
Drivers of forest dynamics: Joint effects 
of climate and competition

Dissertation

zur Erlangung des akademischen Grades

Dr. rer. nat.

vorgelegt der

Fakultät für Biologie, Chemie und Geowissenschaften

der Universität Bayreuth

von

Frau Dipl. Geoökologin Klara Dolos

geboren am 03.03.1982 in Stuttgart 



Die vorliegende Arbeit von Frau Dipl.-Geoökol. Klara Dolos, geb. am 03.03.1982 in 

Stuttgart,  wurde in der Zeit von Mai 2009 bis April 2013 unter der Betreuung von 

Herrn  Prof.  Dr.  Björn  Reineking  an  der  Juniorprofessur  Biogeographische  Model-

lierung der Universität Bayreuth angefertigt. 

Vollständiger  Abdruck  der  von  der  Fakultät  für  Biologie,  Chemie  und  Geowis-

senschaften  der  Universität  Bayreuth  genehmigten  Dissertation  zur  Erlangung  des 

akademischen Grades Doktor der Naturwissenschaften (Dr. rer. Nat). 

Dissertation eingereicht am: 25.4. 2013

Zulassung durch die Prüfungskommission: 22.5.2013

Wissenschaftliches Kolloquium: 31.10.2013

Amtierender Dekan:

Prof. Dr. Rhett Kempe

Prüfungsausschuss:

Prof. Dr. B. Reineking (Erstgutachter)

Prof. Dr. B. Engelbrecht (Zweitgutachterin)

Prof. Dr. M. Hauhs (Vorsitz)

Prof. Dr. B. Huwe

PD Dr. G Aas 

1



Wer immer nur tut, was er schon kann,

bleibt immer nur dass, was er schon ist.

Henry Ford    



Table of contents
 Abstract........................................................................................................II

 Zusammenfassung....................................................................................IV

 Introduction..................................................................................................1

 Background.............................................................................................1

 Natural forest dynamics..........................................................................3

 Demographic processes.....................................................................4

 Forest disturbances............................................................................8

 Forest succession...............................................................................9

 Climatic gradients..................................................................................10

 Spatial climatic gradients..................................................................11

 Climate change.................................................................................12

 Forest modelling....................................................................................13

 Statistical models..............................................................................14

 Simulation models............................................................................15

 Mathematical models........................................................................17

 Limits.................................................................................................17

 Conclusions...........................................................................................19

 References............................................................................................20

 Manuscripts...............................................................................................33

 Summary of the following manuscripts.................................................33

 Manuscript 1: Long-term vegetation dynamics in New Zealand...........35

 Manuscript 2: Climatic turning point for beech and oak........................69

 Manuscript 3: Symmetric and asymmetric competition......................103

 Manuscript 4: Ecotype mixing as climate change adaptation.............133

 Manuscript 5: Disturbance interactions...............................................157

 Acknowledgements.................................................................................190

 Supplement.............................................................................................191

 List of manuscripts and specification of own contribution..................191

 Presentations on this research...........................................................193

 Non-refereed periodicals.....................................................................194

 Further publications............................................................................194

 Erklärung.............................................................................................195

I



Abstract

The present dissertation thesis addresses different aspects of forest dynamics 

and possible changes due to climate change. Various modelling approaches are 

used to explore joint effects of climate and competition on forest dynamics with a 

focus on temperate forests. Motivated by scientific interest, this thesis is aimed at 

contributing to the establishment of fundamental knowledge for proper ecosystem 

management. Each of the research projects of this thesis explores a facet of forest 

dynamics. It appears that for projections of forest dynamics under climate change 

particularly, it is critical to consider competition among trees.

In the first study, the joint effect of climate and competition on forest dynamics 

in a mountain forest of New Zealand was investigated. The landscape simulation 

model LandClim was calibrated based on empirical data and applied to reproduce 

a  1700  years  forest  succession  under  stationary  climate  at  the  slope  of  Mt. 

Hauhungatahi, North Island. Although designed for European temperate forests, 

LandClim was capable of simulating NZ´s forest dynamics.

Under non-stationary climate, forests likely remain in disequilibrium with cli-

mate for some time due to the longevity of trees and competitive prevention of 

establishment. This aspect was investigated in a mixed beech-oak forest in Ger-

many, using LandClim and the forest gap model SILVA in a cooperation study. 

Furthermore,  a  possible  ‘climatic  turning  point’ was  investigated,  the  point  at 

which species dominances change due to changes in competitiveness caused by 

climate change. Both models projected a potential climatic turning point at a mean 

annual temperature of 11-12 °C and precipitation sum of 500-530 mm. However, 

the  change of  species  composition in  existing  mixed stands was much slower 

since the turning point also depended on inherited stand structure. Based on these 

projections the promotion of oak at dry sites seems advisable due to its superior 

resistance and resilience to drought.

The applied simulation models consider joint effects of climate and competi-

tion but no changes in species sensitivity to competition along climatic gradients. 

The Spanish National Forest Inventories provided a solid basis to develop a stat-

istical model for the influence of climate and competition on tree growth. The res-

ults  indicated that  in  Mediterranean forests  the effect  of  competition increases 

with aridity potentially resulting in an additional disadvantage for drought sens-

itive oaks compared to pines under climate change.
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Under the prerequisite that forest dynamics will be affected by climate change, 

different forest management strategies on adaptation are currently discussed. One 

option is the promotion of tree species that are better adapted to anticipated future 

climates (such as oak instead of beech in Germany) and also the introduction of 

non-local  ecotypes  of  local  species.  This  increase  in  biodiversity  intuitively 

appears promising because it is in line with the insurance hypothesis and the port-

folio effect theory. Within this thesis the effect of ecotype mixing as an increase of 

within stand diversity under consideration of self-thinning was assessed. It was 

shown that ecotype mixing in forest stands might lower the risk of yield losses 

and at the same time might exempt the portfolio effect from its drawback of lower 

chances for high yields.

Climate not only affects demographic rates of tree species but also all other 

ecosystem  components.  Disturbances  are  an  important  component  of  forest 

dynamics because they initiate successions and thereby influence species coexist-

ence. Climate will alter disturbance regimes not only directly but also due to inter-

actions among disturbances, for example an increased risk of insect outbreaks due 

to weak tree defence caused by severe drought stress. Most disturbance interac-

tions have been observed to be positive, implying that increases of disturbances in 

quality and quantity due to climate change will be amplified. Furthermore, sys-

tems containing positive feedback loops are  considered to be mostly unstable, 

which would result in forest collapse. A theoretical study on disturbance interac-

tions showed why positive feedback loops of disturbances do not necessarily lead 

to a forest collapse. Disturbance interactions might cause only a minor part of dis-

turbances,  whereas  direct  changes  due  to  climate  change  are  of  much  higher 

importance.

The described studies reflect the diversity of the research field forest dynamics 

and innovative ecological methodology. Nevertheless, the present thesis is not an 

exhaustive discussion of drivers of forest dynamics under climate change. Forest 

dynamics and its drivers provide a range of open research questions posing a chal-

lenge for fundamental an applied research of high relevance for society.
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Zusammenfassung

Diese  Dissertation  befasst  sich  mit  Walddynamik  und  möglichen  Verände-

rungen in Folge des Klimawandels. Verschiedene Modellierungsansätze werden 

verwendet, um den Einfluss von Klima und Konkurrenz auf die Walddynamik zu 

untersuchen.  Motiviert  durch  wissenschaftliche  Neugier  soll  diese  Arbeit  auch 

dazu beitragen, fundiertes Wissen als Basis für nachhaltiges Forstmanagement zu 

schaffen. Jede der hier vorgestellten Studien untersucht einen Aspekt der Walddy-

namik, mit einem Schwerpunkt auf temperaten Wäldern. Es erweist sich, dass vor 

allem im Hinblick auf Projektionen zukünftiger Wälder unter Klimawandel Kon-

kurrenz berücksichtigt werden muss.

In der  ersten  hier  vorgestellten  Studie  wurde  der  gemeinsame Einfluss  von 

Klima und Konkurrenz entlang eines Höhentransektes in Neuseeland untersucht. 

Das Landschaftsmodell LandClim wurde dazu kalibriert und 1700 Jahre Waldsuk-

zession am Hang des  Mt.  Hauhungatahi  (Nordinsel,  Neuseelands) unter statio-

närem Klima simuliert.  Obwohl das  Simulationsmodell  LandClim für  europäi-

sche, temperate Wälder entwickelt wurde, war es mit nur geringfügigen Anpas-

sungen möglich, die Walddynamik in Neuseeland zu simulieren.

Unter sich veränderndem Klima bleiben Wälder wegen ihrer Langlebigkeit und 

durch  Konkurrenzausschluss  von  Etablierung  für  mehrere  Generationen   im 

Ungleichgewicht  mit  dem  Klima.  Dieser  Aspekt  wurde  in  einem  deutschen 

Buchen-Eichen Mischwald unter Verwendung von LandClim und SILVA unter-

sucht. Es wurde nach einem „Klimatischen Wendepunkt“ (climatic turning point, 

CTP) gesucht, bei dem sich die Dominanz von Buche und Eiche umkehrt. Beide 

Modelle prognostizierten einen CTP bei Jahresmitteltemperaturen von 11-12 °C 

und  Jahresniederschlägen  von  500-530 mm.  Ein  Artwechsel  in  bereits  beste-

henden Beständen fand jedoch nicht sofort statt. Die Studie zeigte, dass es schon 

heute sinnvoll erscheint auf relativ trockenen Standorten die Eiche gegenüber der 

Buche zu fördern.

Die angewendeten Simulationsmodelle berücksichtigen den gemeinsamen Ein-

fluss von Klima und Konkurrenz auf die Walddynamik, nicht aber eine Verände-

rung des Einflusses von Konkurrenz entlang eines Klimagradienten. Die spani-

schen Nationalen Waldinventuren boten die Möglichkeit ein statistisches Modell 

für den Einfluss von Klima und Konkurrenz auf das Baumwachstum zu entwi-

ckeln. Die Ergebnisse zeigten, dass die Bedeutung von Konkurrenz mit zuneh-

mender  Aridität  größer  wird.  Dies  könnte  zu  einem zusätzlichen  Nachteil  für 
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schattentolerante aber dürre-sensitive Arten wie die (sub-) mediterranen Eichen 

gegenüber Kiefern unter Klimawandel bedeuten.

Angesichts des Klimawandels werden aktuell verschiedene Möglichkeiten des 

Managements  diskutiert.  Eine vielversprechende Möglichkeit  ist  die  Förderung 

und auch eine Neu-Einführung von Arten und Ökotypen, die besser an zukünftige 

Bedingungen angepasst sind. Diese Steigerung der Biodiversität erscheint vielver-

sprechend,  da  sie  im  Einklang  mit  der  „Versicherungs-Hypothese“  (engl.  ins-

urance hypothesis) und der Portfolio Effekt Theorie ist.  In einer Studie konnte 

gezeigt werden, dass „Ecotype Mixing“, d.h. der Anbau von verschiedenen Öko-

typen der selben Art in einem Bestand, das Risiko von Verlusten unter unsicherer 

Zukunft vermindert.  Dabei war der Portfolio Effekt sogar von seinem Nachteil 

einer   geringeren  Wahrscheinlichkeit  hoher  Erträge  befreit.  „Ecotype  Mixing“ 

erscheint daher eine aussichtsreiche Möglichkeit zur Anpassung an den Klima-

wandel zu sein.

Das Klima beeinflusst nicht nur die demographischen Prozesse der Arten son-

dern auch alle anderen Ökosystemkomponenten. Störungen machen einen wich-

tigen Teil der Walddynamik aus, weil sie Sukzessionen initiieren. Dadurch beein-

flussen sie die Koexistenz von Arten. Der Klimawandel verändert Störungsregime 

aber nicht nur direkt sondern auch  indirekt, zum Beispiel durch ein erhöhtes Bor-

kenkäfer-Risiko  durch  vermehrte  Dürre  und  eine  dadurch  verringerte  Wider-

standsfähigkeit  der  Bäume.  Die  meisten  Studien  finden  positive  Interaktionen 

zwischen einzelnen Störungen, so dass ein Anstieg der Qualität und Quantität von 

Störungen durch den Klimawandel  noch verstärkt  würde.  Außerdem sind Sys-

teme, die positive Rückkoppelungen enthalten, sehr oft instabil, was zum Zusam-

menbruch der Wälder führen könnte. Eine theoretische Studie über Störungsinter-

aktionen zeigte, warum positive Rückkoppelungen zwischen Störungen nicht zum 

vollständigen Rückgang der Wälder führen müssen. Außerdem zeigte die Studie, 

dass  Störungsinteraktionen  möglicherweise  nur  einen  geringen  Anteil  an  Stö-

rungsregimen bedingen und Veränderungen im Zuge des Klimawandels weitaus 

bedeutender sind.

Die vorgestellten Studien spiegeln die Vielfalt des Forschungsfeldes „Walddy-

namik“  und  der  ökologischen  Methodik  wieder,  es  was  aber  unmöglich  das 

Thema umfassend im Rahmen dieser Dissertation abzuhandeln. Es bleiben daher 

eine Vielzahl von offenen Fragen zu Walddynamik und den beteiligten Prozessen, 

deren Erforschung eine Herausforderung darstellt und von großer Bedeutung für 

die Gesellschaft ist.
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Introduction

Introduction

Background

Facilitation of sustainable forest management is a crucial task to protect biod-

iversity,  to  reduce  carbon emissions  from deforestation  and forest  degradation 

while preserving the socio-economic value. Trees as the key organisms of forests 

provide shelter and food for animals such as large herbivores and smaller mam-

mals, birds, insects, as well as for understorey plants, epiphytes, mosses, fungi 

and, notably, to a rich biodiversity of soil organisms. Estimates of global tree spe-

cies richness range from 60,000 (Grandtner 2005) to 100,000 taxa (Oldfield et al. 

1998). Besides the intrinsic value of biodiversity (Lindenmayer et al. 2000) and its 

role for ecological stability, forests provide very important goods and services to 

society such as watershed and air quality protection, soil erosion control, food and 

timber production, and recreational and cultural functions (Schroter 2005, Sun-

derlin et al. 2008, Turner and Daily 2008).

Current climate change is anticipated to affect forest productivity, composition 

and distribution considerably (Allen et al. 2010, Köhl et al. 2010, Hanewinkel et 

al. 2012). Besides alterations in mean climate, increasing temporal variability and 

more frequent occurrences of extreme weather events such as droughts pose chal-

lenges  for  ecosystem  management  (Jentsch  2007,  Jentsch  and  Beierkuhnlein 

2008).  Notably,  projected  impacts  of  climate  change  on  forests  differ  among 

bioclimatical regions (Rivas-Martínez et al. 2004, Scholze 2006). Temperate and 

boreal forests, for example, are less vulnerable in regard to productivity losses 

than  Mediterranean  forest  ecosystems,  where  growth  is  already  water  limited 

(Lindner et al. 2010).

The management  of long-lived ecosystems such as forests  has to  deal  with 

uncertain future growing conditions while long term decisions have to be made 

(Hildebrandt and Knoke 2011). Particularly in the face of climate change, man-

agement decisions that are only based on experience but lack profound under-

standing cannot cope with dynamic changes of ecosystem processes provisioning 

biotic interactions (Korzukhin et al. 1996). This is based on the assumption that 

future conditions have no equivalent in the past (Williams and Jackson 2007). 

Under such novel conditions forest community responses cannot simply be pro-
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Background

jected by means of extrapolating regression functions (Veloz et al. 2012). A mech-

anistic  understanding of  natural  forest  dynamics  is  required  for  projections  as 

basis for proper ecosystem management.

Forest dynamics primarily emerge out of the main demographic processes: Dis-

persal, establishment, growth and mortality (Nakashizuka 2001, Petit and Hampe 

2006).  Climate,  soil,  relief  and  exogenous  disturbances  are  important  abiotic 

drivers. Competition among neighbouring trees and all other organisms is one of 

the most important biotic drivers. Whereas spatial species distributions (altitudinal 

and latitudinal gradients) are primarily influenced by abiotic factors such as cli-

mate and soil properties (Jump et al. 2009), forest succession is influenced more 

strongly by competition, mainly competition for light (Finegan 1984). Current cli-

mate change confounds effects of a climatic gradient with forest succession. This 

renders assessments of climate change impacts on forests a special case compared 

to investigations on spatial distributions.

Motivated by the need to prepare forests for the future aiming at maintaining 

biodiversity  and  ecosystem  services,  this  thesis  intents  to  deepen  the  under-

standing of key processes of forest dynamics. A focus lies on temperate forests 

and the  influence  of  climate  on  forest  growth considering  competition  among 

neighbouring trees. The processes and interactions that shape natural communities 

are often difficult to trace. One of the obstacles is the richness of processes in eco-

systems that furthermore appear at different temporal and spatial scales. For some 

ecological processes such as forest succession the temporal scales are larger than 

the human lifespan. To gain insights in such processes there is need for abstraction 

from real ecosystems and reduction of complexity.  Within this thesis modelling 

techniques addressing different levels of complexity were applied to explore the 

following research questions with respect to forest dynamics:

• How do temperature  and precipitation influence tree  growth and forest 

composition (Manuscripts 1-3)?

• How  does  competition  interact  with  climate  in  shaping  forests 

(Manuscripts 1-3)?

• Which role plays intraspecific diversity for climate change adaptation in 

forests (Manuscript 4)?
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Background

• Does positive feedback among forest disturbances pose a threat to current 

forests (Manuscript 5)?

Natural forest dynamics

The  main  demographic  processes  dispersal  (Howe  and  Smallwood  1982), 

establishment (Urbieta et al. 2008), growth (Kunstler et al. 2011) and mortality 

(Franklin et al. 1987) together with biotic interactions shape species distributions 

at spatial and temporal scales (Nakashizuka 2001, Petit and Hampe 2006). The 

geographic distribution of species is highly correlated with climate (Thuiller et al. 

2003, Rodríguez-Sánchez et al. 2010, Michelot et al. 2012, García Valdés et al.‐  

2013) and can be assessed best along strong climatic gradients. Research on the 

climatic  niche is  intense but  still  largely based on presence-absence data  (e.g. 

Araújo and Guisan 2006). Commonly, the two-dimensional temperature-precipita-

tion niche of tree species is used for forest management, particularly in the face of 

climate change (Kölling 2007, Falk and Mellert 2011). Yet, competition modifies 

species abundances and can even cause competitive exclusion of one species due 

to the presence of another within its physiological range (Huston and Smith 1987, 

Loehle 1998, Franklin et al. 2002). Competition among neighbouring trees and all 

other organisms is one of the most important biotic interactions and a main driver 

of forest succession (Finegan 1984).

Besides demographic processes, natural abiotic and biotic disturbances are fun-

damental  components of forest  dynamics (Jentsch 2007).  Disturbances  remove 

biomass which in turn provides space for establishment. The main forest disturb-

ances are wind storms, wildfires and insect outbreaks all of which are expected to 

change in quality and quantity due to climate change (Dale et al. 2000, Dale et al. 

2001).  Since many forestry practices involve disturbance-like impacts,  forestry 

will inevitably have effects on forest dynamics particularly in Europe and other 

regions with high population densities. For example, it has been estimated that 

more than 80% of temperate broadleaved forests are under strong anthropogenic 

influence (Hannah et al. 1995). However, sustainable forest management can also 

be used as an option for climate change adaptation (Noss 2001, Bengtsson et al. 

2000, Temperli et al. 2012, Manuscripts 2 & 4).
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Natural forest dynamics

Demographic processes

Dispersal

Demographic rates of trees are known to be correlated with average climate but 

are also influenced by forest disturbances and extreme weather events. Yet,  dis-

persal as the initial colonization step is mainly controlled by the medium which 

carries seeds or propagules: Dispersal by animals such as birds, ants and migrating 

ungulates,  wind dispersal,  down stream water  dispersal  and also self-dispersal 

with subsequent secondary dispersal (Howe and Smallwood 1982, Manzano and 

Malo  2006).  Some tree  species  are  also  able  to  reproduce  by  vegetative  pro-

pagules even more successfully than by sexual reproduction (Leakey 1985, Koop 

1987, Del Tredici 2001). 

Rapidity of species range shifts after  past climatic changes (e.g. Quaternary 

glaciation  cycles)  and  current  anthropogenic  climate  change  is  determined  by 

yearly dispersal distances into previously uncolonised regions. Yearly dispersal 

distances of about 100 m have been estimated for tree species, however a high 

variability  exists  between species  (Davis  1983,  Higgins  and Richardson 1999, 

Svenning and Skov 2007). Besides dispersal distances of seeds and propagules, 

reproductive maturity plays an important role for the rapidity of range expansion 

(Kozłowski 1992, He 1999).  Dispersal limitations result  in species distribution 

that is out of equilibrium with the climate. This poses a challenge in estimations of 

environmental niches (Svenning and Skov 2007, Thuiller et al. 2008, Jump et al. 

2009).

Establishment

Establishment is considered to be a bottleneck for species distributions (Urbieta 

et al. 2008), particularly in the context of naturalization and invasion of neobiota 

(Kowarik and Boye 2003). Species can only establish within certain abiotic limits 

which are similar to those controlling growth (Manuscripts 1 & 2). Yet, ontogen-

etic changes in species traits lead to different habitat requirements for seedlings, 

saplings and adults. For example, young trees are often more sensitive to drought 

than mature trees (Cavender-Bares and Bazzaz 2000) and establishment is there-

fore only possible under favourable conditions (Urbieta et al. 2008).
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Despite the climatic regeneration niche, establishment is strongly influenced by 

biotic interactions (Kellman and Kading 1992, Kobe et al. 1995, Calder and St. 

Clair 2012). Competition among tree individuals leads to considerable self-thin-

ning during the establishment phase and also later on (Pickard 1983, Lonsdale 

1990). Individuals are selected according to their performance which might lead 

to survival of the best adapted (Manuscript 4). Besides adaptation to the abiotic 

environment, shade tolerance strongly determines survival of self-thinning (Kobe 

et al. 1995). Similarly to drought tolerance, shade tolerance  can differ between 

ontogenetic life stages, usually in support of seedling survival (Lusk 2004, Niine-

mets  2006).  Some pioneer  tree  species  can  only  establish  in  forest  gaps  (e.g. 

caused by single tree death) or after disturbances, i.e. at low competition levels 

(Whitmore 1989, Manuscripts 1). Furthermore, most tree species are very sens-

itive to herbivory during their early life stages (rodents, deer, insects, below and 

above ground herbivory). Regrowth can even be prevented completely if herbi-

vore population is too large (Meiners 2000, Cierjacks and Hensen 2004, Côté et 

al. 2004).

Growth

Tree growth is considered as a good proxy for vitality and whole plant carbon 

balance  (Dobbertin  2005)  and  has  been  studied  intensively  (Loehle  1998, 

Sánchez-Gómez et al.  2008, Gómez-Aparicio et  al.  2011, Kunstler et  al.  2011, 

Babst et al. 2013). Absolute growth, for example measured as diameter increment, 

is to a large part determined by tree size and can be expressed through allometric 

relations  (Zeide  1993,  Weiner  and  Thomas  2001).  Two  ecological  principles 

underlie the sigmoid allometry of tree growth and size: The Malthusian law of 

exponential growth (Malthus 1798) and the existence of an upper limit adopted 

from population ecology (Berryman 1999, Turchin 2001).

Climate and competition (and further environmental factors such as nutrient 

supply) modify individual growth and determine the competitiveness of species in 

a given environment (Manuscripts 1-3). Statistical analysis of tree growth found 

that competition can even have a stronger effect on growth than climate (Gómez-

Aparicio  et  al.  2011,  Kunstler  et  al.  2011),  particularly  competition  for  the 

resource light (Manuscript 3).
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Mortality

Tree death is the result of complex interactions among multiple factors and less 

understood than growth and other demographic processes (Franklin et al. 1987). 

