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Abstract—We analyze the Sadism-Egoism-Altruism (SEA) Model
from Baumann and Baumann (2025) [3] analytically. We prove
that every finite game does not only have an outcome that is
plausible in the SEA model when allowing for randomized strate-
gies, but also the existence of such an outcome in pure strategies.
Further, we show that all fairness equilibria according to Rabin
(1993) [24] are plausible in the SEA model. Although typically
many or even all pure-strategy outcomes can be SEA plausible
in a game, this model gives deep insights into the structure of
the game. Since along with the fact that outcomes are plausible
there come ranges for parameters modeling sadism or altruism
making the respective outcome plausible, the possible behavior of
the agents can be understood. Comparisons to the Fehr-Schmidt
und Bolton-Ockenfels models are done. Via the well-known Pris-
oner’s dilemma the SEA model is illustrated for mixed strategies,
too. This work opens doors for manifold future research.

∗This work builds upon [3] (and also on [2]) and, hence, the author of the work at hand
is grateful to his co-author of [2] and [3], Michaela Baumann.
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1 Motivation

The so-called Nash equilibrium [22] is one of the standard tools to solve
games. However, in many experiments and real-world situations, behavior
that does not fit to the predictions from Nash’s idea is observed (see, e.g.,
[1]). There is a vast body of literature on that. One specifically interesting
topic therein is so-called cooperation, which means esp. cooperation in games
that resemble the prisoner’s dilemma. See, very prominently, [10] (and cf.
[9]). These so-called anomalies describe situations where—in the language
of Rabin [24]—agents behave kind towards each other, although behaving
mean would individually increase their (material) payoff. Many ideas have
been developed to explain such an “abnormal” behavior. For example, ex-
planations use distributions of the payoffs among the agents or psychological
fairness concepts, see, e.g., [2, 6, 13, 14, 16, 24].

Table 1: Prisoner’s Dilemma [27] with scaling parameter χ > 0 [24]. The
higher χ, the more important is the material payoff compared to the so-called
fairness payoff for the agents

u1(·)|u2(·) a
(1)
2 a

(2)
2

a
(1)
1 3χ|3χ 0|5χ
a

(2)
1 5χ|0 χ|χ
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In [3], another interesting anomaly presented in the literature is discussed,
namely “antisocial punishment.” The idea behind “punishment” (or, more
specific, “costly punishment”) is the following: When having a look at the

prisoner’s dilemma depicted in Table 1 it is obvious that (a
(2)
1 , a

(2)
2 ) is the

only Nash equilibrium, i.e., both agents do not cooperate, although cooper-
ation, i.e. (a

(1)
1 , a

(1)
2 ), is Pareto superior to non-cooperation. It is argued that

often games in the real world are not pure prisoner’s dilemmas (or the very
related public goods games), but that there is a second round with another
game, namely costly punishment, i.e., all agents can pay for some punish-
ment of opponents (whereas the costs are positive but small compared to
the punishment). In [3], this is formalized, cf. Table 2. Then, cooperation
and non-punishment can be one Nash equilibrium—though punishment is an
empty threat, see [27].1

Table 2: Costly Punishment [3] with scaling parameter $ > 0 [24]

u1(·)|u2(·) a
(3)
2 a

(4)
2

a
(3)
1 0|0 −10$| −$
a

(4)
1 −$| − 10$ −11$| − 11$

The interesting anomaly ‘anti-social punishment’ is now that in experi-
ments it can be observed that some agents cooperate in the first round, but
punish the other—one may say: for fun—in the second round [23]. In [3], a
model called Sadism-Egoism-Altruism (SEA) model is constructed which is
motivated by this anomaly and inspired by [39]. The general idea behind the
SEA model is that the given payoffs (agents usually try to maximize), which
are then called ‘material payoffs,’ are transformed according to a rule which
includes also the payoffs of the respective opponent. This way, it can be
modeled that an agent wants something good or bad for her or his opponent
and does not necessarily only think on her or his own payoff.

The model in the form of [3] does not fit to the setting of [23] perfectly,
since in [23] the public goods game with costly punishment is somehow a
game with incomplete information, due to the fact that agents do not know

1For literature on that and on whether and when this idea works in practice, see
[7, 23, 25, 26, 37, 38].
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the psychological preferences of the other agents, while in [3] the setting is
modeled with complete information, i.e., agents know whether the opponent
“has some fun” when punishing others—i.e. does anti-social punishment.
We also note that in [23] this is a four-agents game while it is a two-agents
game in [3]. In [3] it is computed that, for example, for specific values of
the parameters modeling sadism respectively altruism, one-sided anti-social
punishment is an equilibrium in the SEA model, but social punishment is not
for these specific parameters, which are such that one agent is ‘half egoist,
half altruist’ and the other agent is ‘half egoist, half sadist.’

In [3], the two-agents prisoner’s dilemma with costly punishment is trans-
formed via the von Neumann-Morgenstern transformation into a one-shot
game with the following notation like in Table 3.2

• action in the Prisoner’s dilemma;(

– action in the costly punishment if (a
(1)
1 , a

(1)
2 ) was played in the

Prisoner’s dilemma;

– action in the costly punishment if (a
(2)
1 , a

(1)
2 ) was played in the

Prisoner’s dilemma;

– action in the costly punishment if (a
(1)
1 , a

(2)
2 ) was played in the

Prisoner’s dilemma;

– action in the costly punishment if (a
(2)
1 , a

(2)
2 )) was played in the

Prisoner’s dilemma

)

The research questions of the work at hand are: Does in all finite games
a SEA Nash equilibrium [3] in pure strategies exist? How are the SEA Nash
equilibria related to other concepts like Pareto, mutual max, mutual min? Is
the SEA model related to other fairness concepts, such as to the one of Rabin
[24] (and to others)?

