results 

The use of individual indicators often leads to inconsistent and heterogeneous results 

(Arza et al., 2019), which is why composite indicators can be used to enhance the 

robustness and interpretability of the findings. We calculated a mean index from the 

NASA-TLX items (Cronbach’s α = .761), where higher values indicate higher cognitive 

workload. 

To improve the stability of single measurements, we computed more reliable overall 

indicators using PCA (Czaban et al., 20XXb). NASA-TLX and stress loaded onto one 

factor, while SCR and HR formed another. These two factors explained 79.59% of the 

variance of the original items. 

We derived a combined indicator, Cognitive Reaction (CR), from the unweighted mean 

values of NASA-TLX and stress, resulting in a range of 0.92–7.50 with a mean of M = 

4.34. 
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Since the physiological variables SCR and HR have different value ranges (SCR: 4–

20.13, M = 11.35; HR: 60.4–131.68, M = 90.98), HR values were adjusted by dividing 

by 8.01 to match the mean of SCR (for methodology, see (Czaban et al., 20XXb)). The 

resulting Physiological Reaction (PR) indicator had a range of 5.97–17.84, with a mean 

of M = 11.35. 

For further analysis, our dataset includes three groups: "no scent exposure" (A), "scent 

exposure without perception" (B1), and "scent exposure with perception" (B2). The 

Levene’s test yielded significance values of p = .579 for PR and p = .131 for CR, 

indicating homogeneity of variance across groups. Table 2 presents the mean values 

of PR and CR for the three groups. 

Table 2. Means of physiological reaction and cognitive reaction (with/without perception) 

 PR CR 

A NoScent 10.9 4.3 

B Scent 11.9 4.3 

 B1 ScentNoPerception 12.0 6.0 

 B2 ScentPerception 11.7 3.3 

 

Taking into account whether the scent was perceived (B2) or not (B1), the physiological 

stress indicators remain largely unchanged: B1 exhibits significantly higher PR than A 

(T = -2.139, p = .035), whereas B2 does not (T = -1.769, p = .080). B1 shows the 

highest absolute PR value, but the difference between B1 and B2 is not statistically 

significant. 

For cognitive stress indicators, B1 scores 1.70 scale points higher than A, though the 

difference is not significant due to the small sample size (T = -1.538, p = .144). When 

the scent is consciously perceived (B2), CR is one scale point lower than A (T = -1.119, 

p = .277) and 2.7 scale points lower than B1, a statistically significant difference (T = 

3.062, p = .011). 

In light of our findings, we conclude that Hypotheses H1.1, H1.2, and H2.2 are not 

supported, whereas Hypothesis H2.1 can be accepted. 

5 Discussion 

Twenty-six participants completed a driving simulation with five critical events. The 

study investigated whether scent exposure reduced physiological (H1.1) and cognitive 

stress reactions (H1.2), and whether stress responses differed depending on whether 

the scent was consciously perceived (H2). 

Regarding Physiological Reaction (PR), participants without scent exposure showed 

significantly lower values, leading to a rejection of H1.1. For Cognitive Reaction (CR), 

no significant differences were found based on scent exposure, thus H1.2 is not 

supported. However, CR was noticeably, though not significantly, lower when the scent 

was consciously perceived, which provides indirect support for H1.2. 

H2.1 is supported, as there was no significant difference in PR between the groups 

with perceived and unperceived scent exposure. In contrast, H2.2 is contradicted, as 

participants who consciously perceived the scent showed a significantly lower CR. This 

suggests that conscious perception acts as a key moderating variable. 
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One possible explanation for these findings is that the significant reduction in cognitive 

stress under conscious scent perception is due to a cognitively mediated modulation 

of stress processing. This is comparable to the Hawthorne effect (Adair, 1984), where 

the awareness of an intervention influences participants' behavior. The conscious 

recognition of the lavender scent may have triggered a positive coping process, as 

participants interpreted the scent as an intentional stress-reducing measure. 

This interpretation can also be linked to Expectancy Theory (Vroom, 1964), which 

posits that subjective expectations influence both behavior and physiological 

responses. If participants consciously perceive lavender—typically associated with 

relaxation—they may expect a calming effect, which in turn facilitates such a response. 

This aligns with placebo mechanisms (e.g., Benedetti, 2014), suggesting that 

conscious scent perception alone may be sufficient to trigger regulatory responses, 

regardless of any direct physiological effect. 

The observed increase in stress during unconscious scent exposure might point to a 

mismatch between sensory stimulation and cognitive appraisal. Previous studies have 

shown that unexpected or subliminal olfactory stimuli can increase alertness (M. Jiang 

et al., 2024). Other possible explanations include scent aversion, novelty effects, or 

individual differences in olfactory sensitivity—variables not systematically measured in 

this study. As prior research (Rachel S. Herz et al., 2004) indicates that preference and 

familiarity with scents modulate both emotional and physiological responses, future 

studies should more thoroughly assess these individual characteristics. 

Our findings stand in contrast to earlier research reporting a generally calming effect 

of lavender scent (Luca & Botelho, 2021). Potential reasons for this discrepancy may 

include variations in experimental design, interindividual differences in stimulus 

processing, or expectancy/placebo-related effects (Howard & Hughes, 2008; Masaoka 

et al., 2013). Additionally, differences in scent intensity and duration may have 

contributed to these divergent outcomes. Research suggests that higher intensities are 

often associated with lower pleasantness ratings (Doty et al., 1978; Henion, 1971), 

while continuous exposure can lead to rapid olfactory adaptation, diminishing 

perceptual and physiological responses over time (Mignot et al., 2022). 

