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Abstract

(Driving) simulators offer a cost-effective and time-efficient way to test new systems
and human-machine interfaces under controlled, safe, and standardized conditions. To
be considered a valid research tool, however, simulator-based results must be
comparable to those obtained in real-world environments, a premise that requires
empirical confirmation. This dissertation addresses three central research gaps: (1)
Most existing simulator validation studies primarily focus on driving performance
parameters, while intraindividual processes such as physiological and cognitive stress
responses remain largely underexplored. (2) While the acceptance of autonomous
shuttle systems has been studied extensively, most investigations rely solely on self-
report measures without offering participants direct experience with the technology. (3)
Although multimodal stress indicators promise a more holistic understanding, the
integration of heterogeneous single indicators often leads to inconsistent results and
limited interpretability.

This dissertation is structured into two main parts. Part A investigates simulator validity
with a particular focus on cognitive and physiological stress reactions to provide a more
comprehensive understanding of user responses. Part B examines whether the
acceptance of autonomous shuttles can be validly assessed in a simulator using an
extended UTAUT2 model, and to what extent the inclusion of cognitive and
physiological stress indicators enhances the model’s explanatory power. Furthermore,
it develops two robust composite indicators (Physiological Reaction and Cognitive
Reaction) based on multiple individual measures, aiming to improve the reliability and
validity of stress assessments in user experience research.

The findings show that 1) while the simulator is subjectively perceived as more stressful
than real driving, physiological responses demonstrate a high degree of similarity
across both environments. 2) Moreover, the use of a shuttle bus simulator proved to
be a valid approach for acceptance research, and the integration of cognitive and
physiological stress indicators significantly increased the explanatory strength of the
acceptance model. 3) The developed composite indicators showed consistent loading
patterns across a variety of conditions and offer a practical, scalable approach for
analyzing stress-related responses in mobility contexts.

Despite these positive results, the study also highlights certain limitations. The general
application of findings to other user groups or mobility formats remains limited and
requires further empirical investigation. Future research should apply more fine-
grained, segment-specific data collection methods to better capture situational stress
responses and explore the applicability of the composite indicators in real-world
mobility scenarios.
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1 Motivation

Vision Zero is an internationally recognized guiding principle in transport policy with a
clear goal: zero traffic fatalities. While many countries have seen a decline in the road
death rate, the numbers remain high. In Germany alone, around 2,780 people died in
road traffic in 2024 (Statistisches Bundesamt, 2025), while in the United States the
figure was 39,345 (Sheperdson, 2025). The reported fatalities don't include accidents
causing severe injuries.

Approximately 90% of all car accidents are attributable to human error (Singh, 2018).
Autonomous driving aims to counteract this issue. Autonomous vehicles (AVs) promise
to significantly reduce this risk through precise sensors, vehicle communication, and
the extensive elimination of human error (Abdel-Aty & Ding, 2024; Stoma et al., 2021)

On the path towards AVs, the automotive industry is undergoing major change due to
technological advances in the field of Driver Assistance Systems (DAS) (Stoma et al.,
2021). Nevertheless, these systems are spreading more slowly than expected. A key
reason is limited user acceptance, often caused by poor usability or inadequate user
guidance (Riedl et al., 2024). Increasing acceptance requires a customer-centered
development approach, making customer centricity a key factor (Gummesson, 2008;
Kleinaltenkamp et al., 2022). By placing users at the center of the development
process, technical innovations can better align with user expectations, resulting in
improved usability, safety, and satisfaction, which ultimately supports the adoption of
both DAS and new mobility concepts such as autonomous shuttles.

A maijor part of the development of DAS is covered by driving tests. However, traditional
driving tests face limitations. They are expensive, usually take place in late
development stages, and are typically conducted with professional test drivers
(Mohajer et al., 2015), which means the perspective of typical end users is often
excluded.

Driving simulators offer a promising alternative. They enable standardized, controllable
test scenarios in a safe environment (Caird & Horrey, 2016; Winter et al., 2012),
including with laypeople and in very early development phases (Xue et al., 2023).
Moreover, they allow for scenarios that would be ethically or practically difficult to test
in real life (Caird & Horrey, 2016). In addition to the benefits in terms of cost and time,
this also creates scientific value.

For simulators to be used as a valid research tool, behavior in the simulator must be
comparable to that in real driving situations (Czaban & Himmels, 2025). The
comparability between a driving simulator and a real vehicle is referred to as simulator
validity. This generally refers to the extent to which the behavior and reactions of
participants in the simulator correspond to those in real driving situations on a
behavioral, physiological, or cognitive level (Himmels, 2025).

Previous validation studies have focused heavily on driving dynamics such as e.g.
braking, often without sufficiently considering the human perspective (Wynne et al.,
2019). In a similar vein, traditional technology acceptance models have increasingly
been criticized for their limitations in explaining user behavior (Blut et al., 2022). This
work goes beyond the original approaches by systematically integrating physiological
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and cognitive (stress-related) indicators. Including these physiological and cognitive
parameters provides a more comprehensive picture of user responses, as it captures
unconscious, emotional, and stress-related reactions that cannot be adequately
assessed through traditional methods. The integration of these indicators is intended
to enhance the explanatory power of the model.

Across all studies in this work, a consistent approach is applied, incorporating cognitive
and physiological indicators into both the validation studies and the acceptance study.
Moreover, this dissertation develops aggregated indicators that integrate individual
measurements into interpretable metrics.

This thesis addresses three interrelated problem areas: the validity of simulators, the
measurement and explanation of acceptance of autonomous shuttle buses using a
simulator, and the question of how complex stress responses can be reliably captured.
This gives rise to six central research questions, which are structured along these three
thematic areas (see Chapter 3).

Each part of this work is based on the central approach of integrating cognitive and
physiological indicators. In Part A, their relevance is demonstrated within validation
studies, while in Part B they are employed as an extension to existing acceptance
models to enhance explanatory power and beyond this these indicators are combined
into a composite measure, which is intended to increase both usability and
interpretability.

The thesis is structured as follows: Chapter 2 provides the theoretical framework
necessary for this work. Part A (Appendix A) addresses the issue of simulator validity
in three papers (Papers 1-3), focusing on cognitive and physiological responses. Part
B (Appendix B) uses a shuttle bus simulator in Paper 4 to investigate user acceptance
under realistic conditions. Finally, it deals with the development of an overall indicator
that meaningfully integrates individual cognitive and physiological response indicators
(Paper 5 and 6).

2 Theoretical background

2.1 Driving simulators as a research tool

The first driving simulators were already used in the 1930s (Lauer, 1960). Their goal
remains to this day to develop vehicles more safely and to better understand user
driving behavior (Carroll et al., 2023). Driving simulators have been a fixed component
of automotive research for decades and offer a number of clear advantages.

They provide a safe, standardized, and therefore controllable test environment
(Galante et al., 2018; Hussain et al., 2019; Pawar & Velaga, 2020; Winter et al., 2012),
an aspect that is especially crucial in critical driving situations. They also enable tests
with laypersons, while real-world prototype tests may only be conducted with trained
drivers (Brookhuis & Waard, 2010). This results in high potential for time and cost
efficiency in research and development (Drosdol & Panik, 1985; Pawar et al., 2022).
At the same time, it becomes possible to involve end users at an early stage of the
development process (Xue et al., 2023).



Moreover, driving simulators allow for targeted comparisons of different scenarios
while controlling external variables that could influence driving behavior (Hussain et
al., 2019). All these factors make the simulator a versatile and powerful research tool.

In order for findings from simulator studies to be transferable to real-world driving
environments, the simulated environment must reflect relevant aspects of reality
(Himmels et al., 2024; Pawar et al., 2022). Such transferability is only ensured if
behavior in the simulator is at least similar to that in real driving situations. Empirical
validation is essential for this.

Simulator validity, in the sense of the transfer-of-training theory (Blume et al., 2010; Liu
et al., 2023) is achieved when behavior in the simulator is comparable to that in reality
or at least elicits comparable reactions (Donkor et al., 2014; Himmels et al., 2024, Y.
Wang et al., 2010; Wynne et al., 2019). Only then can reliable conclusions be drawn
about user behavior in the real world.

Several validity concepts exist in the literature to evaluate this transferability. The most
common are physical and behavioral validity (Bella et al., 2014). In addition,
psychological validity also plays a role in this work (Vienne et al., 2014). In these
concepts, relevant outcome variables are compared between real and simulated
driving (Klaver, 2016; Zdller, 2015).

Physical validity (also called “fidelity”) refers to the degree to which the simulator
technically and visually corresponds to a real vehicle (Kliver, 2016). However, high
fidelity does not automatically mean higher simulator validity. Valid results can also be
obtained with so-called low-fidelity simulators and vice versa. The choice of simulator
type should therefore be based on the specific research question. The most cost-
effective suitable configuration should be preferred (Himmels et al., 2024).

In contrast to physical validity, psychological validity focuses on ensuring not only that
the external environment appears realistic, but also that internal cognitive processes
(e.g., hazard assessment, decision-making) occur in the simulator as they would in
real situations (Vienne et al., 2014). If thought and reaction patterns are comparable,
psychological validity can be assumed. It is closely related to behavioral validity.

Behavioral validity is considered the central aspect of simulator validity overall (Godley
et al., 2002; Terumitsu et al., 2007). Within behavioral validity, a distinction is made
between absolute and relative validity (Blaauw, 1982). Absolute validity exists when
numerical values (e.g., speed, reaction time) are identical between reality and
simulation (Blaauw, 1982; Kaptein et al., 1996). Relative validity, on the other hand,
means that effects go in the same direction in both conditions (e.g., speed increases
in the real scenario and increases in the simulated scenario). Due to practical
limitations (e.g., time, costs), absolute validity is often not achievable (Branzi et al.,
2017). Relative validity is therefore considered sufficient for drawing valid conclusions
(Pawar et al., 2022; Térnros, 1998). The required degree of validity ultimately depends
on the specific research objective (Himmels et al., 2024; Mullen et al., 2011).

The outcome variables used for validation can be roughly divided into three categories:
psychological, physiological, and objective measurements.
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Psychological variables (e.g., NASA-TLX, Perceived Stress State Questionnaire) are
usually easy to collect via questionnaire. However, a limitation is that such
measurements are typically only possible before or after the driving scenario and are
prone to biases such as social desirability bias (Nederhof, 1985).

Physiological measurements such as galvanic skin response or the use of
electrocardiograms provide a more objective supplement. They can be continuously
recorded during the drive and offer insights into unconscious responses, as they
bypass cognitive filters (Healey & Picard, 2005; Lohani et al., 2019). However, their
use requires special equipment and expertise. They may also be difficult to interpret
due to competing influencing factors (e.g., stress vs. simulator sickness) (Duzmanska
et al., 2018). Simulator sickness is a particularly relevant confounding factor. It involves
a dissonance in the human vestibular system, resulting in symptoms such as nausea,
dizziness, or discomfort, which may influence physiological responses.

Finally, objective parameters relate directly to observable driving behavior, such as
lane keeping or braking behavior (Wynne et al., 2019). They provide indications of
whether the simulator elicits realistic driving behavior (Blaauw, 1982; Blana, 1996).

The validity of simulator studies varies depending on the use case (Ahlstrom et al.,
2012; Bella, 2008; Engen, 2008; Parduzi, 2021; Wynne et al., 2019), the outcome
variables used (Himmels et al., 2024; Wynne et al., 2019) and the simulator
configuration (Fischer et al., 2015; Himmels, 2025).

Since application scenarios and target groups vary greatly depending on the research
objective, each simulator must be empirically validated for its specific use case (Blana,
1996).

While most previous validation studies have focused on vehicle dynamics parameters
(e.g., acceleration, braking; see Wynne et al., 2019), relatively few studies have
incorporated physiological and cognitive (stress-related) measures. Table 1 provides
an overview of studies that extend the classical stimulus-response approach by
including physiological indicators, thereby adopting a stimulus-organism-response
framework (Davis & Grani¢, 2024). In some cases, these physiological measurements
are complemented or even fully replaced by cognitive assessments. The use of
physiological and cognitive indicators shifts the focus more strongly toward the
individual.

At the physiological level, most studies primarily employ electrocardiogram (ECG)
parameters and galvanic skin response (GSR). At the cognitive level, workload and
stress questionnaires dominate, particularly the NASA-TLX and the Short Stress State
Questionnaire.

Data analysis is predominantly conducted using frequentist methods, especially null
hypothesis significance testing (NHST), an approach that has been increasingly
questioned. NHST allows only for the detection of effects, a non-significant result,
however, does not provide evidence for equivalence nor for sufficient statistical power
(Himmels et al., 2024). This limitation is particularly problematic in validation studies
with small sample sizes, which are common in driving simulator research. Himmels et
al. (2024) therefore recommend the use of Bayes factors, which allow for inferences
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about both differences and equivalence. Unlike p-values, Bayes factors provide
relative probabilities for competing hypotheses (H, vs. H;), enabling interpretable
conclusions even in the presence of ambiguous findings.

Table 1. Key studies on (cognitive and physiological) driving simulator validation

Source Research Question Method n Results
Mueller, To what extent can Test persons drive high- 34  Heart rate, heart rate
2015 driver behavior, and low-complex sections variability, and gaze-
performance in a simulator and in a real related variables provide
measures, and car. NASA-TLX is used for valid results across
physiological cognitive measurement. sections. Skin
responses under high  Heart rate, heart rate conductance level and
mental workload in the  variability, galvanic skin pupil diameter do not
driving simulator be response, and pupil provide valid results. Most
compared with those diameter are used for NASA-TLX subscales
in real road traffic, and  physiological show relative validity.
which variables are measurement. Measures
best suited for a valid are compared using
transfer? MANOVA and ANOVA
Reimer & How well can Test persons drive on a 26  Heart rate shows absolute
Mehler, physiological highway in a simulator and and relative validity. Skin
201 measures detect in a real car. Driving tasks conductance level shows
changes in cognitive include single task driving relative validity
workload, and to what  and a secondary task with
extent can findings three levels of difficulty.
from driving simulators  Heart rate and skin
be transferred to real conductance level are
driving situations? measured. Data are
analyzed using General
Linear Models and
pairwise t-tests.
Carter & How do driving Test persons drive in a 16  Scan paths show relative
Laya, experience, task type simulator and in a real car. validity. More fixations are
1998 (straight driving vs. Tasks include straight observed in the simulator
overtaking), and driving and overtaking compared to real driving.
environment (road maneuvers. Eye-tracking
traffic vs. simulator) measurement is used.
affect drivers’ visual Data are analyzed using
search strategies? ANOVA.
Milleville-  How do cognitive Test persons drive in a 14  Stress levels are higher in
Pennel & workload, affective simulator and in a real car the simulator. Heart rate
Charron, experience (e.g., for 30—-50 minutes under is also higher in the
2015 stress, enjoyment), four different conditions. simulator. NASA-TLX
and sense of presence NASA-TLX and the shows relative validity,
differ when drivingina  Questionnaire of though not for all items.
simulator compared to  Psychological Feeling are Questionnaire of
real driving conditions  used for cognitive and Psychological Feeling
(driving school vehicle  affective measurement. shows relative validity,
vs. personal car)? Data are analyzed using t- though not for all items.
tests, Multiple Factorial
Analysis, RV-Index, and
squared correlations.
Galante et To what extent is a Test persons drive a 78 100 The sum score of NASA-
al., 2018 driving simulator km loop in a simulator and TLX shows relative

suitable for
investigating mental
workload compared to
real road conditions?

in a real car, including car-
following, controlled
approaching maneuvers,
and rural single-
carriageway driving. A
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validity. All dimensions of
the Short Stress State
Questionnaire show
relative validity. The
distress subscale of the



rotated figures task is Short Stress State
used as a secondary task. Questionnaire shows
NASA-TLX and the Short absolute validity.
Stress State

Questionnaire are used for

cognitive measurement.

Data are analyzed using

ANOVA.

2.2 Cognitive and physiological (stress-)reactions

To comprehensively capture stress responses, the literature recommends combining
cognitive and physiological measurements (Dimoka et al., 2012). This multimodal
approach is now considered standard in stress research, as it allows for better
explanation of variance and more reliable prediction of stress (Becker et al., 2023;
Tams et al., 2014).

Based on Selye's (1950) original definition, stress describes a nonspecific
physiological response to demands for change. Later work shows that stress is a
complex response pattern with psychological, cognitive, and behavioral components
(Crosswell & Lockwood, 2020; Feuerstein et al., 2013). These responses indicate a
disruption of physical or psychological balance, known as homeostasis (Cannon &
Rosenberg, 1932; Chrousos, 1992; Robinson, 2018). A situation is perceived as
stressful when the required resources for coping are judged as insufficient (Lazarus,
1990), making the situation feel overwhelming or threatening (Lee & See, 2004). The
greater the discrepancy between demands and available resources, the more intense
the measurable stress response becomes (Cohen et al., 2016).

Stress can be experienced as both positive (“‘eustress”) and negative (“distress”)
(Lazarus, 1966; Selye, 1976). Eustress can enhance performance, whereas distress
is perceived as burdensome. The transition between the two is individually variable. In
relation to performance, the Hebbs curve is often cited, which describes a U-shaped
relationship between stress and performance (Hebb, 1955). In research, however, the
term “stress” is most often used synonymously with “distress.”

In addition to direction and intensity, duration also plays a key role. Acute stress occurs
within seconds to days, while chronic stress can last for months or years (Baum, 1990;
Crosswell & Lockwood, 2020). Stressors, internal or external stimuli, trigger a stress
response when their intensity or duration exceeds a critical threshold. The resulting
reaction involves the activation of the so-called "fight-or-flight" response (Cannon,
1939). The body attempts to restore disrupted homeostasis through physiological and
psychological adaptation mechanisms (Boucsein, 2012; Giannakakis et al., 2022;
Sapolsky, 2004). Affected functions include heart rate, blood pressure, respiration, and
body temperature (Giannakakis et al., 2022).

Biologically, two primary stress systems are involved: the hypothalamic-pituitary-
adrenal (HPA) axis and the sympathoadrenal medullary (SAM) system, the latter being
part of the sympathetic branch of the autonomic nervous system (Cacioppo et al.,
2017; Chrousos, 1992). The HPA axis responds to stressors with the release of
corticotropin from the hypothalamus, leading to the secretion of adrenocorticotropin.
This in turn stimulates the adrenal gland to produce cortisol, adrenaline, and
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noradrenaline. These hormones raise blood glucose levels and temporarily supply
muscles and the brain with more energy (Chrousos, 2009; Giannakakis et al., 2022).

The SAM system is responsible for the unconscious activation of the body. It increases
sympathetic nervous system (SNS) activity while inhibiting the parasympathetic
nervous system (PNS). Typical reactions include elevated heart rate, increased blood
pressure, bronchodilation, and reduced activity of less acute functions such as
digestion. While the SNS has an activating function, the PNS promotes relaxation and
recovery through opposing mechanisms (Hall & Hall, 2020).

Central method for measuring physiological stress responses is skin conductance
(Galvanic Skin Response (GSR)), particularly due to its ease and low cost of use
(Caruelle et al., 2019). GSR measures changes in the electrical conductivity of the skin
caused by activity in the eccrine sweat glands, which are solely controlled by the
sympathetic nervous system and activated during emotional arousal (Boucsein, 2012;
Setz et al., 2010). An increase in skin conductance is associated with emotional
arousal, regardless of whether it is perceived as positive (e.g., eustress) or negative
(e.g., anxiety) (Lang et al., 1993). Either the tonic level (skin conductance level (SCL))
or the phasic response to individual stimuli (skin conductance response (SCR)) is
measured. Research shows that both values increase with rising stress levels (Ren et
al., 2013; Setz et al., 2010).

One advantage of GSR is that it can be recorded continuously without interrupting task
flow (Healey & Picard, 2005). For this reason, it is often used in combination with self-
reports to obtain a more complete picture of the stress response.

Another common method for stress measurement is the electrocardiogram (ECG),
which records the heart’s electrical activity. The heart beats autonomously via electrical
impulses generated in the sinus node and transmitted through a specialized
conduction system (Hall & Hall, 2020). Both the sympathetic and parasympathetic
nervous systems influence heart rate: parasympathetic activity reduces it via
acetylcholine, while sympathetic activation increases frequency and contractility via
noradrenaline (Giannakakis et al., 2022). In stress situations, sympathetic activity
dominates: heart rate increases, contractile force rises, blood pressure and oxygen
supply improve, typical characteristics of the fight-or-flight response (Engert et al.,
2014; Hall & Hall, 2020).

To holistically assess a stress response, physiological measurements should be
complemented by psychological assessments (Dimoka et al., 2012). The psychological
component is usually measured via questionnaires and focuses on emotional or
cognitive evaluation criteria, such as perceived mental or physical workload
(Kabilmiharbi et al., 2022; Kelly et al., 2009), arousal level (Roos et al., 2021),
subjective experience of stress (Qu et al., 2016; Rowden et al., 2011; Zhong et al.,
2022) or acceptance of the deployed technology (Albers et al., 2020).

These cognitive assessments complement physiological data by adding a perception-
based layer (Cohen et al.,, 1983) thereby aiding the interpretation of measured
responses (Witte et al., 2021).
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Common questionnaires for assessing subjective workload or stress include the NASA
Task Load Index (NASA-TLX), the Short Stress State Questionnaire (SSSQ), and
single-item scales. The NASA-TLX (Hart, 2006; Hart & Staveland, 1988) measures
perceived workload across six dimensions: mental, physical, and temporal demands,
perceived performance, effort, and frustration. The resulting workload is closely related
to perceived stress (Alsuraykh et al., 2019; Rubio et al., 2004). The SSSQ is a 24-item
questionnaire that captures short-term changes in stress perception (Helton, 2004;
Ringgold et al., 2024). The items can be grouped into three subdimensions: worry,
distress, and engagement. In addition to validated multi-item questionnaires, single-
item measures can also be used to assess perceived workload or stress. These often
correlate strongly with more extensive scales (Barré et al.,, 2017). A widely used
instrument is the Visual Analogue Scale for Stress (VASS), where perceived stress is
indicated on a continuum, typically ranging from “no stress” to “maximum stress” (Arza
et al., 2019; Kabilmiharbi et al., 2022).

Table 2 provides an overview of studies investigating stress while driving in either a
simulator or a real vehicle. Both frequentist methods (e.g., correlation analyses,
ANOVA) and machine learning approaches are employed for analysis. These studies
utilize both physiological and cognitive indicators.

At the physiological level, common measures include electrocardiogram (ECG)
parameters (heart rate, heart rate variability), galvanic skin response (GSR), and eye-
tracking metrics. In some studies, additional physiological indicators such as
respiratory rate, muscle activity, or salivary amylase are also recorded. At the cognitive
level, workload and stress questionnaires, particularly the NASA-TLX and the Short
Stress State Questionnaire, are predominantly used, sometimes complemented by
single-item measures, for example in the form of visual analog scales.

Table 2. Key studies on (physiological and cognitive) stress measurement during driving

Source Research Method n Results
Question

Rendon- How does time Test persons drive in a 56 Physiological activity

Velez et al.,, pressure affect simulator under conditions increases under time

2016 driving behavior, with and without time pressure, with higher heart
physiology, and  pressure. Cognitive rate, respiration rate, and
drivers’ measurements include the pupil diameter. Blink rate
adaptation Mini Driver Behavior decreases under time
strategies? Questionnaire, the pressure.

Multidimensional Driving Style
Inventory, NASA-TLX, a
confidence questionnaire, and
a perceived time pressure
questionnaire. Physiological
measurements include eye
tracking, electrocardiogram,
respiration rate, and limb
movement. Data are analyzed
using correlations.

Foy & How do different Test persons drive in a 30 Galvanic skin response

Chapman, road types affect simulator on different road increases with rising

2018 drivers’ mental types. Cognitive workload. Heart rate and
workload, and to measurements include respiration rate do not show
what extent can  NASA-TLX and an inhibitory significant changes. Fixation
these changes control task. Physiological duration decreases and
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be detected
through
behavior,
subjective
assessments,
physiological
measurements,
eye movements,
and prefrontal
cortex activity?

measurements include
functional near-infrared
spectroscopy, eye tracking,
heart rate, galvanic skin
response, and respiration
rate. Data are analyzed using
repeated measures ANOVA.

horizontal scanning
increases with higher
workload. Subjective
perception is significantly
related to physiological
responses.

Yamaguchi Is salivary Test persons drive in a 20 Questionnaire results do not
& amylase activity  simulator. Cognitive show significant changes.
Sakakima, (sAA)areliable  measurementis conducted Salivary amylase increases
2007 and rapid with a self-developed significantly during driving,
biomarker for questionnaire containing indicating stress. Stress
detecting acute  seven adjectives (relaxed, during driving can be
psychological fun, anxious, refreshed, detected through salivary
stress stressed, uplifted, tired). amylase.
responses Physiological measurements
during simulator include salivary amylase and
driving, and how electrooculography. Data are
does sAA analyzed using paired t-tests.
compare to
subjective
questionnaires
and oculomotor
measurements?
Healey & Can driver’s Test persons drive in real 16 Low, medium, and high
Picard, workload and traffic on urban and highway stress levels can be
2005 stress during routes with resting periods. distinguished with 97.4%
real driving Physiological measurements accuracy. Galvanic skin
situations include galvanic skin response is the most
(urban, highway, response, electrocardiogram, reliable stress marker. Heart
resting periods)  respiration rate, skin rate and heart rate variability
be reliably temperature, and are reliable markers for
detected and electromyography. Data are stress detection.
classified using  analyzed using video coding, Electromyography and
physiological pattern recognition, and mean respiratory rate are
measurements,  correlation analysis. less suitable.
and are these
signals suitable
for continuously
and
automatically
recognizing
driver states so
that adaptive
vehicle systems
can respond?
Daviaux et  Can acute Test persons drive in a 12 Stressful scenarios lead to
al., 2020 stress in realistic  simulator and are exposed to increased galvanic skin
driving unexpected, stress-inducing response values. Galvanic
situations be traffic events. Mechanical skin response correlates
objectively driving data such as braking with subjective stress

quantified using
phasic
components of
electrodermal
activity,
particularly
during

force are collected. Cognitive
measurements include the
Visual Analogue Scale, the
Arousal Predisposition Scale,
and the Edinburgh
Handedness Inventory.
Physiological measurement is
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response components are
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unexpected conducted with galvanic skin

stress-inducing response. Data are analyzed

events in traffic?  using repeated measures
ANOVA, paired samples t-
tests, and correlation
analysis.