This section (Section 1) motivates the SEA model and its analysis by
means of anti-social punishment, see [23]. In Section 2, Rabin’s fairness
model and the SEA model are presented, see [2, 3, 24]. The main part comes
in Section 3 where the SEA model is analyzed analytically, its connection to
Rabin’s fairness model is proven, and, finally, connections to the models of

2We note that analyzing this game by means of the Selten transformation, cf. [21],
would also be interesting.
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Table 3: Prisoner’s Dilemma with Costly Punishment [3] with scaling χ,$ >
0, see [24]; values from Tables 1 and 2; truncated

u1(·)|u2(·) a
(1)
2 ; (a

(3)
2 ; a

(3)
2 ; a

(3)
2 ; a

(3)
2 ) . . . a

(2)
2 ; (a

(4)
2 ; a

(4)
2 ; a

(4)
2 ; a

(4)
2 )

a
(1)
1 ; (a

(3)
1 ; a

(3)
1 ; a

(3)
1 ; a

(3)
1 ) 3χ|3χ . . . −10$|5χ−$

a
(1)
1 ; (a

(3)
1 ; a

(3)
1 ; a

(3)
1 ; a

(4)
1 ) 3χ|3χ . . . −10$|5χ−$

a
(1)
1 ; (a

(3)
1 ; a

(3)
1 ; a

(4)
1 ; a

(3)
1 ) 3χ|3χ . . . −11$|5χ− 11$

...
...

. . .
...

a
(2)
1 ; (a

(4)
1 ; a

(4)
1 ; a

(4)
1 ; a

(4)
1 ) 5χ−$| − 10$ . . . χ− 11$|χ− 11$

Fehr-Schmidt and Bolton-Ockenfels are presented, see [3, 6, 13, 24]. That
the solution structure of games becomes rather complicated when allowing
mixed strategies in the SEA model is illustrated by means of the Prisoner’s
dilemma in Section 5. Section 6 concludes and presents various directions
for future research.

2 Models

The model of [3], the so-called Sadism-Altruism-Egoism model can explain
why exactly one agent punishes the other in a prisoner’s dilemma with costly
punishment, although there is cooperation in the first round, but it cannot
explain that both agents do anti-social punishment—which would be possible
in a game with incomplete information. In [3], it is shown that one-sided
anti-social punishment is neither Nash [22] nor fair in the sense of Rabin [24]
(see also [2]). Whether distribution-dependent fairness concepts may explain
anti-social punishment is not analyzed in [3], but may be done in future work.
For implementations of Rabin’s fairness model and of the SEA model see [2]
and [3], where Python with SymPy is used [20, 29].

In the work at hand, we consider—if not stated otherwise—pure strategies
(actions) and equilibria in those pure strategies. Though it should not be
a big deal to enlarge the concepts to mixed (i.e. randomized) strategies, cf.
[24].

5
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2.1 Rabin’s Fairness Equilibria

One possibility to explain cooperation is by adding some fairness payoff based
upon reciprocity to the (material) payoff. This fairness concept is based on
the following ideas by Rabin [24], namely: Agents increase their fairness
payoff when they try to be kind to someone who is believed to be kind;
agents decrease their fairness payoff when they try to be mean to someone
who is believed to be mean; when material payoffs are larger, fairness is less
important to the agents; this concept uses strategies (resp. actions), first-
and second-order beliefs that have to match in an equilibrium. See [2] for an
in-depth description of this concept or [24] for Rabin’s paper.

Formally, Rabin [24] defines a fairness equilibrium as (s1, s2) ∈ S1 × S2

with
si ∈ argmaxs′i∈SiŨi(s

′
i, b−i, ci)

and ci = bi = si for i = 1, 2, where si ∈ Si is the mixed strategy i uses,
b−i ∈ S−i is the strategy i believes that −i uses, and ci ∈ Si is the strategy i
believes that −i believes that i uses. In [24],

Ũi(si, b−i, ci) = ui(si, b−i) + f̃−i(b−i, ci)(1 + fi(si, b−i))

is called the expected utility, which consists of the so-called kindness func-
tions:

fi(si, b−i) =

{
u−i(b−i,si)−ue−i(b−i)
uh−i(b−i)−umin−i (b−i)

if uh−i(b−i)− umin
−i (b−i) 6= 0,

0 otherwise,

and

f̃−i(b−i, ci) =

{
ui(ci,b−i)−uei (ci)
uhi (ci)−umini (ci)

if uhi (ci)− umin
i (ci) 6= 0,

0 otherwise.

Here, the following functions are used.

• First-order believed, expected material payoff of −i when −i is believed
to use b−i when i uses si: u−i(b−i, si)

• Equitable payoff: ue−i(b−i) =
uh−i(b−i)−ul−i(b−i)

2
, see [24] p. 1286

• Set of all possible outcomes when −i really uses the believed strategy
b−i: u(b−i) = {(ui(si, b−i), u−i(b−i, si)) | si ∈ Si}

6
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• Highest payoff −i can receive within u(b−i): u
h
−i(b−i)

• Lowest payoff −i can receive within u(b−i): u
min
−i (b−i)

• Lowest payoff −i can receive inside the Pareto optimal subset of u(b−i):
ul−i(b−i), see [2] Comment 8

Please note that s, b, c can be randomized strategies/beliefs making the
us expected payoffs. For f̃i, f̃−i the terms are defined analogously with first-
order beliefs instead of strategies and second-order beliefs instead of first-
order beliefs. And again see [2] for details.

2.2 The SEA Model

In [3], another model, the so-called Sadism-Egoism-Altruism model, abbre-
viated: SEA model, is developed, motivated by the anomaly “anti-social
punishment” and inspired by a model presented in [39]. In a first step, altru-
ism is incorporated in the game model. Instead of Rawlsian functions, which
are used in [39] to model (partial) altruism, in [3] a linear model is utilized,
which according to [5] dates back to the year 1881, see [11].

U ′i(λi, ai, a−i) = (1− λi)ui(ai, a−i) + λiu−i(a−i, ai)

for i = 1, 2 with (λ1, λ2) ∈ [0, 1]2 and a−i, ai being the actions (pure strate-
gies). Thus, the higher the values of the λs are, the more altruistic the agents
behave; i.e., the more they want to maximize the other’s outcome.

In a second step, this model is mirrored in order to account for (partial)
sadism, leading to respecified (psychological) payoffs

Ui(λi, ai, a−i) = (1− |λi|)ui(ai, a−i) + λiu−i(a−i, ai)

for i = 1, 2 with (λ1, λ2) ∈ [−1, 1]2 and again a−i, ai being the actions (pure
strategies). Hence, agents may, depending on the values of the λs, aim to
minimize or to maximize the other’s outcome—additionally to the target of
maximizing the agent’s own outcome. In the extreme cases of λi = −1,
agent i is a pure sadist, λi = 1, he or she is a pure altruist, and λi = 0, she
or he is a pure egoist.