The particular reasons that a tree dies are difficult to separate. Different mortality 

agents might be dominant during different ontogenetic stages of trees (Franklin et 

al.  1987, Kozlowski 1991). Usually, regular growth-dependent mortality causes 

such as senescence, competition, climate effects and weak pathogens are distin-

guished from external growth-independent mortality due to fire, windthrow, and 

severe epidemics. Abrupt mortality due to extreme weather events and disturb-

ances such as fire, windthrow and insect epidemics often remove entire stands 

(Manuscripts 1 & 5).

Regular tree mortality is closely related to growth (Bigler and Bugmann 2003, 

Wunder  et  al.  2006,  Wunder  et  al.  2008)  and  can  be  predicted  by  statistical 

models. This correlation is widely used in forest simulation models (Keane et al. 

2001, Bigler and Bugmann 2004, Manusch et al. 2012, Manuscripts 1 & 2). One 

major reason for growth reduction and subsequent tree death is competition and 

subsequently tree mortality is very high during the early phase of self-thinning 

(Pickard 1983, Lonsdale 1990, Manuscript 4). Occurrence of age dependent mor-

tality, i.e. mortality due to senescence, in terms of changes in gene expression that 

might indicate genetically controlled ageing mechanisms (Diego et al.  2004) is 

discussed but an intrinsic physiological alteration has not been proven to date.

The most  prominent  causes  of  tree  death  currently  discussed  are  increased 

aridity  and  severe  drought  due  to  climate  change  (Allen  et  al.  2010, 

Manuscript 2). Increased mortality in temperate forests and even die-backs are 

attributed to increased aridity (Gitlin et al. 2006, van Mantgem and Stephenson 

2007,  Worrall  et  al.  2008,  Rehfeldt  et  al.  2009,  Carnicer  et  al.  2011).  Water 

scarcity  over  longer  time  periods  leads  to  carbon  starvation  and  subsequent 

growth reduction (McDowell and Sevanto 2010, Sala et al. 2010). During times of 

prolonged  drought,  trees  reduce  evapotranspiration  by  closing  their  stomata 

(McDowell et al. 2008). Since plant respiration is thereby also reduced, closing 

the  stomata  essentially  means  that  the  plant  starves  itself  by  blocking  carbon 

uptake for photosynthesis. Very severe drought additionally reduces phloem con-

ductance or even causes cavitation which might lead to starvation (Wortemann et 
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al. 2011). Hydraulic failure occurs when drought intensity is sufficient to push a 

plant past its threshold for irreversible desiccation (Sala et al. 2010).

Drought  can  further  indirectly  deteriorate  tree  defence  and  facilitate  insect 

calamities  and  other  diseases  (Hebertson  and  Jenkins  2008,  Manuscript  5). 

Slowly progressing tree diseases such as root rot and herbivores can cause starva-

tion by lowering water and nutrient uptake in case of root damage or hinder pho-

tosynthesis in case of defoliation. Furthermore, semi-parasites such as mistletoe 

can intensify drought stress extracting water and nutrients from the phloem of its 

host (Dobbertin and Rigling 2006).

Data sources

Tree response to climate can be assessed best along wide climatic gradients 

preferably covering the entire physiological range of the species. For the analysis 

of tree growth, datasets with at least two measurements of tree size at different 

points of time are required (e.g. Gómez-Aparicio et al. 2011, Kunstler et al. 2011). 

The analysis of growth dependent mortality requires as many as three measure-

ments of tree size (e.g. Wunder et al. 2008). In Europe, the collection of national 

forest  inventory  data  represents  a  valuable  source  of  information  on  forest 

resources and a promising base for the analysis of tree growth (Manuscript 3) as 

well as regrowth (Ruiz-Benito et al. 2012) and mortality (Ruiz-Benito et al. 2013). 

The first EU wide analysis based on harmonized databases is currently being con-

ducted (Winter et al. 2008, Ferretti 2010).

Alternatively, dendrological data can be used (Briffa et al.  1998, Bigler and 

Bugmann 2004, Rossi et al. 2006, Čufar et al. 2008,  Manuscript 2). This data 

provides  a much higher temporal resolution and longer  time series than forest 

inventories. It allows for assessments of tree reactions on an annual or even sub-

annual scale when combined with high resolution climate data. Time lags in reac-

tions to climatic events and recovery times can thereby be assessed (Meinardus 

and Bräuning 2011). In making use of the correlation between climate and tree 

growth, the reverse research approach is also chosen, i.e. reconstructions of cli-

mate and of insect calamities based on tree ring analysis (Briffa et al. 2001, Luter-

bacher 2004, Martinelli 2004, Campbell et al. 2007).
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Another source of data on demographic rates are experimental studies (Under-

wood 2009). In manipulative experiments environmental variables are controlled 

while the target variable, e.g. growth, is measured (Manuscript 4). This approach 

facilitates separating the effects of variables that are largely correlated in the field 

(such  as  temperature  and  precipitation,  stand  density  and  precipitation; 

Manuscript 3).  Additionally, by manipulative experiments the responses of an 

organism or ecosystem to conditions of interest  can be assessed systematically 

through manipulative experiments. Consequently, experiments are very common 

in climate change research (Bart 2006, Jentsch et al. 2007, Pretzsch et al. 2010, 

Kreyling et al. 2012). However, slow processes such as tree growth and regular 

mortality result  in the need for long-lasting experiments  (Benson et  al.  1992, 

Pretzsch et al. 2010). Since it is not always feasible to wait for the entire life-span 

of a tree to get results, alternative model organisms are often used. To assess the 

growth reaction of tree species and ecotypes to different climatic conditions, sap-

lings are commonly used and findings are transferred to mature trees (Thiel et al. 

2012, Manuscript 4). Aside from the problem of transferability, the need for rep-

licates to enable hypothesis testing poses a main challenge (Oksanen 2001).

Forest disturbances

Disturbances constitute an important component of forest dynamics (Jentsch 

2007). Their occurrence is rather sporadic or can re-initiate forest successions at 

broader scales. On a global scale, the main non-anthropogenic forest disturbances 

are wind storms, wildfires and insect outbreaks (Dale et al. 2000, Dale et al. 2001, 

Manuscript 5). Further examples of natural disturbances are herbivores, extreme 

weather events such as drought (Ayres and Lombardero 2000, White and Jentsch 

2001, Weisberg and Bugmann 2003) and extreme disturbances such as volcanic 

eruptions affecting entire landscapes (‘large infrequent disturbances’ sensu Turner 

et al. 1998, Manuscript 1).

Generally, in forest ecology disturbance is an event that involves the removal 

of biomass or causes death of individuals (Grime 1977, Sousa 1984) and can be 

characterized by its frequency, size, severity, intensity and residuals (White and 

Pickett 1985, Turner et al. 1998). Temporal scaling of disturbances, i.e. their fre-

quency, has to be interpreted with regard to the generation time of the population 

of interest, i.e. the life span of trees in the case of forests. The same applies to the 
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spatial scaling which is relative to the organism size or its range of activity, for 

trees dispersal distances.  In forests, severity usually includes not only biomass 

removal and tree mortality but also the disruption of ecosystem structure: Erosion 

due to exposure of mineral soil and loss of soil nutrients, death of advance regen-

eration and seed banks (Peterson and Pickett 1995). The sum of all disturbances 

affecting an ecosystem is called its disturbance regime.

Disturbances  are  considered  to  affect  biodiversity  and  species  coexistence 

(Nakashizuka 2001, Papaik and Canham 2006). According to the predictions of 

the intermediate disturbance hypothesis (Connell 1978, Huston 1979), diversity is 

high at intermediate disturbance levels due to the coexistence of colonizers and 

competitors (Hubbell 1999, Stueve et al. 2011,  Manuscript 1). The underlying 

mechanism is biomass removal from the community. Thereby, competitive species 

are prevented from rapidly occupy the entire area (Manuscript 2;  but see also 

Tilman 1994 for the spatial competition hypothesis). As a result, the community 

remains in an early to intermediate successional phase. In the climate change con-

text, disturbances can be considered as catalysts of vegetation changes based on 

their effect to re-initiate successions with unknown successional pathways (Sykes 

and Prentice 1996, Soja et al. 2007, Manuscript 2).

Disturbance regimes will likely alter due to climate change (Dale et al. 2000, 

Dale  et  al.  2001),  either  because  they  are  directly  related  to  climate  such  as 

drought or wind storms (Jentsch et al. 2007) or because they are indirectly influ-

enced by climate such as wildfires by ‘fire weather’, and insect outbreaks due to 

temperature control of the organisms life cycles (Wermelinger 2004, Bigler et al. 

2005, Carnicer et al. 2011). Furthermore, disturbances can exert a feedback on 

vegetation properties such as fuel load for fires and stand age and composition for 

insects such as bark beetles (Veblen et al. 1994, Cumming 2001). Disturbances 

also interact among each other and thereby complicate predictions of disturbance 

regimes under changed environmental conditions (White and Jentsch 2001, Buma 

and Wessman 2011, Manuscript 5).

Forest succession

Forest succession is the process of change in species structure and composition 

of a forest community over time (Finegan 1984, Pickett et al. 1987). Succession 

pathways differ between climates, soils and regional species pools (Kupfer and 
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Runkle 1996, Manuscripts 1 & 2). Species replacements during forest succession 

are primarily influenced by changes in light conditions (Finegan 1984, Franklin et 

al. 2002). Furthermore, soil (i.e. nutrient cycling) and other factors change with 

time (Guariguata and Ostertag 2001, Burga et al. 2010). In an ideal case, succes-

sion begins uninfluenced by pre-existing communities (primary succession). First 

colonizers can usually be described as light demanding pioneer species (such as 

Betula pendula, Pinus sylvestris, Sorbus aucuparia in temperate forests) with high 

dispersal potential and fast growth rates (Grime 1977). These early successional 

species will be replaced over time by competitive species that are more shade tol-

erant, growing at slower pace and have longer live span (e.g. Fagus sylvatica).

Until recently, a stable climax community was considered to be the end point 

of succession (Mueller-Dombois and Ellenberg 1974). Over the course of time, 

though, a stand is likely to be affected by disturbance events. Currently, the climax 

theory is supplemented by the acknowledgement that ecosystems change continu-

ously and that in many cases a climax state is never attained due to regular small 

scale disturbances (Pickett 1980, van der Maarel et al. 1995, Yamamoto 2000).

Climatic gradients

Climatic gradients can be of spatial (latitude, continentality, altitude) and tem-

poral  nature (‘climate change’).  Tree species  performance (e.g.  rates of demo-

graphic processes) and thereby community assembly change along climatic gradi-

ents is mainly due to differences in energy and water supply (O'Brien et al. 2000). 

There  is  a  fundamental  difference  between  spatial  and  temporal  gradients  for 

sessile  organisms  such  as  plants,  particularly  for  long-lived  organisms.  Under 

rapid (temporal) climate change individual trees might be subject to different cli-

mates. Thereby, current climate change mixes effects of a climatic gradient with 

forest succession (as in Manuscript 2) whereas effects of spatial climatic gradi-

ents are mixed with alterations of other site properties such as soil properties (as 

in Manuscripts 1 & 3). 

Relative species competitiveness is determined by performance and therefore 

changes with climate (despite e.g. nutrient limited sites). Community responses to 

climate  are  hence  a  combination  of  single  species  responses  and  interactions 

among species. A number of studies shows that the nature of competition changes 

along ecological gradients (Kunstler et al. 2011, Zang et al. 2012, Manuscript 3). 
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Changes in species competitiveness cause rank reversals in species performance 

and thereby result in non-linear changes in community structure (Sánchez-Gómez 

et al. 2008, Gómez-Aparicio et al. 2011, Scharnweber et al. 2011, Manuscript 2).

Spatial climatic gradients

Global  circulation  causes  global  climatic  zones  (Flohn  1957,  Salmond  and 

Smith  1996).  Generally,  higher  latitudes  comprise  cooler  climates  since  the 

amount of solar radiation gets dispersed over a larger area than in the central latit-

udes.  This  pattern  is  mainly  modified  by  planetary  wind systems transporting 

latent energy. Moreover, cool or warm ocean currents transport energy from lower 

to higher latitudes (e.g. the warm Gulf Stream). Smaller currents influence tem-

peratures close to the coast (e.g. the cold Canary Stream). Precipitation is strongly 

influenced by the  global  and local  wind systems,  land-water  distributions  and 

relief (Street-Perrott et al. 1983, Trenberth 1999).

At the continental scale, latitudinal climatic zones are modified by the effect of 

continentality (distance from the sea). Regions close to large water bodies are usu-

ally  moister  and comprise a  lower temperature variability.  In  contrast,  regions 

within land surfaces  have larger  temperature amplitudes and less precipitation. 

This difference is a consequence of much lower effective heat capacities of land 

surfaces as well  as of their reduced evaporation rates compared to large water 

bodies.

Altitudinal  gradients  provide  the  opportunity  to  assess  vegetation  patterns 

within small areas but with large environmental differences (Beals 1969, Jump et 

al.  2009).  Similar  to  latitudinal  gradients,  species  distribution  along altitudinal 

gradients is primarily controlled by climate, particularly the upper limits (Wardle 

1964,  Druitt  et  al.  1990,  Manuscript  1).  Lowland  environments  are  usually 

warmer and drier and maintain a higher site productivity. Temperature falls with 

increasing altitude due to  adiabatic  cooling  and relief  rainfall  usually  leads  to 

higher precipitation. In addition to the climatic gradient other factors such as soil 

properties change with altitude and should to be considered in the interpretation of 

species and community zonation (Brzeziecki et al. 1993, Burga et al. 2010).
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Climate change

Major climatic changes have occurred several times throughout the past mil-

lennia (Petit et al.  1999). The last strong climatic change took place c. 10,000 

years ago after the Quaternary glaciation cycles. In Europe, tree species expanded 

their distribution ranges from their refugia northwards (Taberlet et al. 1998). Con-

temporary forest communities are considered to be the result of this post-glacial 

colonization which is most likely still in progress.

Current climate change can be observed best in mountain regions in terms of 

upward shifts of species ranges since the dispersal distances of species coincide 

with the rate of climate change (Cannone et al. 2008, Harsch et al. 2009, Jump et 

al. 2009). In contrast, horizontal species range shifts are dispersal limited, due to 

large distances and landscape fragmentation.

The rate of previous climatic changes during the Quaternary was smaller than 

the rate of current anthropogenic climate change. Migration rates of tree species 

have been estimated from 50 to 2000 m per year (Davis 1983 for Fagus grandi-

folia and Dennis 1993 for Picea spp.). Many species have the potential in terms of 

dispersal rate to keep up with moderate climatic changes and are likely to shift 

their  distribution  ranges  in  the  future.  Moreover,  given sufficient  time,  evolu-

tionary adaptation might occur, i.e. genetic changes generating better adapted eco-

types or even new species. In contrast, it is unclear if current fast-paced climatic 

change exceeds the limits of adaptability for some species possible resultung in 

local and global extinctions (Jump et al. 2009; refere to Kreyling et al. 2011 for 

assisted migration). Mountains and their unique biota are disproportionately vul-

nerable  to  climate  change  (Theurillat  and  Guisan  2001,  Engler  et  al.  2011, 

Dullinger et al. 2012). On major reason is that species cannot escape the upward 

shift of climatic zones once the mountain summit is reached. New sites with suit-

able environmental conditions for mountain species are often very distant and out-

side the range of natural dispersal.

Current climate change is faster than forest succession due to the longevity of 

trees. Thereby, forests will likely remain in non-equilibrium with climate. In forest 

stands, effects of climate change might be observable with a time lag in the order 

of  life-span  of  a  tree  (Kienast  and  Kräuchi  1991,  Sykes  and  Prentice  1996, 

Manuscript 1).
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Forest modelling

Ecological models serve as tools to extend conceptual ideas and learn about 

interrelationships in ecosystems. From an ecologists view models can be used for

• testing  hypotheses  about  the  functioning  of  ecosystems 

(Manuscripts 1-3),

• exploring  system  behaviour  under  different  (climatic)  conditions 

(Manuscripts 2, 5),

• investigating  scenarios  which  are  impossible  to  test  in  real  ecosystems 

(Manuscripts 1, 2, 4, 5),

• supplementing and motivating field experiments and further data collec-

tion (Manuscripts 4 & 5), and

• identifying knowledge gaps and developing new hypothesis (Manuscripts 

4 & 5)

(e.g. Caswell 1988, Wissel 1992, Dislich 2011).

Like every scientific endeavour, model building follows the basic principles of 

science (Grimm 1994, Jackson et  al.  2000).  Observations of the natural world 

should be foundation of all ecological research, including model building. Addi-

tionally, ecological knowledge and system understanding are the basis for devel-

oping new ecological theory and hypotheses (preferably but not exclusively test-

able ones; Caswell 1988). Yet, understanding systems and processes is crucial, an 

incomplete understanding of the system should not prevent model building (Star-

field 1997). For model building there is need for abstraction from real ecosystems 

and reduction of complexity with respect to the formulated hypotheses (Wissel 

1989,  Grimm 1999).  Structures  and processes  of interest  must  be defined and 

decisions about spatial and temporal scales as well as the type of model must be 

taken. By means of combining models with empirical data, the system behaviour 

can be explored and hypotheses can be tested. Finally, as modelling is an iterative 

process, the results must be evaluated. Modifications of the model and its under-

lying theory should be discussed and new data surveys or experiments might be 

designed.
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In the following sections three main types of models are introduced which can 

be used to explore forest dynamics and its drivers (Manuscripts 1-5). Each type 

of model comprises different advantages and limitations essential to acknowledge.

Statistical models

In natural resource planning, models are typically used to project how resource 

dynamics will develop in the future and to guide decision making. A traditional 

method to project forest growth and yield is the use of regional and site-specific 

yield tables which interpolate past observations of stand growth under given cli-

matic, soil and management conditions (e.g. Assmann and Franz 1972). Contem-

porary statistical models (empirical models) of tree species distributions, site suit-

ability, growth and productivity are more flexible than yield tables and are fitted 

to much larger datasets.

There are many different types of statistical models but all of them base on the 

principle of drawing conclusions from data that is subject to random variation. 

Statistical models aid in the exploration of the effect of variables on observed pat-

terns  and  thus  give  phenomenological  descriptions  of  vegetation  responses 

(Wissel 1992, Dormann et al.  2012). Prediction accuracy is mostly an implicit 

objective of statistical modelling, particularly when used as management support. 

Prominent  examples  of  applications  are  species  distribution  models  (SDMs; 

Araújo and Guisan 2006, Falk and Mellert 2011), models on demographic pro-

cesses of trees (Kunstler et al. 2011, Ruiz-Benito et al. 2012, Ruiz-Benito et al. 

2013,  Manuscript  3)  and  also  statistical  down-scaling  of  global  circulation 

models in climate change research (e.g. WETTREG; Enke et al. 2005a, Enke et al. 

2005b).

Since  statistical  models  often  perform better  than  process-based  models  in 

terms  of  predictions,  it  is  advisable  to  use  them  for  management  questions. 

However, management based on SDMs ignores abundant information available 

from forest inventories (e.g. Kölling 2007, Falk and Mellert 2011). Species range 

limits are without doubt strongly influenced by climate and soil properties, but 

other factors might be of similar importance (Sexton et al. 2009), depending on 

the  considered  scale  (Pearson and Dawson  2003).  Firstly,  species  presence  in 

Europe is strongly influenced by management resulting in a logical cycle when 

calculating site suitability based on species presences and absences (Hannah et al. 
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1995).  Secondly, dispersal limitation might limit distributions more than abiotic 

site suitability (Svenning and Skov 2007). Thirdly, distribution is influenced by 

biotic interactions such as competition (which might be reduced by management; 

e.g. Pretzsch et al. 2013). Therefore, species niches and site suitability inferred 

from current range limits might not represent the actual physiological potential of 

a species. The analysis of demographic processes might help to overcome these 

limitations.

In any case, statistical models do not readily allow for insights into processes 

leading to the observed pattern as they follow the general concept of correlation. 

Consequently, effect and response might be mixed and false correlations might 

lead to misinterpretations.  Moreover,  correlative approaches only work well  in 

constant environments but not under non-analogous conditions triggered by cli-

mate change (Bossel 1991, Williams and Jackson 2007).

Simulation models

Simulation models have advantages over statistical models when considering 

projections  outside  known environments  and  consequently  gain  importance  in 

forest management applications (Pretzsch et al. 2008, Muys et al. 2010). Forest 

simulation  models  are  based on the  current  understanding of  biomass,  energy, 

water, nutrients and competition relations as other biotic interactions. Ecosystem 

structure and processes can be implemented based on mechanistic understanding 

(Tilman 1987, Bossel 1991). Single-tree models with an emphasize on either mor-

phology or physiology are very detailed models. Morphological models aim at 

simulating  the  spatial  structure  of  a  plant  (Kurth  1994)  while  physiological 

models (process-based models) simplify the spatial configuration but start with 

biochemical  representations  of  photosynthesis  and  respiration  controlled  by 

resource availability in high temporal resolution (Grote and Pretzsch 2002). Fur-

thermore, there have also been efforts to combine the advantages of both model 

approaches (Perttunen 1996).

As the scale of interest  becomes coarser and larger systems are considered, 

smaller  components  are  generally  aggregated  to  maintain  a  manageable  com-

plexity within models (Levin 1992, Rastetter et al. 1992, Elkin et al. 2012). Forest 

gap models are at  intermediate spatial  and temporal scales and simulate forest 

stands for one generation or rotation period (Botkin et al. 1972, Shugart and West 
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1981, Bugmann 2001). With this approach physiological processes are aggregated 

and empirical (correlative, statistical) functions are used to relate demographic pro-

cesses to the environment. Competition among neighbouring trees is considered 

morphologically simplified. Gap models have a high potential for application in 

management questions as they can be used to explore the stand-level implications 

of  management  regimes,  changes  of  atmospheric  CO2 concentrations,  nitrogen 

deposition, or climate change (Mäkelä et al. 2000). The forest growth simulator 

SILVA, for example, was primarily developed as a management tool, but can also 

be  applied  to  ecological  questions  concerning  climate  change  (Pretzsch  et  al. 

2002, Muys et al. 2010, Manuscript 2).

LandClim is an example of a forest model simulating climate and competition-

driven forest dynamics and disturbance regimes at a landscape-scale (Schumacher 

et al. 2004, Schumacher et al. 2006,  Manuscripts 1 & 2). Forest simulations at 

such larger scales need further aggregation of ecosystem processes compared to 

gap models. LandClim uses a grid based approach with a spatial resolution of c. 

25 x 25 m per grid cell being detailed enough to capture local variation in soil 

conditions and topography. This model simulates species-level forest dynamics by 

tracking species age cohorts (not individual trees) at 10-year time steps under nat-

ural disturbances (e.g. Colombaroli  et  al.  2010, Henne et  al.  2012). Similar to 

LandClim,  LANDIS  is  a  spatially  explicit,  stochastic,  raster-based  landscape 

model which facilitates the study of the effects of natural and anthropogenic dis-

turbances,  vegetational  succession,  management  strategies  and their  interactive 

effects on forest landscapes (Mladenoff et al. 1999). LANDIS is a powerful tool 

for evaluating alternative forest management strategies at a landscape-scale (He 

1999, Mehta et al. 2004, Xu et al. 2009, Yao et al. 2012).

Dynamic Global Vegetation Models (DGVMs) simulate the global distribution 

of forests and other vegetation types under historic, present and simulated future 

climates (Prentice et al. 2007, Purves and Pacala 2008). Accurate representation of 

the structure and processes of natural systems is necessary for reliable ecological 

models. Yet, for DGVMs generalization of unneeded detail is required to increase 

model efficiency. In DGVMs, biomes, vegetation types or plant functional types 

are reduced to their biomass or net primary productivity (Peng 2000, Bonan et al. 