2.3 User acceptance of technical systems

For novel technical systems such as autonomous vehicles to successfully establish
themselves in the transport sector, user acceptance is just as crucial as technological
advancement. Various theoretical models and constructs exist in the literature to study
this acceptance. In general, technology acceptance is understood as the willingness
to use new technologies and integrate them into everyday life (Davis, 1989; Venkatesh
et al., 2003).

The theoretical foundations of technology acceptance are based on behavioral
psychology models, particularly the Theory of Reasoned Action (TRA) by Fishbein et
al. (1975), and the subsequent Theory of Planned Behavior (TPB) by Ajzen (1991).
The TRA posits that behavior is determined by behavioral intention, which in turn is
influenced by subjective norms and personal attitudes toward the behavior. The TPB
extends this model by adding the concept of perceived behavioral control, i.e., a
person’s assessment of whether they are actually capable of performing a given
behavior.

A model specifically tailored to technology acceptance is the Technology Acceptance
Model (TAM) by Davis (1985, 1989). It is based on the constructs of Perceived
Usefulness, the user’s subjective perception of the technology’s benefit, and Perceived
Ease of Use, the perceived effortlessness of using it. The model assumes that
technologies perceived as easy to use are also regarded as more useful, which in turn
increases acceptance.

Building on TAM, Venkatesh et al. (2003) developed the Unified Theory of Acceptance
and Use of Technology (UTAUT), which identifies four key influencing factors:
Performance Expectancy, i.e., the belief that using the technology will provide personal
benefit; Effort Expectancy, the perceived ease of use; Social Influence, the effect of
others’ opinions; and Facilitating Conditions, the perceived availability of supporting
resources such as technical infrastructure or assistance. These relationships are
moderated by factors such as gender, age, experience, and voluntariness of use.

The UTAUT2 model (Venkatesh et al., 2012) expands the original UTAUT by adding
three constructs: Hedonic Motivation, i.e., enjoyment and user experience; Price Value,
the perceived trade-off between cost and benefit; and Habit, the extent to which using
the technology has become habitual. In contrast to the original UTAUT, the moderator
voluntariness of use is no longer included in UTAUT2.

For technologies such as autonomous driving, which are still in early stages of

adoption, traditional acceptance models are often insufficient. Particularly relevant in

this context are the constructs of trust and perceived risk. Trust refers to the belief that

a technology is reliable, safe, and functional, which reduces uncertainty and

strengthens the intention to use it (Gefen et al., 2003). Perceived risk describes the

subjective evaluation of potentially negative consequences associated with using a
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technology. In the case of autonomous vehicles, it is considered a common barrier to
acceptance (Featherman & Pavlou, 2003; Menon, 2017). Both constructs, trust and
perceived risk, are closely interconnected (Featherman & Pavlou, 2003) and form
important extensions to existing acceptance models, particularly in evaluating
innovative technologies within the mobility context.

Table 3 presents key studies in which acceptance models have been applied to
investigate the use of autonomous shuttles. Nearly all of these studies are based on
(extended) UTAUT models, with analyses predominantly conducted using structural
equation modeling. Notably, data collection in most cases relies exclusively on
questionnaires. Since autonomous shuttles are still only available in limited quantity on
the mass market, respondents’ answers often reflect expectations and perceptions

rather than actual experiences, a point that should be considered critically.

Table 3. Key studies on technology acceptance models regarding autonomous shuttle buses

Source Research Question Method n Results
Korkmaz Which factors influence Participants complete online 303  Trust and safety
et al., individuals’ behavioral surveys and paper-pencil show the strongest
2022 intention to use interviews. Used constructs influence on
autonomous public include performance behavioral intention,
transport systems, and expectancy, perceived followed by social
how can an extended usefulness, perceived value, influence,
acceptance model (based facilitating conditions, performance
on UTAUT2) explain this hedonic motivation, effort expectancy, and
behavior? expectancy, trust and safety, habit. The model
habit, perceived risk, and explains 72% of the
behavioral intention. Data are variance in
analyzed using exploratory behavioral intention.
factor analysis, confirmatory
factor analysis, and structural
equation modeling.
Rejali et Which factors influence Participants complete an 1662 Performance
al., 2024 the public’s willingness to  online survey. Used expectancy has the
use Autonomous Modular  constructs include strongest influence
Transit in the future? performance expectancy, on behavioral
effort expectancy, social intention to use
influence, facilitating autonomous
conditions, hedonic modular transit.
motivation, perceived value, Additional
habit, trust, green perceived significant
usefulness, and behavioral influences are found
intention. Data are analyzed for social influence,
using structural equation hedonic motivation,
modeling. and trust.
Nordhoff How do potential users Participants complete a 274  Perceived
et al.,, acceptautomated questionnaire after a ride in a enjoyment, service
2018 shuttles — both with real automated shuttle. Used quality,

regard to the shuttle itself
and its role as a feeder in
public transport — and
which factors determine

constructs include perceived
enjoyment, performance
expectancy, perceived safety,
control, social influence,

environmental
attitudes, and
intention to use
have the strongest

usage intention and environmental attitudes, influence on
willingness to pay? intention to use, and acceptance.
willingness to pay. Data are Performance

analyzed using principal
component analysis and
Pearson correlations.
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influence. Control,
social influence,
and willingness to
pay show little or no
influence.

Nordhoff
et al.,
2021

How do various factors
from the UTAUT and DIT
models, as well as trust
and automated shuttle
sharing, affect the
behavioral intention to
use automated shuttles in
public transport?

Participants complete a 340
questionnaire after a shuttle
ride. Used constructs include
performance expectancy,
facilitating conditions, social
influence, trust, behavioral
intention, trialability,
compatibility, and automated
shuttle sharing. Data are
analyzed using confirmatory
factor analysis and structural
equation modeling.

In the standard
model, performance
expectancy is the
only predictor of
behavioral intention,
with an explanatory
contribution of
39.7%. In the
extended model,
compatibility, trust,
and automated
shuttle sharing have

significant
influence,
increasing the
explanatory
contribution to
48.5%.

The table also illustrates that acceptance models are widely used in this field of
research. Their application, however, is not limited to autonomous shuttles, but extends
to many other domains. With their extensions, these models rank among the most cited
theories in technology acceptance research and are also broadly applied in disciplines
such as service management and marketing (Baier et al., 2025).

At the same time, there is criticism that models like UTAUT are increasingly reaching
their limits and no longer generate truly novel insights. While the constructs employed
are helpful for explaining acceptance, they only partially cover central influencing
factors (Blut et al., 2022). Since a large portion of studies still relies on TAM surveys,
which evaluate products or services exclusively through self-reports (Baier et al.,
2025), a comprehensive understanding is lacking. Accordingly, it is recommended to
integrate new predictors into the theory and to adopt methodologically broader
research designs, for example, by including observational data, qualitative analyses,
or longitudinal studies (Blut et al., 2022)

An early alternative approach was developed by Rese et al. (2014) with so-called TAM
dictionaries. In this approach, terms from online reviews were automatically classified
as positive or negative to computationally analyze customer opinions. The results were
comparable to classical TAM surveys, although data processing was labor-intensive
and the statistical power was limited. Subsequent studies (Rese et al., 2017; Schreiber,
2020) were able to replicate the findings and confirm the usefulness of this approach.

Another innovative avenue involves extending the models beyond consciously
controlled processes. By incorporating physiological measurements, automatic and
unconscious responses can also be captured (Dimoka et al., 2012). This opens the
“black box” of the stimulus-response approach, allowing cognitive, emotional, and
attention-related processes to be considered, processes that often remain undetected
in classical surveys (Davis & Grani¢, 2024). The goal is to integrate neurophysiological
methods and theories into the explanation of technology acceptance, thereby
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developing individualized TAM models that account for differences in cognition,
emotion, and neurobiology, enabling more precise predictions.

2.4 Challenges of using stressindicators in ux-research

As described in Chapter 2.2, the stress response involves a complex interplay of
physiological and cognitive processes (Pinel & Barnes, 2021). Consequently, no single
stress marker is capable of capturing the human experience of stress fully and validly
(Arza et al., 2019).

The exclusive use of subjective methods is influenced by cognitive appraisal
processes, which can lead to distortions, for example, through conscious or
unconscious self-regulation or misjudgment (Lin et al., 2005). Moreover, many of these
tools are not designed for continuous measurement during an experiment but instead
provide only momentary assessments.

Established biochemical markers such as cortisol do allow for the detection of actual
physiological stress responses, but they require invasive methods (e.g., saliva
samples) and do not support real-time continuous measurement (Arza et al., 2019).

In contrast, physiological methods such as heart rate or skin conductance
measurement allow for continuous data collection. However, their interpretation is often
ambiguous. For instance, an increase in skin conductance can indicate either elevated
stress or positive excitement (Boucsein, 2012; Cacioppo et al., 2017). Additionally,
studies have shown that physiological parameters do not always respond consistently,
some stressors may be clearly reflected in one signal, while others remain unchanged
(Leis & Lautenbach, 2020).

Combining multiple indicators can help generate a more comprehensive picture (Arza
et al., 2019; L. Chen et al., 2017), even though discrepancies may arise between
physiological and subjective results (Lin et al., 2005). A multivariate approach can
support a more nuanced understanding of the breadth of the stress response and
enable valid conclusions about users’ experience and behavior (Arza et al., 2019; L.
Chen et al., 2017). In this context, composite indicators play a key role: they simplify
complex data analyses by aggregating multiple measures into a single, interpretable
index (Nurdianto et al., 2024).

Given the complexity of human stress responses, it is therefore necessary to go
beyond isolated single measurements. Multimodal approaches that combine various
physiological and cognitive methods are essential for developing robust and reliable
overall indicators (Apraiz Iriarte et al., 2021; Arza et al., 2019; L. Chen et al., 2017; Lin
et al., 2005; Mauri et al., 2010).

3 Research questions and methodologies

Already in the 1970s, the first validation studies on driving simulators were conducted
(e.g., Barker et al., 1978), and their relevance has steadily increased since then.
However, most research has so far focused on objective driving data such as speed or
braking behavior. Studies that examine physiological parameters (e.g. eye-tracking;
Carter & Laya, 1998) or cognitive aspects (e.g. self-reports; Reimer et al., 2006) are
comparatively rare. A systematic literature review by Wynne et al. (2019) supports this
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pattern: out of 44 identified comparison studies, the majority focused on objective
indicators.

While objective driving data is technically easy to collect, its interpretation often follows
a classical stimulus—response (S-R) model. In this model, the driving situation is
considered the stimulus, and the resulting behavior the direct response. However, this
approach neglects intra-individual cognitive and physiological processes that
significantly influence behavior. For example, test subjects may behave similarly in
simulated and real driving scenarios in terms of observable actions, while their
underlying physiological responses differ fundamentally. These processes are crucial
to reliably assess the validity of simulators compared to real-world driving.

Measuring and interpreting cognitive and physiological stress indicators is far more
complex than analyzing objective driving data (Czaban & Himmels, 2025).
Nevertheless, such an approach is essential to expand the classical S-R model into a
stimulus—organism-response (S-O-R) model. Multiple studies therefore emphasize
the need to systematically assess emotional and cognitive responses (Blana, 2000;
Boer, 2000). This leads to the following research questions:

RQ1: To what extent do physiological stress indicators correlate between simulated
and real-world driving? How valid are these indicators in the simulation context?

RQ2: To what extent do cognitive stress indicators correlate between simulated and
real-world driving? How valid are they?

RQ3: To what extent does gaze behavior correlate between simulator and real-world
driving? Can gaze behavior serve as a valid comparison indicator?

Beyond the issue of simulator validity, another central challenge arises: to what extent
are simulation environments suitable for studying the acceptance of new mobility
technologies, especially autonomous shuttle buses? As a disruptive innovation,
autonomous shuttles offer numerous potential advantages, including improved traffic
safety (Dehghani et al., 2025), more efficient resource use (Bansal et al., 2016;
Othman, 2023), better traffic flow (Mira Bonnardel et al., 2020) and demand-responsive
public transport (Golbabaei et al., 2022; Mahmud et al., 2022). However, public
acceptance is a critical factor for the successful diffusion of such technologies (Ried|
et al., 2024).

Although a substantial number of studies on the acceptance of autonomous shuttles
exist (e.g. Cai et al., 2023; Madigan et al., 2017; Nordhoff et al., 2017), typically based
on established models like UTAUT or UTAUTZ2, three core weaknesses can be
identified: First, most studies are purely hypothetical, participants have not actually
experienced the technology. Since experience has been shown to significantly
increase acceptance (e.g. Eden et al., 2017; Salonen & Haavisto, 2019), the external
validity of such studies remains limited.

Second, the few empirical studies that include real (e.g. Herrenkind et al., 2019;
Madigan et al., 2017) or simulated driving situations typically focus on everyday
scenarios. Critical driving situations, which are particularly relevant for perceived
safety, have rarely been considered, although these scenarios are likely key in shaping
acceptance.
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Third, traditional acceptance models based on self-reports have methodological
limitations: they capture only conscious evaluations, neglecting unconscious and
emotional responses. Integrating physiological and cognitive indicators, in the sense
of a NeurolS approach, may offer a deeper understanding (Davis & Grani¢, 2024).

This leads to two additional research questions:

RQ4: Can an autonomous shuttle simulator serve as a valid tool for measuring real-
life acceptance of autonomous shuttles?

RQ5: Does integrating physiological and cognitive stress indicators increase the
explanatory power of acceptance models?

To capture stress responses, this dissertation employs a multi-method approach
combining subjective (e.g., NASA-TLX) and physiological indicators (e.g., skin
conductance). While this method mix allows for a more holistic view of stress
responses, previous studies have shown that the results are often heterogeneous or
even contradictory (Li et al., 2013). In particular, discrepancies between subjective and
physiological indicators frequently complicate interpretation. One potential solution lies
in the development of composite indicators, which integrate diverse data sources into
a valid overall metric. Several approaches of this kind have been proposed (e.g. Apraiz
Iriarte et al., 2021; Lin et al., 2005) and partially tested (e.g. L. Chen et al., 2017; Mauri
et al., 2010), but are still not widely used, mainly due to methodological, technological,
and financial barriers.

So far, literature lacks a systematic examination of which individual indicators,
especially physiological and cognitive, are most suitable for creating valid composite
indicators. This leads to a final research question:

RQ6: Which physiological and cognitive indicators are suitable for forming a composite
indicator that offers higher validity and explanatory power for assessing stress
responses?

This cumulative dissertation is structured as follows: Part A (Appendix A) presents
three studies focusing on simulator validity, addressing research questions RQ1
through RQ3. Paper 1 examines various cognitive and physiological stress indicators
across different driving scenarios. Paper 2 analyzes the similarity of physiological
stress patterns over the course of a drive. Paper 3 compares gaze behavior in real-
world and simulated environments.

Part B (Appendix B) includes a fourth paper that investigates the acceptance of
autonomous shuttles using an extended UTAUT2 model. A shuttle simulator is
employed to enable realistic user experiences and to deliberately test critical driving
situations. The integration of physiological and cognitive indicators serves to deepen
and expand the model (addressing RQ4 and RQ5).

Beyond that Part B is dedicated to the development and application of valid composite
indicators. Paper 5 identifies suitable individual indicators and combines them into
composite measures. In Paper 6, these are tested within an intervention context,
specifically addressing whether the use of lavender scent in high-stress driving
situations can contribute to a reduction in physiological stress responses (RQ6).
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Table 1 provides an overview of the publications included in this dissertation and their

current status.

Table 4. Submissions and publication status of the research papers

# Title

Authors (CRediT
authorship contribution
statement)

Journal (VHB
Jourqual 4
Rating)

Status

1 Investigating simulator validity
by using physiological and
cognitive stress indicators

2 Comparison of gaze behavior
in real and simulated driving

3 User interaction with digital
twins: how comparable are
simulation and reality

4 User Acceptance of
Autonomous Shuttle Systems:
A UTAUT2-Based Analysis

Marcin Czaban
(Writing — review & editing,
Writing — original draft,
Visualization, Project
administration,
Methodology, Investigation,
Formal analysis, Data
curation, Conceptualization)

Chantal Himmels
(Writing — review & editing,
Writing — original draft,
Validation, Methodology,
Formal analysis)

Marcin Czaban
(Writing — review & editing,
Writing — original draft,
Visualization, Project
administration,
Methodology, Investigation,
Formal analysis, Data
curation, Conceptualization)

Christian Purucker
(Writing — review & editing,
Writing — original draft,
Visualization, Methodology,
Formal analysis)

Marcin Czaban
(Writing — review & editing,
Writing — original draft,
Visualization, Project
administration,
Methodology, Investigation,
Formal analysis, Data
curation, Conceptualization)
Eldar Sultanow
(Writing — review & editing,
Writing — original draft,
Visualization, Methodology,
Formal analysis, Data
curation)

Alina Chircu

(Writing — review & editing,
Writing — original draft)
Christian Czarnecki
(Writing — review & editing,
Writing — original draft)
Joachim Riedl
(Writing — review & editing,
Writing — original draft)
Stefan Wengler
(Writing — review & editing,
Writing — original draft)

Marcin Czaban
(Writing — review & editing,
Writing — original draft,
Visualization, Project

23

Transportation
Research Part
F: Traffic
Psychology
and Behaviour
(VHB B)

Proceedings of
the NeurolS
Retreat 2025
(VHB C)

Business &
Information
Systems
Engineering
(VHB B)

Journal of
Public
Transportation

Published

Published

Under
Review
(1%t round)

Under
Review (1%
round)



with simulated driving tests
and physiological
measurement

5 Single measurement vs.
composite indicators for user
experience research

6 Scent and stress: The role of
lavender and perception in
simulated driving scenarios

administration,
Methodology, Investigation,
Formal analysis, Data
curation, Conceptualization)

Daniel Baier

(Writing — review & editing,
Writing — original draft,
Methodology, Formal
analysis)

Marcin Czaban
(Writing — review & editing,
Writing — original draft,
Visualization, Project
administration,
Methodology, Investigation,
Formal analysis, Data
curation,

Conceptualization),

Joachim Riedl
(Writing — review & editing,
Writing — original draft,
Visualization, Methodology,
Formal analysis)

Stefan Wengler
(Writing — review & editing,
Writing — original draft)

Marcin Czaban
(Writing — review & editing,
Writing — original draft,
Visualization, Project
administration,
Methodology, Investigation,
Formal analysis, Data
curation,
Conceptualization)

Sarah Victoria

Mohr

(Writing — review & editing,
Writing — original draft,
Methodology, Formal
analysis)

Joachim Riedl
(Writing — review & editing,
Writing — original draft,
Visualization, Methodology,
Formal analysis)

Stefan Wengler
(Writing — review & editing,
Writing — original draft)

(Not in VHB;

Q1 rated)

Behavior Under
Research Review
Methods (1%t round)
(VHB B)

Proceedings Published
of the NeurolS

Retreat 2025

(VHB C)

Table 5 provides a comprehensive overview of the studies listed in Table 4 of this
dissertation, focusing on the research question, methodology, data basis, and key

findings of each work.

It becomes evident that this cumulative dissertation extends existing research
approaches by systematically integrating physiological and cognitive (stress) indicators

into both data collection and modeling.

This extension is based on the assumption that intrapersonal processes should be
systematically considered to obtain a holistic understanding of user experience and

thereby increase the explanatory power of existing models.
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Particularly in driving simulator validation studies, the focus has so far been on vehicle
dynamics, largely overlooking the perspective and subjective experiences of users.
Only a few studies explicitly examine the individual and their physiological and/or
cognitive responses (e.g., Wynne et al., 2019; see table 1).

In the field of technology acceptance research, classical survey-based models have
also been criticized for providing an incomplete explanation of acceptance (Blut et al.,
2022). This dissertation addresses this gap by following the recommendation of Davis
and Grani¢ (2024) to extend traditional acceptance models with physiological
variables, thereby transforming the classic stimulus-response approach into a
stimulus-organism-response framework.

The use of physiological and cognitive stress indicators can, however, lead to
inconsistent results. The methodological innovation of this work lies in developing
stable and valid composite indicators from these individual measures, which can be
applied universally.

Overall, the dissertation contributes on three levels:

1. Expanding driving simulator validation studies to include the user perspective.

2. Strengthening technology acceptance models through the integration of a
NeurolS approach.

3. Developing a new methodological tool in the form of combined composite
indicators for user research.
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Table 5. In-depth summary of included studies: objectives, methodology, and results

# Research Question

Method n

Results

1 To what extent can physiological stress

indicators obtained in a medium-fidelity
driving simulator be transferred to real-
world driving (absolute and relative
validity)?

To what extent can cognitive stress
indicators obtained in a medium-fidelity
driving simulator be transferred to real-
world driving?

Participants complete both a 23 km real-world and 68
a simulator drive in a within-subject design.
Physiological measurements include
electrocardiogram-based variables, galvanic skin
response-based variables, and salivary cortisol.
Cognitive measurements include NASA-TLX, the

Short Stress State Questionnaire (SSSQ), and a
single-item stress measure. Data are analyzed

using Bayesian ANOVA and Bayesian paired t-tests

Skin conductance response, RMSSD,
SDNN and skin conductance tonic level
show absolute validity. Skin
conductance response, skin
conductance level, RMSSD, and
SDNN. Peak Amplitude, heart rate, and
RR-Interval show no validity. For
cognitive measures, only the SSSQ
worry dimension shows absolute
validity. NASA-TLX, the SSSQ
dimensions distress and engagement,
and single-item stress measures show
no validity. Subjective stress is
perceived as higher in the simulator.

Does gaze behavior (fixation patterns)
systematically differ between real driving

and simulator driving across different road

types (urban, rural, highway)?

Participants complete a 23 km real-world and 12
simulator drive in a within-subject design. Eye-

tracking is used for physiological measurement.

Data are analyzed with gaze-point-plot analysis and
expert ratings.

Overall fixation patterns are moderately
similar between real-world and
simulator driving. The highest similarity
is found for the route as a whole, while
the lowest similarity occurs in urban
sections. Fixation density is highest in
the center, with greater peripheral
dispersion in the real vehicle. The
simulator shows a slightly shifted field
of view. Patterns are similar across
segments, with low intrapersonal
differences.

What are the limitations of mean analysis

across different segments?

Participants complete a 23 km real-world and 68
simulator drive in a within-subject design.

Physiological measurements include
electrocardiogram-based and galvanic skin

Mean values obscure dynamics, peak
values, and contextual differences.
Variability, learning effects, and complex
interrelations are lost in mean analysis.
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What insights can be gained from time-
series analysis?

response-based variables. Data are analyzed using
t-tests for segments and time-series analysis with
correlation for the whole drive.

Time-series analysis shows a moderate
correlation of skin conductance level
between simulator and real driving.
Mean comparisons indicate larger
differences than time-series analysis.

Is a shuttle bus simulator a suitable tool
for acceptance studies?

Which factors explain the intention
behavior to use an autonomous shuttle
bus?

Is the explanatory power increased by
integrating physiological and cognitive
stress responses?

Participants complete a simulated shuttle bus ride
with critical situations. Physiological measurements
include electrocardiogram-based and galvanic skin
response-based variables. Cognitive
measurements include the Perceived Stress Scale
(PSS-10), NASA-TLX, single-item stress
measurement, and the extended UTAUT2 model.
Data are analyzed using partial least squares
structural equation modeling.

104

Social influence, facilitating conditions,
trust, perceived risk, and perceived
usefulness have a significant positive
effect on behavioral intention. Cognitive
reaction and hedonic motivation show a
significant negative effect. Performance
expectancy and effort expectancy show
no significant effect. Cardiac activation
has a significant positive effect on
cognitive response, while electrodermal
activation has a significant negative
effect.

How strongly do physiological and
cognitive indicators of stress correlate
with each other, and can stable combined
stress indicators be derived from them?

To what extent does a combined stress
indicator increase with rising situational
demands or the requirements of a stress
condition?

Does the composition of a combined
stress indicator remain stable across
different situational conditions, ensuring
reliable measurement?

Participants complete a 23 km real-world and
simulator drive in a within-subject design.
Physiological measurements include
electrocardiogram-based variables, galvanic skin
response-based variables, and salivary cortisol.
Cognitive measurements include NASA-TLX, the
Short Stress State Questionnaire (SSSQ), and a
single-item stress measure. Data are analyzed
using reliability analysis, correlation analysis, and
principal component analysis.

68

Higher demands during driving lead to
stronger stress responses. Single
physiological and cognitive indicators
provide an inconsistent picture.
Aggregated indicators form two
dimensions, physiological response and
cognitive response. This two-
dimensional structure remains stable
across segments of both real and
simulated driving.
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Do individual physiological measures and
aggregated indicators truly reflect
participants’ subjective perception of
stress, for example through correlation
with objective biological stress markers
such as cortisol?

Does the controlled use of lavender scent
during a driving task reduce measurable
stress levels at the cognitive and
physiological level compared to no scent
exposure?

Does the conscious perception of
lavender scent influence its effect on
stress levels?

Participants complete a simulator ride with critical 26
situations in a between-subject design with two

groups. During the ride, lavender scent is applied.
Physiological measurements include galvanic skin
response-based and electrocardiogram-based

variables. Cognitive measurements include NASA-

TLX and a single-item stress measure. Data are
analyzed using reliability analysis, principal

component analysis, and independent t-tests.