7
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Similar models have been utilized in the literature, e.g., in [19], where
models for experiments are investigated.3 The SEA model has the advantages
that it comes with only two additional parameters, that it is symmetric for
sadism and altruism, and that it uses on both sides (i.e. for sadism and for
altruism) convex mixtures of the agents and his or her opponent’s (material)
payoffs (with minus or plus). Additionally, as we will see in Proposition 5
and the remarks thereafter, the pole cases λ = −1, 1 as well as the midpoint
λ = 0 are well-known game-theoretic concepts. All in all, this makes results
easily interpretable.

Whether, how, and to which degree this model can explain anti-social
punishment is explained in [3] and summarized in the introduction of the
work at hand, Section 1. In the course of this paper, theoretical findings
concerning the SEA model are presented, which include also comparisons to
Rabin’s fairness model, Fehr-Schmidt, and Bolton-Ockenfels. While the focus
of [3] was on modeling and coding (in Python), the work at hand focuses on
theory and proofs.

3 Theoretical Findings

Now, we present theoretical analyses of the SEA model. In [3], an outcome
is defined as SEA plausible, i.e., as plausible under the SEA model, if and
only if there exists (λ1, λ2) ∈ [−1, 1]2 s.t. the outcome is a Nash equilibrium
under the transformed payoffs. One basic result is already stated in [3], which
immediately follows by setting λ1 = λ2 = 0 in the model.

Proposition 1. Each Nash equilibrium (of the original game) is SEA plau-
sible.

Thus, every finite game has a SEA plausible outcome in mixed strate-
gies (cf. [22]), but does it also have one in pure strategies? For that, we

3At the very beginning of Chapter 2 of [19], a payoff transformation formula is given,
which reads in our notation for the two agents case as follows:

Ūi(ν, µi, µ−i, ai, a−i) = ui(ai, a−i) +
µi + νµ−i

1 + ν
· u−i(a−i, ai),

with ν ∈ [0, 1] and µi, µ−i ∈ (−1, 1). There, µi (µ−i) reflects how altruistic (positive
values) or spiteful (negative values) agent i (−i) is (cf. the references in [19]). The value ν
is for incorporating “fairness” in a reciprocal sense—see [19]. If ν = 0, the model is similar
to the SEA model with λi ∈ (−0.5, 0.5).

8
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Table 4: Assurance Game

u1(·);u2(·) a
(1)
2 a

(2)
2

a
(1)
1 2; 2 0; 0

a
(2)
1 0; 0 1; 1

analyze the relationship between Pareto optima and the SEA model, where
Pareto is always a property of the material game i.e. of the game without
any transformation of the utilities. When having a look at the assurance
game in Table 44 it is quite obvious that not every SEA plausible outcome is
globally Pareto optimal (the payoffs (1, 1) correspond to a Nash equilibrium,
which is according to Proposition 1 SEA plausible, however, they are Pareto
inferior to the payoffs (2, 2)). The next result tells us something about the
converse. Especially, (1, 1) corresponds to an equilibrium of the SEA model
with (λ1, λ2) = (0.5, 0.5).

Proposition 2. At least one of the globally Pareto optimal, pure-strategy
outcomes is SEA plausible.

Proof. Let (a
(∗)
1 , a

(∗)
2 ) ∈ argmax(a1,a2)∈A1×A2(u1(a1, a2) + u2(a2, a1)). At first,

we are going to show that this outcome is globally Pareto optimal. If this was
not the case, there was (a

(∗∗)
1 , a

(∗∗)
2 ) s.t. w.l.o.g. u1(a

(∗∗)
1 , a

(∗∗)
2 ) > u1(a

(∗)
1 , a

(∗)
2 )

and u2(a
(∗∗)
2 , a

(∗∗)
1 ) ≥ u2(a

(∗)
2 , a

(∗)
1 ). However, this contradicts that (a

(∗)
1 , a

(∗)
2 )

is in the argmax. Now, let λ1 = λ2 = 0.5. We claim that (a
(∗)
1 , a

(∗)
2 ) is SEA

plausible for that choice of λ1, λ2. If (a
(∗)
1 , a

(∗)
2 ) was not SEA plausible for λ1 =

λ2 = 0.5 there would be a
(∗∗)
1 ∈ A1 s.t. U1(0.5, a

(∗∗)
1 , a

(∗)
2 ) > U1(0.5, a

(∗)
1 , a

(∗)
2 )

or there would be a
(∗∗)
2 ∈ A2 s.t. U2(0.5, a

(∗∗)
2 , a

(∗)
1 ) > U2(0.5, a

(∗)
2 , a

(∗)
1 ). Since

U1(0.5, a1, a2) = U2(0.5, a2, a1) = 0.5 · (u1(a1, a2) + u2(a2, a1)), (a
(∗∗)
1 , a

(∗)
2 )

resp. (a
(∗)
1 , a

(∗∗)
2 ) would result in a sum higher than the max, which is not

possible.

An outcome as in the proof may be called sum optimum. Note that
the same proof holds true in a mixed-strategy setting. That means, when
replacing (a1, a2) ∈ A1 × A2 by (s1, s2) ∈ S1 × S2.

4https://en.wikipedia.org/wiki/Coordination_game (2024-04-05)
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Table 5: An Exemplary Game

u1(·);u2(·) a
(1)
2

a
(1)
1 9; 2

a
(2)
1 5; 5

a
(3)
1 2; 9

Although Proposition 2 may raise hope that all Pareto optimal outcomes
in the material game are SEA plausible, we have to disappoint the reader, at
least for pure-strategy outcomes. The example in Table 5 shows that there
may be outcomes that are Pareto in pure strategies, but not SEA plausible.
It is obvious that all outcomes are Pareto in pure strategies, however, there
is no λ1 such that agent 1 would choose a

(2)
1 .