2003, Sitch et al. 2008). Applications of such models include global risk assess-

ments for ecosystems under projected climate change (Scholze 2006), the effect of 
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forest carbon uptake on climate (Purves and Pacala 2008) and the role of agricul-

ture within the global climate-vegetation system (Bondeau et al. 2007).

Mathematical models

Complex simulation models of ecological systems are as a rule incomprehens-

ible  and  the  behaviour  of  the  model  cannot  be  fully  explored.  In  contrast, 

simplistic  mathematical models (conceptual/strategic mathematical models; May 

1976, Grimm 1994) offer analytically tractable solutions and the possibility to 

examine the underlying model properties. This allows for understanding the parts 

of the model which determine the resulting pattern.  Mathematical models thus 

‘sacrifice  detail  for  generality’ and  thereby  serve  to  demonstrate  the  ‘con-

sequences  of  what  we  believe  to  be  true’ (Levins  1966,  Grimm  1994, 

Manuscript 5).

Models of population dynamics, the main field of mathematical modelling in 

ecology, are often expressed in terms of differential or difference equations, which 

describe  how system components  change  over  time.  The  most  widely  known 

mathematical models stem form the Lotka-Volterra equations describing an ecolo-

gical predator-prey (or parasite-host) system (e.g. Berryman 1992). The model is 

largely phenomenological, combining simple ‘laws’ of exponential growth of pop-

ulations not limited by resources (Malthus 1798) and of mass action kinetics bor-

rowed from chemistry (Murray 2002).  The logistic model of population growth 

integrates  the  concept  of  negative  density  dependence.  As  populations  grow, 

resources decline, so that fitness of any population member is negatively correl-

ated to population density (cf. Berryman 1999). This principle was transferred to 

tree growth as growth-size allometry (Zeide 1993). Another example is the prin-

ciple of competitive exclusion which was assessed by another descendent of the 

Lotka-Volterra model (Cushing et al. 2004).

Limits

As modelling has become a frequently used tool in ecology, it is important to 

be aware of problems which models cannot resolve. Models are imperfect repres-

entations of real ecosystems, by definition and purpose, and due to limited system 

understanding and computation power. They always contain errors in assumption, 

formulation  and parametrization  (Grimm 1999).  Levins  (1966)  points  out  that 
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modelling is essentially a trade-off between generality, realism and precision. To 

describe general ecological principles, it is usually necessary to sacrifice realism 

and precision. To describe a particular ecosystem, it is usually necessary to sacri-

fice generality. A general model that will represent an ecosystem completely and 

answer to all questions posed is practically impossible due to the complexity of 

natural systems, nor is such complex model desired – because of the lack of com-

prehensibility (Wissel 1992, Starfield 1997). Hence, adequacy and usefulness of 

any particular model has to be evaluated in respect to its purpose. 

One might ask how much confidence can be placed in the results of a model. 

Particularly  when  model  outcomes  are  used  for  predictions/projections 

(cf. Peterson et al. 2003), uncertainty must be considered. The uncertainty of an 

ecological model is caused by both the lack of knowledge (in data for parametriz-

ation,  mechanistic understanding and also scenario planing) and the variability 

among models and their parameters (Cheaib et al.  2012, Dormann et al.  2012, 

Grimm and Railsback 2012).  There are various ways to deal with uncertainty: 

Sensitivity analysis, Bayesian uncertainty analysis, ensemble modelling and scen-

ario  analysis  (e.g.  Cacuci  2003,  Webster  et  al.  2003,  van  Oijen  et  al.  2005, 

Cariboni et al. 2007, Harper et al. 2011, Makler-Pick et al. 2011, van Oijen et al. 

2013). In climate change modelling particularly, and more recently in vegetation 

modelling, ensemble modelling is applied as a means of evaluating uncertainties 

of projections (Littell et al. 2011). With this method of evaluations, it is important 

to consider if the models used in the ensemble are really independent (Dormann et 

al. 2012).

Plurality in modelling can help, as each model type has some disadvantages, 

making it more difficult to capture some features of reality relative to others. The 

choice for a modelling framework should be primarily driven by its adequacy for 

the specific task and not by the researchers habits and convictions, because inter-

esting aspects will likely remain unnoticed – or as Abraham Maslow said in 1966, 

‘I suppose it is tempting, if the only tool you have is a hammer, to treat everything 

as if it were a nail.’
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Conclusions

This  thesis  provides  new insights  into  processes  governing forest  dynamics 

with  a  special  focus  on  possible  impacts  of  climate  change.  The  underlying 

assumption  is  that  effects  of  climate  and  competition  on  tree  establishment, 

growth and mortality mediate changes in species performance and cause species 

distributions and community assemblies. Each of the research projects composing 

this thesis explores a facet of forest dynamics.  It appears that for projections of 

forest  dynamics under climate change particularly, it is critical to consider com-

petition among trees.

Forest  dynamics  and its  drivers provide a range of open research questions 

posing a challenge for fundamental and applied research.  In this context, basic 

ecological  questions  on  species  coexistence  and  community  assemblies  along 

various environmental gradients can be assessed, leading to the specification of 

risks and opportunities for ecosystem management. For example, current harmon-

ization of European wide national forest inventories together with improved cli-

mate interpolations and projections will enable enhanced statistical analysis on 

demographic rates of trees along continental gradients as well as proper calibra-

tions of dynamic forest simulation models. Ecological processes such as ontogen-

etic changes in shade or drought tolerance can thereby be quantified and later 

implemented into forest simulation models. Similarly, consideration of intraspe-

cific variability comprising adaptation potential of a species might lead to changes 

in forest projections, to name but a few examples.

However, apart from physical site factors (climate, soil) and biotic interactions, 

direct human impact on forests in terms of land use change has a major influence 

on forest biomes trajectories (Dellasala et al. 2012). Land use change is the main 

cause of global forest decline today (Houghton 1994). The global deforestation 

rate for the past decade (2000-2010) averaged 13 million ha annually (FAO 2010). 

Global deforestation, forest degradation, and also land abandonment and regrowth 

are not only fundamental in the context of biodiversity conservation and sustain-

able ecosystem management but also regarding feedbacks within climate systems 

(Bonan  2008).  Reducing  carbon  emissions  caused  by  deforestation  and  forest 

degradation and increasing carbon uptake through afforestation and sustainable 

forest management highlight the essential role of forests in climate change mitiga-
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tion. On the opposite side, forests have low surface albedo and can mask the high 

albedo of snow, which contributes to planetary warming through increased solar 

heating of land.  Ultimately,  conclusive estimates on future forests can only be 

made  under  consideration  of  both,  natural  and  anthropogenic  influences  on 

forests, not only in terms of sustainable forest management and adaptation but 

also regarding changes in land use due to fluctuations in the demands of human 

societies.
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Summary of the following manuscripts

The first study was realized in a mountain forest of New Zealand along an alti-

tudinal  gradient.  In  Manuscript  1 ‘Long-term vegetation  dynamics  in  New 

Zealand’, forest succession after a catastrophic volcanic eruption at the slope of 

Mt. Hauhungatahi, North Island, was simulated  using the forest simulation model 

LandClim.  The study explored climate and competition as drivers of observed 

forest  dynamics and calibrated LandClim for the first  time for New Zealand´s 

temperate mountain forest.

Manuscript 2 ‘Climatic turning point for beech and oak’ directly addressed 

the of question whether contemporary forests will change during the next decades. 

The study region was located in  south-western  Germany in  a  climatically  dry 

region. Employing two different forest simulation models (SILVA and LandClim), 

the response of a mixed beech-oak stand was assessed under non-stationary cli-

mate. The results showed that a ‘climatic turning point’ in terms of species domin-

ance  might  be  passed  during  the  present  century.  Inherited  stand  structure, 

however, might lead to a considerable time delay of observable forest response in 

undisturbed stands.

The combined effect of climate and competition on tree growth was investig-

ated  in  more  detail  in  a  study  based  on  the  Spanish  National  Inventories.  In 

Manuscript 3 ‘Symmetric and asymmetric competition’, changes of competi-

tion intensity and importance along the aridity  gradient  throughout the Iberian 

Peninsula  were  assessed.  Symmetric  and  asymmetric  competition  were  distin-

guished and integrated within a statistical model. The study exhibited that the neg-

ative effect of competition on tree growth increased with aridity.

Manuscript 4 ‘Ecotype mixing as climate change adaptation’ deals with the 

question how to adapt forests to climate change. One management strategy might 

be  to  introduce  non-local  ecotypes  in  order  to  increase  biodiversity.  Thereby, 

future yield is assumed to be more stable, according to the portfolio effect theory. 

However, forest stands differ from common economic products by the natural pro-

cess of self-thinning. A consideration of self-thinning in the evaluation of ecotype 
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mixing is important and could exempt the portfolio effect from its drawback of 

lower chances for high yields.

In  Manuscript 5 ‘Disturbance interactions’, forests disturbances – particu-

larly their interactions – were assessed. Disturbance interactions were found to be 

positive resulting in a system containing positive, closed feedback loops. From a 

theoretical perspective it is likely that such a system is unstable, i.e. that forest dis-

turbances will increase until forest collapse. In Manuscript 5, a framework of dis-

turbance interactions was developed and translated into a strategic mathematical 

model. The model showed that although all interactions might be positive, forests 

do not necessarily need to collapse. Furthermore,  disturbance interactions might 

cause only a minor part of overall disturbances regimes and direct alteration in cli-

mate is of much higher importance.
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Simulating long-term vegetation dynamics using a forest 

landscape model: The post-Taupo succession on Mt. 

Hauhungatahi, North Island, New Zealand

Timothy Thrippleton1, Klara Dolos1, George L.W. Perry2, Jürgen Groeneveld3, 

Björn Reineking1

1Biogeographical Modelling, BayCEER, University of Bayreuth, Germany
2School of Environment & Biological Sciences, The University of Auckland, New Zealand
3Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), 
Leipzig, Germany

Abstract

Forest dynamics in New Zealand (NZ) are shaped by catastrophic, landscape-scale disturbances 
(e.g. volcanic eruptions, landslides, windstorms and fires). The long return-intervals of these dis-

turbances,  combined with the longevity of many of NZ’s tree species, restrict solely empirical 
investigations of forest dynamics. In combination with empirical data (e.g. descriptions of past  

vegetation via palaeoecological reconstructions), simulation modelling provides a way to address 
these limitations and to unravel complex interplays between disturbances, biotic interactions, and 

abiotic constraints such as climate, soil, and topography. Here we adapt the established forest land-
scape model LandClim to address complex interacting processes across the large spatio-temporal 

scales relevant for NZ’s forest landscape dynamics.

Using the well-investigated western slope of Mt. Hauhungatahi in the central North Island as a 

case study, we examine forest succession after large scale disturbances, in this case the Taupo 
eruption of c. 1700 BP, and the subsequent emergence of altitudinal species zonation. We derived a 

set  of  life-history  parameters  that  agreed  with  those  described  in  the  ecological  literature  by 
applying a pattern-oriented parametrization approach for the traits  ‘maximum growth rate’ and 

‘shade  tolerance’.  With  this  parameter  set,  LandClim  was  able  to  reproduce  similar  spatio-
temporal patterns in the vegetation structure as seen in pollen reconstructions and contemporary 

vegetation studies along the altitudinal transect. The modelled successional sequence displayed a 
major shift  in forest composition between simulation years 400 to 700, when the dense initial 

stands of conifers (dominated mainly by Libocedrus bidwillii – pāhautea or kaikawaka) were pro-
gressively replaced by the angiosperm  Weinmannia racemosa (kamāhi)  in  the montane forest. 

From around year 1000 onwards, the currently observed altitudinal species zonation was attained.  
Light-competition controlled the major successional trends and, together with temperature-limita-

tion,explained the observed altitudinal species zonation.

Although designed for European temperate forests, LandClim is capable of simulating NZ’s land-

scape dynamics and forest response to catastrophic disturbances such as the Taupo eruption. We 
suggest  that LandClim provides a suitable framework for investigating the role of spatial  pro-

cesses, in particular disturbance, in NZ’s forest landscapes.

Keywords: LandClim, inverse modelling, disturbance regime, long-lived tree species, gap model,  

succession
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Introduction

Climate, soil, relief and exogenous disturbance are important abiotic drivers of 

the spatial distribution of forest types (Leathwick and Mitchell 1992). Along alti-

tudinal  gradients,  temperature and other parameters  of climate are the primary 

controls  of  species  distribution,  in  particular  their  upper  limits  (Wardle  1964, 

Druitt et al. 1990). Large-scale disturbances are another key driver of the long-

term dynamics  of forests  in New Zealand (NZ) (Ogden and Stewart 1995).  A 

number of studies have demonstrated the long-lasting impact of large, infrequent 

disturbances, such as earthquakes, landslides, volcanic eruptions and windstorms, 

on NZ’s forests (Clarkson 1990, Wells et al. 2001, Lecointre et al. 2004, Martin 

and Ogden 2006). The effect of disturbances also plays a central role in the long-

standing questions surrounding the nature of conifer-angiosperm interactions in 

NZ’s mixed forests (Veblen and Stewart 1982, Wells et  al.  2001, Ogden et  al. 

2005). Contrasting traits of conifers and angiosperms are considered key in struc-

turing forest communities over time (McKelvey 1963, Ogden and Stewart 1995, 

Coomes et al. 2005, Kunstler et al. 2009). Conifers are generally slower growing 

than angiosperms on productive sites (i.e. rich in nutrients and water, warmer tem-

peratures) and therefore tend to be outcompeted by angiosperms over the long 

term (Bond 1989, Becker 2000, Coomes et al. 2005, Brodribb et al. 2012). In NZ, 

and other  parts  of  the southern hemisphere,  ‘long lived pioneer’ conifers  (e.g. 

Agathis australis, Dacrydium cupressinum, Libocedrus bidwillii) can however be 

observed to persist alongside angiosperm competitors (Ogden and Stewart 1995). 

Large, infrequent disturbances are considered key for mediating the competition 

between both groups (Ogden and Stewart 1995).

The dynamics of forests dominated by long-lived tree species and shaped by 

the infrequent occurrence of large disturbances are particularly intractable to study 

(Enright et al.  1999) as time-scales up to the millennial need to be considered 

(Ogden  and  Stewart  1995).  Palaeoecological  reconstructions,  for  example  via 

fossil pollen records, provide descriptions of long-term successions after large dis-

turbances (McGlone et al. 1988, Horrocks and Ogden 1998). However, palaeoeco-

logical records are challenging to interpret due to the influence of a multitude of 

confounding factors such as climate, disturbance, dispersal lags, and biotic inter-

actions (Anderson et al. 2006, Brewer et al 2012). Therefore, while such records 

provide  invaluable  descriptions  of  temporal  dynamics,  they  are  by themselves 
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seldom sufficient to draw general conclusions about the processes that underlie 

the patterns they show.

Process-based simulation models are well-suited for the exploration of forest 

dynamics over extended spatio-temporal scales and provide a valuable comple-

ment to empirical studies (Henne et al. 2011). So-called ‘forest gap models’ are 

widely  used  to  address  diverse  questions  regarding  global  change  impacts  on 

long-term forest dynamics (Bugmann 2001, Perry and Millington 2008), but have 

received surprisingly little application in NZ. In an early attempt to implement a 

forest  gap model  in  NZ,  Develice  (1988)  developed the  non-spatial  FORENZ 

model for Fiordland, South Island. Currently, LINKNZ (Hall and Hollinger 2000, 

Hall and McGlone 2006) and SORTIE/NZ (Kunstler et al. 2009) are the forest gap 

models best established for New Zealand’s forests. For example, McGlone et al. 

(2011) used the forest gap model LINKNZ to explore how decreased seasonality 

in  the  early  Holocene  in  NZ might  account  for  the  patterns  found  in  pollen 

records.

Traditional forest gap models are not designed to represent large and hetero-

geneous  landscapes  with  areas  of  differing  climate,  topography  and  soils 

(Mladenoff 2004). Rather, forest gap models simulate successional processes in 

small  gap-sized  forest  patches  (less  than  one  ha),  often  without  interactions 

between the patches (Bugmann 2001). At the landscape level, however, interac-

tions between patches are important, in particular with respect to seed dispersal 

and larger disturbance events. Since traditional gap models focus on tracking the 

development of individual trees in a complex representation of their physical com-

petitive  environment,  they  are  computationally  expensive  (Mladenoff  2004). 

Therefore, individual to stand-scale gap models tend to consider spatial extents of 

a  few tens  of  hectares.  Furthermore  highly  mechanistic,  spatially  explicit  gap 

models such as SORTIE require considerable parametrization effort (Uriarte et al. 

2009).

While, promising approaches have been developed to overcome these compu-

tational  limits,  such  as  the  PPA model  for  SORTIE  (Strigul  et  al.  2008)  or 

upscaling approaches (Hartig et al.  2012), these remain in their infancy. Forest 

models  suitable  for  investigating  interacting  processes  across  large  landscapes 

need to fulfil three important prerequisites: (i) reduced complexity in the repres-

entation of stand-scale processes, while retaining structural realism, (ii) an ability 
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to represent spatio-temporally heterogeneous landscapes at extents of up to 1000s 

of hectares over centuries to millennia, (iii) the incorporation of ecological pro-

cesses  important  at  larger  scales  (e.g.  landscape-level  disturbance)  (Mladenoff 

2004, Schumacher 2004).

LandClim (Schumacher  et  al.  2004, Schumacher  and Bugmann 2006),  as a 

landscape simulation model, meets these three requirements and can help to assess 

processes at larger scales. In LandClim individual species are represented in terms 

of their ecological traits (among them longevity, growth rate, temperature require-

ments, shade tolerance) which determine the species ability to establish, grow and 

survive. Due to its structural realism, simulation outcomes of LandClim can be 

evaluated against various empirical patterns of forest composition and age struc-

ture,  thereby facilitating pattern-oriented modelling (POM; Grimm et al.  2005, 

Hartig et al. 2011, Hall et al. 2001, Grimm and Railsback 2012). Pattern-oriented 

parametrization, a subset of the broader POM framework, infers realistic para-

meter ranges from observed system behaviour by comparing model outputs with 

multiple  observed  patterns  and  thereby  filtering  the  parameter  space.  Pattern-

oriented parameterization therefore provides a promising approach to overcome 

the difficulties and limitations of direct parameterization (Hall et al. 2001). Land-

Clim, as do most other forest gap models, contains species parameters that are dif-

ficult to quantify directly, in particular the crucial species traits of ‘shade toler-

ance’ and ‘maximum growth-rate’ (relative biomass growth rate per year). Growth 

rates measured in the field are always influenced by the abiotic environment and 

biotic interactions and can not therefore be assumed as equivalent to the growth 

potential of a species. Shade tolerance is similarly difficult to quantify in the field 

due to interactions with other growth limiting factors and its dependency on onto-

geny (Valladares and Niinemets 2008).

Here we make use of the rich spatio-temporal dataset describing forest struc-

ture and dynamics on the western slope of Mt. Hauhungatahi to apply LandClim 

to a NZ situation for the first time and parametrize the traits ‘shade tolerance’ and 

‘maximum  growth-rate’ of  dominant  canopy  species  by  means  of  a  pattern-

oriented parameterization approach. The location of Mt. Hauhungatahi in the vol-

canic area of Tongariro National Park offers an ideal study site to investigate the 

effects  of  landscape-level  disturbance  on  forest  succession  following the  cata-

clysmic c. 1700 BP Taupo eruption (Wilmshurst and McGlone 1996, Horrocks 
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and Ogden 1998). High-resolution pollen data collected along an altitudinal tran-

sect at Mt. Hauhungatahi by Horrocks and Ogden (1998), together with contem-

porary vegetation studies (Druitt et al. 1990, Ogden et al. 2005) provide key pat-

terns describing the dynamics and structure of the forest ecosystem. The integra-

tion of both spatial and temporal data on forest dynamics allows us to improve the 

robustness of the species parameterization and strengthens the reliability of the 

model.  We consider  our  approach as  complementary  to  previously  established 

forest  gap  models  such  as  LINKNZ  and  SORTIE/NZ.  No  single  model  can 

entirely represent reality, therefore using multiple models enable us to explore the 

significance of different system representations and so increase the robustness of 

model-based inferences.

Besides being the first adaption of LandClim to NZ´s forests the aims of this 

study are  to  increase  the  understanding of  drivers  of  species  organisation  fol-

lowing a catastrophic disturbance event and to contribute to the ongoing discus-

sion  over  the  long-term  dynamics  of  mixed  angiosperm-conifers  forests.  Our 

expectations are that: (i) species current altitudinal distribution will emerge from 

climatic  preferences,  in  particular  temperature  requirements  and  (ii)  the  post-

Taupo eruption forest succession can be explained by trade-offs and interactions 

between species shade tolerance, growth rate and longevity.

Methods

LandClim

LandClim is  a  spatially  explicit  forest  landscape  model  that  was  originally 

developed to investigate the importance of climatic effects and disturbance pro-

cesses for forest dynamics in the European Alps (Schumacher 2004, Schumacher 

et  al.  2004,  Schumacher  and Bugmann 2006).  The  LandClim model  structure 

comprises two main parts, one tracks stand-structure processes, such as establish-

ment, growth and death, at annual time steps, while the other is concerned with 

landscape-level dynamics at a decadal time step. LandClim tracks individual trees 

in the aggregated form of cohorts. Cohorts are groups of same-aged trees within a 

grid cell (25 × 25 m), and all individuals in a given cohort are assumed to have the 

same biomass. Trees might establish in grid cells if propagules are available and 

environmental conditions are suitable. Tree growth is represented by a maximum 

growth rate (representing growth under optimum conditions) which is reduced as 
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a function of limiting environmental factors and biotic interactions. Despite the 

problem of determining the maximum potential growth rate (parameter ‘Rmax’, 

see Tab. 1), this down-weighting approach is found in most forest gap models, 

such as JABOWA (Bugmann 2001). Tree mortality is a function of three factors: 

Growth-dependent  stress,  density-dependent  stress  and an intrinsic,  age-related 

component. Detailed descriptions of the formulation of stand-scale processes in 

LandClim are given in Supplement S1.

LandClim represents the effects of disturbance on forest composition and struc-

ture reciprocally, which, in turn, allows for studies of past and future changing 

environments  (Schumacher  and  Bugmann  2006,  Henne  et  al.  2011).  Environ-

mental input variables are topography, soil water capacity and ‘land-type’ (a user-

defined map assigning specific establishment rates and disturbance regimes to dis-

tinct areas), as well as temperature and precipitation at monthly resolution. Spe-
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Tab. 1: Species life-history parameters. Tolerance-classes range from 1 (lowest) to 5 

(highest tolerance). Abbreviations: EG: Evergreen, BL-EG: Broadleaf-evergreen. A brief 

explanation as well as references and basis for the parameter choice are given in Sup-

plement, S2 and S3. The parameters ‘shade tolerance’ and ‘Rmax’ were determined 

via a pattern-oriented parameterization. The parameter ‘minDD’ was calibrated to fit 

species upper altitudinal limits described in Druitt et al. (1990), see also Supplement 

S2 for further details. Drought-, fire- and browsing-tolerance were not relevant in the 

present study, therefore, a default value of 3 was assigned to all species. Parameters 

are discussed in more detail in Schumacher (2004).
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maxAge Maximum age (years) that an 
individual can reach

800 1000 650 150 400 

Kmax Maximum aboveground tree 
biomass (tons) a species can reach

12 8 7.73 0.5 6.32

leafHabit Leaf habit (form) EG EG EG BL-EG BL-EG

foliageType Shading potential of a species 
canopy

3 3 4 5 5

minTemperature Minimum temperature (°C) for 
establishment

-8 -13 -13 -8 -8 

shadeTolerance Species shade tolerance 4 2 2 5 4 

droughtTolerance Species drought tolerance 3 3 3 3 3

minDD Minimum annual degree day sum 1400 1200 1280 1550 1300

Rmax Maximum above-ground biomass 
growth rate (per year)

0.07 0.12 0.11 0.10 0.13
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cies  environmental  responses  are  defined  by  traits  such  as  drought  tolerance, 

shade tolerance and temperature requirements. LandClim operates over long time 

scales (hundreds to thousands of years) and large spatial extents (100s to 10000s 

of hectares) at a relatively fine scale (grid cells of 25 by 25 m). It has previously 

been tested  in  and adapted  to  the  European Alps,  the  North  American  Rocky 

Mountains and Mediterranean forests (Schumacher and Bugmann 2006, Colom-

baroli et al. 2010, Henne et al. 2011, Henne et al. 2012, Briner et al. 2012, Elkin et 

al. 2012).