28

Exposure to lavender scent does not
generally reduce stress. When
participants consciously perceive the
scent, cognitive stress levels are
significantly lower, while physiological
stress levels do not differ. Conscious
perception may positively influence
stress processing through cognitive
mechanisms such as placebo effects or
Hawthorne effects.



4 Results

4.1 Part A: Driving simulator validity

4.1.1 Summary of Research Paper No.1

Driving simulators have become indispensable in automotive research and
development, offering cost and time efficiency as well as standardized testing
procedures. However, for a simulator to serve as a meaningful tool, it must produce
results that are comparable to those obtained in real vehicles, a concept referred to as
simulator validity.

Previous validation studies have primarily focused on driving dynamics such as
acceleration and braking, while underlying behavioral responses such as stress have
often been neglected. This paper investigates simulator validity in the context of stress
research by comparing physiological and cognitive stress indicators between real-
world driving and a digital replication of the same route in a driving simulator. Since
classical null hypothesis significance testing (NHST) faces limitations in this context, a
Bayesian analytical approach was applied, which can provide evidence both for
differences and for equivalence between conditions.

A total of 68 participants took part in the study. Each participant completed a 23 km
route (divided into 7 sections consisting of rural roads, urban roads and highway) both
in a real vehicle and in a medium-fidelity simulator. On the physiological level, galvanic
skin responses (skin conductance response(SCR), skin conductance level (SCL), peak
amplitude(PA)), cardiac activity (heart Rate (HR) and heart Rate Variability (HRV): RR-
interval, RMSSD, SDNN), and salivary cortisol were recorded. On the cognitive level,
data were collected using the NASA-TLX, the Short Stress State Questionnaire
(SSSQ), as well as single-item measures on perceived stress, vehicle operation, and
well-being.

The results revealed a mixed picture: among physiological measures, SCR, RMSSD,
and SDNN demonstrated both absolute and relative validity. Salivary cortisol showed
absolute validity, while SCL demonstrated only relative validity. PA, HR, and RR-
interval failed to reach validity criteria. On the cognitive level, only the “Worry”
dimension of the SSSQ showed absolute validity. All other cognitive measures scored
higher in the simulator, suggesting that it was subjectively experienced as more
stressful.

Overall, the findings suggest that driving simulators are well-suited for analyzing
intraindividual physiological stress responses, whereas cognitive stress indicators
should be interpreted with greater caution. Limitations of the study include the absence
of driving dynamics data, high interindividual variability, and the fixed order of drives
(with the real drive always preceding the simulated one).

4.1.2 Summary of Research Paper No. 2

Driving simulators provide safe, efficient, and standardized testing environments,
making them highly relevant for vehicle development. For simulator-based tests to
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yield meaningful insights, their outcomes should be comparable to those obtained from
real-world driving. Studies addressing such comparisons are referred to as simulator
validation.

Most existing validation studies have primarily focused on driving performance metrics
such as lane keeping or speed. In contrast, gaze behavior, which is central to
situational awareness, has received little attention to date, and the few available
studies report inconsistent findings. This reveals a research gap regarding the validity
of eye-tracking data in driving simulators. The present study therefore aimed to
systematically examine whether gaze behavior differs between real and simulated
driving conditions. Specifically, we investigated potential differences both across road
types (urban, rural, highway) and between driving conditions (real vs. simulator).

To address this research question, twelve participants completed a 23 km drive
(comprising urban, rural, and highway sections) in both a real vehicle and a medium-
fidelity simulator using a digital replication of the route. Gaze behavior was recorded
with eye-tracking glasses. Data analysis was conducted through gaze-point plots,
supplemented by expert ratings assessing the similarity of gaze patterns.

The results indicate a moderate similarity of gaze patterns between real and simulated
drives. At the same time, fixation patterns differed systematically across road types.
Compared to real driving, simulator drives showed reduced peripheral dispersion and
a systematic downward shift of gaze points. Patterns were most similar in urban and
rural sections, whereas highway driving yielded the highest similarity values but also
the greatest interindividual variability.

In summary, gaze patterns between real and simulated conditions can be considered
largely comparable. The observed differences appear to be driven primarily by
environmental and interface-related factors. Study limitations include the small sample
size, potential learning effects due to the fixed order of drives, and the subjectivity of
expert ratings. Future research should employ more advanced statistical approaches
and compare simulators of different fidelity levels.

4.1.3 Summary of Research Paper No. 3

Digital twins are digital representations of physical entities designed to replicate their
dynamics as accurately as possible. In this context, test tracks realistically reproduced
in a driving simulator can be considered a digital twin, serving to virtually replicate real
driving situations. Accordingly, the output of the digital twin should closely mirror that
of real drives. The aim of the present study was to examine whether a driving simulator,
in its role as a digital twin, elicits comparable physiological stress responses to those
observed in real driving, and whether it may thus serve as a partial substitute. The
research questions specifically addressed the limitations of segment-level mean
analyses and the additional insights that can be gained from time-series analysis.

To answer these questions, 68 participants completed a 23 km test route consisting of
urban, rural, and highway sections, both in a real vehicle and in a medium-fidelity
simulator. During the drives, indicators of electrocardiography (heart rate (HR), RR-
interval, RMSSD, SDNN) and galvanic skin response (skin conductance response
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(SCR), skin conductance level (SCL), peak amplitude (PA)) were recorded. Data were
analyzed both segment-wise using mean comparisons and across the entire driving
duration in the form of time-series analysis. For the time-series analysis, SCL (tonic
signal) was used.

The mean comparisons revealed no significant differences between real and simulated
driving for SCR, RMSSD, and SDNN. By contrast, SCL and PA were significantly higher
in the simulator, while HR was higher in the real vehicle. The RR-interval was longer in
the simulator than in the real drive.

Because mean analyses smooth out fluctuations and thereby obscure temporal
dynamics or extreme values, time-series analysis allows for a more fine-grained
examination. Using SCL as an example, the time-series analysis revealed moderate
correlations between conditions for urban and rural driving. Visual inspection of the
trajectories also suggested a high similarity between curves.

In summary, a driving simulator can, as a digital twin, reproduce fundamental patterns
of physiological stress responses. It appears particularly suitable as a substitute for
real driving in controlled and less complex scenarios, though it does not capture the
full range of responses observed in reality. The observed differences are primarily
attributable to environmental and interface-related factors.

The study further highlights the limitations of mean analyses, as they smooth relevant
dynamics of physiological responses. Time-series analysis thus represents a valuable
complement. Another limitation lies in the absence of real-time bidirectionality between
real and simulated driving environments: the digital twin currently functions only as a
static replica without direct feedback. Future studies should therefore implement
adaptive algorithms that allow for flexible real-time adjustments.

4.2 Part B: Acceptance and stress measurement using simulators

4.2.1 Summary of Research Paper No. 4

To promote the diffusion of autonomous shuttle buses, a priori acceptance of the
technology is required in order to identify potential influencing factors. The present
study therefore investigates which factors affect the behavioral intention to use
autonomous shuttles. Since these vehicles are not yet widely available in the market,
most previous studies have relied on survey data from individuals without practical
experience. However, it is well established that experience with such technologies can
substantially influence acceptance.

To address this research gap, a shuttle bus simulator was employed to present
potentially critical driving scenarios and examine the impact of physiological and
cognitive stress responses on technology acceptance. A total of 104 participants
completed an approximately eight-minute simulated ride that included five potentially
critical situations. Physiological measures included heart rate and RMSSD (cardiac
activation) as well as skin conductance response and skin conductance level
(electrodermal activation). Cognitive measures included an extended UTAUT2
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questionnaire, the Perceived Stress Scale (PSS-10), NASA-TLX, and self-developed
single-item measures. Data were analyzed using structural equation modeling (SEM).

Results indicate significant positive effects of social influence, facilitating conditions,
trust & perceived risk, and perceived usefulness on behavioral intention. Contrary to
expectations, hedonic motivation had a significant negative effect. Cognitively
perceived stress reduced behavioral intention and was primarily explained by cardiac
activation. Overall, the model accounted for 61.1 % of the variance in behavioral
intention.

These findings suggest that acceptance of autonomous shuttles is influenced not only
by technical and usability factors but also by users’ perceived safety and stress levels.

Limitations of the study include a homogeneous participant group and a relatively small
sample size. Additionally, participants were aware of the safety of a simulated
environment, which may have affected physiological responses. Future research
should apply these methods in real driving scenarios to further validate the findings.

4.2.2 Summary of Research Paper No. 5

In line with a customer-centered marketing approach, understanding users’ opinions
and their usage experience is crucial for product development. A wide range of
questionnaires and physiological measurements are available for use in product
testing to capture users’ reactions. However, interpreting single measures often poses
a challenge, and comparisons across individual indicators may even yield contradictory
results.

This study therefore investigates whether established (physiological and cognitive)
single indicators for measuring stress and user reactions in technology interactions are
suitable for providing reliable insights. The aim is to derive combined and more stable
measures from individual indicators that offer higher explanatory power and reliability
than single metrics.

To address this question, 68 people participated in a test drive boasting a within-subject
design. They completed a 23 km route divided into seven segments (14 “situations” in
total) both in a real vehicle and in an identically modeled driving simulator. During the
drives, physiological stress indicators (Galvanic Skin Response: skin conductance
level (SCL), skin conductance response (SCR), peak amplitude (PA);
electrocardiogram: heart rate (HR), RR-interval, RMSSD, SDNN) as well as cognitive
stress indicators (NASA-TLX, Short Stress State Questionnaire, single items: stress,
physical well-being, vehicle operation) were collected. The data were analyzed using
correlation analyses as well as reliability and factor analyses.

The results indicate that the simulator ride was perceived as more stressful than the
real drive. Analyses of single indicators yielded partly inconsistent findings. However,
the factor analysis revealed two stable composite factors: Physiological Reaction
(comprising SCR and HR) and Cognitive Reaction (comprising NASA-TLX, single-item
stress, and single-item physical well-being). These combined indicators remained
stable across all situations and showed more consistent associations with situational
coping and cortisol levels than the single indicators.
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It is recommended that future user studies rely on these combined indicators, with
cognitive measures in particular offering an efficient alternative to more elaborate
physiological procedures due to their simplicity and validity. Limitations of the study
include the homogeneity of the sample, the limited variance in driving difficulty, and
missing controls in cortisol assessment.

4.2.3 Summary of Research Paper No. 6

Over 90% of traffic accidents are attributable to human error. Stress is a central risk
factor, as it can impair driving performance and increase accident risk. While moderate
stress in terms of eustress may support performance, excessive stress (distress)
clearly has a negative impact on cognitive and motor abilities. It is well established that
scents such as lavender can have calming and stress-reducing effects and are
therefore discussed as potential interventions in critical driving situations. Against this
background, the present study investigates whether the use of lavender scent in critical
situations in a driving simulator can reduce participants’ stress levels.

A total of 26 participants completed a simulator drive that included five stress-inducing
events. In the experimental group, lavender scent was released during the drive,
whereas the control group drove without scent. Physiological (skin conductance
response (SCR); heart rate (HR)) and cognitive stress indicators (NASA-TLX, self-
reports) were measured. Based on a principal component analysis, the measures were
aggregated into two factors: Physiological Reaction and Cognitive Reaction.

For analysis, participants were divided into three groups: no scent, scent without
perception, and scent with perception. Data were analyzed using t-tests. The results
suggest that lavender scent does not automatically lead to stress reduction.
Physiological stress values were even lower in the control group. A significant reduction
in cognitive stress was observed only when participants consciously perceived the
scent, whereas unconscious exposure was associated with higher stress values.

In summary, scent interventions do not appear to be effective per se but require
conscious perception, possibly due to a placebo mechanism. For practical
applications, this implies that scents should be administered in a way that ensures
participants are aware of them.

The study’s limitations lie in the small sample size and the absence of baseline controls
for physiological measures. The results should therefore be regarded as exploratory
and require further validation in future research.

5 Conclusion

The present study pursued the goal of examining the suitability of a driving simulator
as a valid substitute for real-world driving in terms of simulator validity. The focus was
particularly on physiological and cognitive stress responses. Furthermore, it was
examined whether an autonomous shuttle bus simulator is suitable for conducting
acceptance studies and whether the inclusion of physiological and cognitive indicators
can provide an additional explanatory contribution to acceptance measurement.
Finally, an approach was developed for how complex stress responses can be validly
represented by bundled indicators (so-called composite indicators). Based on six
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research questions, three thematic blocks were addressed: simulator validity,
acceptance research using a simulator, and indicator construction. Thec key findings
are summarized and contextualized below along these research questions.

RQ1: To what extent do physiological stress indicators correlate between
simulated and real-world driving? How valid are these indicators in the
simulation context?

To answer the first research question, the results from Paper No. 1 (Appendix A.1) and
Paper No. 3 (Appendix A.3) were used. While Paper No. 1 follows a segment-based
analysis using a Bayesian approach, Paper No. 3 uses a time series analysis over the
entire driving process. The combination of both methodological approaches enables a
differentiated view: while the mean comparisons from Paper No. 1 allow conclusions
to be drawn about section-specific differences between real and simulated driving, the
time series analysis from Paper No. 3 allows for a dynamic evaluation of the
physiological response course, thus avoiding potential distortions caused by mean
formation.

Overall, a heterogeneous picture emerges regarding the validity of the physiological
indicators examined. Some metrics show both absolute and relative validity between
real and simulated driving, while others show no or only limited alignment.

In Paper No. 1, various indicators were considered: skin conductance-based measures
such as skin conductance response, skin conductance level, and peak amplitude;
ECG-based metrics such as heart rate, RR-interval, RMSSD, and SDNN; and salivary
cortisol as an endocrine stress marker. For all parameters except cortisol, section
comparisons were conducted using a Bayesian ANOVA,; cortisol was compared using
a Bayesian paired t-test due to the single measurement per drive.

The results in the field of skin conductance show that both absolute and relative validity
could be established for the skin conductance response. As this indicator has hardly
been considered in comparable simulator studies so far, no direct comparative data is
available. Relative but not absolute validity could be demonstrated for the skin
conductance level, a finding consistent with the results of Reimer and Mehler (2011).
In contrast, Mueller (2015) reports no validity for the same indicator. The Peak
Amplitude, in turn, showed neither absolute nor relative validity; here, too, comparative
studies that would enable classification are lacking.

With regard to the ECG-based parameters, only RMSSD and SDNN, both measures
of heart rate variability, show both absolute and relative validity. This finding is based
on continuously recorded data that reveal consistent patterns between real and
simulated driving. The RR-interval, on the other hand, proved not to be valid. For heart
rate, no reliable evidence of validity was found in the present study. Thus, the results
are consistent with studies by Johnson et al. (2011) and Milleville-Pennel and Charron
(2015), which also report no validity for this parameter. Other studies, such as those
by Reimer und Mehler (2011) or Mueller (2015), report partly contradictory results and
indicate relative or absolute validity, suggesting a possible context or participant
dependence.
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Regarding salivary cortisol, absolute validity could be established: the values after real
and simulated driving do not differ significantly. However, since only one measurement
was taken per driving time point, relative validity in terms of section-related courses
could not be examined. Comparable studies that use this parameter in a similar context
are not yet known.

The time series analysis conducted in Paper No. 3 focused on the skin conductance
level within urban and rural road segments. The analysis revealed moderate linear
correlations in the response course between simulator and reality. This result suggests
that the physiological reactions over time are similar in their dynamics, an aspect that
could not be captured by mean comparisons alone.

In summary, with regard to RQ1, it can be stated that some continuously recorded
physiological parameters, particularly SCR, RMSSD, and SDNN, show validity and are
therefore suitable for use in simulator studies. These indicators offer a high degree of
informative value, especially in intra-individual analyses. The salivary cortisol level also
proves to be a robust parameter that shows no difference between real and simulated
driving. Other indicators such as heart rate, peak amplitude, or RR-interval show less
consistency and seem to be more influenced by contextual or individual factors. The
time series analysis usefully complements the results by making parallels in the course
of stress reactions visible. Overall, it appears that a driving simulator can represent a
valid instrument, particularly in less complex environments or when examining general
physiological reactions.

RQ2: To what extent do cognitive stress indicators correlate between simulated
and real-world driving? How valid are they?

To answer the second research question, various cognitive stress indicators were
analyzed in Paper No. 1. These included the NASA Task Load Index (NASA-TLX), the
Short Stress State Questionnaire (SSSQ), as well as three single-item self-reports that
captured perceived stress level (STRESS), vehicle operation, and physical wellbeing.
Since all cognitive indicators were collected only retrospectively, i.e., after completion
of the respective drives, only statements about absolute validity could be made.
Section-related or time-dynamic analyses were not possible in this case.

The results show that the NASA-TLX does not exhibit absolute validity, meaning that
subjective workload was not rated equally in simulator and real driving. This result
contradicts several earlier studies: Diels et al. (2011), Galante et al. (2018), Milleville-
Pennel and Charron (2015), Mueller (2015) and Lobjois et al. (2021) report relative
validity for NASA-TLX, partly also for specific workload dimensions. One explanation
for the deviation could lie in the retrospective collection, which may have led to
distorted or context-dependent judgments.

The SSSQ was evaluated in the three subscales distress, engagement, and worry. Of
these, only the dimension worry showed absolute validity, while distress and
engagement did not deliver consistent results between the two driving situations.
Again, there is some deviation from previous findings: Galante et al. (2018) reported
absolute validity for the distress dimension and also found relative validity for all three
dimensions. In the present work, such a pattern was not observed, which could also
be due to methodological or contextual differences.

35



For the self-developed single-item scales STRESS, vehicle operation, and physical
wellbeing, no absolute validity could be demonstrated. In all three cases, the
responses differed significantly between simulator and real driving, indicating different
perceptions of the driving situations.

Overall, a clear picture emerges: the drive in the simulator was subjectively perceived
as more stressful and burdensome than the real drive. This result runs consistently
through the various indicators and suggests that the simulator represented an
unfamiliar, possibly even irritating situation for many participants. The increased
cognitive stress in the simulator could therefore be explained less by the driving task
itself and more by the unfamiliar environment, the lack of motion impressions, or other
simulator-related factors. The overall inconsistent validity pattern could also be due to
the fact that subjective assessments were given retrospectively for the entire drive,
which may have blurred subtle differences between individual road segments.

In summary, it can be stated that cognitive stress indicators correspond only to a limited
extent validly between real and simulated driving. The only dimension with reliable
agreement is worry from the SSSQ. All other indicators suggest a higher subjective
burden in the simulator. For future studies, it may therefore be useful to collect cognitive
indicators in a more differentiated way, e.g., section-wise or in real time, to better
capture validity in higher resolution and control contextual influences.

RQ3: To what extent does gaze behavior correlate between simulator and real-
world driving? Can gaze behavior serve as a valid comparison indicator?

To answer the third research question, the results from Paper No. 2 (Appendix A.2)
were used. In this study, gaze behavior in three route sections (urban, rural road,
highway) as well as for the entire drive was compared between driving simulator and
real-world driving, based on gazepoint plots and expert assessments of the similarity
of fixation patterns.

For the entire drive, there is overall a moderate visual similarity between the two
experimental environments. Across all routes, typical gaze patterns were recognizable,
which appeared in similar form in both settings. This supports the assumption of
relative validity of gaze behavior. At the same time, however, systematic differences in
the absolute gaze distribution occurred: gaze dispersion was generally more limited in
the simulator, and fixations were positioned slightly lower in the image frame. These
deviations can be explained by reduced environmental stimuli, the design of the
interface, or a potentially lower degree of realism of the simulator, an effect also
observed in previous studies (e.g. Fors et al., 2013).

The differentiated analysis of individual route segments suggests that especially in the
urban drive, high visual similarities were present, as the gazepoint plots with
comparable fixation patterns in the central field of view and wide peripheral dispersion
indicate. However, the expert ratings showed the highest average similarity value for
the highway drive, with simultaneously the greatest interindividual variation. In both
environments, fixations were strongly concentrated on the central field of view,
supplemented by broad peripheral dispersion. On the rural road, a similar focus on the
roadway was observed, with the difference that in the simulator, horizontal dispersion
was lower, presumably due to fewer peripheral stimuli such as oncoming traffic. On the
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highway, gaze was most centralized in both conditions, which can be attributed to the
lower complexity and stimulus density of this driving situation.

The expert assessments support these observations: the highest average similarity
was awarded for the entire route, followed by the highway, whereby the highest
interindividual variation occurred precisely in the latter. This result suggests that some
participants showed very similar gaze behavior in both environments, while others
showed greater differences. The variance could be due to individual differences in the
perception of realism or a changed sense of risk during real-world driving, especially
on the highway with real traffic. At the same time, the graphical design of the simulated
highway was less complex, therefore potentially reducing visual exploration.

Overall, it can be concluded that gaze behavior is fundamentally suitable as an
indicator of comparability between simulated and real driving, particularly for the
investigation of visual attention. Relative validity is supported by parallel gaze patterns
across different environments. At the same time, systematic distortions such as
reduced peripheral dispersion, vertical shifts, and context-dependent differences must
be taken into account. These findings support using gaze behavior as a
complementary indicator that provides valuable insights but also has limitations
regarding its absolute validity.

RQ4: Can an autonomous shuttle simulator serve as a valid tool for measuring
real-life acceptance of autonomous shuttles?

To answer RQ4, whether an autonomous shuttle bus simulator is suitable as a tool for
realistically measuring the acceptance of autonomous shuttles, findings from Paper
No. 4 (Appendix B.1) were used. Unlike many previous studies, which rely on surveys
or experiences from rather everyday driving situations, the use of a simulator allows
the targeted experience of critical driving situations. This enables the evaluation of
acceptance based on actual, albeit simulated, experiences. To model acceptance, an
extended UTAUT2 model was used, which examined the constructs Performance
Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions, Hedonic
Motivation, Trust & Perceived Risk, and Perceived Usefulness with regard to their
influence on Behavioral Intention.

The results show, deviating from Korkmaz et al. (2022) and Rejali et al. (2024), no
significant effect of Performance Expectancy on the intention to use. A possible
explanation lies in a content-related overlap with the construct of Facilitating
Conditions. Effort Expectancy also showed no effect, unlike in Madigan et al. (2016),
where a positive correlation was found. It is conceivable that in the present study, the
subjectively perceived effort was rated higher due to the critical situations.

The strongest predictor in the model was Social Influence: the social context, i.e.,
norms and group influences, played a central role for the intention to use, similar to
Kapser and Abdelrahman (2020). Facilitating Conditions showed, in accordance with
Madigan et al. (2017), a positive effect, although this construct was captured with only
one item due to model fit. Unexpected was the significant negative effect of Hedonic
Motivation. A possible explanation is that the experience of critical driving situations
reduced the feeling of fun or pleasure, or that the simulation itself was perceived as
unrealistic or emotionally detached.
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The construct Trust & Perceived Risk, based on Korkmaz et al. (2022) showed a
positive effect on Behavioral Intention. As also in Choi and Ji (2015) the results confirm
that trust and a sense of safety are key factors for acceptance. The second strongest
predictor in the model was Perceived Usefulness, which, analogous to C.-F. Chen
(2019), was positively associated with the intention to use. Thus, perceived usefulness
proves to be an important driver of acceptance.

In summary, it can be said that Social Influence had the strongest impact on the
intention to use, followed by Perceived Usefulness. Facilitating Conditions and Trust &
Perceived Risk also contributed to the explanatory value, while Performance
Expectancy and Effort Expectancy showed no significant effects. Hedonic Motivation
had a negative effect, contrary to the original hypothesis. The results suggest that the
use of a shuttle bus simulator, especially when including critical situations, is a valid
and practice-oriented tool for capturing acceptance. It should be noted that participants
were always aware that they were not in an actually life-threatening situation, which
may have influenced their reactions.

While traditional UTAUT studies are based on questionnaires and thus measure
conscious, cognitively filtered response behavior, this study additionally followed the
suggestion of Davis and Granic¢ (2024), to integrate unconscious physiological stress
responses. The aim was to examine whether these could provide an additional
explanatory contribution to the acceptance model. Since stress is experienced not only
physiologically but also cognitively, the model was expanded to include cognitive stress
indicators to depict a more comprehensive picture of the stress response.

RQ5: Does integrating physiological and cognitive stress indicators increase the
explanatory power of acceptance models?

RQ5, based on Paper No. 4, aimed to clarify whether the integration of physiological
and cognitive stress indicators increases the explanatory contribution to acceptance.
It is assumed that physiological activation influences the subjective stress experience
(Cacioppo et al., 2017). A distinction was made between Cardiac Activation (heart rate
and heart rate variability, controlled by the autonomic nervous system) and
Electrodermal Activation (skin conductance, controlled by the sympathetic nervous
system). Both systems together form the physiological stress response, which in turn
influences cognitive stress experience, which acts as a predictor for Behavioral
Intention.

As expected, a significant positive effect of Cardiac Activation on the cognitive
response was shown, which is in line with psychophysiological theories. Contrary to
the assumption, however, a negative effect of Electrodermal Activation was found. This
could be related to the fact that GSR responses in this study did not specifically reflect
stress but were also influenced by unspecific activation such as attention, curiosity, or
positive arousal.

Overall, the model suggests that subjective stress is an inhibiting factor for the
acceptance of autonomous shuttle buses. The physiological measurements provide
objective evidence of individual response patterns, but their interpretation must always
be made in context. The results support psychophysiological models that assume
bodily responses influence cognition and behavior. The combination of physiological
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(cardiac, electrodermal) and cognitive stress indicators increases the explanatory
contribution of the acceptance model. The physiological reactions influence cognitive
stress processing, which in turn influences the intention to use.