We remark that the outcome in Table 5 which results in the payoff vector
(5; 5) is not Pareto in mixed strategies since (0.5a

(1)
1 ) + 0.5a

(3)
1 , a

(1)
2 ) is Pareto

superior to it. When we allow for randomized (i.e. mixed) strategies, the set
of admissible outcomes is convex (albeit not strictly convex in a finite setting),
leading to a right skewed Pareto frontier (since we maximize).5 Via the slope
of a (in detail: of each) tangent that lies right-above the admissible outcomes,
one can compute λ1 and λ2 := 1−λ1 s.t. each outcome on the Pareto frontier
(regarding mixed strategies) is SEA Nash: Let an expected outcome on the
frontier be given with tangent slope m ∈ [−∞, 0] (which does not have to
be unique). With λ1 = 1

1−m ∈ [0, 1] (with 1
∞ := 0) the maximization leads

to the given outcome. Note that due to the choice λ2 = 1 − λ1 the two
maximization terms for being SEA Nash (i.e. Nash in the transformed game)
are equal. Note that these choices of λ1, λ2 are special cases in the definition
of SEA Nash; and that for the same combination of λs various outcomes can
be SEA Nash, cf. [3].

It is known that there are finite games without any Nash equilibrium
in pure strategies (e.g., rock-scissors-paper, see [27]). From the proof of
Proposition 2 it follows directly the following Proposition.

5One could imagine a concave function as the Pareto frontier, however, in the graph
there can be a vertical (i.e., parallel to the u2-axis) piece such that the relation is not a
function at all.

10
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Proposition 3. Every finite two-agent game has at least one SEA plausible
outcome in pure strategies.

Proposition 3 follows also from the remarks after Proposition 2, namely,
every outcome and esp. every pure-strategy outcome on the Pareto frontier
in mixed strategies is SEA Nash; esp. the cases where only ui is maximized
for i = 1 or i = 2 and where the sum is maximized—but note that the Pareto
frontier can be a singleton. According to [24], a mutual-max resp. mutual-
min outcome is an outcome where agents mutually maximize or minimize the
opponent’s outcome. We note that not every finite game has a mutual-max
outcome or a mutual-min outcome in pure strategies, counterexamples are
“matching pennies” and “rock scissors paper” (cf. [24]). However, if there is a
mutual-max or a mutual-min outcome in pure strategies, it is SEA plausible,
as the next proposition shows.

Proposition 4. Every mutual-max outcome and every mutual-min outcome
is SEA plausible.

Proof. Let (a1, a2) be a mutual-max outcome. By setting λ1 = λ2 = 1 the
definition of (SEA) Nash equilibrium is exactly the definition of mutual-max
outcome. For mutual-min outcomes the same is true for λ1 = λ2 = −1
and noting that minimizing a function is the same as maximizing minus the
function.

In [3], the parameters λ1, λ2 were defined to be in [−1, 1]. One may ask,
why no values with |λi| > 1 are allowed in the SEA model, although this
would be possible in theory. The proposition above gives a good argument
for that: λi are gradually shifting from−1, which is the mutual-min (see [24]),
via 0, which is the Nash equilibrium (see [22]), to 1, which is the mutual-max
(see again [24]). Thus, the SEA model is a generalization or the hull over
these three important concepts with Nash as its midpoint.

Note that the very same proof for the proposition above also holds for
mixed strategies. When transforming a finite game with λ1 = λ2 = 1 (−1),
the Nash theorem [22] tells us that the transformed game has at least one
Nash equilibrium in randomized (i.e. mixed) strategies, which is, in fact, a
mutual-max (mutual-min) outcome of the original game. Thus, such out-
comes always exist in finite games in randomized strategies.

Here we mention that it is no coincidence that for the example that
not every pure-strategy Pareto optimal outcome is SEA plausible there were

11
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Table 6: The General Game (d, e, f, g, h, i, j, k ∈ R)

u1(·);u2(·) a
(1)
2 a

(2)
2

a
(1)
1 d; e f ; g

a
(2)
1 h; i j; k

three strategies for one of the agents needed. The next theorem tells us
something about SEA plausibility in small games. However, even if in a
game all outcomes are SEA plausible, that does not mean necessarily that
every outcome is SEA Nash for all combinations of λ. When having a look
at the sets E from the definition of SEA Nash equilibrium in [3]—these are
the subsets of [−1, 1]2 3 λ1, λ2 for which an outcome of the transformed
game is Nash—we can still learn a lot about the nature of the game and
the outcomes. Especially, not every outcome has to be SEA plausible under
so-called social types (as an example; see [3]).

Proposition 5. In two-agent games with one or two strategies per agent,
every outcome is SEA plausible.

Proof. If an agent has only one strategy, this strategy is a best response to
everything. Thus, we have to prove the proposition for 2 × 2-games. For
that, we consider the game in Table 6 and we show that there exists for
every outcome (a1, a2) a tuple (λ1, λ2) ∈ [−1, 1]2 s.t. a1 is a best response
to a2 and vice versa. Since all payoffs are variable and we may interchange
payoffs, strategies, and even agents, it is in fact enough to show that the first
strategy of agent 1 is a best response to the first strategy of agent 2 for some
λ1 ∈ [−1, 1]. Hence, we compare U1(λ1, a

(1)
1 , a

(1)
2 ) = (1 − |λ1|)d + λ1e with

U1(λ1, a
(2)
1 , a

(1)
2 ) = (1− |λ1|)h+ λ1i. Now, if e ≥ i, U1(1, a

(1)
1 , a

(1)
2 ) = e ≥ i =

U1(1, a
(1)
1 , a

(1)
2 ), and if e ≤ i, U1(−1, a

(1)
1 , a

(1)
2 ) = −e ≥ −i = U1(−1, a

(1)
1 , a

(1)
2 ).

Here, we highlight that for the result above negative values of the λs may
be needed. For example, in a game where agent 2 has only one option and
agent 1 has two options that result in the payoff vectors (1, 1), (0, 0) with
non-negative values of λ1, the second option would never be an equilibrium
in the SEA model.

12
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3.1 Fairness and the Function Λ

Next, we compare fairness as defined by Rabin [24] and SEA Nash equilibria,
cf. [3]. We define the function Λ : (−1, 1) → (−∞,∞), x 7→ Λ(x) = x

1−|x| .