This study is the first application of LandClim to the Southern Hemisphere. 

The model structure of LandClim was kept unchanged; the only differences from 

the previous studies were a new allometric relationship for calculation of NZ’s 

species biomass to DBH, an increase in the maximum stand biomass from 300 

t/ha to 1000 t/ha (see Supplement S1 for details) and the parameterization of tree 

species.

Study site 

Our simulations focused on the western slope of Mt. Hauhungatahi, which has 

been intensively studied previously (Druitt et al. 1990, Horrocks and Ogden 1998, 

Ogden et al. 2005). Mt. Hauhungatahi is located in the Tongariro National Park in 

the central North Island of New Zealand (Fig. 1) where forests have been subject 

to recurrent volcanic events throughout the Quaternary, with therhyolitic Taupo 

eruption of 1718 ± 5 cal. BP (Hogg et al. 2012) particularly significant (Horrocks 

and Ogden 1998).  Druitt  et  al.  (1990) distinguished three main belts  of forest 
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Fig. 1: Map of study area on the western slope of Mt. Hauhungatahi in the Tongariro  

National Park, New Zealand.
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using the importance value as a measure of species dominance (species nomen-

clature follows Landcare Research 2011b):

(i) A montane forest from 850 to 1000 m a.s.l. with the canopy dominated by 

angiosperms, in particular Weinmannia racemosa (kamāhi). Scattered old conifer 

individuals (e.g.  Dacrydium cupressinum – rimu) are present and constitute an 

important part of the total basal area, but younger conifer individuals are mostly 

absent. Tree ferns (e.g. Cyathea smithii – katote) are important components of the 

sub-canopy layer.

(ii) A transitional zone ranging from 1000 to 1050 m a.s.l., where several spe-

cies (including  W. racemosa,  D. cupressinum and tree ferns) reach their  upper 

limit.  Conifers,  and in  particular  Podocarpus cunninghamii (formerly  P. hallii, 

Hall’s totara), are prominent in this belt.

(iii) A sub-alpine zone (from 1050 m to the treeline), which is largely domin-

ated by the conifer  Libocedrus bidwillii (pāhautea). The treeline (formed by  L.  

bidwillii,  together  with  Halocarpus  biformis)  is  highly  discontinuous,  varying 

between altitudinal limits of 1100 to 1250 m a.s.l.

Ogden et al. (2005) reported the highest densities and most vigorous regenera-

tion  of  L.  bidwillii in  the  sub-alpine  zone,  with  densities  and  regeneration 

declining towards the transition zone at around 1050 m. This decline coincided 

with an increase in angiosperm densities, with W. racemosa becoming dominant 

in the upper montane zone.

Horrocks and Ogden (1998) outline the effect of the Taupo eruption on forest 

succession at Mt. Hauhungatahi using detailed pollen diagrams collected along the 

altitudinal transect described by Druitt et al. (1990). The two dominant patterns 

seen in Horrocks and Ogden’s pollen diagrams are:  (i)  the initial  increase and 

spread of L. bidwillii immediately following the eruption, and (ii) the progressive 

spread of the angiosperm W. racemosa in the montane forest in the centuries fol-

lowing the eruption, resulting in the present vegetation zonation.

Simulation experiments

The western slope of Mt. Hauhungatahi was represented in LandClim on a grid 

of cells  (25 × 25 m) describing topography and soils.  Topographic parameters 

(elevation, aspect and slope) were derived from a digital elevation map of the area 
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(DEM25,  Land  Information  New  Zealand  2011).  Areas  below  780  m  were 

excluded since they are currently deforested and could not, therefore, be compared 

with empirical data. The widespread peatland area above the treeline (> 1300 m) 

was also excluded.

Soil characteristics on the slopes of Mt. Hauhungatahi are spatially heterogen-

eous and are a function of volcanic activity and a suite of secondary processes 

(Druitt et al. 1990). Due to the generally high water-holding capacity of volcanic 

soils (Scheffer and Schachtschabel 2002), a high soil water capacity (bucket size 

of 200 mm) was assigned uniformly to all grid cells (the model was not sensitive 

to this assumption, results not shown). The climate record (1930-2000 AD) from 

the nearby Chateau climate station at Mt. Ruapehu (12 km east of Mt. Hauhunga-

tahi, 1097 m a.s.l.) was used as the climatic input data for the model (data source: 

NIWA 2011).  Because  the  temperature  reconstructions  available  for  the  site 

(Palmer and Xiong 2004) do not span the full 1700 year succession that we con-

sider, the simulation was carried out under a present climate to provide a parsimo-

nious baseline scenario. While climate reconstructions suggest the existence of 

some warm- and cold-periods in the past centuries, these are only of the order of 

less than 0.5 °C (Palmer and Xiong 2004). Since climate change is generally con-

sidered to be small in the post-Taupoperiod compared to the millennium before 

the eruption (McGlone 1989, Rogers and McGlone 1989) and the fossil pollen 

data do not show evidence of climate-related vegetation change after the eruption 

(Horrocks and Ogden 1998), we considered our assumption as reasonably real-

istic. The 70 year climate record was resampled (with replacement) to generate a 

1700 year climate sequence; this randomisation was repeated for every simulation.

The four  dominant  canopy species  that  characterise  the  altitudinal  belts  on 

Mt Hauhungatahi were represented in the model:  The angiosperm  Weinmannia 

racemosa (kamāhi) and the conifers Dacrydium cupressinum (rimu), Podocarpus  

cunninghamii (Hall’s totara) and Libocedrus bidwillii (pāhautea). A tree fern life-

form was included due to their high abundance in the montane forest (especially 

Cyathea  smithii ;Druitt  et  al.  1990)  and  their  structural  importance  for  forest 

dynamics (Coomes et  al.  2005). The tree-fern life-form was implemented as a 

shade tolerant understory species (resembling the behaviour of Cyathea smithii as 

reported by Bystriakova et al. 2011) and treated by the model in the same way as 

the other tree species.
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Species life-history traits were assigned from the New Zealand Eco-Trait data-

base (Landcare Research 2011a), the ecological literature, including the Flora of 

New Zealand, and expert-knowledge. Details about the life-history traits and reas-

oning for the choice of parameters are provided in Supplement S2. The parameter 

‘minDD’ (minimum degree days) was calibrated to fit the upper altitudinal limits 

described in Druitt et al. (1990), assuming that the species upper elevation limit is 

controlled by temperature (see Supplement S2 for further information). The para-

meters ‘shade tolerance’ and ‘Rmax’ (maximum relative biomass growth rate per 

year) were determined in a pattern-oriented parametrization approach, described 

in the following section.

It was assumed that the Taupo eruption removed all vegetation from the study 

area, since the actual degree of forest destruction remains unknown. Horrocks and 

Ogden (1998) noted that the effect of the Taupo eruption (including the shock 

wave, air fall of tephra and subsequent fires) was presumably considerable at Mt. 

Hauhungatahi (ca. 75 km distance from the vent), although fossil pollen indicate 

some surviving forest in the area. The simulations started from ‘bare ground’, ini-

tiated by a spatially homogeneous seed rain with the same amount of seed across 

all species, as is often assumed in forest landscape and gap models, particularly in 

the absence of detailed species-specific empirical data describing the seed rain. 

Although this approach neglects the possible influences of prior vegetation and 

heterogeneous seed rain, it provides a baseline assumption to cope with complex 

and unknown initial conditions. For the same reason, global seed dispersal was 

assumed. Succession was simulated and tracked over 1700 years, representing the 

time since the Taupo eruption. No further disturbance events were simulated over 

this succession. To ensure direct comparability with the measurements of forest 

structure by Ogden et al. (2005), only individuals with a DBH (diameter at breast 

height) larger than 10 cm were considered in the analyses of the simulated altitud-

inal transect (although LandClim is capable of tracking smaller individuals).

Pattern-oriented parameterization

In order to identify plausible parameter combinations for ‘maximum growth-

rate’(Rmax) and ‘shade tolerance’ that reproduce the expected system behaviour, a 

pattern-oriented parameterization approach was chosen. 
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First, a complete parameter space with both traits for all five species was cre-

ated. Each parameter was given five possible values (for shade tolerance from 1 

(low) to 5 (high) and ‘Rmax’ from 0.03 to 0.15 (in steps of 0.03)). This parameter 

space was reduced by discarding ecologically unreasonable parameter combina-

tions a priori from the analysis, using the criteria below:

(i)  Maximum growth rates  of angiosperms (W. racemosa)  should be higher 

than those of conifers (Ogden and Stewart 1995). (ii) Shade tolerance of conifers 

L. bidwillii and P. cunninghamii should be in the range from low to intermediate 

due to their characterisation as light-demanding pioneer species (Clayton-Greene 

1977, Ebbett and Ogden 1998). (iii) Shade tolerance of  D. cupressinum and  W. 

racemosa should  range between  intermediate  to  high  (Lusk and  Ogden 1992, 

Lusk et al. 2009). (iv) Shade tolerance of the tree fern life form (resembling the 

ecology of Cyathea smithii) was defined as high (see Supplement S3 for further 

details about the tree fern life form). 

The model was run for all possible parameter combinations that fulfilled these 

criteria (in total 23364 scenarios). The simulations for the pattern-oriented para-

meterization were performed on a small area (covering the length of the entire 

altitudinal gradient but reducing the width to only 4 cells, i.e. 100 m) in order to 

reduce computation time for each simulation, under a randomized present climate 

scenario in the absence of further disturbance events.

The  simulation  outputs  were  filtered  according  to  spatio-temporal  patterns 

described in the pollen records of Horrocks and Ogden (1998), using a Boolean 

filter. These patterns were (i) an initial dominance of conifers (in particular L. bid-

willii) in the first centuries after the Taupo eruption which was defined as the cri-

terion that conifer species should reach > 60% of total forest biomass in the first 

300 years of succession; (ii) a progressive spread of W. racemosa in the montane 

area  during  later  stages  of  succession,  represented  by  the  criterion  that  W. 

racemosa should reach > 60% of total forest biomass during the years 1000-1700 

in the area up to 1050 m altitude. Additionally, parameter combinations resulting 

in  unreasonably low total  stand biomass  were discarded.  Based on the carbon 

stock  estimates  for  podocarp-hardwood  forests  in  NZ  (Horrocks  and  Ogden 

1998), a minimum biomass of 100 t per ha was estimated (under the assumption 

that biomass consist of 50% carbon). Further parameter combinations for which 

tree  species  had  disappeared  at  the  end  of  succession  (i.e.  species  biomass 
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dropped below < 1% of total biomass) were also discarded. These criteria nar-

rowed down the parameter space substantially.

Finally,  a refined sensitivity analysis was performed to determine optimized 

‘Rmax’ values for each species.  ‘Rmax’ values were assigned from within the 

range determined by the previous analyses and sampled in steps of 0.01. Shade 

tolerance values were assigned according to the results of the previous analysis. 

For the filtering of these results, stronger criteria were applied: L. bidwillii should 

dominate the early successional stage with > 75% of total standing biomass, and 

W. racemosa should dominate the late successional stage in the montane forest 

with > 75% biomass. Furthermore, simulated mean annual DBH-growth of spe-

cies (at year 1700) should be in the range of mean annual growth rates reported by 

Ogden et al. (2005) for L. bidwillii, Smale and Smale (2003) for P. cunninghamii, 

Lusk and Ogden (1992) for  D. cupressinum and  W. racemosa  (see Supplement 

S2). For the tree fern life form, height-growth estimates from Ogden et al. (1997a) 

were used (see Supplement S3).

The  final  parameter  set  was  used  to  simulate  the  spatio-temporal  forest 

dynamics of Mt. Hauhungatahi (Tab. 1). Simulations were repeated 50 times with 

a randomized present climate to account for stochastic variation between model 

realisations under the same parameter conditions.

Analyses and visualization of model results were conducted using R.2.15.2 (R 

Development Core Team 2012). The pattern-oriented parameterization was carried 

out on a high-performance computer cluster at the University of Bayreuth, Ger-

many.

Results

Species traits

In the pattern-oriented parameterization,  the application of the filter  criteria 

(see previous section) narrowed down the parameter space from 23364 to 129 

possible combinations. The shade tolerance ranges defined a priori proved suit-

able, as most model results from the given range were accepted by the filter cri-

teria (Fig. 2, black bars). The specific ‘Rmax’ values substantially influenced the 

successional  sequence  and  the  biomass  of  individual  species.  ‘Rmax’ values 

below 0.06 typically resulted in low species biomass and therefore tended to be 
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discarded by the filter criteria. The refined sensitivity analysis showed that the 

observed successional dynamic was reproduced within a rather narrow constella-

tion of ‘Rmax’ values. L. bidwillii and W. racemosa (as the main components of 

the  simulated  forest  ecosystem)  displayed a  strong successional  differentiation 

between pioneer and later successional species once the parameter constellation 

was  set  as  shown in  Fig.  2.  With  increasing  advantage  in  growth rate  of  W. 

racemosa over L. bidwillii, the pattern still prevailed but the initial dominance of 

L. bidwillii became less pronounced at the expense of W. racemosa in the lower 

montane forest.

Within the parameter ranges  explored,  P. cunninghamii and  D. cupressinum 

were  present  with  only  low  biomass.  Variations  in  their  parameter  sets  con-

sequently had a minimal effect on the gross successional trends.

Species zonation

LandClim reproduced the actual  species  zonation described by Druitt  et  al. 

(1990) at  the end of succession (year 1700) once all  species (with traits  as in 

Tab. 1) were included in competition with each other. The species upper elevation 

limits  were  controlled  by  their  specific  temperature  (‘minimum  degree  day’) 

requirements. Notably, the observations of Druitt et al. (1990) were used in the 

calibration of the ‘minimum degree day’ parameter, therefore they cannot be con-
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Fig. 2: Results of the pattern-oriented parameterization for the parameters ‘shade tol-

erance’ (left) and maximum growth rate - ‘Rmax’ (right). The range of accepted para-

meters is indicated by the black line, parameter values occurring with highest frequen-

cies are indicated by a circle (filled circle indicates result of refined sensitivity analysis 

of ‘Rmax’).
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sidered as independent data for model evaluation. In simulations of monocultures 

each  species  occurred  across  the  altitudinal  transect  from the  lower  boundary 

(780 m a.s.l.) to its specific upper elevation limit. Once all species were included 

(and thus interspecific competition occurred), conifer species largely disappeared 

from lower altitudes.

The lower elevation forest band (780-950 m) was dominated by W. racemosa. 

Tree ferns occurred up to an altitude of around 880-900 m, but with a low basal 

area (< 1m² / ha) and density (< 50 stems/ha, data not shown).  D. cupressinum 

occurred up to an altitude of 1000 m, but only as a very few, scattered individuals. 

Above 950 m a.s.l., the basal area of  W. racemosa steadily declined to its upper 

altitudinal limit at around 1050 m. As W. racemosa declined, the forest gradually 

shifted in composition with the conifer species becoming increasingly important. 

P. cunninghamii reached its maximum basal area and stem density between alti-

tudes of 950 to 1050 m. Altitudes above 1000 m were dominated by L. bidwillii in 

terms of basal area and stem density until the treeline at around 1220 m.

The simulated basal area and stem density of the species peaked at the same 

altitudes as those described by Ogden et al. (2005), but the model under-repres-

ented basal area for all species and over represented stem density for L. bidwillii 

(Fig. 3). The deviation between observed and simulated forest structure was par-

ticularly evident for  D. cupressinum and  P. cunninghamii, which achieved only 

very low values of basal area and stem density in the simulated year 1700.

Forest succession

The simulated post-Taupo succession resembled the general patterns described 

by Horrocks and Ogden (1998) once species life-history traits were assigned fol-

lowing  a  rigorous  and  thorough  pattern-oriented  parameterization  process 

(Tab. 1). The succession was characterised by three main stages, one from simula-

tion  years  0-400,  a  second  from  years  400-700,  and  a  third  from  year  700 

onwards. During the early phase of the succession (simulation years 0 to 400), L. 

bidwillii dominated the study area in terms of biomass (Fig. 4). In the following 

centuries (simulation years 400-700, Fig. 4), the biomass of L. bidwillii declined, 

whereas  that  of  W.  racemosa steadily  increased.  From  around  simulation 

year 1000 onwards, conditions were generally stable and similar to the contem-

porary composition on Mt. Hauhungatahi. Both  D. cupressinum and  P. cunning-
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hamii were only present with low biomass throughout the succession. The tree 

fern life-form occurred across the entire succession, but at lower biomasses than 

the other four tree species.

The spatial distribution of the tree species shifted over time such that there was 

a progressive upward expansion of  W. racemosa in the montane forest, accom-

panied  by  a  retraction  of  L.  bidwillii and  P.  cunninghamii into  the  higher 

sub-alpine forest.  The early successional stage (simulation years 0 to 400) was 

characterised by the widespread dominance of L. bidwillii (Fig. 4). In the montane 

forest, the dominance of L. bidwillii was associated with occasional occurrence of 

P.  cunninghamii and  D.  cupressinum.  W.  racemosa occurred  only  in  a  few 

scattered grid cells during the early succession. During the mid-succession (simu-

49

Fig. 3: Altitudinal distribution of species as described by Druitt et al. (1990) (shown as 

grey bar) and forest structure (basal area and density) as reported by Ogden et al. 

(2005) (shown as observation points) alongside model outcomes after 1700 simulation 

years. For model outcomes, the mean of 50 model realisations is shown together with 

the standard error of the mean. Only individuals with DBH > 10 cm were considered in 

the model in order to assure comparability with the empirical data. On the basis of 

their low abundance and the lack of empirical data reporting their stand structure, tree 

ferns were excluded.
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lation years 400 to 700)  W. racemosa began to increase in abundance, starting 

from the lowest elevations and spreading upslope over the following centuries. W. 

racemosa prevailed in most parts of the montane forest below 1000 m by the sim-

ulation  year  700  and  attained  dominance  in  almost  all  of  the  montane  forest 

around the simulation year 1000. The later stages of succession (simulation years 

700 to 1700) were characterised by the decay of old, scattered stands of  L. bid-

willii in the montane forest and the development of the altitudinal vegetation zon-

ation described above.
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Fig. 4: Simulated succession of tree species following the Taupo eruption (c. 1700 BP) 

on the western slope of Mt Hauhungatahi. For the spatial distribution of vegetation, 

dominant tree species (in terms of biomass) of each grid cell are displayed.
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While general temporal patterns of an initial spread of L. bidwillii and a sub-

sequent spread of W. racemosa in the montane forest coincided with the palynolo-

gical findings of Horrocks and Ogden (1998), patterns for D. cupressinum did not 

match well.  Fossil  pollen  records  show that  D. cupressinum was  continuously 

present at Mt. Hauhungatahi throughout the post-Taupo succession constituting a 

substantial fraction to the amount of pollen. In the simulation, D. cupressinum was 

present at all times, however with generally very low biomass. According to Hor-

rocks and Ogden (1998), the pollen abundance of  Dacrydium is, however, not a 

good predictor for basal area, which prohibits a direct comparison between model 

results and observation.

Discussion

LandClim proved capable of reproducing the general patterns of species zona-

tion  and  successional  patterns  by  parameterization  of  species  traits  only.  The 

model structure itself was left unchanged. This finding is of particular interest, as 

NZ’s temperate forests are considered to differ from their Northern hemisphere 

counterparts in several aspects (McGlone et al. 2010, Wilson and Lee 2012). A 

reproduction of key patterns by a northern-temperate forest model might, there-

fore, point towards a generality of underlying mechanisms that structure temperate 

forest landscapes worldwide.

Species upper altitudinal limits resulted from the species temperature require-

ments  (through calibration of  the  ‘minimum degree days’ parameter),  whereas 

biotic interactions (competition for light determined by the species shade toler-

ance, temperature requirements and potential growth rate) were important for spe-

cies lower altitudinal limits and for structuring succession.

The outcome of interspecific competition therefore varied both spatially and 

temporally,  since environmental conditions changed with altitude (temperature) 

and over  time (light-transmission to  the forest  floor).  The landscape approach 

presented here highlights how gradual changes in the environmental conditions 

affect the competitive balance between species, and results in a differentiated pic-

ture of spatio-temporal forest dynamics.
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Species traits

In the trait space (Tab. 1), L. bidwillii and W. racemosa occupy different posi-

tions reflecting a trade-off in their capacity to cope with stress induced by shade 

and low temperatures. A frequent observation is that an adaptation to a certain cli-

matic environment often comes at the cost of adaptation to other conditions (Here-

ford 2009). Similar trade-offs have been described for adaptions to shade, drought 

and waterlogging (e.g. Niinemets and Valladares 2006) as well as for the relation-

ship between growth rate and survival under limited light (Lusk and del Pozo 

2002, Kunstler et al. 2009), cold (Loehle 1998) or nutrient conditions (Chapin et 

al. 1986, Lusk and Matus 2000).

In respect to a trade-off underlying spatio-temporal vegetation dynamics, our 

model results are similar to the study of Smith and Huston (1989), who found that 

the temporal and spatial shift in species dominance can be explained by different 

adaptions of plants for two or more resources (in their case light and water use).

In LandClim, the L. bidwillii traits enable it to take advantage of well-lit, open 

sites at higher altitudes, where low temperature impedes the growth of its compet-

itors (such as W. racemosa). An increase in shading of the forest floor in turn res-

ults in a decrease of the regeneration success of  L. bidwillii. Under these condi-

tions,  the more  shade  tolerant  species  W. racemosa can outcompete the  shade 

intolerant conifer and progressively take over its sites. Here, L. bidwillii loses its 

initial advantage (in terms of better growth performance under cooler conditions) 

since  shade  becomes  the  main  limiting  factor  for  growth.  The  strategy of  W. 

racemosa proves to be more successful at this point, at least up to a certain alti-

tude (in the model at around 1000 m) where temperature limitations turn the com-

petition-balance again.

The evaluation of the trait shade tolerance was not, however, straightforward 

for all species. The results of the pattern-oriented parameterization imply that D. 

cupressinum and W. racemosa are both moderately shade tolerant (shade tolerance 

class 4, implying a minimum requirement of 5% light availability, see also Schu-

macher 2004, Tab. B.3). This appears to be reasonable for W. racemosa, which is 

usually regarded as a species of intermediate shade tolerance with some evidence 

for continuous regeneration under closed canopy (e.g. all-aged populations found 

by Lusk and Ogden 1992 in Horopito, near Mt. Hauhungatahi).  D. cupressinum, 
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by contrast, is often described as a species with pioneer behaviour on open sites 

(e.g. Beveridge 1973), displaying a restricted age-range, which points towards a 

regeneration  after  exogenous  disturbances  (Lusk  and  Ogden  1992).  However, 

Lusk et al.  (2009) found that seedlings of  D. cupressinum could tolerate  lower 

levels of diffuse light availability than  W. racemosa.  The result  of the pattern-

oriented parameterization (shade tolerance value 4 both species) therefore only 

reflects partly the ecology and the expected behaviour of both species.