The results suggest that cognitive load and stress, especially in critical driving
situations, play an important role in the acceptance of autonomous shuttle buses. The
integration of physiological and cognitive stress indicators not only provides additional
insights into their direct effect on Behavioral Intention but also enables a deeper
understanding of the underlying psychophysiological mechanisms.

RQ6: Which physiological and cognitive indicators are suitable for forming a
composite indicator that offers higher validity and explanatory power for
assessing stress responses?

To answer RQG6, which physiological and cognitive single indicators are suitable for
forming a composite indicator that offers higher validity and explanatory power in
capturing stress responses, established indicators were systematically examined
within the context of real and simulated driving situations in Paper No. 5 (Appendix
B.2). The starting point was the problem that single indicators often yield inconsistent
or difficult-to-compare results when measuring situational activation and stress. The
aim was therefore to identify valid and robust indicators suitable for constructing
overarching, stable stress composites.

On the physiological level, parameters of galvanic skin response (skin conductance
level and skin conductance response), electrocardiogram measures (including heart
rate), and salivary cortisol values were used. The cognitive level was represented by
the NASA-TLX, the Short Stress State Questionnaire (SSSQ), and two self-developed
single-item scales on physical wellbeing” and self-reported stress.

The analysis of correlations and an exploratory factor analysis showed that the skin
conductance response (SCR) is the most promising physiological single indicator: it
correlates best with cognitive stress perceptions. While there was a stronger
correlation between skin conductance level and cortisol level, SCR was overall more
consistent. Among cardiovascular parameters, heart rate proved to be the most robust
indicator and was therefore selected for further modeling. Other physiological
measures such as respiratory rate or invasive procedures were not pursued further
due to limited validity or high practicality requirements.

Although salivary cortisol is a very reliable biological stress marker, it was not continued
as part of a continuously measurable indicator due to its limited temporal resolution but
served for external validation of the identified stress composites.

On the cognitive level, NASA-TLX, the assessment of physical wellbeing, and self-
reported stress emerged as suitable single indicators. The subscales of the SSSQ, on
the other hand, showed lower consistency and were excluded.

Using principal component analysis, two stable factors were extracted based on the
valid single indicators: a physiological stress dimension consisting of skin conductance
response and heart rate, and a cognitive stress dimension consisting of NASA-TLX,
Physical Wellbeing, and self-reported stress. These aggregated composite indicators
showed stable loading patterns across 14 different test conditions. Thus, compared to
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single measures, they offer improved explanatory strength, higher reliability, and more
consistent correlations with situational demands. Their validity was further supported
by their relation to salivary cortisol.

The transferability and reproducibility of the two stress composites were validated in
Paper No. 6 (Appendix B.3). In this study, it was examined whether lavender scent had
a stress-reducing effect during critical simulator drives. The two dimensions, Cognitive
Reaction and Physiological Reaction, replicated with the same loading structure as in
Paper No. 5. The analysis showed that lavender scent particularly reduced the
cognitive stress response, but only when the scent was consciously perceived.

Overall, the results show that the integration of physiological and cognitive single
indicators into the two composite indicators Cognitive Reaction and Physiological
Reaction offers significant added value for practical stress measurement. The cognitive
indicator consists of only eight items and can be easily integrated into studies while
providing high interpretive power regarding subjective stress responses. If a multi-
method approach is feasible, the physiological composite indicator also offers a more
reliable and less disturbance-prone way to capture objective stress responses than
individual physiological metrics.

In conclusion, the results of the present study show that the use of (driving) simulators
represents a conceptually viable alternative to real-world driving, especially with regard
to the measurement of physiological and cognitive (stress) responses. The findings
provide differentiated insights into the validity of driving simulators, their application
potential in the acceptance research of new mobility technologies, and the potential of
forming valid composite indicators for physiological and cognitive responses. This
dissertation thus contributes to the further development of multimodal approaches in
mobility research and opens up perspectives for future studies in which human-—
machine interactions can be analyzed realistically under controlled conditions.

In view of rapid digitalization and the growing need for resource-efficient solutions,
such valid and simulated test environments are becoming increasingly relevant for both
basic research and the user-centered development and evaluation of existing and new
mobility concepts.
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Appendix A: Driving simulator validity

A.1 Research Paper No. 1: Investigating simulator validity by using
physiological and cognitive stress

Authors: Czaban, M. & Himmels, C. (2025)

Citation: Czaban, M., & Himmels, C. (2025). Investigating simulator validity by using
physiological and cognitive stress indicators. Transportation Research Part F: Traffic
Psychology and Behaviour, 114, 831-851.

Doi: https://doi.org/10.1016/j.trf.2025.07.006

Abstract: Driving simulators are indispensable tools in modern automotive research
and development. However, the transferability of findings to real-world driving, and
thus, the validity of simulator-based results, cannot be assumed without empirical
validation.

In this study, we examined physiological (Galvanic Skin Response-based measures,
Electrocardiogram-based measures, salivary cortisol) and cognitive (NASA Task Load
Index, Short Stress State Questionnaire, single-item ratings) stress indicators by
comparing a real-world driving circuit with seven distinct sections to a medium-fidelity
driving simulator, applying a Bayesian analytical approach. The results present a mixed
picture, with both absolute and relative validity observed for certain physiological and
cognitive stress indicators. Overall, our findings suggest that stress responses in the
simulator and real-world driving are comparable, although the simulator was
subjectively perceived as more stressful.

These results provide valuable insights into the validity of simulators for stress research
and underscore the need to consider individual differences, experimental conditions,
and methodological approaches in future studies.

Keywords: Driving Simulator Validation, Physiological Measurement, Stress
Measurement, Cognitive Workload, Galvanic Skin Response, Electrocardiogram,
Salivary Cortisol

1 Introduction

The automotive industry has advanced rapidly over the past decades, with significant
advancements particularly in the areas of driving automation and electrification. Today,
purchasing decisions are often influenced not only by the technical capabilities of a
vehicle, but the user experience has become increasingly relevant. Customer centricity
is a key element in designing systems that reflect the expectations, attitudes, and
behaviors of users. According to the User-Centered Design Process (ISO 13407),
users must be incorporated into the development process at very early stages. User
studies are key to this end.

Driving simulators are commonly used to enable user studies due to several
advantages. User behavior can be studied in an inherently controllable and safe test
environment here (Caird & Horrey, 2016; Winter et al., 2012), which is often not
possible on real roads. Furthermore, driving simulators allow testing at early
development stages, relieving the requirement for physical prototypes (Xue et al.,
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2023). To derive meaningful insights about user behavior in the real world, however, it
must be guaranteed that results achieved in the simulator can be transferred to the
real world. The matter at hand is understood as driving simulator validity.

Driving simulator validity has been subdivided into different constructs. The literature
distinguishes between physical and behavioral validity (e.g., Bella et al., 2014). While
physical validity describes the alignment of the simulator with a real car (Kluver et al.,
2016), behavioral validity concerns the correspondence of driver behavior. Behavioral
validity has been further subdivided into absolute and relative validity (Blaauw, 1982).
Absolute validity is given when the numerical observation values in both environments
are identical (Blaauw, 1982; Kaptein et al., 1996). Relative validity exists when the
effects in the simulator take the same direction as in the real world (Blaauw, 1982).
Behavioral validity has been suggested to be the more important quality compared to
physical validity (Blaauw, 1982; Blana, 2001; Godley et al., 2002; Terumitsu et al.,
2007).

To examine the validity of a simulator, validation studies are usually performed in which
relevant outcome variables are compared between corresponding simulator and real-
world drives (Kluver, 2016; |. M. Zéller, 2015). Validity hereby depends on the use case
(Ahlstrom et al., 2012; Bella, 2008; Engen, 2008; Parduzi, 2021; Wynne et al., 2019),
the outcome variables of interest (Himmels, Venrooij, et al., 2024; Wynne et al., 2019),
and the simulator (Fischer et al., 2015; Himmels, Venrooij, et al., 2024). In a recent
systematic literature review, Wynne et al. (2019) identified 44 studies directly
comparing simulator and real-world driving. While the considered outcome variables
largely varied across these 44 studies, the vast majority of studies considered driver
output variables, such as speed or speed variation (21 studies), lane position or
variation in lane position (13 studies), line crossing and lane change behavior (four
studies), or overall driving performance and errors (10 studies). Few studies
considered outcome variables underlying the observed driving behavior.

This is understandable, as variables underlying behavior are naturally more difficult to
observe and interpret than driver behavior directly. However, several authors also
noted the requirement to consider variables underlying behavior. The correspondence
of perception between the driving simulator and the real world, for instance, is
frequently mentioned (Blana, 2001; Boer, 2000). The simple idea here is that if the
perception in the simulator corresponds to that in reality, the same driver’s behavior
should result. Vienne et al. (2014) suggested the term psychological validity, referring
to the correspondence of processes underlying behavior.

Generally, different sensoric inputs can produce the same driver behavior (Espié et al.,
2005). Meanwhile, perceptual biases can distort driver behavior (Espié et al., 2005). If
existing biases in perception are disregarded or even exploited, the risk is that this will
have unforeseeable effects on variables other than the particular considered ones,
which ultimately leads to invalid results. In fact, invalid results occur frequently and the
causes for this can often not be conclusively clarified. Taking into account variables
underlying driver behavior could contribute to a better understanding of invalid
outcomes and, in the long run, to closing the gap between reality and simulation.
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Addressing the current research gap, stress will be considered in the present study.
Stress is understood as a physiological and cognitive response to situations where a
discrepancy is perceived between one’s own capabilities and the external demands of
a task (Cannon, 1929; Koolhaas et al., 2011; Selye, 1950, 1978, 1983; Zhou et al.,
2022). Stress is typically categorized into positively perceived eustress and negatively
perceived distress (Lazarus, 1966; Selye, 1976), with the latter being the predominant
form in simulator studies (e.g., Daviaux et al., 2020; Matthews et al., 1998; Perello-
March et al., 2022). In the context of a driving task, stress is defined as a situation
perceived as challenging or dangerous (Francis, 2018; Gulian et al., 1989; Healey &
Picard, 2005; Zhong et al., 2022).

While a driving task in a test is objectively the same for all participants, it can be
experienced and evaluated differently depending on the individual's predisposition.
This situational experience of stress can influence driver behavior and perception.
Stressed drivers are more likely to make incorrect decisions (Kontogiannis, 2006;
Westerman & Haigney, 2000).

2. Theoretical background
2.1 Validation studies related to variables underlying behavior

Table 1 provides an overview of previous physiological and cognitive validation studies
investigating the validity of driving simulators. Notably, the sample sizes in most studies
are relatively small, limiting the generalizability of the findings.

Table 1. Previous validation studies with a focus on physiological and/or cognitive indicators;
Legend: EEG = Electroencephalogram; HR = Heart Rate; HRV = Heart Rate Variability; SCL = Skin
Conductance Level

Authors Validation Variables n Validity?
Johnson et al. Physiological HR; Oxygen 9 None for HR
(2011) Consumption; Absolute & Relative for
Ventilation Oxygen Consumption and
Ventilation
Mueller Physiological HR; HRV (Not 34 Relative for HR, HRV, Gaze-
(2015) specified); related Variables
SCL; Pupil None for SCL, Pupil
Diameter; Diameter
Gaze-related
Variables
Reimerand Physiological HR; SCL 26 Absolute & Relative for HR
Mehler (2011) Relative for SCL
Fors et al. Physiological EEG; Blink 20 None (only blink data and
(2013) Duration, ECG; gaze data reported)
Gaze-related
Variables
Milleville- Physiological HR 14 None
Pennel and
Charron
(2015)
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Lobjois et al.  Physiological Blinkrate 24 Relative
(2021)

Li et al. Physiological EEG; HR 15 Absolute
(2013)
Carterand  Physiological  Scan Paths 16 Relative
Laya (1998)
Mueller Cognitive NASA-TLX 34 Relative (not for all items)
(2015)
Lobjois et al. Cognitive NASA-TLX 24 Relative
(2021)
Milleville- Cognitive NASA-TLX; 14 Relative for NASA-TLX (not
Pennel and Questionnaire for all items)
Charron of Relative for QPF (not for all
(2015) Psychological items)
Feeling (QPF)
Diels et al. Cognitive NASA-TLX 10 Relative (not for all items)
(2011)
Galante et al. Cognitive Rotated 100 Relative for NASA-TLX
(2018) Figures Task (Sumscore)
(RFT); NASA- Relative for all Dimensions
TLX; SSSQ of SSSQ; Absolute for

Distress (SSSQ)

The overview reveals substantial variation in the validity results: some studies report
relative or absolute validity for specific parameters (e.g., Johnson et al., 2011, for
oxygen consumption), while others fail to demonstrate validity (e.g., Fors et al., 2013,
for EEG). Additionally, there is a strong focus on isolated road segments or specific
traffic contexts, without addressing a broader range of driving situations such as rural,
urban, and highway driving. Johnson et al. (2011) identified this as a critical research
gap that has been inadequately addressed in previous studies.

2.2 Measurement of stress

Stress responses can be assessed both physiologically (Perello-March et al., 2022)
and cognitively (de Witte et al., 2021). Among the most frequently used physiological
indicators are the Galvanic Skin Response (GSR; Bitterman & Holtzman, 1952,
Sharma & Gedeon, 2012; Shi et al., 2007) and Electrocardiogram (ECG; Lohani et al.,
2019). GSR measures the skin's electrical conductivity, which is influenced by minute
sweat secretion (Boucsein, 2012; Giorgos Giannakakis et al., 2022). This sweating,
referred to as arousal sweating (Darrow, 1933; Wilcott, 1967), is linked to stimuli that
are novel, intense, and emotionally charged (Dawson et al., 2011). The intensity of
emotional arousal triggers sweat gland activity (Kyriakou et al., 2019), making the skin
more conductive and promoting electrical current flow (Caruelle et al., 2019; Navea et
al., 2019; Stern et al., 2001). The activity of the eccrine sweat glands, one of three
types of sweat glands, is measured and is solely innervated by the sympathetic
nervous system (SNS; Critchley, 2002; Setz et al., 2010). The SNS is responsible for
fight or flight responses, which is why GSR measurements exclusively reflect
sympathetic activation, with no recording of relaxation responses regulated by the
parasympathetic system (Fowles, 1986; Poh et al., 2010). Therefore, changes in GSR
clearly indicate arousal and physiological preparation for stress (Boucsein, 2012;
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McCorry, 2007; Norman et al., 2016). However, it should be noted that GSR activity,
initially understood as a measure of arousal, only becomes a stress indicator in the
context of a stressful situation (Healey & Picard, 2005; Labbé et al., 2007). GSR
measurements are frequently used in automotive research (Caruelle et al., 2019).

The GSR measurement can be divided into two main components: tonic level (skin
conductance level (SCL)) and phasic response (skin conductance response (SCR);
Andreassi, 2010; Boucsein, 2012). SCL represents the slowly changing trend in skin
conductivity and is calculated as an average over a specific period (Boucsein, 2012;
Sharma & Gedeon, 2012), whereas SCR is a time-specific response to a particular
stimulus. This reaction is reflected in a sudden increase in skin conductivity, known as
GSR peaks, which represent short-term arousal. A related parameter, Peak Amplitude
(PA), measures the magnitude of a GSR peak, indicating the intensity of the
physiological response to a stimulus (Boucsein, 2012; Giannakakis et al., 2022).

ECG measurement allows the recording of electrical impulses generated by the
autonomic heart rate (Shaffer et al., 2014), enabling the calculation of heart rate (HR)
and heart rate variability (HRV), essential parameters for describing heart activity and
frequently used as stress indicators (Andreassi, 2010; Cacioppo et al.,, 2017;
Giannakakis et al., 2022).

Heart activity is regulated by the autonomic nervous system (ANS), which includes
both sympathetic and parasympathetic nerves. The parasympathetic system reduces
heart rate (Giorgos Giannakakis et al., 2022; Hall & Hall, 2020), while sympathetic
nerves increase heart rate, enhancing blood flow and oxygen supply, preparing the
body for a fight or flight response (Giannakakis et al., 2022; Hall & Hall, 2020). This
means that during stress, the SNS dominates, leading to increased heart activity,
improving blood circulation, and preparing the organism for heightened energy
demand (Andreassi, 2010; Engert et al., 2014; Hall & Hall, 2020; Selye, 1950; Sharma
& Gedeon, 2012).

In terms of parameters, HR refers to the number of heart beats per minute. Previous
findings indicate that stress significantly increases heart rate (Engert et al., 2014;
Giannakakis et al., 2017; Reinhardt et al., 2012). HR is a simple and widely used
parameter for measuring the arousal state and physiological response to stress
(Reinhardt et al., 2012; Taelman et al., 2011).

In contrast, HRV (Berntson et al., 2008) examines fluctuations in the time intervals
between successive heartbeats (Electrophysiology, 1996). HRV is assessed using the
mean RR-Interval, which measures the time between two R-peaks in the heart rate in
milliseconds (RR-Int), as well as the Root Mean Square of Successive Differences
(RMSSD) and the Standard Deviation of the intervals between R-peaks (SDNN) (Hall
& Hall, 2020). While HR is an indicator of arousal, increasing with higher levels of stress
(Reinhardt et al., 2012), HRV tends to decrease as internal arousal increases (Bernardi
et al., 2000).

In addition to the physiological measurements of GSR and ECG, a stress reaction can
also be assessed biologically. When a person experiences stress, two primary
pathways in the body are activated: the sympathetic adrenal medullary system (SAM)
and the hypothalamus-pituitary-adrenal axis (HPAA; (Andreassi, 2010; Reinhardt et
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al., 2012). Activation of the HPAA triggers the release of the hormone corticotropin,
which in turn stimulates the release of adrenocorticotropic hormone (ACTH). This leads
to the release of the stress hormones adrenaline, noradrenaline, and cortisol from the
adrenal glands. These hormones increase blood sugar levels, providing energy to the
body in stressful situations (Chrousos, 2009), and a rise in cortisol levels is considered
a direct indicator of stress (Dickerson & Kemeny, 2004). Cortisol can be measured in
saliva (Salivary cortisol; SCT).

2.3 The present study

In the present study, a multi-method approach was employed to measure stress,
including cognitive measures and objective physiological indicators. Experiments will
be conducted in the driving simulator and the real world, employing a diverse mix of
traffic scenarios (urban, rural, highway) that realistically reflect the situational cognitive
demands of various driving situations. The study is aimed at determining to what extent
driving simulators can replicate the driving experience in the real world, considering
physiological and cognitive stress indicators.

We hypothesize:

* Physiological stress indicators correspond between the simulator and the real world
(H1). We considered both absolute (H1a) and relative validity (H1b).

» Cognitive stress indicators correspond between the simulator and the real world (H2).
3. Method
3.1 Participants

A total of 72 participants were recruited. After excluding incomplete datasets due to
device malfunctions, the final analysis included 68 participants. The sample consisted
of 39 females (54.20 %) and 33 males (45.80 %) aged between 18 and 63 years (M =
30.07, SD = 11.58).

Regarding the participants' residential backgrounds, 43.1 % identified as living in rural
areas, 44.4 % in small to medium-sized towns, and 12.5 % in urban environments.

Data collection was conducted using a convenience sampling approach with quotas
based on age and gender to ensure diversity. The study employed a within-subject
design and was conducted in the third quarter of 2023. Participants received
compensation in the form of a travel reimbursement of 30 euros for their participation.

3.2 Route and Simulator

A circular route spanning approximately 23 kilometers was chosen for the study,
comprising seven distinct test sections designed to include urban driving (5.3 km), rural
roads (9.7 km), and highway driving (8 km). This segmentation was intentionally
structured to reflect diverse environmental conditions, each imposing unique demands
on the driver and influencing both physiological and cognitive load. The sequence of
the individual segments was as follows: Rural 1, Urban 1, Rural 2, Highway, Rural 3,
Urban 2, Urban 3.
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Figure 1. Abstract route with segment subdivision
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A circular route spanning approximately 23 kilometers was chosen for the study,
comprising seven distinct test sections designed to include urban driving (5.3 km), rural
roads (9.7 km), and highway driving (8 km). This segmentation was intentionally
structured to reflect diverse environmental conditions, each imposing unique demands
on the driver and influencing both physiological and cognitive load. The sequence of
the individual segments was as follows: Rural 1, Urban 1, Rural 2, Highway, Rural 3,
Urban 2, Urban 3.

Rural 3 is briefly interrupted by Urban 2, which consists of a small urban section
belonging to a residential district that intersects the rural road.

All participants followed the same route in the same sequence (Figure 1).

The naming of the segments (e.g., Rural 1-3) was based on their chronological
appearance along the route and reflects the classification of the road type at that point
(e.g., rural, urban, or highway), not geographical proximity or functional differences.
The naming follows the actual course layout.

The route was designed as a closed loop to ensure both practical feasibility and a high
degree of situational variety. This approach made the course suitable for accurate
replication in the driving simulator. The high situational variability was intended to help
assess which types of driving environments are more or less suited for simulation.
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Figure 2. Real (top) and simulated (bottom) sections

By including various driving sections, driver stress can be evaluated in diverse driving
scenarios. Weather conditions during the real-world study were favorable, with smooth
traffic flow throughout the testing period.

The driving task was intentionally designed as a regular, non-manipulated drive
through real traffic environments to capture naturally occurring stress responses. The
use of stress inducing methods was deliberately avoided due to ethical and safety
considerations associated with real-world traffic.

The simulated route was programmed using Silab 7.1, a driving simulation software
developed by the Wurzburg Institute of Traffic Sciences (WIVW). SILAB is a
professional simulation environment that allows the realistic replication of driving
routes and complex traffic scenarios. The software is not publicly available, but further
information can be found at: https://wivw.de/en/silab-2/

The virtual route was implemented as a digital twin of the real-world test course.
Reconstruction was based on OpenStreetMap data and preserved original dimensions
and topographical features. Figure 2 illustrates a comparison between the real and
virtual versions of the route.

A medium-fidelity driving simulator (as defined by Wynne et al., 2019) was used for the
simulator study (Figure 3). The simulator featured:

. An original driver’s seat,
. A force-feedback steering wheel, pedals, turn signals, and dashboard,
. A mockup mounted on a D-Box system with 3 degrees of freedom, simulating

road surface feedback, and
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. Three 55" LCD screens providing a 180° horizontal field of view, offering an
immersive driving experience.

The D-Box system is a professional motion platform using hydraulic actuators to
simulate physical road feedback (https://www.d-box.com/en#tab_2). It provides motion
cues such as vibrations or tilting to replicate road texture, acceleration, and braking.
For example, during braking, the rear actuators lift slightly, pushing the driver forward
to mimic real vehicle deceleration. This enhances the sense of realism during
simulated driving.

Figure 3. Medium fidelity driving simulator used for the study

3.3 Measurements
3.3.1 Physiological measurements

On the physiological measurement side, we selected GSR measurements (including
SCR, SCL, PA) as well as ECG measurements (HR and HRV). These measures have
been established as reliable stress indicators in prior driving simulation studies (e.g.,
Daviaux et al., 2020; Manseer & Riener, 2014; Milardo et al., 2022; Scherz et al., 2023).

To capture the biological stress response, we employed salivary cortisol tests. Cortisol
reflects Hypothalamic-Pituitary-Adrenal (HPA) axis activity and is considered a direct
hormonal stress indicator (Kirschbaum & Hellhammer, 1994), whereas elevated HR
and GSR activity serve as situational markers of stress (Lohani et al., 2019).

Concerning GSR, we collected the skin conductance response (SCR; peaks per
minute), peak amplitude (PA), and the tonic skin conductance level (SCL).
Measurements were conducted using the exosomatic method with direct current
(Boucsein et al., 2012), utilizing a Shimmer 3 GSR+ sensor. Two electrodes were
placed on the palm of each participant.
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For ECG measurements, we recorded standard parameters, including heartbeats per
minute (heart rate, HR) and various heart rate variability (HRV) metrics. These included
the mean RR-interval (RR-Int), the root mean square of successive differences
(RMSSD), and the standard deviation of NN intervals (SDNN).

Physiological responses were recorded using iMotions software (version 9.4).

Salivary cortisol (SCT) was collected using Salivettes. Sample analysis was carried
out by Dresden Labservice GmbH Saliva samples were frozen and stored at -20
degrees Celsius until analysis. After thawing, samples were centrifuged at 3,000 rpm
for 5 min, which resulted in a clear supernatant of low viscosity. Salivary concentrations
were measured using commercially available chemiluminescence immunoassay with
high sensitivity (Tecan - IBL International, Hamburg, Germany; catalogue number
R62111). The intra and interassay coefficients of variance were below 9%.

Due to high inter-individual variability of GSR (SCR is more robust than SCL) and
cortisol values (Boucsein, 2012; Hellhammer et al., 2009), interpretation of absolute
levels is limited. Consequently, our analyses focus on intra-individual changes within a
within-subject design. Each participant serves as their own reference point, enabling
detection of relative stress reactivity across driving conditions.

3.3.2 Cognitive stress related variables

To assess the participants' cognitive responses, we measured various variables and
constructs related to perceived stress using a semantic differential.

For measuring cognitive reactions, we employed an 11-point scale ranging from 0 (not
at all) to 10 (very much). This scale is intuitive for participants to understand (Lewis,
2021), enhances data variance (Dawes, 2002), tends to produce normally distributed
data (Leung, 2011), and facilitates the use of parametric tests (Chyung et al., 2018).

Table 2 presents the items used in the applied scales. The questions were translated
from English to German by the authors. The self-formulated single-item measurements
we developed were originally created in German and were translated to English for
demonstration in this paper.

According to the Short Stress State Questionnaire, which consists of 24 items
measuring three subdimensions—Engagement, Distress, and Worry—we shortened
the questionnaire for our study by selecting the four items with the highest factor
loadings for each dimension, as suggested by Helton (2004).