This function is well-defined on (−1, 1) and a compostion of C0 functions
and, thus, a C0 function, too. On (−1, 0) it holds Λ(x) = x

1+x
< 0, which is

a compostion of C∞ functions and, thus, a C∞ function, too. There, Λ′(x) =
1

(1+x)2
> 0 and limx→−1 Λ(x) = −∞ hold true. On (0, 1) it is Λ(x) = x

1−x > 0.
This is a compostion of C∞ functions and, hence, also a C∞ function. There,
Λ′(x) = 1

(1−x)2
> 0 and limx→1 Λ(x) = +∞ hold. Taking this and Λ(0) = 0

together, we conclude that Λ is strictly monotonously increasing on (−1, 1)
and, thus, invertible. We note that Λ is an odd function: Λ(−x) = −Λ(x).
The inverse is:

Λ−1(y) =
y

1 + |y|
, for y ∈ R

Note: Λ(Λ−1(y)) = Λ−1(y)
1−|Λ−1(y)| =

y
1+|y|

1−| y
1+|y| |

=
y

1+|y|
1+|y|−|y|

1+|y|
= y and Λ−1(Λ(x)) =

Λ(x)
1+|Λ(x)| =

x
1−|x|

1+| x
1−|x| |

=
x

1−|x|
1−|x|+|x|

1−|x|
= x for all x ∈ (−1, 1) and y ∈ R.

Additionally, although not needed here, one calculates:

lim
x→0−0

Λ′(x) = 1 = lim
x→0+0

Λ′(x)

Hence, Λ is a C1 function with Λ′(0) = 1. Taking the formulae from above
together, it holds Λ′(x) = 1

(1−|x|)2 for all x ∈ (−1, 1). Further, we calculate

for −1 < x < 0 Λ′′(x) = −2
(1+x)3

< 0 and for 0 < x < 1 Λ′′(x) = 2
(1−x)3

> 0.

Hence, limx→0−0 Λ′′(x) = −2 6= 2 = limx→0+0 Λ′(x) and, thus, Λ 6∈ C2. On

(−1, 1)\{0} we can write Λ′′(x) = 2sgn(x)
(1−|x|)3 . On (−1, 0), Λ is right-curved and

on (0, 1) it is left-curved.

Proposition 6. Every fairness equilibrium, i.e. every pure-strategy outcome
for which a χ > 0 exists s.t. the outcome is a fairness equilibrium, is SEA
plausible.

Proof. On the one hand, an outcome (a1, a2) is a fairness equilibrium for
some χ > 0—consider again [24]—if
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χu1(a1, a2) + f̃2(a2, a1)

(
1 +

u2(a2, a1)−ue2(a2)

uh2(a2)−umin
2 (a2)

1uh2 (a2)−umin2 (a2)6=0

)
≥ χu1(a′1, a2) + f̃2(a2, a1)

(
1 +

u2(a2, a
′
1)−ue2(a2)

uh2(a2)−umin
2 (a2)

1uh2 (a2)−umin2 (a2)6=0

)
∀a′1 ∈ A1

and

χu2(a2, a1) + f̃1(a1, a2)

(
1 +

u1(a1, a2)−ue1(a1)

uh1(a1)−umin
1 (a1)

1uh1 (a1)−umin1 (a1)6=0

)
≥ χu2(a′2, a1) + f̃1(a2, a1)

(
1 +

u1(a1, a
′
2)−ue1(a1)

uh1(a1)−umin
1 (a1)

1uh1 (a1)−umin1 (a1)6=0

)
∀a′2 ∈ A2.

Please note that—with a small abuse of the notation—we assume that
if a nominator is zero, the indicator function is evaluated first, causing the
fraction to vanish. On the other hand, an outcome (a1, a2) is SEA plausible
if for some λ1, λ2 ∈ [−1, 1]

(1− |λ1|)u1(a1, a2) + λ1u2(a2, a1) ≥ (1− |λ1|)u1(a′1, a2) + λ1u2(a2, a
′
1)

∀a′1 ∈ A1

⇔ (1− |λ1|)(u1(a1, a2)− u1(a′1, a2)) ≥ λ1(u2(a2, a
′
1)− u2(a2, a1))

∀a′1 ∈ A1

and

(1− |λ2|)u2(a2, a1) + λ2u1(a1, a2) ≥ (1− |λ2|)u2(a′2, a1) + λ2u1(a1, a
′
2)

∀a′2 ∈ A2

⇔ (1− |λ2|)(u2(a2, a1)− u2(a′2, a1)) ≥ λ2(u1(a1, a
′
2)− u1(a1, a2))

∀a′2 ∈ A2

We rewrite the first of the two fairness inequalities.
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χ(u1(a1, a2)−u1(a′1, a2))

≥ f̃2(a2, a1)

(
1 +

u2(a2, a
′
1)−ue2(a2)

uh2(a2)−umin
2 (a2)

1uh2 (a2)−umin2 (a2) 6=0

− 1− u2(a2, a1)−ue2(a2)

uh2(a2)−umin
2 (a2)

1uh2 (a2)−umin2 (a2)6=0

)

= (u2(a2, a
′
1)−u2(a2, a1)) · f̃2(a2, a1)

uh2(a2)−umin
2 (a2)

1uh2 (a2)−umin2 (a2)6=0 ∀a′1 ∈ A1

And analogously the second one.

χ(u2(a2, a1)−u2(a′2, a1))

≥ (u1(a1, a
′
2)−u1(a1, a2)) · f̃1(a1, a2)

uh1(a1)−umin
1 (a1)

1uh1 (a1)−umin1 (a1)6=0 ∀a′2 ∈ A2

We set

F̃2(a2, a1, χ) =
f̃2(a2, a1)

uh2(a2)−umin
2 (a2)

1uh2 (a2)−umin2 (a2)6=0 · χ−1 ∈ R

and

F̃1(a1, a2, χ) =
f̃1(a1, a2)

uh1(a1)−umin
1 (a1)

1uh1 (a1)−umin1 (a1)6=0 · χ−1 ∈ R.

If (a1, a2) is for a specific χ a fairness equilibrium, it is a SEA Nash equi-
librium for (λ1, λ2) = (Λ−1(F̃2(a2, a1, χ)), Λ−1(F̃1(a1, a2, χ))) ∈ (−1, 1)2 ⊂
[−1, 1]2.

The converse is obviously—when having a look at various examples—not
true. However, from the proof of Proposition 6, we learn that if (a1, a2) is a
SEA Nash equilibrium for E ⊂ (−1, 1)2, it is fair if and only if one can find
(λ1, λ2) ∈ E and χ > 0 s.t.