Valladares and Niinemets (2008) reviewed the nature of shade tolerance and 

pointed out that it is a much more complex trait than often considered to be. In 

particular, they noted that a species shade tolerance is influenced by numerous 

biotic and abiotic factors and can furthermore vary with plant ontogeny. In NZ, 

Kunstler  et  al.  (2009)  investigated  the  growth  and  mortality  of  a  range  of 

podocarp-hardwood  species  (including  W.  racemosa and  D.  cupressinum)  and 

found that several species changed their strategy in respect to the growth-shade 

tolerance trade between sapling, seedling and mature life stages of several species. 

In particular D. cupressinum displayed this phenomenon, commonly referred to as 

‘ontogenetic trade-off’.

Regeneration of some of NZ’s tree species (and hence species position during 

succession) might therefore likely be influenced by more complex processes than 

those represented in LandClim. A closer consideration of the representation of 

regeneration (for example in respect to the ontogenetic trade-off) might be benefi-

cial for further studies using LandClim in NZ.

Finally, for the incorporation of further NZ’s species it might be necessary to 

represent more shade tolerance classes (as per Henne et al. 2012 in Mediterranean 

forests who considered six) to account for the possibility of species to regenerate 

and grow in deep shade under light levels below 1% (as for example reported for 

Beilschmiedia tawa by Lusk et al. 2009). 

Species zonation

The simulated species zonation was the outcome of temperature requirements 

(i.e. by the species specific requirements for minimum degree days – ‘minDD’) 

controlling  species  upper  altitudinal  limits  and  competition  determining  their 

lower limits. It is important, however, to note that the observations of Druitt et al. 

(1990) were used in the calibration of the ‘minimum degree day’ parameter and 
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are not, therefore, an independent dataset for the purposes of model evaluation. 

The species ranking in minimum degree days is, however, supported by Leath-

wick (1995), who found D. cupressinum and W. racemosa biased towards warmer 

habitats (in terms of mean annual temperature),  P. cunninghamii growing under 

cooler and L. bidwillii under the coldest conditions. Druitt et al. (1990) discussed 

the  effects  of  climate,  competition,  soil  (and nutrient  status),  as  well  as  slope 

steepness,  in  controlling  the  vegetation  distribution  on Mt.  Hauhungatahi,  and 

suggested competitive exclusion as a potentially important mechanisms for the 

current restriction of P. cunninghamii to the ‘transition zone’ (1000-1050 m a.s.l.). 

Our model-based experiments support this argument by showing a virtual exclu-

sion of conifers from the montane forest during the late stage of succession (Fig. 3 

and 4) in comparison to monoculture simulations, where conifers were abundantly 

present in lower altitudes as well (results not shown). While temperature is an 

important control on the upper altitudinal limit of L. bidwillii, the variable nature 

of the treeline at Mt. Hauhungatahi suggests that other processes, such as disturb-

ance  and  previous  environmental  fluctuations,  can  also  have  significant,  and 

potentially, long lasting effects (Ogden et al. 1997b, Horrocks and Ogden 1998).

LandClim was able to reproduce the broad spatial patterns of basal area and 

stem density reported by Ogden et al. (2005). A zone with abundant W. racemosa 

at lower altitudes (resembling the montane forest of Druitt et al. 1990) was fol-

lowed by a belt of P. cuninghamii (i.e., the transition zone) and finally L. bidwillii 

dominating  the  highest  altitudes  (i.e.,  the  sub-alpine  zone).  Basal  area  was, 

however, systematically underestimated and density of  L. bidwillii slightly over-

predicted, implying that the model produces stands with too many, too small indi-

viduals.

A notable discrepancy between model and empirical observations was found 

for D. cupressinum and P. cunninhamii. Conifers, including D. cupressinum, cur-

rently occur at low densities, and as scattered individuals, at the lower altitudes of 

Mt.  Hauhungatahi  (Druitt  et  al.  1990).  Although  some  individuals  of  D. 

cupressinum appeared in  the model,  the species basal area was extremely low 

compared to that described by Ogden et al. (2005) (see Fig. 3). Both species, D. 

cupressinum and  P.  cunninghamii,  are  long-lived  pioneer  species  (Ogden  and 

Stewart 1995, Ebbett and Ogden 1998) and could therefore be expected to display 

a similar behaviour as L. bidwillii. This was not the case in the final model scen-
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arios.  Neither  species  was  able  to  effectively  compete  with  L.  bidwillii or  W. 

racemosa, which implies that important mechanisms in the species establishment 

and competition were not well represented. Horrocks and Ogden (1998) note the 

potentially  important  effect  of  further  disturbance  events  at  Mt.  Hauhungatahi 

after the 1700 BP Taupo eruption (although their effect on the forest was probably 

far less severe). Mild volcanic activity in the post-Taupo period (around 660-600 

BP, Horrocks and Ogden 1998) and increased storminess in the 1740s might have 

caused substantial canopy openings and thereby facilitated the establishment of 

secondary conifer recruits. Lusk and Ogden (1992) found a similar structure of D. 

cupressinum to that at Hauhungatahi at Horopito (15 km further to the south), with 

a predominance of old individuals and an absence of cohorts younger than 550 

years that can likely be attributed to the same disturbance events that affected the 

forest of Mt. Hauhungatahi.

These  observations  point  towards  the  importance  of  considering  secondary, 

patchy disturbances (as caused by severe windstorms) in simulation experiments. 

LandClim contains a disturbance module explicitly designed to represent disturb-

ances by windstorms. Although beyond the scope of the present study, this dis-

turbance module offers further possibilities for exploration of the effect of various 

patchy disturbance regimes on the forest structure and composition.

Succession of tree species following Taupo eruption

According to Horrocks and Ogden (1998),  L. bidwillii was dominant in the 

montane forest until a progressive invasion of W. racemosa commenced around c. 

900-850 BP and culminated  around c.  650 BP.  In the model,  the  initial  dense 

L. bidwillii stand persisted in the montane forest for several centuries by virtue of 

the species extreme longevity. The disintegration of this cohort was accompanied 

by the upward spread of  W. racemosa, which reached the upper montane forest 

around 1000 BP and became fully established from c. 700 BP onward (Fig. 4). 

Therefore,  the model  results  imply that  the dense stands formed by the initial 

L. bidwillii cohort could have inhibited the spread of W. racemosa during the first 

centuries after the eruption. 

Legacy effects  from prior  vegetation  composition,  climatic  fluctuations  and 

further (natural and anthropogenic) disturbances will all have influenced the forest 

succession  since  the  Taupo  eruption.  A shift  towards  cooler,  drier  conditions 
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c. 3000-2000 BP (McGlone and Moar 1977, Rogers and McGlone 1989) might 

have meant that L. bidwillii was expanding at the time of the eruption. According 

to Horrocks and Ogden (1998), the effects of the Taupo eruption on Mt. Hauhun-

gatahi were patchy, with some areas of forest escaping damage. Surviving patches 

of forest could have had a substantial impact on the vegetation composition imme-

diately after the eruption, similar to contemporary post-disturbance succession at 

Mt.  St.  Helens  (Dale  2005).  Despite  its  simplified  assumptions  (succession 

starting from bare ground with global and uniform seed dispersal), the model res-

ults agree with the key patterns seen in the palynological record. The model ana-

lysis therefore highlights the profound and sustained effect of a catastrophic dis-

turbance event such as the Taupo eruption for long-lived pioneer conifer species 

such as L. bidwillii (see also Ogden et al. 2005).

More differentiated patterns in the altitudinal series of pollen assemblages are, 

however, difficult to compare to the model results. First, the model represented 

only the main canopy species and did not account for other understorey species, 

some of which make substantial contributions to the relative abundance of pollen. 

Second, differences in pollen preservation and dispersal between species mean 

that there is not a consistent relationship between modern pollen abundance and 

basal  area for all  simulated species at  Mt.  Hauhungatahi  (Ogden et  al.  2005), 

which, in turn, makes it challenging to directly relate pollen assemblages to the 

simulated forest structure.

Application of LandClim for the NZ context

LandClim’s facilities to represent disturbance processes (e.g. fires and stand-

replacing  windstorms)  make  it  particularly  well-suited  for  exploring  questions 

about vegetation dynamics across broad-scales in space and time. This, in turn, 

means that LandClim can help to address the long-standing questions surrounding 

the role of disturbance processes in angiosperm-gymnosperm coexistence in NZ’s 

forests (as suggested by a number of empirical studies, e.g. Lusk and Ogden 1992, 

Wells et al. 2001, Ogden et al. 2005). On the basis of a pattern-oriented parameter-

ization of species traits and no other structural changes, LandClim proved capable 

of  reproducing  the  altitudinal  distribution  of  species  on  Mt.  Hauhungatahi 

described by Druitt  et al.  (1990) and, to some extent,  the patterns observed in 

forest  structure  by  Ogden  et  al.  (2005).  Furthermore,  the  model  experiments 

demonstrate how tree species life-history traits might explain the patterns of suc-
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cession seen in the palynological record (Horrocks and Ogden 1998). On the other 

hand, relative to the data of Ogden et al. (2005), LandClim systematically under-

estimates basal area and tends to overestimate stem density for some species (Fig. 

3). This mismatch suggests that the regeneration and mortality of long-lived trees 

is not represented adequately in LandClim. A more thorough consideration of how 

regeneration  is  represented  in  the  model  will  be  an  important  component  of 

LandClim’s development for future application in New Zealand.

Tree ferns constitute a distinctive feature of NZ’s forests that have no direct 

equivalent  in  European  and  North  American  forest  ecosystems.  Our  study 

provides a first attempt to incorporate these into a forest landscape model, but a 

more adequate representation will  need to account  for their  distinctive growth 

behaviour. 

Conclusion

Our approach highlights the potential for combining forest-landscape model-

ling with palaeoecological reconstructions in spatially complex environments. The 

use  of  simulation  models  to  explore  drivers  underlying  long-term  dynamics 

observed in palaeoecological reconstructions is an area of considerable current 

interest. Whereas previous such studies using LandClim (Henne et al. 2011) have 

focused on cumulative pollen abundances over entire catchments, our study shows 

the  model’s  suitability  for  use  with  locally  and  regionally  distinct  pollen 

assemblages. In the forest landscapes we consider, vegetation dynamics are con-

trolled by interactions between biotic and abiotic drivers, but because they play 

out  over long time-scales they are challenging to resolve empirically.  Process-

based simulation models as LandClim, when informed and supported by empirical 

data, have the potential to generate and evaluate hypotheses about the long-term 

trajectories of such forest systems.
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Supplement

S1: LandClim – model description

Detailed  descriptions  of  the  full  structure  of  LandClim are  given  in  Schu-

macher (2004), Schumacher et al. (2004) and Schumacher and Bugmann (2006). 

In order to explain the effect of biotic and abiotic drivers of vegetation dynamics, 

the following section provides a brief overview of the stand-level processes of 

LandClim.

The establishment,  growth and mortality  of trees are  the three fundamental 

stand-scale processes considered by LandClim. The model tracks individual trees 

in the aggregated form of cohorts described by their biomass. Cohorts are groups 

of same-aged trees within a grid-cell (25 × 25 m) with all individuals having the 

same biomass (which can be translated into diameter at breast height using the 

allometric  given below in section ‘Growth’) and survival  probability,  but  with 

mortality occurring at the individual-level.

Establishment

For the representation of establishment, tree species are filtered by propagule 

availability and physical properties within each cell. Establishment in a cell is pos-

sible only in years where the light available at the forest floor exceeds a species-

specific  threshold  value,  winter  temperature  (mean  temperature  of  the  coldest 

month) is higher than a species-specific minimum temperature, and the sum of 

growing  degree-days  exceeds  the  species-specific  minimum  requirement.  A 

species-specific establishment coefficient affects the probability of actual estab-

lishment. To reduce computational effort, the number and biomass of trees in any 

newly established cohort are calculated decadally.
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Growth

Maximum growth rates are assigned to each species (representing the growth-

rate under optimum environmental conditions), which are reduced by light avail-

ability, sum of degree days and drought. Actual tree growth is determined by a 

combination of these reduction factors under the application of Liebig's ‘Law of 

the minimum’.

For conversion of the model biomass output into DBH, an allometric relation-

ship was derived from individual-level data for  Weinmannia racemosa (kamāhi) 

and Dacrydium cupressinum (rimu), reported by Beets et al. (2008):

d =45.59799⋅b0.39877240  Eq. S1

where: d = diameter at  breast height (cm),  and b = aboveground biomass (kg; 

assuming that 50% of dry trunk biomass is carbon).

Mortality

Tree mortality arises from three broad factors: 1) growth-dependent stress, 2) 

density-dependent  stress  and  3)  an  intrinsic,  age-related  component.  Growth-

dependent  stress  occurs  when  the  annual  growth  rate  drops  below  a  species-

specific  threshold  value  due  to  unfavourable  environmental  conditions.  Stress-

related mortality probability increases after a minimum number of consecutive 

low-growth years accumulate.  Density-dependent  mortality  occurs  only if  total 

stand  biomass  exceeds  the  maximum  stand  biomass  in  a  given  cell.  Age-

dependent mortality increases with tree age. The probability of an individual tree 

dying is given by the maximum of these three probabilities.

New Zealand’s  temperate  forests  can attain substantial  amounts  of standing 

biomass  per  area  (Wardle  1991),  exceeding those  of  central  European forests. 

Therefore, the maximum stand biomass was increased from 300 to 1000 t/ha. This 

increased limit to standing biomass effectively reduces the probability of density-

dependent mortality.

S2: Parameterization of tree species life-history traits

maxAge

The parameter ‘maxAge’ characterises the expected longevity of a tree species 

(Bugmann 1994, Schumacher et al. 2004). For the Hauhungatahi species, the max-
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imum age was assigned based on the age-estimates of oldest individuals given by 

the following studies:

Ogden et al. (2005) for L. bidwillii (1000 years), Smale and Smale (2003) for 

P. unninghamii (650 years), Lusk and Ogden (1992) for W. racemosa (400 years). 

A value of 800 years was assigned to D. cupressinum since a wide range of max-

imum ages have been reported (500 up to 1000 years, Lusk and Ogden 1992). An 

estimated maximum age of 150 years was assigned to the tree fern life form.

Shade tolerance

Species shade tolerance expressed in classes between 1 and 5, with 1 denoting 

the least shade tolerance (following the classification given by Ellenberg 2009). 

These  classes  define  species-specific  minimum  light  requirements  (see  Schu-

macher, 2004, p.122, Tab. B.3). Shade tolerance classes for the tree species of Mt. 

Hauhungatahi were determined via the pattern-oriented parametrization approach.

Rmax

The parameter ‘Rmax’ determines the maximum above-ground biomass growth 

rate per year, and is expressed relative to the maximum biomass of a tree species. 

The ranges for ‘Rmax’ were determined by the pattern-oriented parameterization 

approach and a refined sensitivity analysis. Average growth rates were determined 

by a linear regression of the age-DBH data for both empirical and model data. The 

empirical sources for growth data were: Ogden et al. (2005) for L. bidwillii (mean 

annual growth rate  of 0.125 cm/yr),  Lusk and Ogden (1992) for  W. racemosa 

(0.209 cm/yr) and D. cupressinum (0.124 cm/yr), Smale and Smale (2003) for P. 

cunninghamii (0.15 cm/yr).

Kmax

Maximum biomass of an individual tree (‘Kmax’) was estimated from an allo-

metric relationship given in Hall et al. (2001), relating DBH and height to bio-

mass. Unless otherwise noted, values of mean maximum tree height were taken 

from the New Zealand Eco-Trait database (Landcare Research 2011a), maximum 

DBH-values were taken from the electronic version of the Flora of New Zealand 

(Landcare  Research  2011b).  For  P.  cunninghamii,  the  DBH value  reported  in 

Russo et al.´s (2007) Tab. S1 was used. For D. cupressinum, both DBH and height 

values were derived from the Flora of New Zealand (Landcare Research 2011b). 
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Since  several  maximum heights  were  reported,  the  standard  maximum height 

listed in  the Eco-Traits  database was assumed and the resulting ‘Kmax’ value 

rounded to the nearest whole number. For L. bidwillii, the DBH and height values 

given in the Flora and Eco-Trait databases (Landcare Research 2011a, Landcare 

Research 2011b) resulted in a ‘Kmax’ value of 3.92.  Since  L. bidwilli did not 

occur in the carbon stock assessment report of Beets et al. (2008), we used the 

maximum DBH values given by Ogden et al.  (2005) as calibration targets and 

found that with Kmax = 3.92 LandClim significantly under-predicted DBH (with 

a maximum around 60 cm compared to the 100+ cm observed by Ogden et al. 

2005). Therefore, ‘Kmax’ was increased to 8, which resulted in a more reasonable 

maximum DBH of 90-100 cm. Preliminary test scenarios using a wide range of 

‘Kmax’ values for  L. bidwillii showed that the model was reasonably robust to 

changes in this parameter’s value.

Leaf Habit

The ‘LeafHabit’ distinguishes between ‘Evergreen’, ‘Broadleaved evergreen’ 

and ‘Deciduous’ species (Schumacher 2004). Classes were assigned according to 

leaf  morphology  information  given  on  the  NZ  Eco-Trait  database  (Landcare 

Research 2011a).

Foliage type

Foliage type is a parameter ranked in five classes that determines the shading 

potential of a tree species. An allometric function is applied which scales from 

foliage  characteristics  to  the  shade  cast  by  a  tree  individual  (via  tree  size 

expressed as DBH).We estimated the foliage type based on information about leaf 

morphology given in the Eco-Trait database (Landcare Research 2011a) and from 

expert opinion about the species canopy structure and shading potential.

Min Temperature

This parameter determines the minimum temperature (°C) for species estab-

lishment (Bugmann 1994). We used the freezing resistance reported by Sakai and 

Wardle (1978) to assign this trait to L. bidwillii, D. cupressinum, P. cunninghamii 

and  W. racemosa.  For  the  tree  fern  life-form the  same minimum temperature 

(-7 °C) as W. racemosa was assumed.
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minDD

The minimum annual degree day sum (‘minDD’) parameter expresses a species 

temperature requirements for growth (see Bugmann 1994 for further explanations 

of the degree day concept). It was assumed that upper limits of tree species of 

Mt Hauhungatahi  were  determined  by  temperature.  Therefore,  the  parameter 

‘minDD’ was calibrated in order to fit the observation of upper species altitudinal 

limits by Druitt et al. (1990). For this purpose, each species was simulated under 

monoculture  conditions  with  a  range  of  possible  minimum degree  day  values 

(between 1060 and 2200, as suggested by Hall and McGlone 2006). For compar-

ability  with  measurements  of  (Druitt  et  al.  1990),  only  individuals  with  a 

DBH > 10 cm were considered.

S3: Parameterization of the tree fern life-form

Demographic and allometric data for tree fern species are very scarce. Because 

tree-ferns are monocots they do not show secondary thickening, making the devel-

opment of the allometric relationships that underpin forest gap models difficult. 

This, in turn, can have substantial effects on the simulated competition for light 

resources. To overcome these restrictions, tree ferns were not simulated as a spe-

cific species but as a more general life-form drawing on information provided by 

Beets et al. (2008), Ogden et al. (1997) and Bystriakova et al. (2011).

At Mt. Hauhungatahi, the dominant tree fern species is Cyathea smithii (Druitt 

et al. 1990). Therefore, the life-history traits of the tree fern life-form were mod-

elled on the ecology of Cyathea smithii. Bystriakova et al. (2011) investigated the 

ecological differences between tree fern species in terms of shade tolerance and 

growth-rates  and  found  that  Cyathea  smithii and  Cyathea  dealbata were  the 

slowest-growing  and  most  shade  tolerant  species.  Therefore,  the  tree-fern  life 

form was implemented as a slow-growing, shade tolerant species.

Growth estimates given by Ogden et al. (1997) were used to determine growth 

rates of the tree fern life-form. Ogden et al. (1997) report average height incre-

ments  for  the  slowest  growing  tree  fern  (Cyathea  dealbata)  of  approximately 

5 cm/yr, which was used as a target for parameterization of ‘Rmax’. In order to 

convert Ogden et al.’s height-growth estimates into biomass-growth, a highly sim-

plified allometric relationship was derived from the data given by Beets et  al. 

(2008) (Eq. S3):
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b=
h

0.289
Eq. S3

where: b = total aboveground biomass (kg) and h = height (m).

For the conversion function (Eq. S3), it was assumed that tree ferns maintain a 

constant  diameter  during  their  life  span  and  as  a  result  aboveground-biomass 

acquisition can be translated into height growth via a linear relationship.
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Abstract

Altering growth behaviour of coexisting tree species under climate change is important from an 

ecological, silvicultural and economic perspective. While many studies focus on climatic limits for  
species existence, we are concerned with climate related shifts in the interspecific competition. A 

landmark that manifests these changes in competition is the ‘climatic turning point’ (short CTP) as 
we call the climate conditions under which a rank reversal between key tree species occurs. Here, 

we use a common type of temperate mixed forest in Central Europe with European beech (Fagus 
sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) to explore the CTP under a future 

climate projection of increasing aridity during the growing season. We select a dry region where 
the prerequisite of differential climate sensitivity in mixed beech-oak forests is fulfilled: In-situ  

dendrochronological  analyses  prove  that  the  currently  more  competitive  beech  is  also  more 
drought sensitive than sessile oak.

Based on this premises we are able to search for the CTP from beech to oak by modelling future  
forest development from the WETTREG 2010 A1B projection aiming at quantifying (i) a possible 

rank-reversal in species dominance and (ii) the climatic turning point (CTP). We use two climate 
sensitive, complementary forest growth models, namely SILVA and LandClim in order to identify 

conclusions robust against the assumptions of a particular model.

Despite  differences  in  underlying  assumptions  and  stand  initialization,  both  models  predict  a 

potential turning point at a mean annual temperature of 11-12 °C (July temperature > 18 °C) and 
precipitation sum of 500-530 mm. However, the change of tree species composition in already 

existing mixed stands is much slower since the turning point also depends on inherited stand struc-
ture.

Keywords: Climatic turning point, drought, mixed forest, tree coexistence, competitiveness, spe-
cies rank reversal, tree-ring analysis, forest growth models, LandClim, SILVA,  Fagus sylvatica, 

Quercus petraea.
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Introduction

As climatic extremes are increasing in intensity and frequency droughts and 

their effect on global forest biomes are of particular interest to forest sciences. 

Precursors of a future climate posing a drier growing season (Schär et al. 2004, 

Barriopedro et al.  2011, IPCC 2012) are seen already today as main causes of 

changes in tree growth, tree death and even die-backs in temperate forests (Gitlin 

et al. 2006, van Mantgem and Stephenson 2007, Worrall et al. 2008, Rehfeldt et 

al. 2009). Especially for mixed species silviculture – one of the epitomes of cli-

mate change risk mitigation – such alterations in the species’ growth behaviour 

are most important from an ecological,  silvicultural  and economic perspective, 

and might precede the decline of less drought adapted species with severe ecolo-

gical consequences (Carnicer et al. 2011).

European forests are usually dominated by few key tree species which drive 

ecosystem functions. A rank reversal in the dominance of these key species has to 

be expected when the interspecific competition changes. So far, the concept of 

rank reversal was used in the establishment phase of tree species in relation to 

light conditions (Baltzer and Thomas 2007, Beaudet et al. 2007, Osada 2012) or to 

compare ontogenetic  growth patterns  (Boyden et  al.  2009,  Pérez-Ramos et  al. 