Table 2. Scales and single items used and their translation

Scale (Abbr.) English Wording German Wording Source
Vehicle e How well did you e Wie gut sind Sie Self-
Operation manage operating mit der Bedienung developed
(VO) the vehicle? des Fahrzeuges Single
zurechtgekommen  Item
?
Physical e How was your e  Wie war lhr Self-
Wellbeing physical well-being korperliches developed
(PW) during the ride? Wohlbefinden
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wahrend der Single
Fahrt? ltem

STRESS e To what extent did e In welchem Self-
you experience Ausmalf haben Sie developed
stress during the wahrend der Fahrt  Single
drive? Stress Item

empfunden?

Short  State 1. | feel dissatisfied 1. Ich bin Helton,

Stress 2. | am committed to unzufrieden. 2004

Questionnaire attaining my 2. Ich bin

(SSSQ) performance goals entschlossen,

3. I'mtrying to figure meine
myself out Leistungsziele zu

4. | feel impatient erreichen.

5. | am motivated to 3. lIch versuche, mir
do the task selbst auf die Spur

6. I'm reflecting about zu kommen.
myself 4. lch empfinde

7. | feel angry Ungeduld.

8. | feel confident 5. Ich bin motiviert,
about my abilities die Aufgabe zu

9. | feel concerned erledigen.
about the 6. Ich denke Uber
impression | am mich selbst nach.
making 7. Ich bin wutend.

10.1 feel irritated 8. Ich bin mir sicher

11.Generally, | feel in uber meine
control of things Fahigkeiten.

12.1 thought about 9. Ich frage mich,
how others have welchen Eindruck
done on this task ich hinterlasse.

10.Ich fihle mich
irritiert.

11.1m Allgemeinen
habe ich das
Gefuhl, die Dinge
im Griff zu haben.

12.Ich Uberlege, wie
andere bei dieser
Aufgabe
abschneiden.

NASA-TLX 1. How mentally 1. Wie viel geistige Hart,
demanding was Anforderung war 2006;
the task? (Mental bei der Fahrt Hart &
Demand) erforderlich? Staveland,

2. How physically (Mental Demand) 1988
demanding was 2. Wie viel
the task? (Physical korperliche
Demand) Anforderung war

3. How hurried or bei der Fahrt

rushed was the

51



pace of the task?
(Temporal
Demand)

. How successful

were you in
accomplishing
what you were
asked to do?
(Performance)

. How hard did you

have to work to
accomplish your
level of
performance?
(Effort)

. How insecure,

discouraged,
irritated, stressed,
and annoyed were

erforderlich?
(Physical Demand)

. Wie viel Zeitdruck

empfanden Sie
wahrend der
Fahrt? (Temporal
Demand)

. Wie zufrieden

waren Sie mit |hrer
Leistung im
Zusammenhang
mit der Fahrt?
(Performance)

. Insgesamt

betrachtet: Wie
grold war die von
Ihnen empfundene
Anstrengung bei
der Fahrt? (Effort)

you? (Frustration) 6. Wie frustriert
fuhlten Sie sich
wahrend der
Fahrt?
(Frustration)
3.4 Procedure

At the beginning of data collection, the participant was welcomed, and the first salivary
cortisol sample was collected (SCT/0). Subsequently, an introductory pre-survey was
conducted to assess the participant's current stress state (SSSQ/0).

The next step involved attaching the physiological measurement devices to the
participant.

Before the driving session, participants were informed that the route would be a
circular course of approximately 25 minutes, consisting of different segments including
urban, rural, and highway sections. The driving task itself was structured similarly to a
driving school setup: participants were guided in real time by the experimenter, who
gave timely navigation instructions (e.g., turn left, continue straight) throughout the
entire drive. In the simulator there were also navigation arrows.

Following this, the participant accompanied the experimenter to the vehicle and
completed the real-world driving session (GSR/1; ECG/1).

After completing the drive, a post-drive survey was conducted inside the vehicle. This
survey assessed perceived stress (SSSQ/1; STRESS/1), perceived workload (NASA-
TLX/1), situational strain related to vehicle operation (VO/1), and physical well-being
(PW/1).

Upon returning to the laboratory, a second salivary cortisol sample was collected

(SCT/1). Participants were then introduced to the driving simulator following the

protocol outlined in the introduction package by Hoffmann et al. (2003). This

introduction included three practice tracks (about 15 min) to familiarize participants with
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the simulator. After the practice sessions, the placement of the physiological devices
was checked to ensure they remained correctly attached. The participant then
completed a simulated drive on a digital replica of the previously driven real-world route
(GSR/2; ECG/2).

Upon completing the simulated drive, a post-simulation survey was conducted to
capture cognitive responses (NASA-TLX/2; SSSQ/2; STRESS/2; VO/2; PW/2). Before
the participant was dismissed, a final salivary cortisol sample was collected (SCT/3).

The total testing time per participant was approximately two hours, with an average
driving duration of around 25 minutes for the real-world drive and 23 minutes for the
simulated drive. The difference in duration between the real and simulated journey can
be attributed to the traffic flow, which was standardized in the simulator (e.g. traffic
lights) but could not be influenced on the real route. The order of the drives was fixed,
with the real-world drive always preceding the simulated drive.

Before the start of the study, participants received a standardized oral briefing about
the purpose, procedure and data protection regulations. Informed consent was
obtained orally, in accordance with the approved procedure. The study was approved
by the Ethics Committee of the University of Bayreuth. Participation was voluntary, and
participants were informed that they could withdraw at any time without giving reasons.

3.5 Statistical analysis

Previous studies on simulator validation employed null-hypothesis significance tests
(NHSTSs), such as t-tests or regression analyses (Kluver et al., 2016; Losa et al., 2013;
Tornros, 1998; |. Zdller et al., 2019). However, NHSTs can only identify effects. Non-
significant results may result from either low statistical power or true equivalence, an
important distinction that NHSTs cannot make. This limitation is particularly problematic
in studies with small sample sizes.

To address these issues, we adopt a Bayesian approach (Himmels, Weigl|, et al., 2024).
In contrast to frequentist p, the Bayes factor BF10 is a relative indicator for the
probability of HO compared to H1. In this way, evidence can be provided not only for
differences, but also for equivalence, which would indicate simulator validity.

We conducted Bayesian repeated-measures ANOVA using JASP (van Doorn et al.,
2021) and predefined priors (Rouder et al., 2017) for Bayesian analyses.

Evidence from the Bayes Factor will be interpreted following (Jeffreys, 1998).
Accordingly, a BF10 (or BFincl) > 3 is considered evidence for an effect, and a BF10
(or BFincl) < 0.3 is considered evidence for equivalence. Since Bayes Factors are
relative indicators unlike p-values, they are informative even when they do not precisely
follow these recommendations. If a measurement yields a BF10 (or BFincl) > 0.3 but
<1, this is referred to as anecdotal evidence of equivalence (van Doorn et al., 2021).
A BF10 (or BFincl) of > 1 and < 3 signifies anecdotal evidence for an effect, which
means that the evidence is considered weak or inconclusive, but still leans slightly in
favor of the alternative hypothesis. In both cases, the term "anecdotal" reflects the
limited strength of the statistical support, rather than anecdotal in a colloquial sense.
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Furthermore, for the physiological variables, absolute validity was inferred from
absence of a main effect of the environment (real vs. simulator), and relative validity
from the absence of an Environment*Section interaction, as indicated by the
corresponding BFincl values.

4. Results

Summarizing, SCT and the SSSQ were inquired before the real-world drive, after the
real-world drive and after the simulator drive, GSR and ECG were inquired throughout
the drives, and STRESS, the NASA-TLX, and PW were inquired after the real-world
drive and after the simulator drive.

Bayesian dependent t-tests including the factor test environment (real vs. simulator)
were conducted for cortisol, SSSQ, STRESS, NASA-TLX, VO, and PW. For this
variables we can only consider absolute validity.

As GSR and ECG were recorded continuously throughout the drive, these were
analyzed in a two-factor Bayesian repeated-measures ANOVA including the factors
environment and Scenario. This approach allowed us to also consider relative validity
for ECG and GSR.

Note that relative validity could only be assessed for continuously recorded
physiological measures, as these allowed comparisons across driving sections. In
contrast, the cognitive variables and de cortisol measures were only collected after the
entire drive, thus preventing any within-drive section-level analysis.

Physiological

The physiological data (e.g., noise filtering, HRV calculation) was performed using R
Notebooks in iMotions. As GSR and ECG were recorded continuously throughout the
drive, mean scores for SCR, SCL, PA, HR, RR-Interval, RMSSD, and SDNN were
calculated section-wise (Rural 1, Urban 1, Rural 2, Highway, Rural 3, Urban 2, Urban
3).

Prior to each driving environment (real and simulated), baselines were recorded for all
physiological indicators (SCR, SCL, PA, HR, RR-Interval, RMSSD, and SDDN). For
SCL (uS) (real: 12.08 simulator:13.92; p<.001), PA (uS) (real: 0.25 simulator: 0.33
:p<.001) HR (bpm) (real:79.88 simulator: 77.30 ;p=.005) and RR-Interval (ms) (real:
777.44 simulator: 803.12 ;p=.007) small but statistically significant differences were
observed, possibly indicating anticipators responses. However, since our primary
analyses relied on within-subject comparisons across scenarios, the baseline
differences do not confound the observed intra-individual physiological patterns.

For SCR, there is evidence for the absence of an effect of the test environment,
indicating that values do not differ between the real world and the simulator (Table 3,
Figure 4). Furthermore, there is evidence for the absence of an interaction between
environment and section (Table 3).

Regarding SCL, there is evidence for a main effect of environment, indicating a
significant difference between real and simulated driving, with higher SCL values in the
simulator (Table 3, Figure 5). However, there is evidence for equivalence concerning
the interaction between environment and section (Table 3).
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For PA, the data indicate evidence of an effect of the test environment (Table 3). PAis
higher in the simulator compared to the real world (Figure 6). Additionally, there is
evidence for an interaction effect between environment and section (Table 3).
Differences between the real world and the simulator are larger in Highway, Rural 3,
and Urban 2, while there are only marginal differences in Urban 3 (Figure 6).

Regarding HR, there is evidence for both an environment effect and an interaction
effect between environment and section (Table 3). HRs are higher in the real world
compared to the simulator (Figure 7), while the differences are differently pronounced
across the scenarios.

For RR-Interval, evidence suggests both an environment effect and an interaction
effect between environment and section (Table 3). The RR-Intervals are higher in the
simulator than the real car (Figure 8), with especially large differences in Rural 1.

For RMSSD, the data provide anecdotal evidence for equivalence across
environments (Table 3; Figure 9). Additionally, there is moderate evidence for the
absence of an interaction effect (Table 3).

Regarding SDNN, the data indicate evidence for equivalence across environments
(Table 3; Figure 10). Furthermore, there is evidence for the absence of an interaction
effect between environment and section (Table 3).

Since SCT was collected only after each complete drive (rather than after each
section), only the environment effect could be examined here. The data provide
evidence for the absence of an effect of the environment (Table 3; Figure 11).

Table 3. Statistical results for Bayesian ANOVAs, Post Hoc tests, and Bayesian paired t-test. Evidence
for equivalence is marked green, evidence for effects is marked red.

SCR

BANOVA P(incl)  P(excl) P(inclldata) P excl|data) BFinc
Environment 0.600 0.400 0.125 0.875 0.095
Section 0.600 0.400 0.125 1.110x10'®  6.005x10*1°
Environment*Section 0.200 0.800 0.001 0.999 0.006

Post Hoc Prior Posterior BF1o0,u error %
Comparison - Odds Odds

Environment

Real vs. Simulator 1.000 0.050 0.050 0.437

SCL

BANOVA P(incl)  P(excl) P(inclldata) P(excl|data) BFinc
Environment 0.600 0.400 0.971 0.029

Section 0.600 0.400 0.968 0.032 20.288
Environment*Section 0.200 0.800 0.009 0.991 0.037

Post Hoc Prior Posterior BF1o0,u error %
Comparison - Odds Odds

Environment

Real vs. Simulator 1.000 4.765x10%10 4.765x10*10  4.122x10°"7
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PA

BANOVA P(incl)  P(excl) P(inclldata) P(excl|data) BFinc
Environment 0.600 0.600 1.000 6.695x1014

Section 0.600 0.400 1.000 0.000 0
Environment*Section 0.200  0.800  1.000 2.073x10°  [IO2SKIEN
Post Hoc Prior Posterior BF1o,u error %
Comparison - Odds Odds

Environment

Real vs. Simulator 1.000 1.530x10*2' 1.530x10*2" 7.542x1028
HR

BANOVA P(incl)  P(excl) P(inclldata) P(excl|data) BFinc
Environment 0.600 0.400 1.000 0.000

Section 0.600 0.400 1.000 0.000 o0
Environment*Section 0.200  0.800  1.000 1.315x10" SIS
Post Hoc Prior Posterior BF1o0,u error %
Comparison - Odds Odds

Environment

Real vs. Simulator 1.000 2.974x10%4 2.974x10™** 5.673x1047
RR-Int

BANOVA P(incl)  P(excl) P(inclldata) P(excl|data) BFinc
Environment 0.600 0.400 1.000 2.309x10°

Section 0.600 0.400 1.000 2.662x10%  2504.136
Environment*Section 0.600  0.400  1.000 2.664x10* |HECHOISIEN
Post Hoc Prior Posterior BF1o0,u error %
Comparison - Odds Odds

Environment

Real vs. Simulator 1.000 7.347x10%28  7.347x10%28 7.172x10736
RMSSD

BANOVA P(incl)  P(excl) P(inclldata) P(excl|data) BFinc
Environment 0.600 0.400 0.325 0.675 0.322
Section 0.600 0.400 1.000 2.330x1013  2.861x10%12
Environment*Section 0.200 0.800 0.002 0.998 0.009

Post Hoc Prior Posterior BF1o0,u error %
Comparison - Odds Odds

Environment

Real vs. Simulator 1.000 3.592 3.592 0.007
SDNN

BANOVA P(incl)  P(excl) P(incl/data) P(excl|data) BFinc
Environment 0.600 0.400 0.214 0.786 0.181
Section 0.600 0.400 1.000 1.179x10°  5.654x10%8
Environment*Section 0.200 0.800 0.001 0.999 0.005

Post Hoc Prior Posterior BF1o,u error %
Comparison - Odds Odds

Environment

Real vs. Simulator 1.000 0.227 0.227 0.100
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SCT BF10 error%
Bayesian paired t-

test

(Factor:

Environment)

0.134 0.097

Figure 4. Descriptives for Skin Conductance Response (with 95% credible interval)

Comparison of Skin Conductance Response (SCR)
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Figure 5. Descriptives for Skin Conductance Level (with 95% credible interval)

Comparison of Skin Conductance Level (SCL)
between real and simulated ride
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Figure 6. Descriptives for Peak Amplitude (with 95% credible interval)
Comparison of Peak Amplitude (PA)
between real and simulated ride
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Figure 7. Descriptives for Heart Rate (with 95% credible interval)
Comparison of Heart Rate (HR)
between real and simulated ride
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Figure 8. Descriptives for RR-Interval (with 95% credible interval)

Comparison of RR-Intervals (RR-Int)
between real and simulated ride
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Figure 9. Descriptives for Root Mean Square of Successive Differences (with 95% credible interval)

Comparison of Root Mean Square of Successive
Differences (RMSSD) between real and simulated ride
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Figure 10. Descriptives for Standard Deviation of the NN Interval (with 95% credible interval)

Comparison of Standard Deviation of the NN Interval
(SDNN) between real and simulated ride
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Figure 11. Descriptives for Salivary Cortisol (with 95% credible interval)

Comparison of Salivary Cortisol (SCT)
between real and simulated ride
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Cognitive

The subdimensions of the SSSQ (Worry, Engagement, and Distress) were calculated
following Helton (2004). For the NASA-TLX, a mean index was calculated, showing an
internal consistency of a = .72 (real) and a = .79 (simulator), respectively.

For VO, the NASA-TLX, Distress, Engagement, STRESS, and PW, there was evidence
for an effect of the test environment (Table 4). VO and PW were rated higher in the real
world compared to the simulator (Figures 12, 18). The NASA-TLX, Distress,
Engagement, and STRESS achieved lower scores in the real world compared to the
simulator (Figures 13,15-17). For Worry, there was evidence for equivalence across
the real world and the simulator (Table 4; Figure 14).

Table 4. Statistical results for Bayesian paired t-test. Evidence for equivalence is marked green,
evidence for effects is marked red.

Bayesian paired t-test BF10 error %
(Factor: Environment)

VO 4.104x1026
NASA-TLX 2.427x10"8

Worry 0.186 0.078

Distress EZSISEN 5.213x10"
Engagement RSB08 S04 6.757x107
STRESS - 1.071x10-3
PW 2.522x10°8

Figure 12. Descriptives for Vehicle Operation (with 95% credible interval)

Comparison of (single item) Vehicle Operation (VO)
between real and simulated ride
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Figure 13. Descriptives for NASA Task Load Index (with 95% credible interval)

Comparison of NASA Task Load Index (NASA-TLX)
between real and simulated ride
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Figure 14. Descriptives for dimension Worry (SSSQ) (with 95% credible interval)

Comparison of Worry (SSSQ)
between real and simulated ride
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Figure 15. Descriptives for dimension Distress (SSSQ) (with 95% credible interval)

Comparison of Distress (SSSQ)
between real and simulated ride
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Figure 16. Descriptives for dimension Engagement (SSSQ) (with 95% credible interval)

Comparison of Engagement (SSSQ)
between real and simulated ride
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Figure 17. Descriptives for Stress (with 95% credible interval)

Comparison of (single item) Stress
between real and simulated ride
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Figure 18. Descriptives for Physical Wellbeing (with 95% credible interval)

Comparison of (single item) Physical Wellbeing (PW)
between real and simulated ride
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5. Discussion

In the present study, we investigated the validity of physiological (H1) and cognitive
stress indicators (H2) relying on a within-subject design using a multi-method approach
on a 23 km driving route (comprising urban, rural, and highway segments) between a
real vehicle and a medium-fidelity simulator. In contrast to the majority of previous
studies, we employed a Bayesian analysis approach and considered various driving
scenarios.

For physiological data, which was recorded continuously throughout the drive, both
absolute (H1a) and relative validity (H1b) were considered. Absolute validity was
concluded from the absence of an effect of the test environment (real world vs.
simulator), while relative validity will be concluded from the absence of an interaction
effect between the test environment and the driving scenario.

Our results regarding GSR-related variables indicate both absolute and relative validity
for SCR, meaning that physiological responses do not differ between simulated and
real-world driving for this parameter. No absolute validity was found for SCL. However,
we found evidence for relative validity for SCL, similar to the findings reported by
Reimer and Mehler (2011), whereas Mueller (2015) did not report validity. For PA there
was no absolute nor relative validity. To our knowledge, no prior validation studies
considered SCR and PA, making it difficult to compare our results to existing literature.

Regarding ECG parameters, our results suggest anecdotal evidence for absolute
validity for RMSSD, as well as absolute validity for SDNN. Furthermore, both HRV
parameters (RMSSD and SDNN) demonstrated relative validity. Consequently, for
these parameters, a drive in the simulator elicits comparable physiological responses
to a drive in a real vehicle. However, no such findings were observed for RR-interval,
as neither absolute nor relative validity was confirmed. Similarly, we could not establish
absolute or relative validity for HR.

For HRV parameters RMSSD and SDNN, our findings align with Mueller (2015), who
also reported relative validity for HRV. However, it should be noted that this study did
not specify which HRV parameter was investigated. For HR, Reimer and Mehler (2011)
and Li et al. (2013) reported absolute validity, while Reimer and Mehler (2011) and
Mueller (2015) also found relative validity. In contrast, Johnson et al. (2011) and
Milleville-Pennel and Charron (2015) found no validity for HR. Fors et al. (2013)
reported collecting ECG data but did not analyze ECG parameters in their study.

Furthermore, there was absolute validity regarding SCT, indicating a similar biological
stress level after driving in the two environments. To the best of our knowledge, SCT
has not been empirically compared across simulator and real world driving in the past.

One potential reason why PA did not show valid results could be that it is an intensity-
based measure, especially sensitive to sudden and unexpected stimuli. For most
participants, this study was their first experience with a driving simulator, which could
have been perceived as a novel stimulus and hence may have increased PA. On the
other hand, this result also corresponds to the fact that cognitive stress indicators also
indicated a higher stress level in the simulator.
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A possible explanation for the lack of validity concerning RR-Int could be that RR-Int is
more susceptible to artifacts, such as micro-movements within the vehicle (e.g.,
braking, turning), whereas the other two parameters (RMSSD and SDNN) are more
stable as they are averaged over longer time periods.

The reason for higher HR values in the real vehicle could result from perceived risk.
While participants are theoretically exposed to real dangers during a real drive, they
are likely aware that there are no physical consequences to accidents in the simulator
(Caird & Horrey, 2016; Vlakveld, 2005).

Concluding our findings regarding the stated hypotheses, we cannot generally accept
H1a or H1b in light of inconsistent findings. Absolute validity (H1a) was given for SCR,
RMSSD, SDNN, and SCT, while there was no absolute validity regarding SCL, PA, HR,
and RR-Int. Relative validity (H1b) was given for SCR, SCL, RMSSD, and SDNN but
must be rejected for PA, HR, RR-Int, and SCT. Caird and Horrey (2016) already
emphasized that validity at least in parts depends on the dependent variables
considered, which we can hence confirm regarding physiological stress.

Regarding the cognitive stress indicators, we found absolute validity only for the Worry
dimension of the SSSQ. A comparable study by Galante et al. (2018), however, found
absolute validity for the Distress dimension instead. Meanwhile, Galante et al. (2018),
Diels et al. (2011), Milleville-Pennel and Charron (2015), Mueller (2015), and Lobjois
et al. (2021) found relative validity for the overall NASA-TLX score. While we did not
directly test for relative validity, no absolute validity was found regarding the NASA-
TLX in our study.

Absolute validity was neither confirmed regarding VO and PW. Since these items were
developed by us, they cannot be directly compared with previous research.

Participants reported significantly higher cognitive stress in the simulator, which could
be due to various factors. For most of the sample, driving a simulator was a completely
new situation, where steering, braking, and speed perception differ from real vehicles,
which is also reflected in the VO variable. Although we did not assessed simulator
sickness using standardized tools, a certain degree could have influenced stress
perception.

Summarizing, regarding H2, we can neither make a final conclusion. While absolute
validity was given for Worry, the other cognitive stress indicators point at higher stress
in the simulator compared to the real world.

Table 5 summarizes the results regarding the validity of the dependent variables and
allows for an integrative interpretation. A pattern emerges: physiological indicators
such as SCR, RMSSD and SDDN show consistent validity on both absolute and
relative levels. This supports their applicability in driving simulators, particularly for
analyzing intra-individual responses. Other measures, such as HR or PA, demonstrate
less consistency, which may indicate greater context sensitivity or interindividual
variability.

In contrast, the cognitive measures show a more inconsistent pattern. This may be due
to the fact that the data were not collected after each section, but retrospectively for
the entire drive. Section-specific results might have turned out differently. The overview
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of table 5 thus highlights that continuously recorded physiological data are more
suitable for validating driving simulators, whereas cognitive measure may require
methodological adoption to yield comparably robust results.

Table 5. Overview of the validation results found

“Level” Parameters Absolute Relative

Physiological SCR
SCL
PA
HR
RR-Int
RMSSD
SDNN
SCT
Cognitive VO
NASA-TLX
Worry
Distress
Engagement
STRESS
PW

XXXXAXXIAANAXX XXX

6. Limitations

Objective performance data (driving data) were not considered in our analysis as intra-
individual processes were the focus. Hence, we cannot conclude whether differences
in stress actually would have induced differences in driving behavior. Note, however,
that driving parameters have been frequently considered in driving simulator validation
studies in the past (Wynne et al., 2019).

The decision not to include behavioral driving data was primarily due to technical
constraints. The laptop system used for data acquisition was battery-powered and
already processing multiple physiological signals in real-time. Adding additional data
streams, such as driving behavior, would have risked overloading the system,
particularly in the real-world driving context, where no fixed power supply was
available.

Nevertheless, we acknowledge the value of integrating both physiological and
behavioral data to better understand the relationship between stress and driving
performance. Future studies should aim to include driving performance measures in
combination with physiological and cognitive stress data for a more comprehensive
analysis.

There are mixed results for the physiological and cognitive stress indicators. While
SCR shows both absolute and relative validity, this is not the case for PA although
these indicators are linked to each other. This may suggest that some indicators are
more strongly influenced by factors such as unfamiliarity with the simulator, leading to
stronger reactions in the participants. However, this variability is more likely due to
situational sensitivity and individual differences rather than a systematic error of the
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simulator. Nevertheless, future studies should consider exploring the potential effects
of simulator novelty and the influence of individual differences more closely to better
understand their impact on stress indicators.

For cortisol measurements, a setting is recommended in which participants complete
the two tests on different days, ideally at the same time of day, as the degradation of
stress hormones that occurs can influence the results of multiple tests within a day.
Since cortisol secretion follows a circadian rhythm, with the highest levels in the
morning and a gradual decline throughout the day, variations in measurement timing
could significantly affect the outcomes. While our sample was larger than those in other
studies, the stability of the indicators we found needs to be empirically verified in further
studies.

Furthermore, simulator sickness was not systematically assessed in the present study.
Although none of the participants showed overt symptoms or had to discontinue the
experiment due to simulator sickness, we cannot rule out the possibility that some
individuals experienced mild discomfort, which may have influenced their stress
responses. Future studies should systematically measure simulator sickness to better
understand its potential impact on physiological and subjective stress indicators.

Additionally, there is variance in the real-world driving environment induced by
variations in the weather, traffic, or similar, that is systematically absent in the simulator,
which limits the comparability of the two test environments.

Moreover, the order of the simulator and real vehicle conditions was not
counterbalanced for practical reasons. We acknowledge that this may introduce a
potential order effect. This should be addressed in future studies.