Λ(λ1) = F̃2(a2, a1, χ) and Λ(λ2) = F̃1(a1, a2, χ).
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Maybe, in the future more structure can be found for analyses of the ques-
tion which SEA plausible outcomes are fair, e.g., for symmetric games. Also
the relationship between being SEA plausible under social (i.e. λ1, λ2 > 0)
or anti-social (i.e. λ1, λ2 < 0) types and positive (i.e. f1, f2 > 0) and negative
(i.e. f1, f2 < 0) fairness equilibria (see [3] and [24]) shall be investigated. We
highlight again that in general not every outcome is plausible under the SEA
model and, even if so, not for all values of λ1, λ2.

4 Connections to other Fairness Models

At this point, connections and similarities to other fairness models will be
shown. These models and their differences to the SEA model are especially
interesting when interpreting results.

4.1 The Fehr-Schmidt Model

We discuss an interesting connection to another model, which also deals
with fairness and which is structurally not too different to our SEA model:
The Fehr-Schmidt model [13]. This model also uses a respecification of the
payoffs and does not deal with believed kindness as defined by Rabin [24].
To distinguish the utility function in the Fehr-Schmidt model from that in
our SEA model, we use Ûi for agent i’s respecified utility in the Fehr-Schmidt
model. The idea behind the model of Fehr and Schmidt is that agents do not
only account for their personal payoff, but also for how fair the distribution
of the total payoff among the agents is. In the two agent case, this is done
via:

Ûi(ai, a−i) = ui(ai, a−i)

− αi(u−i(a−i, ai)− ui(ai, a−i))+

− βi(ui(ai, a−i)− u−i(a−i, ai))+,

which is Equation (2) from [13] just in our notation. We use the definition
(·)+ := max{·, 0}. The α-term captures the idea that agents are averse
against when the opponent gets more than the agent him- or herself. The β-
term is an aversion against an unfair outcome in the sense that the agent gets
more than the opponent. It is αi ≥ βi assumed, which means that unfairness
against oneself is not considered less important than unfairness against the
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opponent. And finally, 0 ≤ βi < 1, which leads to αi ≥ 0. Values βi ≥ 1 are
argued to be “implausible” [13].6

Values βi < 0 are considered to be realistic, but “have virtually no impact
on equilibrium behavior” [13]. However, the case of βi < 0 or—in general—
ai, bi ∈ R will be important for the understanding of the difference between
the Fehr-Schmidt model and the SEA model. A negative β would mean that
someone wants to have more than her or his opponent, a negative α that he
or she wants to have less than his or her opponent. The question is whether
such preferences are similar to altruistic or sadistic preferences as expressed
in the SEA model?

In order to see the structural similarity of the Fehr-Schmidt model and
the SEA model, we rewrite the Fehr-Schmidt model:

Ûi(ai, a−i) =

{
(1 + αi)ui(ai, a−i)− αiu−i(a−i, ai), u−i(a−i, ai) ≥ ui(ai, a−i),

(1− βi)ui(ai, a−i) + βiu−i(a−i, ai), u−i(a−i, ai) ≤ ui(ai, a−i).

For a two-agents game in the Fehr-Schmidt model, the material game is
enlarged by four parameters, namely α1, β1, α2, β2. We may call an outcome
Fehr-Schmidt plausible, if and only if their exist α1, β1, α2, β2 ∈ R such that
the outcome is a Nash equilibrium in the respecified game using Fehr and
Schmidts’ formulae for Ûi (although, in [13] they assume β < 1 and argue
that β ≥ 0 is not a hard assumption from which it follows α ≥ 0).

Since the SEA model

Ui(ai, a−i) = (1− |λi|)ui(ai, a−i) + λiu−i(a−i, ai)

is described by two parameters λ1, λ2, we cannot hope for all Fehr-Schmidt
plausible outcomes to be SEA plausible. However, also the reverse is not
true, as we will see. But for social types, it is true.

Proposition 7. Every outcome (in a two-agents game) that is SEA plausible
under social types (i.e. λi ≥ 0) is Fehr-Schmidt plausible.

Proof. Setting −αi := λi =: βi makes Ûi and Ui the same since λi = |λi| for
i = 1, 2.

6In the recent work [12], also negative values and spiteful resp. competitive preferences
are analyzed.
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Table 7: Exemple for Fehr-Schmidt

u1(·);u2(·) a
(1)
2

a
(1)
1 0; 2

a
(2)
1 2; 4

In this case, αi ≤ 0 and βi ≥ 0 hold, which does not fit to the original
Fehr-Schmidt model since there, agents are more concerned about unfairness
when they get less than the opponent than about unfairness when they get
more. However, here, we allow for real α and β in any order, that means, an
agent in a SEA plausible outcome under social types get some fairness payoff
from the α term when getting less than the opponent (αi ≤ 0) and does
not get one from the β term if she or he is getting more than the opponent
(βi ≥ 0). That |αi| = βi accounts for the fact that the SEA model comes
with two parameters while the Fehr-Schmidt model uses four parameters,
i.e., the SEA model does not distinguish who gets more.

However, if at least one λi, let us say w.l.o.g. λ1, is negative α1 would have
to be positive and β1 negative to match the return from u−i. Both would
increase the revenue from ui, but since −|λi| < 0, this does not fit to the SEA
model. In order to see that this is not only a difference in the representing
values but also in behavior, let us have a look at the following example, see
Table 7. To make the analysis more convenient, we use an example where in
all cases u1 < u2 holds, such that we do not need α1. Additionally, agent 2
has only one strategy, thus we need no α2, β2, too.