2012) (Literature review S1). However, we argue that a changing climate can alter 

species  performance and thereby induce  rank reversals.  Sánchez-Gómez  et  al. 

(2008) and Gómez-Aparicio et al. (2011) were the first to predict climate induced 

species rank reversals for mixed forests in Spain. This prompts the question at 

what  point  in  the  gradient  of  a  possible  future  climate  such rank reversals  in 

mixed-species  forests  occur.  We shall  call  this  point  the climatic  turning point 

(hereafter short CTP).

Due to the complexity in tree species’ climate-growth control and the interac-

tion with ontogenetic growth behaviour the search for the CTP is not trivial. Par-

ticularly  in  long-lived  ecosystems  with  long  generation  periods,  the  slow and 

gradual response of forest structure and species composition to changing precipit-

ation regimes might remain unnoticed. Moreover, the species’ regeneration suc-

cess as the key determinant of the future forest’s species composition takes only 

effect  in  the following generation (Sykes and Prentice 1996,  Soja et  al.  2007, 

Johnstone et al. 2010). Clearly, the response of the forest to changing climate con-
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ditions cannot simply be predicted by means of extrapolating regression functions 

or searching climate analogies (Fuhrer et al. 2006, Williams and Jackson 2007). 

We therefore employ a very cautious approach based on in-situ data on tree and 

stand growth under past and present climate in combination with climate-sensitive 

and structure-sensitive dynamic forest growth models.

Our study object are mixed stands of European beech (Fagus sylvatica L.) and 

sessile oak (Quercus petraea (Matt.) Liebl.), a forest type of considerable relev-

ance which grows mainly on climatic and edaphic dry sites in Central Europe. A 

systematic literature search (ISI Web of Science ® Data base) on growth of beech 

and oak under drought resulted in 20 papers dealing with the coexistence of oak 

(Quercus petraea and/or Q. robur) and beech (Fagus sylvatica) (Tab. 1, Literature 

review  S2).  Among  the  two  species,  beech  is  predominant,  and  the  light-

demanding oak can only  compete  under  less  favourable abiotic  conditions  for 

beech, i.e. warm and relatively dry sites, or wet and clayey soils. Ellenberg (2009) 

suggest that oak becomes more competitive than beech at  July-temperatures > 

18 °C  and  precipitation  <  600  mm/yr.  The  chosen  stands  lie  in  the  region 

‘Franconian  plateau’ in  south-eastern  Germany,  where  the  present  climate  is 

already close to above mentioned limits.

Strong climate change scenarios like the WETTREG 2010 A1B (Kreienkamp 

et al. 2009) predict an increase of summer aridity in that region. Under such con-

ditions, both species can be expected to suffer a loss in productivity (Leuschner et 

al.  2001, Lebourgeois et al.  2005, Jump et al.  2006, Piovesan et al.  2008) and 

might be even prone to die-back (e.g. Bréda et al. 2006, Michelot et al. 2012). Yet, 

oak is considered to suffer less than beech due to a higher capability to resist 

advert climatic conditions or to recover better after climatic extreme events (Liter-

ature review S1). Under drought beech apparently down-regulates its photosyn-

thesis earlier than sessile oak to avoid cavitation (Leuschner et al. 2001, Raftoy-

annis and Radoglou 2002, Bréda et al. 2006).

For the forest growth simulators we choose SILVA and LandClim. Both models 

operate on the individual tree level – a mandatory criterion if changes in structural 

competition are to be reproduced. Still,  the two forest  growth simulators were 

developed  for  different  purposes  and  correspondingly  differ  in  underlying 

assumptions and structure (Pretzsch et al. 2008). SILVA focuses on a precise pre-

scription of the development of a particular stand with a focus on tree growth (i.e. 
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is strong in operational forest management planning), LandClim simulates long-

term dynamics  of  forest  at  the  landscape  scale  considering  particularly  demo-

graphic processes such as establishment, growth and mortality. 

To determine the climatic turning point (CTP) for a mixed beech-oak forest of 

considerable  relevance  in  Central  Europe we combine  empirical  evidence  and 

modelling. Data from repeated forest surveys and tree-ring analysis are used to 

assess current tree growth and to harmonize the forest models. These are then 

used  to  predict  the  forest  development  under  climate  change.  This  approach 
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Tab. 1: A systematic literature search (ISI Web of Science ® Data base) on growth of 

beech and oak under drought resulted in 20 papers dealing with the coexistence of 

beech (Fagus  sylvatica)  and oak  (Quercus  petraea and/or  Q.  robur)  (cf.  Literature 

review S2). Notably, only two studies examine competition dynamics among the two 

species under future climates.  Method:  M=Modeling F=Field observation E=Experi-

ment.

Reference Method Target 
period

Target driver Aim

Bellassen et al. 2011 M past no model validation

Bonn 2000 F past climate/weather tree growth and competition

Bugmann and Cramer 1998 M past soil water balance tree growth and competition

Czúcz et al. 2011 M past climate tree growth and competition

Davi et al. 2009 M past carbon and water fluxes tree growth and competition

Fabbio et al. 2006 F past forest 
management/extreme 
event

tree growth and competition

Friedrichs et al. 2009 F past climate tree growth

García-Suárez et al. 2009 F past climate tree growth and competition

Granier et al. 2007 M past climate/weather/extreme 
event

tree growth

Hlásny et al. 2011 M future climate tree growth

Leuschner et al. 2001 F past soil water balance tree growth and competition

Mérian & Lebourgeois 2011 F past climate tree growth

Piedallu et al. 2011 F past soil water balance tree growth, modelling, soil 
water holding capacity

Pollastrini et al. 2010 E future climate tree growth

Scharnweber et al. 2011 M past climate tree growth and competition

Scherrer et al. 2011 F past climate/extreme event tree growth and competition

Solberg et al. 2009 F past climate/soil chemistry tree growth

Szabados 2006 F past climate tree growth

van der Werf et al. 2007 F past extreme event tree growth

Zang et al. 2011 F past climate/extreme event tree growth and competition
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allows us  to  perform a straightforward analysis  of  the  following two decisive 

hypotheses: 1) Projected future climate eventually crosses a climatic turning point 

with a drought-induced rank reversal in the species dominance and 2) the rank 

reversal is driven not only by climate, but also by the inherited stand structure.

Whilst literature is rich on climatic limits for species existence, we are con-

cerned  with  the  gradual  response  of  ecosystem  shifts  in  species  composition 

within these limits and work out the CTP which serves as a landmark for investig-

ating changing interspecific competition. A very cautious approach allows us to 

trace and discuss uncertainties in  the determination of the CTP and their  con-

sequences for forest management practice.

Materials and Methods

Study site and data

The studied beech-oak forest stands are located in south-eastern Germany on 

the ‘Franconian plateau’ in an altitude of 300-400 m a.s.l..  Four sites are per-

manent investigation sites of different stand age which belong to the Bavarian 

long-term experimental plot network, the fifth site is a forest reserve of the Bav-

arian state forest institute LWF (Tab. 2). The experimental plots were installed in 
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Tab. 2: Stand parameters from surveys of the studied beech-oak stands near Schwein-

furt. N = Stem number per hectare, H100 = Upper canopy/ top height, G = Basal area,  

V = Merchantable wood volume, dg = Root of mean diameter squared, B = Above-

ground biomass (Schroeder et al. 1997)

Stand

(initial age)

Survey

year
All tree species Beech Oak Other

N

(ha-1)

H100

(m)

G

(m2/ha)

V

(m3/ha)

B

(t/ 
ha)

dg

(cm
)

G

(m2/ha)

dg

(cm
)

G

(m2/ha)

dg

(cm
)

G

(m2/ha)

27yrs 1995 3160 15.7 25.2 143.6 536 11.4 6.4 9.6 17.0 11.3 1.8

2005 1751 19.9 28.4 233.2 824 15.1 9.1 14.3 18.0 11.4 1.3

54yrs 1995 1935 22.1 34.4 311.4 715 15.7 15.2 19.1 9.9 12.1 9.3

2005 1384 25.2 40.7 449.3 778 20.4 19.3 22.5 12.1 15.6 9.3

86yrs 1995 1149 24.3 30.1 316.8 561 15.4 11.2 22.7 15.4 16.3 3.5

2005 1037 26.8 36.9 443.2 636 18.5 14.2 25.7 18.8 18.6 3.9

106yrs 1995 676 27.8 25.7 323.3 422 18.8 14.4 30.9 10.4 24.9 0.9

2005 615 30.4 30.5 425.7 485 21.4 16.6 34.9 12.8 27.1 1.1

Reserve 1978 723 25.8 30.4 355.1 472 27.2 12.9 35.6 6.4 18.0 11.1

(105 yrs) 1996 531 30.5 37.0 528.1 644 34.6 18.5 42.8 7.5 22.3 11.0

2010 396 33.8 38.6 622.4 593 40.7 22.4 44.5 6.5 26.0 9.7
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1995 and surveyed in 1995 and 2005. The stands are 2.25-6.8 ha large, even-aged 

and range from 27-106 years with merchantable wood volumes of 233-323 m3/ha 

in 1995. The basal area ratios of oak:beech:other species range from 25:67:7 to 

56:40:4, hornbeam (Carpinus betulus L.) shares up to 32%, lime (Tilia cordata P. 

Mill.) and maple (Acer pseudoplatanus L.) cover minor percentages. No thinning 

occurred between 1995 and 2005. The forest reserve with a core area of 0.99 ha 

was designated in 1978 and surveyed in 1978, 1996 and 2010. Since that time any 

forest management is forbidden. In 1978, tree age in the core area was 105 years, 

wood volume was 311 m³/ha and basal area ratio of oak:beech:other species was 

42:21:37 (Tab. 2).

For retrospective growth analyses, increment cores were extracted in the direct 

vicinity of the 86-year experimental plot in 2009. Two cores of each 15 dominant 

oak and beech trees were sampled at breast height. After wood surface prepara-

tion, ring width of each sample was measured using a LINTAB linear table (Rinn 

2003) to a precision of 0.01 mm. The software TSAP-Win (Rinn 2003) was used 

to synchronize the ring width curves visually and statistically. The biological age 

trend in the original tree-ring series was eliminated using the dplR library v 1.5.5 

(Bunn 2008) in R v 2.15.1 (R Development Core Team 2012) by applying a cubic 

smoothing spline of 2/3 of the series length. Autoregressive modelling was used to 

remove first order autocorrelation. Residual chronologies of beech and oak were 

obtained by averaging the ring width series using a biweight robust mean (Cook 

and Peters 1997).

Climate data

Climate  data  (daily  values  of  temperature  and  precipitation  for  the  period 

01.05.1958 - 31.12.2003) were obtained from the weather station ‘Schweinfurt-

Gartenstadt’ close to the study site (DWD station 4621, 50.06 °N; 10.22 °E; 240 

m a.s.l.). These data were used for the retrospective growth analysis and calibra-

tion of SILVA and LandClim.

Basis  for  the  projections  of  possible  future  forest  development  was  the 

WETTREG  2010  A1B  ‘normal’ scenario  for  the  same  climate  station  from 

1961-2100 (Kreienkamp et al. 2009). For this scenario, ten realizations, with each 

of them covering two decades, are available. These climate time series provide a 

climatic gradient from moderate temperature and soil moisture conditions in the 
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past and present to warmer and dryer conditions in the future, including a realistic 

temporal variability and autocorrelation (Tab. S1). Compared to 1971-2000 the 

WETTREG scenario projects for 2071-2100 a significant increase in the mean 

annual and May-Sep temperatures from 9.0 °C to 12.5 °C and 15.9 °C to 19.4 °C. 

The growing season with mean temperatures  above 10 °C is  thereby extended 

from 164 to 202 days (Fig. 1). Annual precipitation decreases from 558 mm to 

523 mm and summer precipitation from 258 to 200 mm.

Current and future stand dynamics

In a first step, the empirical data were used to analyse tree growth and competi-

tion between beech and oak under past and present climatic conditions.  In the 

present  study a  species’ dominance  was  defined by its  basal  area  (SILVA) or 

aboveground  biomass  (LandClim)  being  higher  than  any  other  species’ 

basal area/biomass. A species’ competitiveness was defined in terms of a gain or 

loss  in  its  basal  area  share  or  biomass  share.  Competitiveness  (and ultimately 

dominance)  is  determined by the conjoint effect of the demographic processes 

establishment, growth, and mortality. Basal area and biomass are standard meas-

ures in mixed species forest ecology (Pretzsch and Schütze 2009).
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Fig. 1: Present and future climate of the study site Schweinfurt (south-eastern Ger-

many). a) Present climate for the period 1971-2000 according to the DWD climate sta-

tion Schweinfurt, b) future climate from 2071-2100 according to the WETTREG 2010 

A1B scenario. As in Walter-Lieth climate diagrams hatched area indicate moist periods, 

dotted areas dry periods (Walter and Lieth 1967).
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In  a  second  step,  the  forest  growth  models  SILVA and  LandClim  were 

employed to assess future forest dynamics, particularly the ‘climatic turning point’ 

(CTP). We define a climatic turning point as the climate where a rank reversal of 

the  species’  dominance,  i.e.  basal  area  share  (SILVA)  and  biomass  share 

(LandClim) occurs. As postulated, the rank reversal and thereby the observed CTP 

might be affected by inherited stand structure. By ‘inherited stand structure’ we 

refer to the footprint of prior climate conditions and forest management causing a 

gradual response of forest structure and species composition in long-lived ecosys-

tems with long generation periods. Therefore, a potential and actual CTP was dis-

tinguished. To determine the potential CTP forest succession was simulated for 

forests developing ex novo, i.e. establishing from seed rain, under different, but 

stationary climate conditions derived from the WETTREG data. The actual CTP 

was determined by the simulation of a forest succession in present forests along 

the projected gradient from moderate temperature and soil moisture to warmer and 

dryer conditions (WETTREG time series).

The models

SILVA is a site-condition sensitive, single-tree based, spatially explicit forest 

growth model (Pretzsch et al. 2002). The growth functions were statistically para-

meterized from data of long-term experimental plots across Central Europe. The 

parameterizations for beech and oak were based on 13,000 trees and 3,000 trees of 

altogether 89+37 plots, respectively. SILVA was developed as a growth simulator 

for operational forest management planning of the Bavarian state forest manage-

ment, for educational and scientific purposes (Pretzsch et al. 2008). Due to its site-

sensitivity,  SILVA simulations  have  been  included  in  the  analysis  of  climate 

change effects on forest growth and the development of forest carbon stocks under 

different climate and management scenarios (Köhl et al. 2010, Rötzer et al. 2010).

LandClim is a spatially explicit forest landscape model that was developed to 

assess  the  importance  of  climatic  effects,  wildfire  and  management  on  forest 

dynamics (Schumacher et al. 2004, Schumacher and Bugmann 2006, Schumacher 

et al. 2006). It incorporates patch level processes of climate-dependent tree regen-

eration, growth and mortality, and landscape level processes such as forest dis-

turbances and seed dispersal. Thereby several stand generations can be simulated 

and the influence of variables changing with time or space on forest dynamics can 

be assessed. LandClim operates on long time scales (hundreds to thousands of 
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years) and large spatial extents (several hectares) at a relatively fine scale (grid 

cells of 25 by 25 m, monthly weather data), and has been tested and adapted to the 

European Alps, the North American Rocky Mountains, and Mediterranean forests 

(Schumacher and Bugmann 2006, Colombaroli  et  al.  2010, Henne et  al.  2011, 

Briner et al. 2012, Elkin et al. 2012, Henne et al. 2012). Species parameters were 

taken  from Schumacher  et  al.  (2004)  and  Henne  et  al.  (2011)  except  for  an 

increase in the drought tolerance of Quercus petraea from 3.0 to 3.5 to reflect the 

slightly higher drought tolerance than  Fagus sylvatica (drought tolerance = 3.0) 

reported  in  the  literature  (e.g.  Leuschner  et  al.  2001,  Raftoyannis  and  Rado-

glou 2002, Bréda et al. 2006, Scharnweber et al. 2011).

For model validation the SILVA simulations which were initialised with the 

experimental plot data could be compared directly with the true stand develop-

ment. The simulation results for the 1981-2020 periods were validated against the 

data  from the  experimental  plots  and forest  reserve.  The simulated  basal  area 

growth matched the actual basal area well, except for 10-15% underestimation in 

the case of the 54 and 86-yrs old stands. The difference was due to an underestim-

ation of the increment of the ‘other species’ which cluster several species with dif-

ferent  growth characteristics.  The growth ratio  of  oak to  beech was generally 

estimated correctly; oak increment was slightly overestimated in the 27-yrs old 

stand. These results are acceptable for our purposes; a perfect match of reality is 

unrealistic since the stand interactions with the environment are much too com-

plex for a stable model: E.g. late frost or other climate hazards, insect calamities, 

mast years all have a very unpredictable pattern and are essentially smoothed in 

the SILVA parameterization (Fig. S1).

LandClim was validated by translating the permanent plot data into biomass 

using the allometric function implemented in LandClim (Schroeder et al. 1997). 

Simulations were run with the current climate (DWD data) and results were com-

pared to the real stands. As LandClim does not take into account the anterior oak 

fostering, stand biomass is dominated by beech which is more competitive under 

the current climate (Fig. S2).
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Simulations

Mixed beech-oak forest growth under climate conditions from the WETTREG 

2010 A1B scenario was simulated in order to determine the CTP between both 

species (Tab. 3). For the potential CTP, climate had to be stationary during the 

simulated succession so that forests  developed in equilibrium with climate.  To 

create such climate scenarios the WETTREG 2010 A1B time-series covering the 

period 1961-2100 was split into 20-year periods (for each of ten available realiza-

tions).  Seven climate  scenarios  were  generated by looping each 20-year  time-
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Tab.  3:  Definition  of  simulation runs.  Temperature  and precipitation  are  given  per 

annum (Temp.a, Prec.a) and per growing season (Temp.v, Prec.v), i.e. May-September 

of a respective year.

Simulation Model Initial age (yrs)
Sim. 

period 
(yrs)

Final 
age 
(yrs)

WETTREG 
A1B 

period 
(yrs)

Temp.a 
(Temp.v) 

(°C)

Prec.a 
(Prec.v) 

(mm)

Potential  
climatic 
turning point 
(simulation 
with quasi-
constant 
climate 
conditions)

SILVA 27 (experimental stand) 120 147 1961-1980
(CLIM1)

8.9 (15.6) 546 (256)

1981-2000
(CLIM2)

8.9 (15.9) 553 (251)

2001-2020
(CLIM3)

9.3 (16.4) 561 (245)

LandClim 0 (establishment from 
‘global seed rain’)

150 150 2021-2040
(CLIM4)

10.3 
(17.2)

534 (219)

2041-2060
(CLIM5)

11.1 
(18.2)

512 (227)

2061-2080
(CLIM6)

11.9 
(19.0)

500 (200)

2081-2100
(CLIM7)

12.6 
(19.4)

516 (195)

Simulation 
span

Data

Actual 
climatic 
turning point 
(continuous 
simulation 
acc. to 
WETTREG 
scenario)

SILVA 27 (experimental stand) 100 127 2001-2100 WETTREG A1B time 
series

54  (experimental stand) 100 154

86 (experimental stand) 100 186

106 (experimental stand) 100 206

105 (forest reserve) 120 205 1981-2100 WETTREG A1B time 
series

LandClim 0 (establishment from 
‘global seed rain’)

180 180 1921-2100 From 1921 to 1960 
WETTREG A1B time 
series ‘1961-1980’ was 
repeated twice, 
afterwards WETTREG 
A1B time series
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series as often as needed (for 150 years succession 7.5 times). Forest structure and 

species composition were evaluated at a stand age of 150 years. This is the upper 

limit for beech rotation and lower limit for oak rotation. Neither species should 

suffer from an age-dependent mortality. According to the different initialisation 

requirements of the growth models SILVA and LandClim, SILVA was initialised 

with the 27-year old experimental stand (Tab. 2) and LandClim with a beech-oak 

‘global seed rain’ on bare ground.

For the actual CTP, beech-oak stand development was simulated according to 

the predicted climate development from the WETTREG 2010 A1B scenario until 

2100 (for each of ten available realizations). Again, SILVA and LandClim had to 

be  initialised  differently.  SILVA simulated  stand  dynamics  of  the  four  experi-

mental plots and the forest reserve (Tab. 2). LandClim generated a hypothetical 

stand which was in 1961 already 40 years old. Following the initial beech-oak 

global seed rain, the first 40 years were assumed to grow under climate conditions 

similar to those from 1961 to 1980. In 2000, the LandClim stand was approxim-

ately as old as the 106-year-old experimental plot stand and the forest reserve (105 

yrs).

Although climate data are identical, SILVA and LandClim use different data 

aggregations and time windows. For SILVA the temperature and precipitation data 

were  translated  into  length  of  growing season,  average  temperature  May-Sep, 

temperature amplitude Jan-Jul, precipitation May-Sep and the Martonne aridity 

index, each of the parameters averaged over 20 year periods (Pretzsch 2009). In 

contrast,  LandClim worked with monthly  mean temperatures  and precipitation 

sums  to  calculate  seasonal  and  annual  indices  for  water  availability  (drought 

index;  Bugmann and Cramer 1998,  Bugmann and Solomon 2000) and energy 

availability  (degree-day-sum;  Bugmann  1994)  as  well  as  temperature  of  the 

coldest month.  Beside differences in the representation of climate both models 

made specific assumptions on soil water and nutrient availability. Soil descriptions 

for the experimental plots were translated into the model requirements. Specific-

ally, for the SILVA simulations a low soil water availability was assumed (0.3 on a 

scale  between 0…1) and further  dropped as  the climate becomes warmer  and 

drier. For LandClim, the maximum available soil water capacity, represented in 

the model as buckets size, was set to 80 mm.
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Results

Current stand dynamics

In all but the 106 years old stands, beech expanded its basal area while oak 

remained unchanged or declined (Fig. 2). Beech expansion was particularly strong 

in the young 27 and 86 years old stands and in the forest reserve which had the 

longest time period between surveys. Here, from 1978 to 2010, the beech basal 

area share increased from 42% to 55%, partly at the expense of oak (decline from 

21% to 17%), but mainly due to the decline of other species (37% to 25%).

A closer look at the 86-yrs old experimental site emphasised the dependence of 

basal area growth response on stand structure (DBH-distributions in Fig. S3). The 

tree-ring analysis showed an increase of mean DBH of dominant beech from 31.6 

to 37.5 cm (+ 5.9 cm) and oak from 26.0 to 29.8 cm (+ 3.8 cm). So, in terms of 

diameter increase, beech trees exceeded oak trees by 40-60% in the upper canopy. 

However,  the majority of the beech trees still  grew in the subcanopy and was 

strongly suppressed so that,  in  total,  the basal  area share remained unchanged 

(Fig. S3).
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Fig. 2: Basal area share of beech, oak and other tree species of the four experimental 

plots (in 1995 and 2005) and the forest reserve (in 1978, 1996, and 2010) according 

to  field surveys.
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Correlations between tree-ring indices and climate data revealed that beech was 

much more sensitive to climate than oak. While oak only showed significant pos-

itive correlations with precipitation of the growing period, beech tree-ring indices 

were positively correlated with precipitation during spring and the growing season 

as well as to September during the year prior to growth. Correlations with temper-

ature were negative for most months except for October of the previous year (Fig. 

S4). In the driest summer of 2003 (100 mm precipitation from May-Sep), beech 

ring-width index dropped to 0.5 while that for oak only decreased to 0.7 (Fig. 3a). 

However, the absolute ring-width values (Fig. 3b) showed that oak still did not 

grow stronger  than  beech  in  that  summer  (both  species  grew 1.2  mm).  A 2nd 

degree polynomial (in approximation of an optimum-function) fitted to the tree-

ring data had a stronger curvature for beech than for oak (Fig. 3). The hypothetical 

intersection between the two polynomials lied even below 100 mm precipitation 

(May-Sep). Thus, under current climate conditions, the tree-ring data confirmed a 

stronger competitiveness of beech than oak, even in years of extremely low pre-

cipitation.