The study was conducted on public roads with traffic conditions typical for this semi-
rural area. While the traffic volume remained consistently low during the test, this
reflects the usual traffic patterns for the area, where high congestion or heavy traffic is
not commonly encountered. This controlled traffic environment ensured safety and
comparability between real-world and simulated driving scenarios. However, it may
limit the ecological validity when extrapolating the findings to more stressful traffic
conditions, such as those encountered in urban areas or during rush hours. Stressors
such as heavy congestion, unpredictable driver behavior or adverse weather were not
present and were not simulated in the study. Therefore, repeating the test under
varying environmental conditions, including those that induce greater stress, such as
heavy traffic or poor weather conditions, would be advisable.

In addition to this, while the current study did not focus on age or gender effects, future
research should examine whether and how these factors moderate physiological
stress responses in different driving environments.

7. Conclusion

In our study, we examined the validity of physiological and cognitive stress indicators
in a medium-fidelity driving simulator compared to real-world driving, with the simulated
drive being an exact replica of the real route. Using a multi-method approach and a
Bayesian analysis, we assessed both absolute and relative validity for various
parameters.
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Our results indicate absolute validity for the physiological stress indicators SCR,
RMSSD, SDNN, and SCT, suggesting that these measures reflect similar physiological
responses in the simulator as in real-world driving. Additionally, we found relative
validity for SCL, RMSSD, and SDNN, supporting the intra-individual comparability
between simulated and real driving. However, no validity was found for PA, HR, and
RR-Int.

Regarding cognitive stress indicators, only the Worry dimension of the SSSQ
demonstrated absolute validity, whereas all other cognitive parameters, except for our
single-item measure of stress, exhibited relative validity. Overall, our findings suggest
that stress experiences in the simulator are comparable to those in real-world driving,
although the simulator is subjectively perceived as more stressful.

Despite certain limitations, such as the lack of environmental variability in the simulator
and an unbalanced sequence of real and simulated drives, our study provides valuable
insights into the validation of physiological and cognitive stress indicators. Future
research should further investigate these findings under varied driving conditions and
consider individual differences more explicitly.
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Abstract: Driving simulators are essential for the development of vehicle systems, as
they enable safe and efficient user engagement. Their validity determines the extent
to which the results from empirical user studies obtained in driving simulators can be
transferred to real-world driving situations.

This study examines the gaze behavior of participants in a within-subject design, both
in a real vehicle and in a driving simulator with a digital road replica. Using gaze-point
plots and expert ratings, we compare fixation patterns across three road sections (City
Drive, Rural Drive, Highway). The results visually indicate a moderate to high similarity
in gaze distributions, suggesting consistent fixation patterns in both environments, with
some notable exceptions on an individual level and generally highest matches in the
City Drive.

However, further statistical analyses are necessary to quantitatively con-firm
similarities and assess systematic differences.

Keywords: Driving Simulator Validity, Eye-Tracking, Gaze Behavior, Fixation
Patterns

1 Introduction

The automotive industry is undergoing a major transition toward automation,
accompanied by rapid advancements in driver assistance systems (Stoma et al.,
2021). For these innovations to gain public acceptance, they must align with user
needs in accordance with the principle of customer centricity (Kleinaltenkamp et al.,
2022; Riedl et al., 2024).

Driving simulators are widely used in automotive research, providing cost-efficient,
safe, and standardized environments for the development and evaluation of driver
assistance systems (Drosdol & Panik, 1985; Pawar et al., 2022). Simulator studies are
intended to support the design of safer vehicles and to improve our understanding of
driver behavior—ultimately contributing to accident reduction (Carroll et al., 2023).

However, the use of simulators is not without challenges. Despite extensive re-search
over the past two decades, the impact of confounding variables, such as the complexity
of the road environment, traffic density, or visibility, on driver behavior (e.g., vehicle
control, monitoring of the driving scene) remains only partially understood. Moreover,
even if these influences were fully known, replicating them accurately in simulation
environments is often not feasible due to technical or cost-related constraints. This
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raises a central question: which variables can, and should, be realistically reproduced
in simulators to ensure meaningful research outcomes (Caird & Horrey, 2011).

It is generally accepted that the validity of a driving simulator depends on whether the
behavior observed in the simulation corresponds to that observed in real-world driving
(Wang et al., 2010; Wynne et al., 2019). According to transfer-of-training theory,
knowledge gained through simulations can only be generalized to real-world contexts
if behavioral patterns, such as gaze behavior, are comparable across both settings
(Blume et al., 2010; Liu et al., 2023).

Gaze behavior plays a central role in driving, as visual attention is essential for
maintaining situational awareness and performing driving tasks (Martin et al., 2018).
While simulator validity research has traditionally focused on performance metrics
such as speed or lane keeping (Wynne et al., 2019), gaze behavior has received
comparatively less attention. Only a few studies (Carter & Laya, 1998; Fors et al., 2013;
Mueller, 2015) have attempted to validate eye-tracking data between simulated and
real driving conditions, and while overall, they found differences between the real car
and the simulator, their findings are inconsistent: some report narrower fixation
patterns in simulators, while others observe increased gaze dispersion. These
discrepancies point to a gap in understanding the ecological validity of simulator-based
eye-tracking data.

To address this gap, the present study investigates whether gaze behavior
systematically differs between simulated and real-world driving conditions. Based on
the assumption that visual attention is influenced by environmental fidelity and task
complexity, we compare gaze behavior using eye-tracking data in a within-subject
design. Participants drove the same 1:1 replicated route—including urban (City Drive),
rural (Rural Drive), and highway (Highway Drive) segments—in both a real vehicle and
a high-fidelity driving simulator. Our research question is:

RQ: Does gaze behavior systematically vary between different road types (urban, rural,
highway) and between real and simulated driving conditions?

2 Theoretical background and hypothesis development
2.1 Driving simulator validity

The primary goal of simulator validation studies is to determine whether a simulated
driving environment provides a valid representation of reality, allowing reliable insights
to be drawn for real vehicles (Himmels et al., 2024; Pawar et al., 2022). To achieve
this, relevant outcome variables are compared between real and simulated driving
(Kltver, 2016; Zoller, 2015).

The validity of driving simulators is divided into physical validity and behavioral validity
(Bella et al., 2014). Physical validity describes the degree of correspondence between
the simulator and the real vehicle (Kluver, 2016) though a higher level of similarity does
not necessarily lead to valid study results (Himmels et al., 2024).

Behavioral validity refers to participants' driving behavior and response data (Blaauw,
1982).
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Naturally for studies on driver behavior, behavioral validity is considered to be more
important than physical validity, as driving behavior is crucial for the transferability of
results, whereas an exact physical replication is not always necessary (Blana, 2001;
Terumitsu et al., 2007).

One behavioral parameter, which is discussed in the context of driving simulator validity
is gaze behavior, assessed via eye-tracking. In terms of our study behavior validity
refers to whether gaze patterns observed in the simulator resemble those in real-world
driving.

2.2 Eye-Tracking in driving simulations

Eye-tracking enables detailed analysis of drivers’ visual attention and cognitive
processing by capturing fixations and saccades (Calvi et al., 2023; Duchowski, 2002).
Especially in complex, fast-changing traffic scenarios, drivers rely primarily on foveal
vision to identify relevant objects and events, while peripheral vision supports spatial
orientation and scene organization (Fisher et al., 2011). The rule of thumb that only
directly fixated elements are typically recognized and cognitively processed is
therefore widely accepted for eye-tracking measures employed in traffic and driver
research.

In the context of simulator validation, eye-tracking metrics offer valuable insights into
behavioral realism. Commonly used indicators include fixation duration, gaze
dispersion, and the spatial distribution of fixations, particularly in high-relevance areas
such as the central roadway (Johansson et al., 2001). These parameters enable direct
comparisons of attention allocation between real and simulated environments and are
critical for assessing ecological validity (Calvi et al., 2023).

While prior studies consistently show that gaze behavior differs between real-world
and simulated driving, the form of these deviations remains inconsistent. Some studies
report more concentrated fixations and reduced dispersion in simulators (Carter &
Laya, 1998), while others observe broader scan paths or increased fixation frequency
(Mueller, 2015). In this sense, the existence of a discrepancy appears robust, but the
direction and nature of these differences vary across findings. This heterogeneity may
stem from variations in simulator fidelity, interface design, and the perceived cognitive
demands of the simulated task (Angell, 2011).

Additionally, research suggests that these deviations tend to diminish as simulator
fidelity increases, particularly for metrics like glance durations and visual scanning
behavior (Angell, 2011). Accordingly, high-fidelity simulations with realistic
environmental modeling are more likely to evoke gaze behavior that mirrors real-world
driving.

In the present study, we use gaze-point plots to compare visual attention patterns
between real and simulated driving across three distinct road types (urban, rural,
highway). By analyzing similarities and differences in fixation distributions, we aim to
assess whether gaze behavior in the simulator reflects real-world patterns in a context-
sensitive and differentiated manner.
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2.3 Research gap and research question

Most validation studies on driving simulators focus on performance data like speed or
lane position (Wynne et al., 2019), with fewer examining physiological parameters such
as heart rate (e.g., Johnson et al., 2011) or skin conductance (e.g., Reimer & Mehler,
2011). However, eye-tracking data are rarely validated (Calvi et al., 2023). Wynne et
al. (2019) call for greater emphasis on these measures, as some researchers believe
cognitive demands in simulation mirror those in real driving.

Studies comparing gaze behavior in simulation and reality consistently report
differences, yet these vary in direction and magnitude, depending on factors such as
simulator fidelity and task context. According to Angell (2011), lower-fidelity simulators
may lead to altered visual behavior due to reduced realism and cognitive engagement.
For example, Carter & Laya (1998) observed more concentrated fixation areas in the
simulator than in real traffic. Similarly, Fors et al. (2013) reported more frequent
fixations, albeit within a narrower visual radius. In contrast, Mueller (2015) found
greater gaze dispersion in the simulator, both horizontally and vertically. These
divergent outcomes suggest that gaze patterns between real and simulated driving are
not directly interchangeable and point to unresolved questions regarding the ecological
validity of simulator-based eye-tracking data.

Besides simulation fidelity associated to the graphics and dynamic properties involved,
these differences might result from the simulated traffic environment or even varying
road sceneries. As our research environment replicates the exact properties of the road
scenery around the campus in Hof, Bavaria, we chose to address the following
research question: RQ: Does gaze behavior systematically vary between different road
types (urban, rural, highway) and between real and simulated driving conditions?

To answer this RQ, we compare participants' gaze-point plots while driving the same
route in both a real vehicle and a driving simulator with a digital twin. We distinguish
between the road sections City Drive (CD), Rural Drive (RD), and High-way (HD). By
incorporating sections with distinct visual and task-related demands, we aim to
examine whether simulator validity is consistent across different types of real-world
scenarios. This approach enhances the ecological validity of the study and improves
the potential generalizability of the findings.

3 Method
3.1 Experimental design

Participants. The study follows a within-subject design with 12 participants (7 women,
58.3%; 5 men, 41.7%), averaging 29.3 years (SD = 12.9, range: 18-59). Regarding
residence, 58.3% live in rural areas, 41.7% in small or medium-sized towns.

Eye-Tracking Device. To record eye movements, the Pupil Labs Invisible was used,
which are mobile eye-tracking glasses with a scene camera resolution of 1088 x 1080
pixels at a frame rate of 30 Hz. The scene camera's field of view is 82° horizontally and
82° vertically. The system's gaze accuracy is 4.6° (uncalibrated).
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3.2 Materials, procedure and data processing

Vehicles. The real-world test vehicle used in this study was a VW Golf 8 with 110 kW.
The driving simulator, classified as a medium-fidelity simulator in accordance with
Wynne et al. (2019) (Wynne et al., 2019), was equipped with a VW Golf 7 steering
wheel and pedals, as well as a three-degree-of-freedom motion platform to enhance
realism during simulated driving.

Track. The driving route covered a 23 km loop and included three different road types:
urban roads (5.3 km), rural roads (9.7 km), and highways (8.0 km). For maximum
comparability, the route was replicated in the simulator as a digital twin of the real-
world track. Figure 1 shows representative images of urban, rural, and highway
sections, each displayed for both the driving simulator (left) and the real vehicle (right
row). All participants started the drive at the same location and followed the same
sequence of road sections. As the track was designed as a closed loop, it was not
feasible, without disproportionate effort and logistical complexity, to randomize or
counterbalance the order of the road segments. Additionally, all participants first
completed the real drive before performing the same route in the simulator. This fixed
order was chosen to ensure that participants had a real-world reference, minimizing
disorientation in the simulator. Although this introduces a potential learning effect, the
analysis focused on spatial gaze patterns rather than performance metrics, which are
more susceptible to such effects.

Figure 1. Comparison of visual scenes from the simulator (left row) and the real vehicle (right row)
across highway (top), rural (middle) and urban (down) segments.
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Procedure. Upon arrival at the lab, participants were first introduced to the real vehicle
and fitted with mobile eye-tracking glasses. They then completed the real-world drive
while refraining from speaking, except when receiving instructions. After returning to
the lab, participants completed a short familiarization drive in the simulator to minimize
the risk of simulator sickness. Following this, they completed the full simulated drive,
again wearing the eye-tracking glasses and driving the same route as before. On
average, the real-world drive lasted 25 min, the simulator drive 23 min, and the entire
experimental session took approximately 90 minutes per participant.

Data Processing. Gaze-point plots were generated for each participant to visualize
fixation density across the three road sections (City Drive, Rural Drive, Highway Drive).
These visualizations were based on horizontal and vertical gaze coordinates and
illustrated the distribution of visual attention in each condition. The data were analyzed
both descriptively and exploratorily.

In addition, an expert rating procedure was conducted. Three independent experts
reviewed the gaze-point plots for each participant, comparing the real-world and
simulated conditions for the entire route as well as for each road section individually.
Each expert assigned a similarity score from 0 (no similarity in gaze distribution) to 10
(very high similarity). The average of the three expert ratings was calculated for each
participant and for each condition (whole route and individual road sections).

4 Results and discussion

Figure 2 exemplary shows the gaze distributions of Participant 4 and Participant 7 in
the road sections CD, RD, and HD. The gaze data are represented in pixel coordinates
relative to the scene camera image, where the X-axis denotes the horizontal and the
Y-axis the vertical position of the gaze within the video frame, with (0,0) located in the
top-left corner of the image.

The plots for CD show similar fixation patterns, with high density in the central visual
field and wide dispersion in the periphery. The focus was primarily on the roadway and
other road users in both real and simulated drives. However, the real drive had wider
fixation dispersion, possibly due to more frequent and richer peripheral stimuli, such
as pedestrians. In the simulator, the fixation density appeared more compact,
indicating reduced environmental stimuli or a stronger focus on the road. Additionally,
the values seemed vertically shifted downward, showing a notable downward spread,
suggesting differences in the human-machine interface: in the simulator, relevant
driving information may be further from the road scene.

Similar fixation patterns were observed in the RD, with the primary focus again on the
roadway. Once again, the horizontal dispersion was smaller in the simulator, likely
because more environmental stimuli, such as oncoming traffic, were observed in the
real environment. Compared to CD, the gaze dispersion seemed somewhat reduced
in both the real vehicle drive and the simulator drive.

On the HD, the gaze in both driving environments was even more focused on the
central area than in the other two conditions. The peripheral dispersion was notably
lower, suggesting that the focus was primarily on vehicles ahead or lane markings.
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Across all driving conditions, both participants showed changes in gaze patterns,
observed in both the real vehicle and the simulator, supporting the assumption of
relative validity between the two environments. However, when examining the absolute
gaze distribution values, systematic differences between the two environments
become evident: gaze dispersion in the simulator is generally more restricted, and the
horizontal gaze points are systematically shifted downward.

When comparing both participants, the corresponding experimental environments and
driving conditions appear more similar, with participant-specific patterns being less
distinguishable. This observation is mostly consistent across the entire sample, though
a few participants exhibit distinct gaze patterns, which are more isolated cases.

Overall, the gaze-point plots show a high degree of similarity between real and
simulated driving. Slight differences in horizontal and vertical fixation dispersion can
be explained by context-dependent environmental factors. A similar pattern was
observed with other participants as well.

Figure 2. Comparison of the gaze data from participant 4 and participant 7 in the sections City Drive,
Rural Drive, and Highway Drive between real vehicle and simulator (The X- and Y-axes represent pixel
coordinates).

Participant 4 Participant 7

Real Vehicle Simulator Real Vehicle Simulator

City Drive

Rural Drive

Highway Drive

To systematically evaluate the visual impression of the gaze-point plots, three
independent experts assessed the similarity of gaze patterns between real and
simulated driving for each participant. They provided ratings on a scale from 0 (no
similarity) to 10 (very high similarity) for the entire route as well as for the individual
segments (city, rural, highway). The resulting mean scores and standard deviations
are presented in Table 1.
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Overall, the average scores, ranging between approximately 5 and 6, suggest a
moderate level of similarity between real and simulated gaze behavior. As a tendency,
the highest similarity ratings were found for the entire route, followed closely by the
highway section. City and rural segments showed slightly lower average similarity
scores.

Interestingly, although the highway segment received the highest mean similarity
rating, it also exhibited the largest standard deviation. This indicates substantial
interindividual variability in gaze similarity for this segment. One possible explanation
is that while some participants displayed nearly identical gaze behavior in both
conditions, others adapted their gaze patterns more strongly depending on whether
they were driving in the simulator or in the real car.

This variability might be partly explained by the nature of the highway section, which is
typically more monotonous than urban or rural environments. In the real vehicle,
participants may still have experienced a heightened sense of risk due to the presence
of other vehicles and real-world consequences of failure, whereas in the simulator, this
sense of risk was likely diminished. The relatively neutral visual design of the simulated
highway may also have resulted in reduced visual exploration for some participants,
thereby increasing perceived similarity. However, the large standard deviation
suggests that this effect was not consistent across the sample.

Table 1. Expert ratings for the similarity of the gaze-point plots.

Participant Whole City Country Highway
Track
1 7.67 6.67 6.00 6.67
2 7.33 7.33 6.00 4.67
3 7.00 6.67 4.00 7.00
4 7.33 5.00 6.67 4.67
5 6.33 5.33 6.67 5.00
6 3.67 2.33 1.67 1.00
7 6.00 5.67 5.00 5.33
8 6.67 5.67 5.67 4.33
9 7.67 4.00 6.33 6.33
10 6.33 7.33 7.33 7.33
11 6.67 5.67 3.33 2.67
12 4.67 6.33 5.33 5.00
Meanexperts 5.58 4.92 4.92 5.00
SDExperts 1.38 1.80 1.85 2.20

Overall, the combination of visual inspection and expert ratings suggests that gaze
behavior in real and simulated driving is largely comparable. At the same time, intra-
and interindividual differences—particularly pronounced on the highway segment—
likely reflect varying perceptions of task relevance and environmental realism. Minor
differences in fixation dispersion and vertical gaze orientation are more plausibly
attributed to environmental and interface-related factors (e.g., dis-play resolution,
realism of scenery) rather than fundamental behavioral divergence.
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5 Conclusion and limitations

The gaze-point analysis revealed a moderate degree of visual similarity in fixation
patterns between real and simulated driving, yet with a progressive narrowing of gaze
distributions from the CD through the RD to the HD. At the same time, two clear
absolute differences emerged: simulated gaze data exhibited reduced peripheral
dispersion and a consistent downward shift. These observations reconcile apparently
contradictory reports in the literature, which have documented both more centralized
(Fors et al., 2013) and more widely dispersed fixations (Mueller, 2015) in simulation
studies.

Collectively, our findings underscore the context dependence of gaze behavior: both
the experimental environment and the driving scenario (CD, RD, HD) exert a influence
on fixation distribution. Participant-specific effects, while modest on average, can be
substantial in individual cases and therefore warrant consideration in studies of driver
state or personalized assistance systems. Notably, the lowest similarity between real
and simulated conditions was observed in the highway segment likely a consequence
of the simulator’s perceived monotony and absence of genuine risk, which diminished
visual exploration compared to the real-world drive.

A primary limitation of this study is its relatively small sample size, which constrains the
generalizability of our results. Furthermore, potential learning effects may have
influenced the results, as all participants completed the road segments in the same
order and always began with the real-world drive. This fixed sequence could have
introduced systematic biases. Future studies should at least counterbalance the order
of driving conditions (real vs. simulated), and ideally also vary the sequence of road
segments, although the latter may be difficult to implement in practice.

Moreover, the lack of robust statistical analysis of the gaze data represents a further
constraint: although exploratory spatial scan statistics (Benjamin Allévius, 2018;
Purucker et al., 2013) were applied, these methods are overly sensitive to central-field
differences and ill-suited for peripheral pattern analysis. While expert ratings provided
valuable qualitative insights, their inherent subjectivity underscores the need for
objective, quantitative similarity metrics in future work.

For future research, we recommend (1) evaluating simulators of varying fidelity to
determine whether higher realism promotes closer convergence of simulated gaze
patterns with those observed in real driving, or whether extreme fidelity levels produce
larger divergences, and (2) adopting advanced statistical approaches (e.g., heatmap-
based similarity measures, cluster analyses etc.) to rigorously validate and extend the
visually and experientially derived findings reported here.
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A.3 Extended Abstract Research Paper No. 3: User Interaction with digital
twins: how comparable are simulation and reality

Authors: Czaban, M.; Sultanow, E.; Chircu, A.; Czarnecki, C.; Riedl, J.; Wengler, S.
— Under review

Abstract: This paper investigates the physiological responses of individuals driving
both on a real route and within a simulator designed as a digital twin of that route. The
analysis of observed data patterns in stress response bio signals provide sufficient
evidence of similarity to validate the driving simulation digital twin as a reliable
replacement for real-world experiences in controlled and consistent settings, or when
overall trends of physiological variables, rather than specific variable levels, are of
interest. The findings also stress the need for optimizing the precision of digital twins
in complex settings. These findings support the broader application of digital twins in
fields where real world interactions are unfeasible, providing foundational insights for
future digital twin design and use.

Keywords: Digital twins; Physiological measurement; Vehicle Simulation; Stress
response

1 Introduction

The concept of the Digital Twin (DT) has gained increasing importance across various
industries (Apte & Spanos, 2021; Barricelli et al., 2019; Jones et al., 2020). A DT
represents the digital replication of a physical entity, process, or system that can
accurately reflect real-world dynamics. This enables interaction with the virtual model
as if it were the physical counterpart (Semeraro et al., 2021).

This concept holds transformative potential, as it opens up new possibilities for
analysis, prediction, and performance optimization under different conditions—without
the need for physical testing in every scenario. The advantages of a DT therefore lie
not only in cost and risk reduction but also in providing new insights that can enhance
decision-making processes (Attaran et al., 2023; Singh et al., 2022).

For the application of DTs to be meaningful and for their potential to be fully realized,
it is essential to understand how users interact with such digital models—and whether
this interaction can replicate or replace real-world experience. This leads to the central
research question of whether interaction with a DT is sufficiently realistic to substitute
direct experience with the physical entity.

In fields such as healthcare, manufacturing, or the automotive industry, physical testing
is often time-consuming, costly, and resource-intensive (Piromalis & Kantaros, 2022;
Atalay et al., 2022; Voigt et al., 2021). If DTs can serve as realistic replications, this
would offer significant advantages—they could be used as flexible alternatives or
complements to physical tests. Especially in early development stages, DTs can
reduce costs and accelerate processes (Attaran et al., 2023). Moreover, they enable
testing of complex or extreme scenarios in a safe, controlled environment that would
be difficult or costly to realize in the real world (Mihai et al., 2022). The data obtained
can provide valuable insights for product optimization and improvement of user
experience (Lo et al., 2021).
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To address the research question, this study employs a driving simulator. The
physiological responses of participants were examined while driving on a real track
and while driving within the DT of the same track in the simulator. The aim was to
determine the degree of similarity between physiological stress responses in both
environments (real-world driving vs. simulated driving) using mean value and time
series analyses.

The results indicate significant correlations between both environments, supporting the
applicability of the DT concept in the context of driving simulation.

2 Theoretical background and research questions
2.1 Digital twins: concept and application

Digital Twins (DTs) are understood as virtual systems or computer-generated models
that replicate or “mirror” the lifecycle of a physical entity—such as an object, process,
or person. A key characteristic of the DT concept is the continuous, bidirectional data
integration between the physical entity and its digital counterpart (Fuller et al., 2020;
Barricelli et al., 2019).

In the literature, different maturity levels of data integration are distinguished (Fuller et
al., 2020; Botin-Sanabria et al., 2022):

e Digital Model: Simulates the physical system but without real-time data
transfer.

e Digital Shadow: Includes a unidirectional data transfer from the physical entity
to the virtual system to improve the simulation.

e True Digital Twin: Features bidirectional data flows, allowing the virtual system
to accurately represent the physical entity, predict its behavior, and send
decisions back to the real system.

DTs enable cost- and time-efficient simulations and are particularly suitable for
analyzing complex or risky scenarios that are difficult or impossible to replicate in the
real world (Chircu et al., 2023). The range of DT applications is broad, spanning from
smart cities, transportation, manufacturing, healthcare, and product design to
agriculture and societal modeling (Barricelli et al., 2019; Semeraro et al., 2021; Jones
et al., 2020). For instance, in the medical field, DTs are used to develop personalized
treatment strategies (Voigt et al., 2021).

In the automotive industry, DTs support vehicle design development, traffic
management, and the validation of vehicle systems (Deng et al., 2023). Driving
simulators are often used in this context—for example, for component testing (e.g.,
batteries), validation of autonomous driving functions, or studies of driver behavior
such as distraction or stress (Shoukat et al., 2024; Ma et al., 2024).