Since the distance between agent 1’s and agent 2’s payoffs is always two,
according to the Fehr-Schmidt model, agent 1 would always (for all values

of α1, β1, α2, β2 ∈ R) prefer option a
(2)
1 over a

(1)
1 . For the SEA model we

calculate:

(1− |λ1|) · 0 + λ1 · 2
?
> (1− |λ1|) · 2 + λ1 · 4

λ1 < −
1

2

Thus, in the SEA model, agent 1 prefers option a
(2)
1 over a

(1)
1 if and only

if λ1 ∈ [−1
2
, 1] and strictly if and only if λ1 ∈ (−1

2
, 1]. Hence, if agent 1 is

‘sadistic enough,’ her or she would choose option a
(1)
1 . Since the Fehr-Schmidt
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Table 8: Exemple 1 for Bolton-Ockenfels

u1(·);u2(·) a
(1)
2

a
(1)
1 2; 0

a
(2)
1 2; 3

model cannot mimic this behavior, but can distinguish the cases where one
agents gets more or less than the other, the models are not similar in general
in behavior.7

4.2 The ERC Model from Bolton and Ockenfels

Lastly, we mention that there is another famous fairness model, the ERC
model by Bolton and Ockenfels [6]. There, utilities are respecified via func-
tions that depend (for agent i in the two-agents case) on ui(ai, a−i), c :=
ui(ai, a−i) + u−i(a−i, ai), σi := Ic 6=0ui(ai, a−i)c

−1 + Ic=02−1, and n = 2. Sev-
eral assumptions on this respecified utility have to be fulfilled. For our paper,
Equation (2) of [6] is interesting:

Ǔ(ai, a−i) = diui(ai, a−i)− ei(σi − 2−1)22−1

with di ≥ 0, ei > 0—where we altered the notation. We highlight that Bolton
and Ockenfels [6] use a model where parameters named r, s, which depend
i.a. on di, ei, are private information, i.e. a model of incomplete information.
As mentioned in the work at hand, also the SEA model shall be extended
to a model of incomplete information in future work. However, for now,
to compare the Bolton-Ockenfels model and the SEA model, we define an
outcome as Bolton-Ockenfels plausible, if it is a Nash equilibrium of the
Bolton-Ockenfels respecified model where di, ei are common knowledge.

When we have a close look on Tables 8 and 9, we observe—due to the
facts that agent 2 has no decision option, agent 1 gets always two utility

7The author is grateful to Fabian Herweg, who suggested at an internal “Graduate
Seminar in Economics” (University of Bayreuth, Germany; July 4th-5th, 2024) to investi-
gate the relationship between negative βs in the Fehr-Schmidt model and negative λs in
the SEA model.
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Table 9: Exemple 2 for Bolton-Ockenfels

u1(·);u2(·) a
(1)
2

a
(1)
1 2; 1

a
(2)
1 2; 4

units, and there is no outcome where c = 0—we do not have to analyze
agent 2’s payoffs and we can rewrite

Ǔ1(ai, a−i) = −0.5ei

(
2

2 + u2(a−i, ai)
− 1

2

)2

+ const

= −0.125ei

(
2− u2(a−i, ai)

2 + u2(a−i, ai)

)2

+ const

That means, even if we allow for di, ei ∈ R, which is not like in [6],
the preferences expressed through Ui and Ǔi do not correspond: while an
altruistic agent would in both examples (Tables 8 and 9) prefer the second
option and a sadistic one the first one, an agent with a positive e1 would in
Table 8 prefer the second option and an agent with a negative ei would have
preferences the other way around; though, in Table 9, both such agents (i.e.
with positive or negative ei) would be indifferent.

5 Example: Prisoner’s Dilemma

As explained in the introduction Section 1, we do model neither altruism nor
sadism in a reciprocal manner, but as intrinsic motivations. This is done by
means of respecifying the material payoffs ui(s) (i = 1, 2) into psychological
payoffs with parameters λi ∈ [−1, 1].

If λi is zero, agent i is a (pure) egoist, who is not directly interested
or affected by agent −i’s payoffs. However, of course, agent i is affected
indirectly due to the game by them. Sadism and altruism are supposed
to be opposite. We do not allow for values of |λi| > 1 since this would
alter the game too much to hold as a reasonable explanation for behavior
of the material game, i.e. it would lead to utilities ‘outside the box’ of the

20



D
isc

us
sio

n
Pap

er

material game (we do not use the wording ‘convex hull’ because also values
λi ∈ [−1, 0) are outside that hull). We stick to common knowledge and to
rational agents, although the agents do not necessarily consider own material
payoffs. The agents know whether the opponent is altruistic or sadistic and
to what degree.

As mentioned in Section 1, the analytical results for the work at hand are
stated mainly for pure strategies, i.e. actions. Also the various examples given
in [3] are given are analyzed for those actions only. Here, we demonstrate
the complexity of the SEA model when allowing for mixed, i.e. randomized
strategies. For that, we investigate the prisoner’s dilemma from Table 10
again. From Proposition 5 we know that all pure-strategy outcomes are SEA
plausible. In [3], it is calculated for which parameters λ1, λ2 which pure-
strategy outcome is SEA Nash. Next, we show for all parameter combinations
λ1, λ2 which mixed-strategy outcomes (which clearly include the pure ones)
are SEA Nash.

Table 10: Prisoner’s Dilemma [27]

u1(·);u2(·) a
(1)
2 a

(2)
2

a
(1)
1 3; 3 0; 5

a
(2)
1 5; 0 1; 1

If λi ≥ 0, i = 1, 2, this leads to the psychological payoffs shown in Ta-
ble 11, when both empathy parameters are negative, the payoffs can be found
in Table 12, and when, let’s say, the first is positive and the second is nega-
tive, the psychological payoffs are given in Table 13—the other combination
is analogous, see Table 14.

Table 11: Prisoner’s Dilemma: Psychological Payoffs when λi ≥ 0, i = 1, 2

U1(λ1; ·);U2(λ2; ·) a
(1)
2 a

(2)
2

a
(1)
1 3; 3 5λ1;−5λ2 + 5

a
(2)
1 −5λ1 + 5; 5λ2 1; 1
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Table 12: Prisoner’s Dilemma: Psychological Payoffs when λi < 0, i = 1, 2

U1(λ1; ·);U2(λ2; ·) a
(1)
2 a

(2)
2

a
(1)
1 6λ1 + 3; 6λ2 + 3 5λ1; 5λ2 + 5

a
(2)
1 5λ1 + 5; 5λ2 2λ1 + 1; 2λ2 + 1

Table 13: Prisoner’s Dilemma: Psychological Payoffs when λ1 ≥ 0, λ2 < 0

U1(λ1; ·);U2(λ2; ·) a
(1)
2 a

(2)
2

a
(1)
1 3; 6λ2 + 3 5λ1; 5λ2 + 5

a
(2)
1 −5λ1 + 5; 5λ2 1; 2λ2 + 1

Via straight forward, albeit lengthy, computations, one may find all Nash
equilibria using standard game theory ([22], cf. [21]). This leads to Table 15.