Future stand dynamics

Potential climatic turning point

To  search  the  potential  CTP between  beech  and  oak,  the  development  of 

beech-oak stands under constant climate conditions calculated from seven consec-

utive 20 year time periods between 1961 and 2100 (WETTREG 2010 A1B) was 

simulated.  The  results  of  the  SILVA simulations  indicated  that  in  all  but  the 

CLIM7 scenario (2081-2100) beech extended its  initially  low basal  area share 

(Fig. 4a). However, the beech expansion decreased along the climatic gradient. In 

the last two scenarios CLIM6-7 (2061-2100) beech did not dominate anymore. 

While in CLIM6 (2061-2080) beech still slowly expanded and might eventually 

reach dominance in the long-term, in CLIM7 (2081-2100) beech basal area did 

not further expand. Notably, not only species composition changed, but also the 

final basal area value decreased from almost 38 m2/ha in CLIM1 (1961-1980) to 

26 m2/ha in CLIM7 (2081-2100) – the latter with no net basal area increase com-

pared to the initial 27 yr old stand.
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The results of the LandClim simulations (Fig. 4b) were similar those of SILVA. 

From CLIM1-3 (1961-2020)  beech dominated  in  all  realisations  with  biomass 

shares of 75-89%. In CLIM4 (2021-2040) one out of ten climate realisations res-

ulted in an oak dominance, in CLIM5 (2041-2060) already five out of ten. Finally, 

in  CLIM6  (2061-2080)  and  CLIM7  (2081-2100)  LandClim  predicted  mixed 
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Fig. 3: a) Ring-width index and b) raw ring width series of beech and oak for the 86 yrs  

experimental plot in relation to precipitation sum during the growing season May-Sep.

Fig. 4: Predicted species composition of ~150 yrs old beech-oak stands in a) SILVA and 

b)  LandClim  under  seven  climate  conditions  which  correspond  to  periods  of  the 

WETTREG 2010 A1B scenario (CLIM1 = 1961-1980, CLIM2 = 1981-2000, … CLIM7 = 

2081-2100). a) Initial (INI) stand 27 yrs old experimental site, simulation span 120 

years (final age: 147 yrs). b) Initial beech-oak seed rain (age 0) on bare ground, simu-

lation span 150 years (cf. Tab. 3 for details).
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stands with 64% respective 96% oak and 34% respective 11% beech (medians of 

ten realizations). Beech experienced higher mortality and adhered to the under-

storey owing to its shade tolerance. Oak dominated the upper canopy which led to 

a considerable increase in the biomass of large trees above 50 cm DBH: 168 t/ha 

in the CLIM1 (1961-1980) scenario vs. 225 t/ha in the CLIM7 (2081-2100) scen-

ario. Thereby total stand biomass varied only little between the scenarios.

A more detailed analysis of the SILVA results regarding the economically most 

interesting target trees revealed that dominant beech trees grew higher than oak. 

Oak reached only larger diameters in the last three scenarios (2041-2100) (Fig. 5). 

Nevertheless,  both  diameter  and  height  of  the  dominant  trees  decreased  with 

increasing aridity. This negative effect became even more obvious when looking 

at the survival of the initially dominant beech and oak trees. From 1961-2060, 

more  dominant  beech than oak trees  survived.  In  2061-2100 significant  upper 

canopy mortality caused death of almost all of the initially dominant beech trees.

Actual climatic turning point

In  SILVA,  the  continuous  development  of  five  beech-oak  stands  under  the 

WETTREG 2010 A1B climate scenario indicated for the four experimental sites a 

maximum in basal area around the year 2050 (Fig. 6a). From then on basal area 

fell until 2100. This pattern was mainly caused by the increase and decrease in 

beech basal area while oak basal area remained almost constant. The beech expan-

sion in the first half of the 21st century was lowest in the 27 yrs old stand where 

oak competition was high due to its early growth climax. Beech expansion was 

highest  in  the 54 yrs  old stand where beech has its  growth climax.  As a  con-

sequence,  in  2050 beech occupied the  upper  canopy so effectively  that  in  the 

second half of the 21st century oak still did not exceed its initial share (with excep-

tion of the 27 yrs old stand). In the forest reserve, only minor changes occurred in 

the absolute basal area and basal area shares.

In the LandClim simulations, which were best comparable to the SILVA simu-

lations of the 27 yrs old stand, beech dominated the stand during the entire simu-

lated  succession  (Fig.  6b).  However,  a  decrease  in  beech  biomass  could  be 

observed. This was mainly caused by decreased establishment success of beech 

with increasing drought stress. Notably, there was considerable variability among 

the ten climatic realizations.
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Fig. 5: DBH, height and survival of the dominant (‘top’) beech and oak trees after sim-

ulating growth of the 27 yrs old experimental plot for 120 years under seven climate 

conditions which correspond to periods of the WETTREG 2010 A1B scenario (CLIM1 = 

1961-1980, CLIM2 = 1981-2000, … CLIM7 = 2081-2100).  Top DBH and top height 

defined as the 90% percentile of the diameter and height distribution of each species; 

top survival: the survival of dominant 20% of each species in the initial stand (at age 

27 yrs). Final age: 147 yrs.

Fig.  6:  Predicted development  of  beech-oak stands under the WETTREG 2010 A1B 

scenario until 2100 a) in SILVA for five stands evaluated in 2050 and 2100 and b) in 

LandClim for one stand, entire succession shown. a) SILVA was initialized with four 

experimental sites (age 27 to 106 yrs in 2000), and one forest reserve (~ age 105 in 

1980); b) LandClim started with beech-oak seed rain on bare ground in 1921, thus 

stand age is comparable with SILVA simulations ‘106 yrs’ and ‘reserve’ (cf. Tab. 3 for  

details).
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Discussion

Beech dominates oak under current climate

The rationale for the present modelling efforts to investigate a climatic turning 

point (CTP) between beech and oak was that under current conditions beech was 

more competitive than oak. Evidence from stand structural surveys and tree-ring 

data confirmed this. The analysis of tree-ring data resulted in a higher absolute 

diameter growth of beech than oak, even in the driest years with only 100 mm 

precipitation during the growing season May-September. Hence, beech dominance 

was not arguably. Nevertheless, the tree-ring data of the present study suggested 

that beech reacts more sensitive to dry summers than oak. This is in line with 

former studies on drought sensitivity of beech (Leuschner et al. 2001, Friedrichs 

et al. 2009, Scharnweber et al. 2011). It should be considered, though, that such 

drought years are embedded in an overall favourable climate and a single-year 

reaction can be buffered by tree internal resources from previous years. Predic-

tions of ring width reactions responses to drought under other climate regimes are 

therefore naturally biased (Burkett et al. 2005, Fuhrer et al. 2006).

Notably, the study site was already under current conditions more arid than the 

climate suggested by Ellenberg (2009) to foster the dominance of oak compared 

to beech (July-temperatures > 18 °C and precipitation < 600 mm/yr). Also Scharn-

weber et al. (2011) found dominant beech trees to perform a superior diameter 

increment compared to oak under dryer conditions, i.e until annual precipitation 

falls below 540 mm in 100 yrs old mixed beech-oak forests of north-eastern Ger-

many. An extensive summary by Bolte et al.  (2007) lists sources of proves for 

beech dominance down to 550 mm and 18-19 °C July temperatures, but also high-

lights several other limiting factors such as winter temperatures and late frost.

The CTP regarding dominance does not necessarily reflect the species range of 

tolerated site conditions. Species usually tolerate a wider range of conditions and 

can  remain  as  minor  components  in  the  community.  According  to 

Kölling´s (2007) climate envelopes, beech tolerates annual precipitation as low as 

500 mm under 10 °C mean annual temperature (but requires 650 mm under tem-

peratures of 12.5 °C). With 450 mm sessile oak needs less annual precipitation 

even under temperatures up to 12 °C. At the southern limits of beech distribution, 

the Spanish inventory records presence of beech even down to 587 mm and up to 

85



Manuscript 2: Climatic turning point for beech and oak

13.7 °C and of sessile oak down to 540 mm and up to 16.2 °C (Gómez-Aparicio et 

al. 2011). Nevertheless, in the Mediterranean mountains, both Jump et al. (2006) 

and  Piovesan  et  al.  (2008)  document  declining  beech  populations  as  a  con-

sequence of increasing summer aridity.

Rank reversal between beech and oak under future climate

Based on this evidence the climate sensitive forest growth models SILVA and 

LandClim were employed to estimate the CTP, defined as the climate under which 

a rank reversal from beech to oak is to be expected. A potential CTP for constant 

climate conditions was distinguished from the actual CTP for changing climate 

conditions like projected by WETTREG. Rationale for this distinction was that in 

the latter case the inertia of the stand structure supposedly lead to a time delay of 

the rank reversal.

The simulation results confirmed both hypotheses stated in the introduction. 

1) Simulations for the potential CTP predict both in SILVA and LandClim that the 

dominance of beech begins to deteriorate when mean annual temperature exceeds 

11.1 °C and the annual precipitation drops below 510 mm (temperature May-Sep 

18.2 °C,  temperature  July  20.9 °C,  precipitation  May-Sep  230 mm,  cf. Tab. 3). 

The  WETTREG  2010  A1B  scenario  projects  such  climate  conditions  for  the 

second half of the 21st century. 2) Yet, in the continuous succession along the cli-

matic gradient no such rank reversal occurred. In the projected forest succession, 

beech  still  remained  dominant  in  2100.  The  simulations  for  the  actual  CTP 

showed that the factors beyond the rank reversal are more complex. In the ‘simpli-

fied world’ of our models three main mechanisms interact to determine the bal-

ance of mixed beech-oak forests:

1. Climate sensitivity: Establishment, growth, maximum tree sizes and mor-

tality of beech react stronger to climate than oak (cf. Fig. 5). In SILVA this 

led  to  a  decline  in  the  maximum site  capacity  in  terms  of  basal  area 

(SILVA -34%; Fig. 4 CLIM7 vs. CLIM1), while in LandClim total stand 

biomass was constant; the gain in oak biomass compensated the loss in 

beech  biomass  (Fig. 4).  Apart  from  losses  in  the  carbon  sequestration 

potential, silviculturally, die-backs in the upper canopy as predicted by the 

SILVA simulations were the most severe consequence of climate change, 

and received high attention  lately  (Bigler  et  al.  2006,  McDowell  et  al. 
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2008b, Allen et al. 2010). Hlásny et al. (2011) predicted a similar die-back 

of beech in lower altitudes of Hungary during the 21st century. However, 

the  models  only  regarded climate  effects  on establishment,  growth and 

mortality. In reality, major die-backs can only seldom be attributed directly 

to climate events (e.g. in McDowell et al. 2008a), mostly the factors are 

more complex (e.g. Bigler et al. 2006). Droughts are rather regarded as an 

inciting mortality factor (sensu Manion 1981), while secondary agents take 

advantage of the weakened immune response and kill the trees in the end.

2. The ‘inertia’ in the climate reaction due to the inherited stand structure was 

most obvious in the comparably short time spans of the surveys (cf. Fig. 2) 

and in  the  SILVA CLIM4 simulations  close  to  the  CTP.  In both  cases, 

beech could  only slowly  gain  ground against  the  established oak from 

anthropogenic fostering. This effect could also be observed in the Land-

Clim results for the projected forest succession (Fig. 6b). Species shares 

clearly  switched from beech dominance  in  CLIM1 (1961-1980)  to  oak 

dominance in CLIM7 (2081-2100) whereas in the projected forest succes-

sion, beech still remained dominant in 2100. This can be explained by a 

higher sensitivity of beech seedlings to drought which favours oak in bare 

ground  establishment  scenarios  (Fig.  4)  while  older  beech  trees  which 

established under more beech favourable conditions can tolerate drought to 

some degree and additionally impede oak regeneration at the forest floor 

due to their strong shading (Fig. 6b).

3. Disturbances: The conjoint interpretation of the simulations points to the 

importance  of  disturbances  as  promoter  of  forest  responses  to  climate 

change. Due to the inherited stand structure the forest  response is  time 

delayed. Disturbances initiate succession which can result in a completely 

different  forest  composition  (Soja  et  al.  2007,  Johnstone  et  al.  2010). 

Sykes  and  Prentice  (1996)  report  similar  findings  for  a  study  site  in 

Sweden. Under climate warming, beech was expected to be the long-term 

replacement  for  spruce  (in  Pine-Spruce  forests),  but  in  simulations  its 

dominance was delayed for centuries due to the persistence of old-growth 

spruce stands. Accordingly, Ellenberg (2009) state that beech out-shadows 

any other tree species in undisturbed stands within its physiological range.
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Controversially discussed but not considered in the present study is the beech-

-oak suitability with respect to soil texture, fertility and water relations. Tradition-

ally,  oak is  regarded as  more competitive on extremely clayey,  acidic-nutrient 

poor or water stagnant soils  (Ellenberg 2009). The evaluation of natural beech 

invasion in unmanaged 50 years old seeded oak stands in south-western Germany 

showed that on limestone oak was pushed back to 5-25 %, while on sandstone 

beech only conquered 5-25 % (pers. comm. Abt 2012). Compared to our sites, we 

suggest that on more oak favourable soils, beech might – if at all – only slowly 

(perhaps after  generations)  become dominant.  Examples  of  a  re-conquering of 

oak-forests  through beech even on extremely poor  soils  are  known (Ellenberg 

2009).

Implications for management

Arguably like no other life science, forest management is forced to think ahead 

of time due to its long production time spans. For more than 30 years, forest man-

agement in Central Europe has pursued a more sustainable and stable productivity 

through conversion  of  not  site-suited  coniferous  forest  to  broadleaf  forest  and 

propagation of species mixtures (Spiecker et al. 2004, Pretzsch et al. 2013). As cli-

mate change moved into the focus of attention, species suitability decisions had to 

take into account possible future climate trends (Linder 2000, Bolte et al. 2009, 

Lindner et al. 2010). The important pending decision for already warmer and drier 

(edaphically  not  extreme)  sites  in  Central  Europe  is  beech  and/or  oak,  and 

threshold values are sought for orientation. Temperature and precipitation are the 

most commonly applied factors and our study demonstrates that beech is currently 

not drought-limited in south-eastern Germany, even at the most dry sites. Simula-

tions with SILVA and LandClim similarly predict limits of beech dominance for 

temperatures of 11.1 °C (annually), 18.2 °C (May-Sep), 20.9 °C (July), and pre-

cipitation of 510 mm (annually)  and 230 mm (May-Sep).  These values  remain 

within the climate envelopes of Kölling (2007) for beech existence, but fall below 

the typical values given for beech dominance (cf. Bolte et al.  2007). Based on 

these values, there is still a buffer for beech forests also on the dryer sites in south-

eastern Germany – at least until 2050 even under ‘worst-case’ assumptions like 

the WETTREG 2010 A1B scenario.

However, in view of the predicted beech decline in both SILVA and LandClim 

in the second half of the 21st century, the promotion of oak already today seems 
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advisable due to the superior resistance and resilience of oak (pedunculate oak 

even more than sessile) to drought (Leuschner et al. 2001, Friedrichs et al. 2009, 

Scharnweber et al. 2011). Also the high value of oak wood might make oak more 

profitable than beech if stand productivity decreases as projected. Additionally, 

the facilitative behaviour of oak in mixed stands is a strong argument for a prefer-

ential choice of this species as stabilizing component of ecosystems under climate 

change.  Only  recently,  independently  of  each  other,  Zapater  et  al.  (2011)  and 

Jonard  et  al.  (2011)  found evidence  for  hydraulic  lift  of  oak  in  young mixed 

beech-oak stands. This could be the cause for a lower sensitivity of beech to water 

scarcity in mixed beech-oak stands than in pure stands. Furthermore, Pretzsch et 

al. (2012) found that growth of beech in mixture with oak decreases less than in 

monoculture and thereby improves its competitive strength. This stress release by 

mixing  as  an  important  emergent  property  implying  that  the  realized  climatic 

niche of beech in mixed stands might be wider than in pure stands (Pretzsch et al. 

2013).

A further enrichment of mixed stands with typical ‘Quercetum’-species such as 

hornbeam (Carpinus betulus L.), lime (Tilia spp.) and Sorbus spp. or with drought 

tolerant species from present-day residual fragments of the postglacial northward 

migration  (Quercus pubescens Willd.,  see  Wellstein  and  Spada  in  press)  or 

provenances (Thiel et al. 2012, Wellstein and Cianfaglione in review) can help to 

spread the risk further and reduce losses in production (Czajkowski and Bolte 

2006, Bolte et al. 2009, Pretzsch and Schütze 2009).

Modelling challenges

Model comparisons are a powerful means to evaluate uncertainty in projections 

of  ecosystem responses  and  are  increasingly  applied  in  global  change  studies 

(Pearson et al. 2006, Hlásny et al. 2011, Cheaib et al. 2012). SILVA and LandClim 

are two forest growth simulators developed for different purposes and correspond-

ingly differ in underlying assumptions and structure (Pretzsch et al. 2008). SILVA 

was designed to project individual tree and stand development to assess growth 

and  yield  for  practical  management  purposes.  Major  strength  is  its  posi-

tion-dependent competition calculation which allows for a precise reproduction of 

thinning and mixture practice alternatives. In contrast, LandClim was designed to 

simulate long-term forest dynamics under explicit consideration of competition, 

demographic processes,  and disturbances (cf. Methods). The parametrization of 
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LandClim  emphasized  the  reproduction  of  succession  dynamics  and  land-

cape-scale species distribution patterns. The two models’ respective strengths and 

weaknesses can be expected to highlight different aspects of uncertainty in estim-

ates of future forest development and help to anticipate adverse consequences of 

climate change to facilitate reasonable adaptation measures (Littell et al. 2011). 

Despite their different structures both models gave very similar results and con-

verged in their projection of the future development of beech-oak forests at the 

warm-dry distribution limit in Central Europe. Such agreement is rather atypical. 

Hlásny et  al.  (2011) for instance – after  finding remarkable differences  in  the 

model output of BIOME-BGC and SYBILA for vegetation zones in Hungary – 

comment: ‘This appears to be general problem of such modelling […] The dis-

crepancies […] emphasize the need for multi-model assessment of future forest 

development in order to clarify and highlight differences in model assumptions 

and  model  sensitivities  to  environmental  and  human  intervention’.  A possible 

reason for the congruence in the results is the calibration against the empirical 

data (cf. Methods; Fig. S1/2) as suggested by Mäkelä et al. (2000).

Generally, process-based models incorporating tree physiology are given pref-

erence when addressing climate change issues (Mäkelä et al. 2000, Mäkelä 2003, 

Littell et al. 2011). They integrate physical site parameters (e.g. radiation, evapo-

transpiration, water availability) with basic physiological principles to calculate 

the photosynthetic potential (or more general carbon acquisition). Despite some 

freedom  in  species-specific  parameter  values,  the  physiological  principles  set 

reasonable  limits  to  the  possible  growth  even  where  parametrization  data  are 

scarce or contradictory. In contrast, models such as SILVA or LandClim employ 

empirical functions between growth parameter and growth reaction (cf. Bugmann 

1994,  Schumacher  et  al.  2004,  Pretzsch  2009).  Within  their  typical  range,  the 

direct  relation between input  (e.g. climate)  and output  variable  (e.g. basal  area 

growth)  usually  makes  them  much  more  precise  than  process-based  models. 

Examples of approaches that promise to combine the strengths of either model 

type are hybrid models such as the BRIDGING model (Mäkelä 2003) or model 

coupling like the adjustment of SILVAs growth functions from BALANCE output 

(Moshammer et al. 2009).

Since the first yield tables of the 18th and 19th century, forest growth models 

have  come a long way.  Today,  forest  management  relies  strongly on complex 
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computer-aided growth simulators and expects decision support in face of a large 

uncertainty due to the projected climate change. However, it is clear that no single 

model solution can possibly cover the entire complexity of any ecosystem. There-

fore, one of the most urgent future challenge for the scientific modelling com-

munity lies in overcoming structural differences in model in- and output (as done 

here) and thereby to ease multi-model inferences in the context of global change 

research based on suites of dynamic simulation models.
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Supplement

Fig. S1: Validation of SILVA vs. survey data. 10-years basal area development of the 

four experimental sites and the forest reserve. Comparison of the surveys 1995-2005 

(1978-2010 in the case of the reserve) and SILVA simulation over 10 yrs (30 yrs in the 

case of the reserve) with the average climate from 1981-2000 (DWD station Schwein-

furt).

Fig. S2: Validation of LandClim vs. survey data. Simulations were run with the actual  

climate (DWD data) and results were compared to the real stands. Good reproduction 

of lower biomass shares of beech in young stands and a dominance of beech from c.  

100 years on.
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Fig. S3: Diameter at breast height (DBH) distribution of the 86-yrs old mixed beech-oak 

stand in 1995 and 2005. d100 = average diameter of the 100 dominant trees per hec-

tare. The DBH distribution in the 86-year old stand displays that the stand structure 

consists of a dominant oak layer while beech mainly forms the subcanopy. However, 

the beech trees in the upper canopy layer expand stronger than oak: From 1995 to 

2005, beech d100 increased from 32.58 cm to 37.98 cm (+ 5.40 cm) while oak d100 

only increased from 28.02 cm to 31.96 cm (+ 3.94 cm).

Fig. S4: Correlation coefficients for a 16-month period from June of the year prior to 

growth until October of the growth year between a) beech and b) oak tree-ring index 

curves  and  monthly  climate  data  from  Schweinfurt  meteorological  station  for  the 

period 1959-2003. Correlations significant at the p < 0.05 level are marked with an 

asterisk. Climate-growth relationships for both studied species were calculated as cor-

relation functions between monthly climate data from Schweinfurt climate station and 

the  dimensionless  tree-ring  indices  as  well  as  the  raw ring-width  data.  The  latter 

include the differences in the species’ growth levels, so possible effects of tree age 

and size on the impact of climate on growth have to be regarded.
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Tab. S1: Comparison of DWD and WETTREG 2010 A1B climate data for DWD weather 

station Schweinfurt from 1971 to 2000. T.a = mean annual temperature, T.v = mean 

temperature May-Sep (vegetation period), Prec.a = annual precipitation sum, Prec.v = 

precipitation sum May-Sep (vegetation period). Mean testing with Welch’s t-test and 

standard deviation testing with an F-test on the ratio of the group variances (functions 

t.test and var.test in R statistics, cf. Dalgaard 2002: 86-89). DWD and WETTREG values 

different on a 0-0.001 error level (***), 0.001-0.01 error level (**), 0.01-0.05 error level 

(*), 0.05-0.1 error level (o).

Mean Standard deviation

DWD WETTREG p-level DWD WETTREG p-level

T.a (°C) 9.04 9.06 0.8703 0.72 0.32 5.705e-14(***)

T.v (°C) 15.95 15.97 0.875 0.87 0.42 5.506e-11(***)

Prec.a (mm) 555 589 0.0886(o) 102 84 0.1276

Prec.v (mm) 261 279 0.1397 63 57 0.438

Dalgaard, P. 2002. Introductory statistics with R – Springer.

Literature review S1 ‘climatic turning point’ and ‘rank reversal’

Search items for searching the ISI Web of Science ® Data base for publications 

on  ‘climatic  turning  point’ as  well  as  rank  reversal:  Topic=(‘climatic  turning 

point’) OR Topic=(‘climatic turning points’). This resulted in only 3 papers on 

meteorology.