Despite significant progress, challenges remain in modeling real-world complexity,
validating models, and ensuring data security. Moreover, standardized reference
frameworks are often lacking (Sharma et al., 2020). In many domains, the fidelity of
DTs has not yet been fully achieved. For example, driving simulators often fail to
capture the subtleties of real driving environments—such as sudden traffic patterns or
the unpredictable behavior of pedestrians—accurately enough (Piromalis & Kantaros,
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2022). This so-called simulation-to-reality gap therefore represents a central challenge
(Stocco, 2022).

2.2 Simulation vs. reality

Virtual Environments (VEs) and Virtual Reality (VR) enable the replication of real-world
scenarios under controlled conditions. They are used in disciplines such as
psychology, design, medicine, and training to systematically study behavior and
perception (Bishop & Rohrmann, 2003). This approach allows researchers to combine
ecological validity (as in field studies) with experimental control (as in laboratory
studies) (Loomis et al., 1999; Weibel et al., 2018).

A key criterion for the quality of a simulation is behavioral realism—the extent to which
reactions within the simulation correspond to reactions in the real environment
(Freeman et al., 2000; IJsselsteijn et al., 2000). Studies have shown that physiological
responses in simulations often resemble those observed in real environments, while
psychological responses sometimes differ considerably (Higuera-Trujillo et al., 2017;
Hu et al., 2011).

In the context of driving behavior, driving simulators are already widely used. They
serve to investigate parameters such as driving dynamics, attention, or stress
responses (Bella, 2014; Veldstra et al., 2015). These can be validated using subjective,
objective, and physiological measures (Johnson et al.,, 2011; Li et al., 2013). A
distinction is made between absolute and relative validity (Térnros, 1998; Pawar et al.,
2022): While absolute validity requires identical values in both environments, relative
validity is achieved when the trends between environments are consistent.

Previous studies have shown that driving simulators elicit similar physiological patterns
in heart rate, gaze behavior, and skin conductance as real driving (Johnson et al., 2011;
Carter & Laya, 1998).

This leads to the research question of the present study:

To what extent do the physiological stress responses of users while driving in a Digital
Twin reflect those observed in real driving contexts?

3 Method

The study was conducted using a within-subject design with a total of n = 68
participants. The sample consisted of 37 women (54.4%) and 31 men (45.6%) (M =
30.07, SD = 11.58).

For the experiment, a Digital Twin (DT) of a 23 km driving route was created, including
urban, rural, and highway sections. To achieve a high level of simulator realism and to
replicate the real vehicle (VW Golf 8) as accurately as possible, components from a
VW Golf 7 (steering wheel, pedals, seat) were integrated into the driving simulator.
These components were mounted on a D-Box motion system with three degrees of
freedom. The driving environment was displayed on three 55-inch screens.

Physiological measurement:

e ECG (Electrocardiogram): Heart Rate (HR) and Heart Rate Variability (HRV; RR
interval, RMSSD, SDNN)
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e GSR (Galvanic Skin Response): Skin Conductance Response (SCR), Skin
Conductance Level (SCL) und Peak Amplitude (PA)

Participants first completed the real-world drive, followed by the simulated drive in the
DT.

Data analysis:

The data were analyzed using descriptive statistics, t-tests for individual segments,
and time series analyses for the entire drive. Correlations between real and simulated
measurements were also computed.

4 Results
4.1 Mean value analysis

The mean comparisons between real-world driving and driving simulation revealed
nuanced differences. The GSR indicators (SCR, SCL, PA) were overall higher during
the simulated drive, indicating stronger sympathetic activation and increased emotional
arousal.

In contrast, heart rates (HR) were higher in certain segments of the real drive,
suggesting greater physical exertion and more intense physiological strain. The RR
intervals were longer during the simulation, indicating a more relaxed cardiovascular
response.

The HRV parameters (RMSSD and SDNN) showed no significant differences between
the two environments, suggesting comparable autonomic regulation. Overall, the
findings indicate that real driving induces higher physical strain, while simulated driving
elicits stronger emotional responses.

4.2 Time series analysis

To capture dynamic patterns that are smoothed out by mean values, the time series—
exemplified by the SCL—were normalized. Subsequently, the Pearson correlation
coefficient was calculated between the time series of the real-world drive and the
simulated drive for urban and rural sections.

The results show a moderate linear similarity: the correlation for rural sections was r =
0.34, and for urban sections r = 0.31. The visual analysis of the time series revealed
strong parallels in shape and progression, indicating similar dynamics of physiological
stress responses in both environments.

5 Discussion and conclusion

The aim of this study was to examine the extent to which physiological parameters
during real-world driving and simulated driving in a Digital Twin are comparable. The
results reveal both significant similarities and differences but indicate that the driving
simulator serves as a reliable tool for capturing general trends and dynamic patterns
of physiological responses—though less so for exact absolute values.

The higher GSR responses in the simulation can be attributed to emotional or slightly

unsettling aspects of the virtual environment, whereas the higher HR observed during

the real drive reflects greater physical strain. This suggests that stress perception in
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the simulator is more cognitively and emotionally driven, while in the real environment
it is more physiologically and physically induced.

Mean value analyses provide initial insights but do not capture the temporal dynamics
and contextual dependence of physiological processes. Time series analyses are
therefore particularly suitable for identifying similarities between real and simulated
drives, especially regarding temporal patterns and trends—a finding supported by the
present results.

From a practical perspective, Digital Twins can complement or partially replace real-
world tests, particularly in controlled, standardized, and low-risk environments.
However, discrepancies still exist in complex urban scenarios, highlighting the need for
further development of adaptive simulations with real-time data integration and
bidirectional feedback.

Overall, the results demonstrate that Digital Twins can reproduce key physiological
patterns observed in real driving. While absolute values in some parameters differ,
overarching trends and stress responses can be reliably examined under controlled
conditions. Based on these findings, this study contributes to the advancement and
validation of Digital Twins as a tool for research, development, and training.
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Appendix B: Acceptance and stress measurement using simulators

B.1 Extended Abstract Research Paper No. 4: User Acceptance of autonomous
shuttle systems: A UTAUT2 -based analysis with simulated driving tests
and physiological measurement

Authors: Czaban, M. & Baier, D. (20xx) — Under review

Abstract: Autonomous shuttle buses offer significant potential for improving public
transportation, enhancing traffic safety, and reducing environmental impact. However,
their successful implementation depends not only on technological development but
also crucially on user acceptance. While previous studies have primarily investigated
acceptance based on surveys of individuals without direct experience, especially in
critical traffic situations, our study addresses this gap through a simulated driving test
incorporating such scenarios.

Using an extended UTAUT2 model and including both physiological
(electrocardiogram, galvanic skin response) and cognitive (Perceived Stress Scale,
NASA-TLX, and self-developed items) stress indicators, we examined factors
influencing the behavioral intention to use autonomous shuttle buses. The results show
that social influence, trust and perceived risk, and perceived usefulness positively
affect usage intention, while cognitive stress has a negative impact. Physiological
indicators also play a role: heart-related parameters show the expected negative
association with usage intention, while electrodermal activity demonstrates a positive
relationship, suggesting it may reflect general arousal rather than stress alone.

These findings highlight the importance of social context and emotional responses in
the acceptance of new mobility technologies. In practical terms, users' subjective
sense of safety, especially in stressful situations, may be as critical as actual technical
safety. This study provides a more realistic contribution to understanding user
acceptance and forms a basis for further research under real-world conditions. Future
studies should explore physiological responses in real-life testing environments.

Keywords: UTAUTZ2, User Acceptance, Autonomous Shuttle Buses, Simulation Study,
Streass measurement, Physiological Measurement

1 Introduction

The use of autonomous shuttle buses offers numerous advantages. In addition to
improving traffic safety and reducing emissions, they can contribute to increasing the
efficiency of public transportation systems (Bansal et al., 2016; Fagnant & Kockelman,
2015; Othman, 2023). As the use of such vehicles eliminates the need for driving
personnel, automated and demand-responsive operations become possible, making
public transport more flexible, cost-efficient, and inclusive (Ma et al., 2021; Othman,
2020; Millonig & Froéhlich, 2018).

However, a central challenge lies in the still limited public acceptance of autonomous
vehicles (Korkmaz et al., 2022; Rejali et al., 2024). Concerns about safety, a lack of
trust in the technology, and the perceived loss of control contribute to a pronounced
technological skepticism that hinders the diffusion of such systems. Therefore,
researching the acceptance of autonomous mobility solutions is essential.
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Most existing studies examine acceptance through surveys in which participants have
no real user experience and base their assessments on assumptions or mental
images. Furthermore, traditional questionnaire-based acceptance models are
increasingly criticized for offering limited new insights and for requiring extensions
through new methodological approaches (Blut et al., 2022).

The present study addresses this research gap by providing participants with an actual
usage experience through a shuttle bus simulator. It combines the theoretical
framework of an extended UTAUTZ2 model (Venkatesh et al., 2012) with physiological
and cognitive stress measurements to better understand which factors influence the
behavioral intention to use autonomous shuttle buses in critical situations.

In doing so, this work follows the call by Davis & Granic (2024) to extend the classical
acceptance model with a NeurolS approach while simultaneously examining whether
simulators are suitable for realistic acceptance research in the field of autonomous
mobility.

2 Theoretical background and research questions
2.1 Acceptance models

The study of technology acceptance has a long tradition and encompasses various
theoretical models. Early approaches include the Theory of Reasoned Action (TRA;
Fishbein & Ajzen, 1975) and the Theory of Planned Behavior (TPB; Ajzen, 1991), which
emphasize that behavior is determined by attitudes, subjective norms, and perceived
control.

The Technology Acceptance Model (TAM; Davis, 1989) is considered one of the most
influential models and is based on the core constructs of Perceived Usefulness and
Perceived Ease of Use, which directly influence the intention to use a technology. The
later Unified Theory of Acceptance and Use of Technology (UTAUT, Venkatesh et al.,
2003) integrates several earlier models and defines four key constructs: Performance
Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions.

For consumer contexts, this model was extended to UTAUTZ2 (Venkatesh et al., 2012)
by adding the factors Hedonic Motivation, Price Value, and Habit. The constructs Price
Value and Habit are not included in the present study, as autonomous shuttle buses
are not yet available on the mass market, making a realistic assessment of these
factors impossible.

Since the use of autonomous transport involves handing over control of the vehicle to
the system, the model was extended by the variables Trust and Perceived Risk (Gefen
et al., 2003; Featherman & Pavlou, 2003). These factors play a crucial role, particularly
in the early stages of technological diffusion (Korkmaz et al., 2022; Salonen, 2018).
Trust represents the feeling of safety and reliability, whereas Perceived Risk reflects
the perceived uncertainty or potential danger.

2.2 Physiological and cognitive stressreactions
Stress arises when a situation is perceived as threatening and the available resources
are considered insufficient to cope with it (Lazarus & Folkman, 1985). The resulting
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stress response serves to restore physiological balance (homeostasis) and can be
assessed both cognitively and physiologically (Witte et al., 2021).

Cognitive stress responses can be measured using established questionnaires such
as the Perceived Stress Scale (PSS-10) (Cohen et al., 1983) or the NASA-TLX (Hart
& Staveland, 1988), which primarily measures workload but is closely related to the
experience of stress. However, subjective measures are prone to biases, such as
social desirability bias (Nederhof, 1985).

To complement cognitive assessments, physiological indicators can be used, as they
capture unconscious emotional responses in real time and are more objective (Dawson
et al., 2007). The most common include:

e Electrocardiogram (ECG; cardiac activity): Records cardiac activity, particularly
heart rate (HR) and heart rate variability (HRV). An increased HR and decreased
HRV indicate sympathetic activation and thus stress (Reinhardt et al., 2012).

e Galvanic Skin Response (GSR): Measures changes in the electrical
conductance of the skin caused by sweat gland activity. Since this activity is
exclusively controlled by the sympathetic nervous system (SNS), GSR is
considered a direct indicator of emotional arousal. It is differentiated into tonic
and phasic skin conductance (Boucsein et al., 2012).

2.3 Research gap and questions

Numerous studies investigate the acceptance of autonomous shuttle buses using
established models such as TAM or UTAUT. However, most of these studies are based
on hypothetical assumptions, as participants have no real usage experience.
Moreover, traditional acceptance models are often criticized for providing limited
explanatory insights.

Therefore, the present study extends the acceptance model by incorporating cognitive
and physiological stress responses to examine whether these factors enhance the
predictive power of the behavioral intention to use autonomous shuttle buses.

Based on the UTAUT2 model and previous research, the following hypotheses were
formulated:

e H1: Performance Expectancy has a positive influence on Behavioral Intention
e H2: Effort Expectancy has a positive influence on Behavioral Intention

e H3: Social Influence has a positive influence on Behavioral Intention

e H4: Facilitating Conditions have a positive influence on Behavioral Intention

¢ H5: Hedonic Motivation has a positive influence on Behavioral Intention

e H6: Trust & Perceived Risk has a positive influence on Behavioral Intention

e H7: Perceived Usefulness has a positive influence on Behavioral Intention

Furthermore, the following hypotheses are derived to address the research question:

e HB8: Cognitive Reaction (CR) has a negative influence on Behavioral Intention

e H9: Cardiac Activation (CA) has a positive influence on Cognitive Reaction

e H10: Electrodermal Activation (EA) has a positive influence on Cognitive
Reaction (CR)
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3 Method
3.1 Sample and simulator situations

A total of n = 104 individuals participated in the study (58 women, 46 men; M = 29.6
years, SD = 13.0).

The experiment was conducted using a custom-developed autonomous shuttle bus
simulator modeled after the Navya Arma. The simulation was built on the open-source
platform CARLA and displayed on a 75-inch screen, complemented by two additional
monitors providing relevant information to participants.

The virtual route included four critical driving scenarios specifically designed to elicit
physiological stress responses:

1. Violation of right of way by another vehicle,
2. Blocked roadway,

3. Sudden pedestrian crossing,

4. Interaction task using gesture control.

In addition to the four situations that occurred during the drive, a stress-inducing
situation also took place before the drive began. Before starting the drive, participants
were required to book a ticket on a smartphone and validate it in the form of a QR code
at the correct location to unlock the door and be allowed to enter. Thus, the participants
were exposed to a total of five situations that had the potential to induce stress.

3.2 Measurements
Physiological measurements:

e ECG indicators (Cardiac Activation, CA): Heart rate (HR), Heart rate variability
(RMSSD)

e GSR indicators (Electrodermal Activation, EA): Skin Conductance Response
(SCR), Skin Conductance Level (SCL)

Cognitive measurements:

e UTAUT2-Constructs (extended): (Performance Expectancy, Effort Expectancy,
Social Influence, Facilitating Conditions, Hedonic Motivation, Trust & Perceived
Risk, Perceived Usefulness, Behavioral Intention)

e PSS10, NASA-TLX, Single item stressmeasurement, Single item physical
wellbeing

3.4 Procedure and data analysis

After a preliminary survey, measurement sensors were attached, and a two-minute
baseline of physiological data was recorded. Participants then completed the simulated
test drive with the five critical scenarios. Following the drive, a post-survey was
conducted to assess the cognitive indicators.

Combining the five scenarios with 104 participants resulted in 520 observations.
Physiological values were normalized to the baseline. To test the hypotheses, a
structural equation model (SEM) was calculated.
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4 Results
4.1 Descriptives

On the physiological level, the strongest reactions were observed in Scenario 1
(violation of right of way by another vehicle). Both heart rate (HR), skin conductance
response (SCR), and skin conductance level (SCL) reached their highest values,
indicating strong activation.

Cognitively, the ride was evaluated as a whole experience, since the corresponding
variables were measured ex post. Overall, the results show a positive evaluation of the
technology and low levels of perceived stress and workload. The highest mean scores
were obtained for Facilitating Conditions (M = 8.41) and Effort Expectancy (M = 8.37).

4.2 Path analysis
The final model showed good fit indices (AVE > 0.5; Cronbach’s a > 0.7).

The results of the structural equation model (SEM) indicate that Behavioral Intention is
significantly and positively influenced by:

e Social Influence (H3: B = 0.391, strongest effect)
e Perceived Usefulness (H7: 3 = 0.309)
e Facilitating Conditions (H4: g = 0.128)
e Trust & Perceived Risk (H6: B = 0.114)

The cognitive stress response (CR) showed the expected negative effect on behavioral
intention (H8: B =-0.179).

Hypotheses H1 (Performance Expectancy) and H2 (Effort Expectancy) were not
supported.

Unexpectedly, Hedonic Motivation (H5: B = -0.106) showed a negative effect, contrary
to the hypothesis.

Regarding physiological stress variables, a significant positive relationship was found
between cardiac activation (CA) and cognitive response (H9: B = 0.112). In contrast,
electrodermal activation (EA) showed a negative relationship (H10: B =-0.191).

The overall model explained 61.1% of the variance in behavioral intention (R?=0.611).
5 Discussion and conclusion

This study examines the acceptance of autonomous shuttle buses by simulating critical
driving situations in a realistic environment and integrating cognitive and physiological
stress responses into an extended UTAUT2 model.

The findings support previous evidence regarding the importance of classical
acceptance factors: Social Influence emerged as the strongest predictor, suggesting
that the social environment plays a key role in the acceptance of autonomous systems
(Kapser & Abdelrahman, 2020). Similarly, Perceived Usefulness as well as Trust &
Perceived Risk were confirmed as significant influencing factors (Chen, 2019; Choi &
Ji, 2015).
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The integration of stress responses provides an important new contribution. As
expected, higher cognitive load (CR) reduced the intention to use autonomous shuttle
buses, highlighting that mental strain during the ride can be a critical barrier to
acceptance.

For physiological indicators, differentiated findings emerged: increased cardiac
activation (CA, higher HR, lower HRV) was associated with greater subjective stress,
while increased electrodermal activation (EA) was unexpectedly linked to lower
perceived stress. This suggests that GSR measurement in this study reflected not
specific stress, but rather general emotional arousal—potentially triggered by curiosity,
attention, or positive excitement.

The unexpected negative effect of Hedonic Motivation may indicate that the critical
driving situations suppressed elements of enjoyment or curiosity. Alternatively,
participants who found the ride entertaining may have been more aware of its
simulated nature, leading them to evaluate real-world usage differently.

Overall, the study shows that acceptance decisions are not solely driven by rational
factors but are also significantly influenced by emotional and physiological processes.
Integrating physiological indicators into acceptance models thus provides a valuable
approach to expanding and enhancing the realism of future research on autonomous
mobility.
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B.2 Extended Abstract Research Paper No. 5: Single measurement vs
composite indicators for user experience research

Authors: Czaban, M.; RiedI, J.; Wengler, S. (20xx) — Under review

Abstract: This study examines the suitability of established single indicators for
measuring physical and cognitive user reactions to technology interactions. Driving
tests serve as the application example, conducted both with a real vehicle on a real
driving route with seven segments and on an identically modeled route using a
professional driving simulator.

Data were collected on galvanic skin response, electrocardiogram, salivary cortisol,
and various cognitive user reactions measured via questionnaires, including measures
of demand, stress, and physical well-being.

The single indicators generally showed parallel, though not entirely consistent,
measurements of participants' situational activation and stress, a pattern also observed
in many other studies.

Aggregating indicators to enhance stability revealed two new dimensions:
physiological reactions and cognitive reactions. In the driving tests, participants
perceived the simulated drive as more challenging than the real drive; however,
regardless of the variations in the reaction data observed, the two dimensions,
physiological reactions and cognitive reactions, remained stable in their composition
across 14 different test conditions, providing a reliable basis for analyzing reaction
data.

These two composite indicators are therefore recommended for use in future user tests
of all types, particularly when measuring participant activation and demand.

Keywords: User Experience Measurement; Physiological Reactions; Cognitive
Reactions; Composite Indicators; Stress and Activation; Human Factors

1 Introduction

User activation during technology interaction is a central topic in user experience
research. Especially for emerging technologies, the empirical investigation of user
expectations, attitudes, and behaviors is essential.

An example of this can be found in driving tests within the automotive industry, which
are increasingly conducted in simulators (Caird & Horrey, 2011). Driving simulators
offer several advantages: in addition to providing controlled conditions (Hussain et al.,
2019; Winter et al., 2012), they eliminate the need for specially trained test drivers.
Moreover, critical driving situations can be reproduced under standardized conditions
(Brookhuis & Waard, 2010; Mansi et al., 2021).

Driving tests are often perceived as stressful by participants (Engstrom et al., 2005).
Accordingly, reactions are typically assessed through a combination of self-reported
stress experiences (Hill & Boyle, 2007) and physiological measurements such as heart
based measures, galvanic skin response, or cortisol (Koohestani et al., 2019; Li et al.,
2013).
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However, current research shows heterogeneous results across measurement
methods, revealing a research gap regarding integrated and reliable composite
indicators. The aim of the present study is therefore to develop composite indicators
with higher explanatory power and stability for both academic and applied research.

2 Theoretical background and research questions

Usability is defined according to ISO as the effectiveness, efficiency, and satisfaction
with which a system enables users to achieve specific goals. The measurement of user
experience (UX) is based on objective user data, satisfaction assessments, and/or
strain indicators.

In the automotive sector—particularly regarding Human-Machine Interfaces (HMIs)—
these measurements play a crucial role, as usability strongly influences user
acceptance (Albers et al., 2020; Biassoni & Gnerre, 2024). However, many HMIs are
only partially intuitive for first-time users (S.-C. Lin et al., 2018; Orlovska et al., 2019).

There are various approaches to measuring user experience, each with its own
advantages and limitations (Ganglbauer et al., 2009). Objective data such as braking
behavior, for example, neglect intra-individual processes (Wynne et al., 2019).
Physiological measurements (e.g., heart rate, galvanic skin response, cortisol) reflect
activation or stress and are free from perception bias, but they require higher effort and
do not always produce consistent results (Arza et al., 2019; Mauri et al., 2010).
Questionnaires such as the NASA-TLX (Hart, 2006) or the Short Stress State
Questionnaire (Helton, 2004) provide valuable insights into cognitive reactions but are
susceptible to bias (Nederhof, 1985).

Previous research often reports inconsistent results across methods, posing a
challenge for interpretation. Therefore, current studies advocate combining
performance-based, subjective, and physiological data into valid, multidimensional UX
indicators (Apraiz Iriarte et al., 2021; Leis & Lautenbach, 2020; Yu et al., 2016).

The assessment of stress responses is particularly suitable for analyzing participant
reactions. Stress arises when situational demands exceed an individual’s capabilities
(Lazarus, 1990; Selye, 1980). It can be experienced as positive (eustress) or negative
(distress). In the context of driving tests, stress is generally understood as distress—
strain associated with loss of control and overload (Francis, 2018; Healey & Picard,
2005). The individual stress experience varies between persons and can be assessed
on both cognitive and physiological levels (Witte et al., 2021).

The most commonly used physiological indicators in driving tasks are the galvanic skin
response (GSR) and the electrocardiogram (ECG). The GSR measures arousal and
indicates activation independent of valence (Caruelle et al., 2019). It can be divided
into a phasic component (Skin Conductance Response, SCR) and a tonic component
(Skin Conductance Level, SCL) (Andreassi, 2010).

The ECG allows for the measurement of heart rate (HR) and heart rate variability
(HRV). HR refers to the number of heartbeats per minute, which increases under stress
(Reinhardt et al., 2012). HRV reflects the variation in heartbeat intervals, which
decreases as stress increases (Bernardi et al., 2000). On a biochemical level, cortisol
serves as a direct marker of stress (Liebherr et al., 2021; Dickerson & Kemeny, 2004).
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On the cognitive level, instruments such as the NASA-TLX (Hart, 2006), the Short
Stress State Questionnaire (Helton, 2004), and visual analogue scales (Arza et al.,
2019; Kabilmiharbi et al., 2022) are commonly used.

The main challenge in using physiological and cognitive indicators lies in the high
heterogeneity of measurement methods, which limits reliability (Bdhler et al., 2021).
Therefore, the present study aims to develop stable combined indicators that integrate
physiological and cognitive responses.

The study is based on the following hypotheses:

e H1: Physiological and cognitive stress indicators correlate positively with each
other.

e H2: As situational demands increase, the combined stress indicator also
increases.

e H3: The composition of the combined stress indicator remains stable across
different situations.

e H4: The combined stress indicator and its physiological subcomponents
correlate positively with cortisol levels.

The aim of this study is to establish robust, situation-dependent stress indicators that
strengthen future UX research methodologically and improve the validity of user
studies.

3 Method

The study sample consisted of n = 68 participants, making it larger than in comparable
studies (e.g., Fors et al., 2013: n = 20; Li et al., 2013: n = 15; Johnson et al., 2011: n =
24). The sample included 37 women (54.4%) and 31 men (45.6%). Participants were
between 18 and 63 years old (M = 30.07; SD = 11.58). The study followed a within-
subject design, meaning that all participants completed both a real-world drive and a
simulator drive, with the real drive always taking place first.

To capture different situational demands in the driving context (Healey & Picard, 2005),
the driving route consisted of a 23 km circuit divided into seven defined segments of
varying complexity (urban, rural, and highway sections). The real route was replicated
1:1 in a professional driving simulator.

Assessed cognitive constructs/indicators:

e Perceived situational demand: Single-item question “How well did you manage
operating the vehicle?” (Vehicle Operation).

e Cognitive Load: NASA-TLX (6 items: mental, physical, temporal demand,
performance, effort, frustration) (Hart, 2006; Yahoodik et al., 2020).

e Stress: Shortened SSSQ, 12 items across three subdimensions (Distress,
Worry, Engagement) based on Helton, 2004; items selected based on highest
factor loadings.

o Self-reported stress: Single-item visual analogue scale (“To what extent did you
experience stress during the ride?”) (Barré et al., 2017).

e Physical Wellbeing: Single-item (‘How was your physical wellbeing?”) —
allowing differentiation between eustress and distress.
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Scaling was conducted on a decimal scale from 0-10, enabling parametric
analyses, increasing variance, and providing intuitive understanding for participants
(Lewis, 2021; Chyung et al., 2018; Dawes, 2002; Leung, 2011).