We use the following notation: πi is the probability for agent i = 1, 2 to
play a

(1)
i , hence, 1−πi is the probability of agent i = 1, 2 for playing a

(2)
i . We

note for the purpose of interpretation that, e.g., for the outcomes (0, 1), i.e.,
that one agent stays silent while the other cooperates with the police, one of
the agents (with values from [27], cf. [3]) wants to help his or her opponent,
while the opponent wants to hurt the agent or at least does not want to help
the agent too much. Such a behavior is not fair in the sense of Rabin [2, 24].

Table 14: Prisoner’s Dilemma: Psychological Payoffs when λ1 < 0, λ2 ≥ 0

U1(λ1; ·);U2(λ2; ·) a
(1)
2 a

(2)
2

a
(1)
1 6λ1 + 3; 3 5λ1;−5λ2 + 5

a
(2)
1 5λ1 + 5; 5λ2 2λ1 + 1; 1
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Table 15: The Nash Equilibria of the Empathic Prisoner’s Dilemma with
λi ∈ [−1, 1], i = 1, 2

Nash-Eq. λ2 ∈ (0.4, 1] λ2 = 0.4 λ2 ∈ (0.2, 0.4) λ2 = 0.2 λ2 ∈ [−1, 0.2)

λ1 ∈ (0.4, 1] {(1, 1)} {1} × [0, 1] {(1, 0)} {(1, 0)} {(1, 0)}

λ1 = 0.4 [0, 1]× {1} ([0, 1]× {1})
∪ ({1} × [0, 1])

{(0, 1), (1, 0),
(5λ2−1, 1)} {(0, 1), (1, 0)} {(1, 0)}

λ1 ∈ (0.2, 0.4) {(0, 1)} {(0, 1), (1, 0),
(1, 5λ1−1)}

{(1, 0), (0, 1),
(5λ2−1, 5λ1−1)}

{(0, 1), (1, 0),
(0, 5λ1−1)} {(1, 0)}

λ1 = 0.2 {(0, 1)} {(0, 1), (1, 0)} {(0, 1), (1, 0),
(5λ2−1, 0)}

([0, 1]× {0})
∪ ({0} × [0, 1])

[0, 1]× {0}

λ1 ∈ [−1, 0.2) {(0, 1)} {(0, 1)} {(0, 1)} {0} × [0, 1] {(0, 0)}

6 Conclusion and Future Work

We analyzed the SEA model from [3] and showed that for small games, i.e.,
for two-agent games with at most two actions per agent, all pure-strategy
outcomes are SEA plausible, but not for all parameter combinations, which
gives insights into the structure of those games. We showed that all fair
outcomes are SEA plausible (see [24]) and we compared the SEA model to the
models of Bolton-Ockenfels and Fehr-Schmidt. Additional, mixed-strategy
outcomes are analyzed for the example Prisoner’s dilemma.

There are various ways for future work concerning the SEA model or
related concepts: The most important step will be to implement the SEA
model in a framework with incomplete information, i.e., when agents do not
know the parameter of the opponent (but can have some belief about it).
This way it would be interesting to check whether the two-sided anti-social
punishment (cf. [23]) can be mimicked. Note that in principle an intrinsically
(partially) altruistic or (partially) sadistic agent does not care about the type
of her or his opponent. Whereas for equilibrium behavior this does matter
since an outcome can be an equilibrium if one agent is sadistic and the other
one is altruistic but may not be one if both agents are, let us say, sadistic. If
both agents are sadistic but do not know the type of the respective opponent
and both believe the opponent is altruistic, they might both choose the option
from the described equilibrium. Challenging, however, may be the Dictator
und the Ultimatum game [3, 17, 18] as well as [4, 28] and the references
therein.

Another important point is the check for evolutionary stability. Can
altruists or sadists or both survive? Related to that is the question what
happens if types are not described by one parameter anymore but also via
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distributions over his or her descendants. While this topic is likely to be
analyzed via simulations at first, maybe also analytical results are possible
in the not too near future. Next, also other types of “personality” not only
altruistic or sadistic behavior but also other preferences that have influence
on the choice of options, on the fitness, or on survival chances can be analyzed
that way. Lastly, risk and the possibly limited ability of agents to see through
the structure of games and behavior is important—agents might simply not
be able to calculate equilibria or this is too expensive for them or they simplify
games and play like in the simplified game.8 Not to mention the question
what happens if agents care about the psychological (i.e. the respecified)
payoff of the opponent and not (only) about the material one.
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[5] Bester, Helmut, Werner Güth: Is Altruism Evolutionarily Stable? Jour-
nal of Economic Behavior & Organization, 34(2):193-209, 1998.

[6] Bolton, Gary E., Axel Ockenfels: ERC: A Theory of Equity, Reciprocity,
and Competition. American Economic Review, 91(1):166-193, 2000.

[7] Colman, Andrew M., J. Clare Wilson: Antisocial Personality Disorder:
An Evolutionary Game Theory Analysis. Legal and Criminological Psy-
chology, 2:23-34, 1997.

[8] Cooper, Russell, Douglas V. DeJong, Robert Forsythe, Thomas W.
Ross: Cooperation Without Reputation: Experimental Evidence From
Prisoner’s Dilemma Games. Games and Economic Behavior, 12(2): 187-
218, 1996.

[9] Dawes, Robyn Mason: Social Dilemmas. Annual Review of Psychology,
31(1): 169-193, 1980.

[10] Dawes, Robyn Mason, Richard H. Thaler: Anomalies: Cooperation.
Journal of Economic Perspectives, 2(3): 187-197, 1988.

[11] Edgeworth, Francis Ysidro: Mathematical Psychics: An Essay on the
Application of Mathematics to the Moral Sciences, Kegan Paul, London,
1881.

[12] Fehr, Ernst, Gary Charness: Social Preferences: Fundamental Charac-
teristics and Economic Consequences. Journal of Economic Literature,
63(2):440-514, 2025.

[13] Fehr, Ernst, Klaus M. Schmidt: A Theory Of Fairness, Competition
And Cooperation. The Quarterly Journal of Economics, 114(3):817-
868, August 1999.

[14] Fehr, Ernst, Klaus M. Schmidt: The Economics of Fairness, Reciprocity
and Altruism – Experimental Evidence and New Theories. In: Serge-
Christophe Kolm, Jean Mercier Ythier (Eds.), Handbook of the Eco-
nomics of Giving, Altruism and Reciprocity, 1:615-691, 2006.
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