In the present study, lavender was administered in pulsed intervals via a professional 

diffuser (Reima AromaStreamer 450), allowing for moderate, sustained intensity and 

reduced adaptation effects (Croy et al., 2013; Nomura et al., 2016). This controlled 

delivery method may partly explain the differential effects compared to studies using 

continuous or unregulated exposure. 

In summary, the data suggest that scent exposure may increase stress when the scent 

is not consciously perceived, possibly due to implicit arousal effects rather than a 

relaxation response. Cognitive stress reactions appear to be more strongly affected 

than physiological responses, although not all findings reached statistical significance. 

Notably, when the scent was consciously perceived, cognitive stress was significantly 

lower, underscoring the importance of perception as a moderating factor. 
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6 Limitations 

Our findings should be interpreted as exploratory due to the limited sample size and 

must be validated in subsequent studies with larger and more diverse samples. This 

limitation may have reduced statistical power, increasing the likelihood of Type II errors, 

suggesting that smaller, yet potentially meaningful effects may have gone undetected. 

The influence of different scents and scent intensities on physiological and cognitive 

stress responses warrants systematic investigation. Individual scent perception can 

vary considerably; incorporating a neutral control or placebo scent condition would aid 

in distinguishing psychological expectation effects from actual scent-related outcomes. 

Given that individual physiological variability can influence stress reactivity, baseline 

correction should be incorporated in future experimental designs. This was not feasible 

in the present study due to incomplete data collection during the baseline 

measurement. 

Our investigation was limited to short-term effects. Longitudinal research is needed to 

determine whether the observed outcomes persist, diminish, or intensify with repeated 

or prolonged scent exposure. 

Subsequent studies should also consider individual olfactory characteristics, such as 

general olfactory sensitivity and personal scent preferences or aversions, as these 

factors may modulate stress responses. Additionally, examining the role of cognitive 

appraisal processes in a hypothesis-driven manner may help explain the observed 

divergence between physiological and cognitive effects of scent exposure. 

Finally, the impact of different scent delivery methods and intensity levels should be 

systematically compared to assess their respective effects on stress responses. 

7 Conclusion 

This study investigated how exposure to lavender scent influences physiological and 

cognitive stress responses in a simulated driving environment. The results indicate that 

lavender scent does not inherently reduce stress. A significant reduction in cognitive 

stress was observed only when the scent was consciously perceived. In contrast, 

unconscious exposure was associated with a potential increase in stress levels, 

possibly due to an arousal effect. Physiological responses were less affected overall 

than cognitive reactions. 

These findings support theoretical frameworks such as Expectancy Theory and 

placebo mechanisms, while contradicting earlier research that attributed a generally 

calming effect to lavender. Notably, conscious perception emerged as a critical 

moderating variable in the effectiveness of olfactory interventions. 

From a practical standpoint, scent-based interventions—such as those used in 

vehicles or high-stress work environments—should be designed to ensure that the 

scent is consciously perceived, as unconscious exposure may elicit unintended stress 

responses. Nevertheless, physiological indicators may offer potential for adaptive 

systems (vom Brocke et al., 2020) that respond in real-time to individual scent 

preferences and perception, thereby tailoring olfactory environments more effectively. 
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Appendix C 

Table  6. Additional papers and publications 

Authors 
(Year) 

Title Journal/Publisher Status 

Riedl, Joachim; 
Wengler, Stefan; 
Czaban,Marcin; 
Steudtel, Simon 
(2023) 

Sexism in Advertisements – A Cross-
Cultural Analysis 

Marketing 
Science & 
Inspirations 

published 

Riedl, Joachim; 
Wengler, Stefan; 
Czaban, Marcin; 
Mohr, Sarah Victoria; 
Steudtel, Simon 
(2024) 

Studies on the Human-Machine-Interface 
in Advanced Driver Assistance Systems 
towards Autonomous Driving 

University of 
Applied Sciences 
Hof 

published 

Wengler, Stefan;  
Riedl, Joachim; 
Bichler-Riedl, 
Wolfgang; 
Czaban, Marcin; 
Mohr, Sarah Victoria 
(2024) 

Hypothetical Constructs of Consumer 
behavior as predictors of pro-
environmental behavior – An empirical 
study based on smartphones 

Marketing 
Science & 
Inspirations 

published 

Riedl, Joachim; 
Wengler, Stefan; 
Czaban, Marcin; Mohr, 
Sarah Victoria; 
Steudtel, Simon 
(2025) 
 

Studies on vehicle usability University of 
Applied Sciences 
Hof 

published 

Czarnecki, Christian; 
Sultanow, Eldar; 
Sebrak, Sebastian; 
Gronau, Norbert; 
Teichmann, Malte; 
Ritterbusch, Georg 
David; Mohr, Sarah 
Victoria; Auman, 
Matthias; Czaban, 
Marcin; Wengler, 
Stefan 
(2026) 

Ideengenerierung mit KI – 
Anwendungsfälle als Treiber für 
Innovation 

Springer 
Essential 

In 
publishing 

Czaban, Marcin; 
Riedl, Joachim; 
Wengler, Stefan 
(20xx) 

Detecting Psychophysiological and 
cognitive stress in critical driving 
simulator scenarios 

Tbd tbd 

Wengler, Stefan; 
Riedl, Joachim; 
Czaban, Marcin 
(20xx) 

Generation and adoption of innovations: 
conceptual and exploratory insights in the 
automobile industry from a multi-stage 
marketing perspective 

Journal of 
Business and 
Industrial 
Marketing 

Under 
Review 

Wengler, Stefan; 
Czaban, Marcin; 
Riedl, Joachim 
(20xx) 

Key account management in fragmented 
business market value chains: conceptual 
and exploratory insights from a multi-
stage marketing and customer-perceived 
value perspective 

Journal of 
Business and 
Industrial 
Marketing 

Under 
Review 
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