Assessed physiological indicators:

e GSR: Skin Conductance Level (SCL, tonic), Skin Conductance Response
(SCR, phasic), Peak Amplitude (PA) (Boucsein et al., 2012).

e ECG: Heart rate (HR) and heart rate variability parameters: RR interval,
RMSSD, SDNN.

e Salivary cortisol

For data analysis, each of the seven route segments per person and condition was
treated as a separate event, resulting in n = 476 observations per condition. To develop
composite indicators, exploratory principal component analyses (PCA) were
conducted.

4 Results

The descriptive analyses show that participants experienced the simulated drive as
significantly more demanding and stressful than the real drive. This was reflected in
higher NASA-TLX scores, lower physical wellbeing, and noticeably stronger
physiological stress responses (e.g., SCL).

Testing H1:

The correlation analyses largely supported the hypothesis. Most physiological and
cognitive single measures correlated significantly in the expected direction. However,
the SSSQ subdimensions Worry and Engagement proved unsuitable for valid stress
measurement. Therefore, the following valid single indicators were used for further
analyses: SCR, HR, NASA-TLX, Physical Wellbeing, and Self-reported Stress.

Testing H2 and H3:

These hypotheses concern the formation of the composite indicators. Based on the
previously selected individual indicators, the principal component analysis revealed an
identical and stable two-factor structure:

1. Physiological Reaction (PR): composed of SCR and HR.
2. Cognitive Reaction (CR): composed of NASA-TLX, Physical Wellbeing (recoded so
that higher values indicate stronger discomfort), and Self-reported Stress.

The stability of this structure was confirmed both across the entire drive and for all 14
route segments (7 real and 7 simulated). Both indicators correlated significantly with
situational demand, thereby supporting H2: the poorer the driving task was performed,
the stronger the stress responses on both cognitive and physiological levels.

Testing H4:

For validation, the developed indicators were correlated with cortisol levels. The
hypothesis was supported only under the sufficiently demanding condition of the
simulated drive: both PR and CR showed highly significant positive correlations with
cortisol levels. In contrast, no significant correlations were found during the real drive,
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which was less demanding. Overall, the cognitive indicator CR (r = .420) showed a
markedly stronger correlation with cortisol levels than the physiological indicator PR (r
=.196).

5 Discussion and conclusion

The findings of this study highlight the methodological weaknesses and limitations of
relying solely on single indicators in UX research. The heterogeneity of individual
variables can lead to misinterpretations.

Based on the results, the aggregation of valid single measures allows for the
identification of overarching, stable, and reliable dimensions of user response. The use
of the composite indicators Physiological Reaction (PR) and Cognitive Reaction (CR)
is therefore recommended.

Across 14 different situations, this robust two-factor structure consistently emerged,
providing researchers and practitioners with a reliable and methodologically sound
foundation for measuring strain and stress. The use of the CR indicator, in particular,
is recommended for future UX testing, as it can be assessed with only eight questions,
is easy to administer, and minimizes participant burden.

Interestingly, the questionnaire-based indicator CR proved to be a better predictor of
the biochemical stress marker cortisol than the physiologically measured indicator PR.
Consequently, it can be concluded that, when a multimodal approach is not feasible, a
carefully designed questionnaire may still yield valid insights into users’ stress
responses.

This study provides a practical, application-oriented solution for assessing
physiological and cognitive user experience responses and offers a solid foundation
for addressing the measurement challenges associated with single indicators.
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Abstract: Stress increases the risk of road accidents by impairing driving performance.
Although lavender is known for its calming effects, it remains unclear whether its use
can reduce both cognitive (self-reported) and physiological stress in driving situations.

In a simulated driving scenario, participants were randomly assigned to an
experimental group exposed to lavender or to a control group. Physiological responses
were measured via skin conductance response (SCR) and heart rate (HR), while on
subjective level the NASA-TLX and a single-item self-report measure were attached.

Contrary to expectations, lavender exposure generally elevated both physio-logical
and self-reported stress levels. However, conscious perception of the scent moderated
this effect, with participants who were aware of the lavender reporting significantly
lower subjective stress.

These findings suggest that the effectiveness of lavender depends on cognitive
awareness, offering novel insights into olfactory interventions in high-stress
environments.

Keywords: driving simulation - stress measurement - olfactory stimulation - lavender
scent - cognitive load

1 Introduction

Over 90% of traffic accidents are attributable to human error (Singh, 2015), with
elevated stress levels playing a significant role (Brookhuis & Waard, 2010; Magana et
al., 2020). According to the Yerkes-Dodson law (Yerkes & Dodson, 1908), moderate
stress (eustress) enhances performance, whereas high stress, known as distress,
impairs cognitive and motor functions, thereby increasing accident risk (Beanland et
al., 2013; Pluut et al., 2022).

Stress can be understood as a psychological and biological/physiological phenomenon
(Riedl, 2012), and manifests physiologically, for example, through increased heart rate
and altered skin conductance (Andreassi, 2010).

Sensory stimuli, particularly scents, influence psychophysiology (Li et al., 2024): While

peppermint has been shown to have a cognitively stimulating effect (Raudenbush et

al., 2009), studies indicate that lavender has stress-reducing properties (Ludvigson &

Rottman, 1989; Moss et al., 2023). This raises the research question of whether the

targeted use of scent in critical driving situations can reduce drivers' stress levels
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(Castiello et al., 2006). The effect of scents in the driving context remains insufficiently
explored (X. Jiang et al., 2023; Moss et al., 2023).

Driving simulators provide an alternative to examine critical scenarios without
endangering participants (Galante et al., 2018; Pawar & Velaga, 2020). To capture
stress responses more holistically, recent research in the NeurolS field has
emphasized the complementary use of physiological and psychological measures
(Dimoka et al., 2012), as this combination can improve the explanation and prediction
of (techno)stress (Tams et al., 2014).

These theoretical considerations lead to the central research question of this study:
Can the targeted use of lavender scent reduce physiological and cognitive stress
during critical driving situations, and does conscious perception of the scent moderate
this effect?

In our study, one group was systematically exposed to lavender scent during the driving
task without being informed. The control group drove without scent exposure. Stress
levels were measured during the test, and at the end of the test, participants were
asked whether they had perceived the scent.

This approach follows calls in IS research to combine behavioral and physiological
data in order to better understand the dynamic interaction between person and
environment, also referred to as “measurement pluralism” (Fischer & Riedl, 2017).
Furthermore the usage of physiological measurements allows the provision of real-
time information on user’s stress state (vom Brocke et al., 2020).

2 Theoretical background and hypothesis development
2.1 Stress measurement

Stress arises when there is an imbalance between individual capabilities and
situational demand (Cannon, 1929; Koolhaas et al., 2011; Zhou et al., 2022).
Depending on the extent, a distinction is made between eustress (positive) and distress
(negative) (Lazarus, 1966; Selye, 1950). Various physiological and subjective methods
exist to measure stress responses (Witte et al., 2021). Among the most frequently
studied physiological measurement methods are Galvanic Skin Response (GSR) and
Electrocardiogram (ECG) (Caruelle et al., 2019; Giannakakis et al., 2022; Sharma &
Gedeon, 2012) which can capture emotional and cognitive states (Riedl et al., 2010).

GSR measures skin conductance, which is influenced by the activity of eccrine sweat
glands and is exclusively controlled by the sympathetic nervous system. Stress
induced activation is reflected in short-term changes in conductance (skin conductance
response, SCR) or an increased average skin conductance level over time (skin
conductance level, SCL) (Andreassi, 2010; Boucsein, 2012).

ECG records the electrical activity of the heart, allowing for the analysis of heart rate
(HR) and heart rate variability (HRV). An increased HR reflects heightened sympathetic
activation, whereas a reduced HRV correlates with decreased parasympathetic
regulation and an elevated stress level (Berntson et al., 2008; Ried| & Léger, 2016).

In stress research, physiological measurements are combined with subjective,
questionnaire-based data to achieve more reliable results (Becker et al., 2023)
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because physiological tools can provide reliable data which are difficult or impossible
to record through traditional tools as e.g. self-reports and can capture unconscious
processes with direct responses from the human body (Dimoka et al., 2012; Riedl et
al., 2010). Furthermore, the validity of research findings can be improved by combining
two or more methods (Riedl et al., 2010). The combination of physiological data and
self-reported data is common in NeurolS research to examine systems (vom Brocke
et al., 2020).

A commonly used questionnaire in this context is the NASA Task Load Index (Hart &
Staveland, 1988), which measures mental workload, a factor correlated with stress
(Hines Duncliffe et al., 2018). Additionally, self-assessments using single-item
measurements can be employed (Arza et al., 2019). Various authors have applied
these indicators in the context of real or simulated driving (GSR e.g.: Daviaux et al.,
2020; Healey & Picard, 2005; Lanata et al., 2015; ECG e.g: Darzi et al., 2018; Kerautret
et al., 2023; Zhou et al., 2022; NASA-TLX e.g.: Foy & Chapman, 2018; Sugiono et al.,
2018; Yahoodik et al., 2020; Single Items e.g.: Dogan et al., 2019; Lazaro et al., 2022;
Lee & Chung, 2017).

2.2 The effect of scent

Scents influence emotions, cognitive processes, and behavior. They can activate
memories (Lopis et al., 2023) enhance mood (Rachel S. Herz, 2009; Rachel S. Herz
et al., 2004) and modulate cognitive functions (Deivanayagame et al., 2020; lim-berger
et al., 2001; Michael et al., 2003). Scent molecules are absorbed with each breath and
directly reach cortical regions (Royet et al., 2003). Unlike visual or auditory stimuli,
scents act directly on the limbic system, explaining their unconscious effects and
measurable physiological responses (Alaoui-Ismaili et al., 1997; Bensafi et al., 2002;
R. S. Herz & Engen, 1996; Nomura et al., 2016; Torii et al., 1988).

Accordingly, the effect of the scent is expected to manifest independently of
instrumental means-end relationships, as conceptualized in expectancy-based models
of motivation (Vroom, 1964; Wigfield & Eccles, 2000).

Due to their link to the autonomic nervous system, scents can trigger various re-
actions. Pleasant scents affect both mood (Dmitrenko et al., 2020; Jeon et al., 2014,
Roschk & Hosseinpour, 2020) and arousal levels (Joussain et al., 2014; Tisserand,
1988; Warm et al., 1991). While peppermint has a stimulating effect, vanilla and
lavender are considered calming (Buchbauer et al., 1991; Ghavami et al., 2022; Luca
& Botelho, 2021; Moss et al., 2003; Mustafa et al., 2016).

Several empirical studies have found that scents can positively influence driving
behavior, for example, by enhancing attention (Raudenbush et al., 2009), reducing
drowsiness (X. Jiang et al., 2023; X. Jiang et al., 2024; Yoshida et al., 2011),
decreasing anger, and improving well-being (Dmitrenko et al., 2020; Moss et al., 2023).
Some studies report a sedative physiological effect of lavender (Diego et al., 1998;
Heuberger et al., 2004; Koulivand et al., 2013; Kuroda et al., 2005)

2.3 Research gap & hypothesis building

Although stress affects driving performance, empirical data on the effect of scent on
driver stress are lacking. This study addresses this gap by examining the impact of
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lavender scent, which has been associated with a reduction in heart rate (Heuberger
et al., 2004), decreased sympathetic activation (Koulivand et al., 2013) and lower
subjective stress levels (Lehrner et al., 2005; Moss et al., 2023). We therefore expect
differences between experimental groups with and without scent exposure. During a
simulated drive, participants are confronted at defined time intervals with five
potentially stress-inducing driving situations (e.g., “a child unexpectedly runs onto the
road”). Although alternative effects of lavender (e.g., stress-enhancing effects) cannot
be entirely ruled out, we formulate a directed hypothesis based on prior empirical
findings suggesting an anxiolytic effect. This approach follows the principles of
hypothesis-driven experimental research and allows for a clear test of theoretical
predictions.

We postulate:

H1: The controlled use of lavender scent during a driving task reduces measurable
stress levels in participants, in the form of a decrease in H1.1: physiological stress
indicators and H1.2: self-report stress indicators.

In addition to testing the direct effects of lavender scent, this study examines the
moderating role of conscious scent perception. According to expectancy theory and
cognitive appraisal models, the conscious perception and interpretation of a stimulus
can shape its emotional and physiological impact (Kirsch, 1997; Lazarus & Folk-man,
1984). We therefore hypothesize:

H2: The conscious perception of the lavender scent does not moderate its effect on
stress levels (R. S. Herz & Engen, 1996; Nomura et al., 2016),

H2.1: in physiological stress indicators; H2.2: in self-report stress indicators.
3 Method
3.1 Experimental design

Participants The study follows a between-subjects design with 26 participants
randomly assigned to two groups. One group was exposed to lavender scent, while
the control group was not subjected to any scent exposure. The sample consists of 14
women (53.8%) and 12 men (46.2%) with an average age of 25.8 years (SD = 7.84;
range: 19-61). Regarding place of residence, 34.6% identify as rural residents, 46.2%
as residents of small and medium-sized towns, and 19.2% as city dwellers. While the
sample size of 26 participants is relatively small, it provides preliminary insights into
the effects of lavender scent on stress responses in driving contexts. Future research
with larger sample sizes is needed to validate these findings and improve
generalizability. For the analysis we divided the sample into three groups: No scent,
scent with perception and scent with no perception. There were no statistically
significant differences between the groups with respect to age, gender, or place of
residence (age: F(2, 23) = 1.118, p = .344; gender: x*(2) = 0.63, p = .731; residence:
¥x*(4) = 0.69, p = .952).

Physiological Measurement The GSR data were recorded using a Shimmer 3 GSR+
device (Exosomatic, direct current; Boucsein et al., 2012). Electrodes were placed on
the palm. Skin conductance response (SCR) was measured as peaks per minute.
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Heart rate (HR) in beats per minute (bpm) was recorded via ECG using a Polar H10
chest strap sensor.

Furthermore, additional indicators such as skin conductance level and heart rate
variability were collected. However, previous studies conducted by our group suggest
that, in particular, SCR and HR tend to cluster together as a single indicator of
physiological reaction (Czaban et al., 20XXDb).

Cognitive Measurement To assess cognitive stress perception, we used the NASA-
TLX (Hart, 2006; Hart & Staveland, 1988) as well as a single-item measurement
(stress), in which participants were asked: "How much stress did you experience during
the entire drive?". It is important to note that the NASA-TLX is designed to assess
cognitive workload. Although cognitive workload and stress represent conceptually
distinct constructs, prior research has shown that they are often positively correlated
(Alsuraykh et al., 2019).

All questions were recorded on a decimal scale (0-10) to enhance intuitive
understanding (Lewis, 2021), increase data variance (Dawes, 2002), ensure normal
distribution (Leung, 2011) and enable the application of parametric test (Chyung et al.,
2018).

Perception At the end of the test, participants were asked dichotomously whether they
had perceived the scent by questioning: "Did you notice a scent during the
experiment?”. It should be noted that the survey was conducted in the presence of the
test administrators, allowing participants to openly discuss any notable observations.
At no point were the perception of other scents or potential confounding variables
raised, suggesting that the participants either perceived the test stimulus (lavender
scent) or no scent at all.

Additionally, participants were asked about the type of scent they perceived, how
pleasant they found it, how familiar the scent was to them, and how intense they
perceived it to be. However, these aspects are not discussed further in the manuscript,
as they were not part of our research question.

The cold nebulization scent diffuser was set to an intensity level that, based on prior
pilot studies, was perceived as pleasant by participants and ensured that at least half
of them detected the scent.

3.2 Materials, driving task and data processing

The experiment was conducted using a medium-fidelity driving simulator (Wynne et
al., 2019). Aroma Conditioning: In the test group, lavender scent was dispersed
during the experiment using an “AromaStreamer 450" (Reima Air Concept).
Procedure: After a preliminary survey, measurement devices were attached. To
reduce simulator sickness, the experiment began with an adaptation phase (Hoffmann
et al., 2003), followed by a 1.5-minute baseline recording. The drive lasted an average
of 7.5 minutes and included five critical events designed to induce and control stress
situations (see Table 1). The critical driving scenarios used in this study were
developed for a previous study by our research group. Both an expert rating conducted
to select the scenarios and user data indicated that the situations were discriminative
with respect to the level of stress they induced (Czaban et al., 20XXa). A scenario-
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specific analysis was not conducted in the present study, as the focus was on the
overall effect of scent exposure, which did not vary across the different driving
scenarios. However, the deliberate inclusion of driving situations with varying levels of
user demand ensures that the observed effects of scent exposure cannot be attributed
to a methodological artifact resulting from the arbitrary selection of a single scenario.

The total experiment duration was approximately 40 minutes per participant.

Table 1. Overview of the critical driving situations

Order Situation 1 Situation 2  Situation 3  Situation4  Situation 5

Child runs on  Driving over U-turn Driving over  Car taking
Event the road speedbumps a pothole the right of
way

Picture i
= .i
Feedba Person Shaking of ) Shaking of Honking of
ck screaming  driver’s seat driver’s seat the car
Mean
Stressle
vel 7.08 3.92 5.72 2.78 7.88
Rating
(0-10)

Cognitive workload was assessed once at the end of the test for all 26 participants.
Since no technical difficulties (e.g., sensor Bluetooth disconnection) were encountered
during data collection, the dataset was complete and no participants had to be
excluded from the analysis. Due to the five critical driving situations per person, a total
of 130 physiological single episodes could be analyzed (unpivoting).

Data analysis (SPSS 29) was conducted using Principal Component Analysis (PCA),
Levene’s test, and t-tests.

4 Results

The use of individual indicators often leads to inconsistent and heterogeneous results
(Arza et al., 2019), which is why composite indicators can be used to enhance the
robustness and interpretability of the findings. We calculated a mean index from the
NASA-TLX items (Cronbach’s a = .761), where higher values indicate higher cognitive
workload.

To improve the stability of single measurements, we computed more reliable overall
indicators using PCA (Czaban et al., 20XXb). NASA-TLX and stress loaded onto one
factor, while SCR and HR formed another. These two factors explained 79.59% of the
variance of the original items.

We derived a combined indicator, Cognitive Reaction (CR), from the unweighted mean
values of NASA-TLX and stress, resulting in a range of 0.92—-7.50 with a mean of M =
4.34.
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Since the physiological variables SCR and HR have different value ranges (SCR: 4—
20.13, M = 11.35; HR: 60.4-131.68, M = 90.98), HR values were adjusted by dividing
by 8.01 to match the mean of SCR (for methodology, see (Czaban et al., 20XXb)). The
resulting Physiological Reaction (PR) indicator had a range of 5.97-17.84, with a mean
of M = 11.35.

For further analysis, our dataset includes three groups: "no scent exposure" (A), "scent
exposure without perception" (B1), and "scent exposure with perception" (B2). The
Levene’s test yielded significance values of p = .579 for PR and p = .131 for CR,
indicating homogeneity of variance across groups. Table 2 presents the mean values
of PR and CR for the three groups.

Table 2. Means of physiological reaction and cognitive reaction (with/without perception)

PR CR

A NoScent 10.9 4.3
B Scent 11.9 43
B1 ScentNoPerception 12.0 6.0

B2 ScentPerception 11.7 3.3

Taking into account whether the scent was perceived (B2) or not (B1), the physiological
stress indicators remain largely unchanged: B1 exhibits significantly higher PR than A
(T =-2.139, p = .035), whereas B2 does not (T = -1.769, p = .080). B1 shows the
highest absolute PR value, but the difference between B1 and B2 is not statistically
significant.

For cognitive stress indicators, B1 scores 1.70 scale points higher than A, though the
difference is not significant due to the small sample size (T = -1.538, p = .144). When
the scent is consciously perceived (B2), CR is one scale point lower than A (T =-1.119,
p =.277) and 2.7 scale points lower than B1, a statistically significant difference (T =
3.062, p =.011).

In light of our findings, we conclude that Hypotheses H1.1, H1.2, and H2.2 are not
supported, whereas Hypothesis H2.1 can be accepted.

5 Discussion

Twenty-six participants completed a driving simulation with five critical events. The
study investigated whether scent exposure reduced physiological (H1.1) and cognitive
stress reactions (H1.2), and whether stress responses differed depending on whether
the scent was consciously perceived (H2).

Regarding Physiological Reaction (PR), participants without scent exposure showed
significantly lower values, leading to a rejection of H1.1. For Cognitive Reaction (CR),
no significant differences were found based on scent exposure, thus H1.2 is not
supported. However, CR was noticeably, though not significantly, lower when the scent
was consciously perceived, which provides indirect support for H1.2.

H2.1 is supported, as there was no significant difference in PR between the groups
with perceived and unperceived scent exposure. In contrast, H2.2 is contradicted, as
participants who consciously perceived the scent showed a significantly lower CR. This
suggests that conscious perception acts as a key moderating variable.

119



One possible explanation for these findings is that the significant reduction in cognitive
stress under conscious scent perception is due to a cognitively mediated modulation
of stress processing. This is comparable to the Hawthorne effect (Adair, 1984), where
the awareness of an intervention influences participants' behavior. The conscious
recognition of the lavender scent may have triggered a positive coping process, as
participants interpreted the scent as an intentional stress-reducing measure.

This interpretation can also be linked to Expectancy Theory (Vroom, 1964), which
posits that subjective expectations influence both behavior and physiological
responses. If participants consciously perceive lavender—typically associated with
relaxation—they may expect a calming effect, which in turn facilitates such a response.
This aligns with placebo mechanisms (e.g., Benedetti, 2014), suggesting that
conscious scent perception alone may be sufficient to trigger regulatory responses,
regardless of any direct physiological effect.

The observed increase in stress during unconscious scent exposure might point to a
mismatch between sensory stimulation and cognitive appraisal. Previous studies have
shown that unexpected or subliminal olfactory stimuli can increase alertness (M. Jiang
et al., 2024). Other possible explanations include scent aversion, novelty effects, or
individual differences in olfactory sensitivity—variables not systematically measured in
this study. As prior research (Rachel S. Herz et al., 2004) indicates that preference and
familiarity with scents modulate both emotional and physiological responses, future
studies should more thoroughly assess these individual characteristics.

Our findings stand in contrast to earlier research reporting a generally calming effect
of lavender scent (Luca & Botelho, 2021). Potential reasons for this discrepancy may
include variations in experimental design, interindividual differences in stimulus
processing, or expectancy/placebo-related effects (Howard & Hughes, 2008; Masaoka
et al., 2013). Additionally, differences in scent intensity and duration may have
contributed to these divergent outcomes. Research suggests that higher intensities are
often associated with lower pleasantness ratings (Doty et al., 1978; Henion, 1971),
while continuous exposure can lead to rapid olfactory adaptation, diminishing
perceptual and physiological responses over time (Mignot et al., 2022).

In the present study, lavender was administered in pulsed intervals via a professional
diffuser (Reima AromaStreamer 450), allowing for moderate, sustained intensity and
reduced adaptation effects (Croy et al., 2013; Nomura et al., 2016). This controlled
delivery method may partly explain the differential effects compared to studies using
continuous or unregulated exposure.

In summary, the data suggest that scent exposure may increase stress when the scent
is not consciously perceived, possibly due to implicit arousal effects rather than a
relaxation response. Cognitive stress reactions appear to be more strongly affected
than physiological responses, although not all findings reached statistical significance.
Notably, when the scent was consciously perceived, cognitive stress was significantly
lower, underscoring the importance of perception as a moderating factor.
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6 Limitations

Our findings should be interpreted as exploratory due to the limited sample size and
must be validated in subsequent studies with larger and more diverse samples. This
limitation may have reduced statistical power, increasing the likelihood of Type Il errors,
suggesting that smaller, yet potentially meaningful effects may have gone undetected.

The influence of different scents and scent intensities on physiological and cognitive
stress responses warrants systematic investigation. Individual scent perception can
vary considerably; incorporating a neutral control or placebo scent condition would aid
in distinguishing psychological expectation effects from actual scent-related outcomes.

Given that individual physiological variability can influence stress reactivity, baseline
correction should be incorporated in future experimental designs. This was not feasible
in the present study due to incomplete data collection during the baseline
measurement.

Our investigation was limited to short-term effects. Longitudinal research is needed to
determine whether the observed outcomes persist, diminish, or intensify with repeated
or prolonged scent exposure.

Subsequent studies should also consider individual olfactory characteristics, such as
general olfactory sensitivity and personal scent preferences or aversions, as these
factors may modulate stress responses. Additionally, examining the role of cognitive
appraisal processes in a hypothesis-driven manner may help explain the observed
divergence between physiological and cognitive effects of scent exposure.

Finally, the impact of different scent delivery methods and intensity levels should be
systematically compared to assess their respective effects on stress responses.

7 Conclusion

This study investigated how exposure to lavender scent influences physiological and
cognitive stress responses in a simulated driving environment. The results indicate that
lavender scent does not inherently reduce stress. A significant reduction in cognitive
stress was observed only when the scent was consciously perceived. In contrast,
unconscious exposure was associated with a potential increase in stress levels,
possibly due to an arousal effect. Physiological responses were less affected overall
than cognitive reactions.

These findings support theoretical frameworks such as Expectancy Theory and
placebo mechanisms, while contradicting earlier research that attributed a generally
calming effect to lavender. Notably, conscious perception emerged as a critical
moderating variable in the effectiveness of olfactory interventions.

From a practical standpoint, scent-based interventions—such as those used in
vehicles or high-stress work environments—should be designed to ensure that the
scent is consciously perceived, as unconscious exposure may elicit unintended stress
responses. Nevertheless, physiological indicators may offer potential for adaptive
systems (vom Brocke et al., 2020) that respond in real-time to individual scent
preferences and perception, thereby tailoring olfactory environments more effectively.
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