A search  with  the  search  term  Topic=(‘rank  reversal’)  OR  Topic=(‘rank-

reversal’) AND Topic=(plants) AND Topic=(species) OR Topic=(‘rank reversals’) 

OR Topic=(‘rank-reversals’) refined by Subject Areas=(‘environmental sciences 

ecology’ OR ‘physiology’ OR ‘reproductive biology’ OR ‘biodiversity conserva-

tion’ OR ‘life sciences biomedicine other topics’ OR ‘developmental biology’ OR 

‘evolutionary  biology’ OR ‘forestry’ OR ‘plant  sciences’ OR ‘agriculture’ OR 

‘genetics  heredity’)  resulted  in  48  papers.  After  exclusion  of  zoology,  neuro-

physiology and policy support, 14 papers remained with all of which but two deal 

with tree species. All of which but one are published currently, i.e. within these 

decade (the exception is from 1996).
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Literature review S2 ‘Beech and oak coexistence’

Search items for searching the ISI Web of Science ® Data base for publications 

on growth of beech and oak under drought: Topic=(fagus OR beech OR ‘quercus 

robur’ OR ‘quercus petrea’ OR ‘sessile oak’ OR ‘Pedunculate Oak’ OR ‘English 

oak’)  AND  Topic=(drought  OR  ‘water  shortage’  OR  ‘water  stress’)  AND 

Topic=(‘height growth’ OR ‘forest growth’ OR increment OR ‘ring growth’ OR 

‘tree growth’ OR dendrochronology OR ‘ring width’ OR ‘growth rate’ OR ring 

OR ‘physiological growth’ OR ‘stem growth’ OR ‘diameter growth’). In January 

2012, this search produced 250 findings. Out of these results we aimed at proceed-

ings that dealt with drought effects respectively water provision problems in the 

target species or in forest stands without publications concerning sap flow meas-

urements under manipulated and natural conditions. Considering these specifica-

tions we found 141 target publications (Tab. S2). Within these target publications, 

20 papers deal with coexistence of oak (Quercus petraea and/or  Q. robur) and 

beech (Fagus sylvatica) (Tab. 1).

Tab. S2: Number of publications found in literature review S1 (ISI Web of Science ® 

Data base, January 2012) per item.

Term No of 
publications

Fagus sylvatica 54

Quercus robur 27

Quercus petraea 12

Forest stands/ additional species 48

Different growth variables 38

Tree-rings or dendroecological tools 50

Total height (cm) 5

Relative change (%) 2

Stem diameter, volume and biomass 15

Increment 25

Breast-height radial growth 3
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Symmetric and asymmetric competition in forests along 

the aridity gradient throughout the Iberian Peninsula
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1Biogeographical Modelling, BayCEER, University of Bayreuth, Germany
2Dpto. de Ecología, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain

Abstract

The relevance of competition and the ability of an organism to compete for a given resource might  

change along the abiotic stress gradient. The Spanish National Forest Inventories provide a solid 
basis to develop a statistical model for the influence of climate, competition and tree size on spe -

cies  growth.  In  order  to  formulate  precise  hypotheses  it  is  important  to  distinguish  between 
intensity and importance of competition. Competition intensity refers to the growth reduction due 

to the influence of neighbours. Competition importance refers to the negative effect of neighbours 
on growth relative to the effect of other factors. Furthermore, it is useful to distinguish between 

competition for water which is directly related to the climatic gradient, and competition for light  
which is largely independent. The first can be represented by the symmetric component, the latter  

by the asymmetric component of competition.

Three hypotheses were assessed applying a statistical model for tree growth: 1) The intensity of 

asymmetric competition increases with aridity, according to the shade-drought tolerance trade-off, 
2)  the  intensity  of  symmetric  competition,  e.g.  competition  for  water,  increases  with  aridity, 

according to the supply and demand theory, and 3) the importance of symmetric and asymmetric 
competition falls with increasing aridity, according to Grime´s C-S-R framework.

The results were in agreement with former studies and ecological knowledge regarding general 
species response to climate and competition. However, the three hypotheses were not entirely sup-

ported. The within-species shade-drought tolerance trade-off was only found for broadleaved oaks 
and beech but not for coniferous pines. The effect of supply and demand was indeed found for all  

species. Contrary to the third hypothesis, importance of symmetric and asymmetric competition 
increased with aridity for most species. Only for light demanding pines asymmetric competition 

importance  fell.  Hence,  in  Mediterranean  forests  the  importance  of  symmetric  competition 
increased relative to asymmetric competition along the aridity gradient. This might cause an addi-

tional disadvantage for less drought tolerant oaks compared to pines under climate change.

Keywords:  Shade-drought  tolerance trade-off,  Grime´s  C-S-R framework,  supply and demand, 

Pinus spp., Quercus spp., National Forest Inventory, Iberian Peninsula
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Introduction

The joint effect of climate, light, nutrients and biotic interactions determines 

forest growth at a particular site. Out of the large amount of biotic interactions 

competition is supposed to be among the most important factors (Sánchez-Gómez 

et al. 2008, Kunstler et al. 2011). Until now it is not conclusively resolved how 

site conditions and competition among trees act together (individuals or species 

level; cf. Freckleton and Watkinson 2001). To investigate the interaction of com-

petition with environmental stress, communities in Mediterranean regions are par-

ticularly interesting because they cover a long aridity gradient reaching close to 

the abiotic limits of the studied species.

Competition is an interaction between organisms or species that determines the 

share of resource allocation and in which the fitness of one organism is lowered 

by the  presence  of  another.  It  can  be split  into a  symmetric,  size-relative and 

asymmetric component (Weiner 1990). Symmetric competition means that indi-

viduals share resources whereas asymmetric competition implies that one species 

is able to dominate the resource. Size-relative competition can be considered as a 

special case of asymmetric competition (or symmetric, depending on the point of 

view) where resource allocation is proportional to the size of the individual. Sym-

metric competition is assumed mainly for belowground resources such as water 

and nutrients (Weiner et al. 1997, Cahill and Casper 2000 but see also Leuschner 

et  al.  2001). Asymmetric competition is assumed mainly for the resource light 

(Coomes  and  Grubb  2000).  Both,  symmetric  and  asymmetric  competition 

decrease resource availability for an organism and subsequently increase stress.

The tolerance of  an organism to one stress,  e.g.  drought  stress,  is  typically 

reduced by other co-occurring stress agents such as shading due to asymmetric 

competition (Hereford 2009). The shade-drought tolerance trade-off implies that 

there are morphological and physiological reasons that species or individuals are 

either shade or drought tolerant. Shade and drought tolerance can be defined as 

the ability to maintain growth in deeper shade or under fewer water supply. Under 

low light  conditions,  plants  invest  proportionally  more  biomass  in  leaves  and 

aboveground parts. This increases the transpiration surface relative to the amount 

of roots and, consequently, the susceptibility to dry conditions (Smith and Huston 

1989). Conflicting requirements for shade and drought tolerances have been sup-
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ported by several empirical studies (Kubiske et al. 1996, Valladares and Niinemets 

2008,  Hallik  et  al.  2009,  Montgomery et  al.  2010).  Niinemets  and  Valladares 

(2006) observed significant negative correlations between shade and drought tol-

erance rankings, except for evergreen angiosperms. However, this research topic 

is apparently not conclusively resolved as also contrary patterns were found (Sack 

2004, Martínez-Tillería et al. 2012). A reason for conflicting results might be a 

negative correlation between shading and drought stress due to lower temperat-

ures and evapotranspiration under closed canopies (Sack and Grubb 2002). This 

negative correlation is considered the reason for a positive effect of shading res-

ulting in facilitation, mainly during establishment. The shade-drought tolerance 

trade-off can be assessed at the intraspecific and interspecific level. At the inter-

specific level it can be ask if shade tolerant species are less drought tolerant than 

shade intolerant species (cf. Niinemets and Valladares 2006). At the intraspecific 

level it can be ask if trees grown under dry conditions and subsequently adapted to 

drought, are more sensitive to shading (Kubiske and Abrams 1994, Ruiz-Benito et 

al. 2013). The change of the effect of asymmetric competition on growth under 

increased aridity relates to the individual level.

Another theory related to competition and changes of its effect along environ-

mental gradients is known as the  ‘supply and demand’ theory. In economy, the 

law of supply and demand is considered as one of the fundamental principles (cf. 

Thweatt  1983). It  states that as supply increases the value of the resource (its 

price) will tend to drop or vice versa, and as demand increases the value will tend 

to increase or vice versa. This theory is widely used in economics and can be 

transferred into ecology. In an ecological context it states that resource availability 

of an individual is determined by absolute resource availability and the abundance 

of competitors at the same time (supply minus demand; Davis et al. 1998, Taylor 

et  al.  1990).  Unlike  in  economics  in  ecological  systems  supply  is  usually  an 

external variable (e.g. amount of water) which does not feedback on demand (cf. 

Muth 1961). Equilibrium is therefore reached exclusively by changes in demand. 

If demand is less than supply the difference can be consumed by upcoming indi-

viduals, i.e.  forest  density can increase. If demand is higher than supply, indi-

viduals starve and subsequently die. Which individual will die in particular could 

be  determined  by  chance,  yet,  it  is  more  likely  mediated  by  its  ability  to 

persist/avoid stress and to aggregate resources relative to its competitors. Along a 

resource gradient such as the aridity gradient, supply decreases. Thereby, the equi-
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librium stand  density  falls  and  competition  intensity  increases  (Briones  et  al. 

1998, Davis et al. 1998, Bennett et al. 2012).

In the context of Grime´s C-S-R framework it has been stated that the import-

ance of competition increases as disturbance and stress decline (cf. Grime 1977, 

Huston and Smith 1987), or comparably formulated that growth reductions due to 

competition relative to other factors falls with increasing abiotic stress (Brooker 

and Kikvidze 2008; be also aware of the ‘Tilman debate’ summed up in e.g. Gold-

berg et al. 1999, Brooker et al. 2005, Craine 2005). There are two possible mech-

anism behind this:  The first  one follows Liebig's  law of  the minimum, which 

states that only the most limiting resource is relevant, at least at the organism level 

(Odum and Barrett 2005). Under abiotic stress (such as drought) the organism is 

limited mainly by this stress and not by competitors. The second mechanism is a 

lower carrying capacity of high-stress environments (Tomé et al. 1996, Boisvenue 

and Running 2006) and thereby reduced stand basal area and subsequently less 

competitors.  Variable  climates  like  the  Mediterranean  produce  fluctuating 

resource levels, which in turn might cause the size of populations (or stand density 

when referring to forests) to decrease below the level at which competition for 

resources occurs. Accordingly, it has been argued that competition might be less 

frequent in high-stress communities, though not less important (Fowler 1986, Vilà 

and Sardans 1999).

The stress-gradient  hypothesis  agrees  generally  with  Grime´s  C-S-R frame-

work but adds another aspect (Maestre et  al.  2005, Lortie and Callaway 2006, 

Maestre et al. 2009, Pretzsch et al. 2013). It predicts that the frequency of facilit-

ative  and  competitive  interactions  will  vary  inversely  with  increasing  abiotic 

stress, with facilitation being more common when abiotic stress is high (Bertness 

and Callaway 1994, Holmgren et  al.  1997,  Maestre  et  al.  2006, Danger  et  al. 

2008).  It  has been stated that  under some conditions neighbours have positive 

effects  that  outbalance  negative  effects.  Whereas  neighbours  lower  soil  water 

(belowground  resource,  symmetric  competition)  and  reduce  available  light 

(aboveground resource,  asymmetric competition) they might also have positive 

influences. Among the most important are modified micro-climate and soil condi-

tions (Gómez-Aparicio et al. 2005, Aponte et al. 2011, Granda et al. 2012).

A number of studies show that the nature of competition actually changes along 

ecological gradients. For grasslands Bennett et al. (2012) assessed the validity of 
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Grime´s predictions and the patterns expected by the supply and demand theory. A 

decline in competition with productivity was found. For forests the mode of com-

petition has been found to change from asymmetric to symmetric along a nutri-

tional gradient from fertile to poor sites (Hara 1993, Pretzsch and Biber 2010). 

This  indicates that  under low nutrient supply the effect  of competition for the 

target resource increases relative to the effect of competition for light. A similar 

pattern was observed by Zang et al. (2012) for Norway spruce. There was evid-

ence for a change in competition mode from asymmetric competition under condi-

tions with sufficient soil water supply to a more symmetric competition under dry 

conditions.  An analysis  of Kunstler et  al.  (2011) found that the importance of 

competition varied along the climatic gradient (degree-day sum and water availab-

ility) in a mountain forest of France. According to their analysis actual competi-

tion  importance  fell  with  increasing  abiotic  stress  while  intensity  remains  the 

same. Such changes in mode and effect of competition particularly along climatic 

gradients can even cause rank reversals in species performance (Sánchez-Gómez 

et al. 2008, Gómez-Aparicio et al. 2011, Scharnweber et al. 2011).

Within this study we ask if the influence of symmetric and asymmetric compet-

ition on tree growth changes along the Mediterranean climatic gradient throughout 

the Iberian Peninsula. A statistical model for tree growth based on the National 

Forest Inventories of Spain was developed. The model considered the influence of 

climate, competition and tree size on individual tree growth. In order to formulate 

precise hypotheses it was necessary to distinguish between intensity and import-

ance of competition (Brooker et al. 2005, Brooker and Kikvidze 2008, Freckleton 

et al. 2009, Kikvidze and Brooker 2010, Freckleton and Rees 2011). We defined 

competition intensity as growth reduction due to competition relative to growth in 

the absence of neighbours (but the same abiotic conditions). Given that competi-

tion has a negative effect on performance, intensity can be interpreted as the per-

centage of decrease in performance due to the presence of neighbours for given 

abiotic conditions,  i.e.  the absolute effect of competition is scaled to the local 

growth potential (Eq. 4). To competition importance we refer to as the negative 

effect of neighbours on growth relative to the impact of other (abiotic) factors 

(Eq. 5),  i.e.  the  absolute  effect  of  competition  is  scaled  to  the  overall  growth 

reduction.
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Using these indices we investigated the validity of three hypotheses motivated 

by the theories described above:

1. Intensity of asymmetric competition increases with aridity,  according to 

the shade-drought tolerance trade-off.

2. Intensity of symmetric competition, e.g. competition for water, increases 

with aridity, according to the supply and demand theory.

3. Importance of symmetric and asymmetric competition compared to other 

factors falls with increasing aridity, according to Grime´s C-S-R frame-

work.

To address the first hypothesis the sensitivity to asymmetric competition under 

different abiotic conditions was compared. This could be done by comparison of 

the  absolute  effect  of  competition  on  growth  (as  difference  between  growth 

without neighbours and with neighbours). However, the change of this absolute 

difference  along  the  gradient  lacks  its  quantitative  context  and  can  therefore 

hardly  be  evaluated  and  compared  among  species.  Intensity  as  percentage  of 

growth reduction due to competition is scaled to the local growth potential.

Similarly,  the  supply  and  demand  theory  was  assessed  by  the  change  in 

intensity of symmetric competition. The intensity of competition as the percentage 

of growth reduction due to neighbours represents the local value of the target 

resource. The resource value is hypothesized to fall with supply, i.e. the intensity 

of competition falls. In contrast, the effect of competition on growth compared to 

other factors was assessed by the share of growth reduction by competition rel-

ative to the overall growth reduction (here only climate was considered).

Methods

Spanish National Forest Inventories

Mediterranean regions occur in middle latitudes between parallels 30° to 40° 

North and South in five regions of the world: The Mediterranean Basin, Cali-

fornia,  central  Chile,  the  Cape  region  in  South-Africa  and  southwestern  and 

southern Australia. Summer drought is the defining factor of the Mediterranean 

climate and particularly throughout the Iberian Peninsula, Spain (Köppen 1923). 
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Annual rainfall ranges from about 1500 mm in montane forest to below 90 mm in 

the most arid sites. Annual mean temperatures range from about 11 °C to 17 °C.

In the present study the Second and Third Spanish National Forest Inventories 

conducted between 1986-1996 and 1997–2007 were used (Villaescusa and Diaz 

1998, Villanueva 2004). Survey plots were arranged in a regular 1 km raster. They 

consist of four concentric radii (i.e. the minimum tree diameter measured varied 

with the radius of the plot): All  trees with diameter at  breast height (DBH) of 

7.5 cm were measured within a 5 m radius plot, trees with DBH = 12.5 cm within 

a 10 m radius plot, trees with DBH = 22.5 cm within a 15 m radius plot, and trees 

with DBH 42.5 cm within a 25 m radius plot. The 12 most frequent species were 

modelled (Pinus spp.,  Quercus spp. and  Fagus sylvatica; refer to Tab. 2). Non-

native species were not modelled.  Climatic  data  such as annual mean temper-

ature (°C) and annual precipitation sum (mm) were provided by the Spanish Insti-

tute of Meteorology, as an interpolation of the information recorded in meteorolo-

gical stations from 1971 to 2000 with 1 km spatial resolution (Gonzalo 2008).

Bayesian non-linear model

For this study we chose the annual ‘relative basal area increment’ (relBAI) as 

response variable (Eq. 1). Explaining variables were climate (temperature and pre-

cipitation), competition and tree size (Eq. 3). Relative basal area increment times 

hundred is the percentage of annual basal area increment for a given tree basal 

area. Thereby the pure geometric effect  DBH on growth increment was elimin-

ated.

BA=π⋅(
DBH

2
)

2

relBAI=
BAIII−BAII

BA II

⋅
1

yrs

 Eq. 1

BA: Basal area (cm2). Index denotes second and third NFI.

DBH: Diameter at breast height (cm)

Numerous approaches exist to calculate measures for competition (Dale et al. 

1985, von Oheimb et al. 2011). Two different competition measures were used 

within this study (non-spatially explicit, no differentiation of inter- and intraspe-

cific competition): Stand basal area for symmetric competition SC and basal area 

of  larger  trees  for  asymmetric  competition  AC. To  account  for  the  inventory 
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method, SC (for each plot) and AS (for each tree) were calculated under considera-

tion of the reference area for each DBH class (Eq. 2). Within each survey plot the 

trees are ordered according to their DBH.

SC p=100⋅∑
i=1

4

∑
j=1

n
π
4
⋅

DBH 2

Ai

AC k=100⋅∑
i=1

4

∑
j=k +1

n
π
4
⋅

DBH 2

Ai

Eq. 2

SCp: Symmetric competition in plot p as stand basal area in % of plot area.

ACk: Asymmetric competition for target tree k as stand basal area of langer trees in % of plot 

area.

DBHij: Diameter at breast height (cm)

Ai: Plot area within DBH class of tree ij was measured (cm2)

Iterator 4: Number of sub-plots with different radii in the Spanish National Forest Inventory.

Symmetric competition was the same for all trees within a plot whereas asym-

metric competition differed among individual trees. The stand basal area minus 

the basal area of the target tree is an alternative measure for symmetric competi-

tion. This measure differs among trees within the same plot (considered as neigh-

bours) by their own size difference. The larger the target tree the smaller is the 

index compared to other trees within the same plot. Thereby an asymmetric com-

ponent is included in this measure. Since we aimed at separating symmetric and 

asymmetric competition such an index would have been contra-productive.

Mediterranean species  distributions and tree growth show good correlations 

with annual mean temperature and annual precipitation sum (Thuiller et al. 2003, 

Sánchez-Gómez et al. 2008, Rodríguez-Sánchez et al. 2010, Gómez-Aparicio et 

al. 2011, Kunstler et al. 2011). Precipitation served as proxy for water availability 

and thereby aridity and drought stress. An interaction between temperature and 

precipitation  was  considered  in  the  model.  The  relative  basal  area  increment 

relBAI (Eq. 1) of individual trees was modelled as a non-linear function of cli-

matic  variables  (temperature  and  precipitation),  local  interactions  with  neigh-

bouring trees (symmetric and asymmetric competition) and tree diameter (DBH). 

All independent variables were normalized. Separate models were fitted for 12 

selected species.
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We decided for the following model structure with a gamma error distribution 

as basis for backward model selection:

relBAI=exp(α+ βT⋅T+ βT2⋅T 2
+βP⋅P+βP2⋅P2

+ βTP⋅T⋅P+ βDBH⋅DBH+ βDBH2⋅DBH 2
)

+ βC⋅(γ⋅SC+ (1−γ)⋅AS )+ βCT⋅T⋅(γT⋅SC+ (1−γT )⋅AS )+ βCP⋅P⋅(γ P⋅SC+ (1−γP)⋅AS )

+ βCT2⋅T
2
⋅(γT2⋅SC+ (1−γT )⋅AS )+ βCP2⋅P

2
⋅(γP2⋅SC+ (1−γP)⋅AS)+ ϵ

 Eq. 3

T: Annual mean temperature (°C)

P: Annual precipitation sum (mm)

DBH: Diameter at breast height (cm)

SC: Symmetric competition (% of basal area of neighbouring trees)

AC: Asymmetric competition (% of basal area of taller trees)

γ constrained to 0 ≤ γ ≤ 1; for specification of other priors and JAGS code see Supplement 1.

For precipitation  P, temperature  T and  DBH linear and quadratic terms were 

tested whereas for competition a  linear relation was assumed. Additionally,  an 

interaction  for  precipitation  and  temperature  was  included.  Linear  interaction 

terms for competition with climate allow for a change in absolute growth reduc-

tion due to competition along the gradient. Competition was divided into its sym-

metric and asymmetric component. Since they are naturally correlated (e.g. for the 

smallest tree in stand SC = AS; for the tallest  AS = 0) they could not be used as 

two independent variables. Therefore, competition was included as a joint regres-

sion term. Within this term the effect (βC) of competition on  relBAI was shared 

between SC and AS by parameters γ. Quadratic interaction terms for climate and 

competition allowed for a change of positive and negative interaction along the 

gradient (important when the species growth optimum is at intermediate values; 

Gómez-Aparicio et al. 2011).

We used R.2.15.2 (R Development Core Team 2008) for data manipulations and 

JAGS 1.0.3 (Plummer 2003) for the Bayesian modelling (the R2jags package was 

used to interface between R and JAGS). We checked for convergence with two 

Monte Carlo Markov Chains using the potential scale reduction factor Rhat, set-

ting our convergence threshold at Rhat < 1.01 and the Gelman and Gewke test for 

convergence (confidence = 0.95).  We decided for  a  flexible  burn-in period by 

resuming the mcmc after each 5,000 iterations if convergence was not reached, 

and a thinning of 2. After convergence was reached the two Monte Carlo Markov 

Chains  were  run  another  10,000  iterations  and  the  chains  inspected  visually. 

Model quality was evaluated additionally by calculation and visual inspection of 

the bias of prediction (0.9 < bias < 1.1) and residual diagnostics (QQ-plot inspec-

111



Manuscript 3: Symmetric and asymmetric competition

tion). Due to high computation costs not the entire data was used to fit the model 

but a random selection of 10,000 trees (for each species). The final models were 

selected from the candidate models (Tab. 1) by the evaluation of DIC and R2. The 

null-model for the calculation of R2 constituted a model containing only intercept 

α. Furthermore, the principles of backward selection were applied, i.e. start with 

the full model (Eq. 3) and drop parameters on by one. Further decision rules to 

drop  parameters:  Quadratic  terms  before  linear  terms  and  interactions  terms 

before non-interaction terms.

Response curves for climate and competition were calculated for each species. 

Precipitation, temperature and symmetric and asymmetric competition were set to 

the dataset means, DBH to the species mean.

Intensity and importance of competition

Competition intensity measures growth reduction due to competition compared 

to abiotic factors. Changes in the intensity of competition along the precipitation 

and temperature gradient were analysed using the index 

C int=
G−N−G+ N

max (G+ N ;G−N )  
Eq. 4,

where G+N and G-N denote growth of the target species in the presence (+N) and 

absence (-N) of neighbours (Kikvidze and Brooker 2010,  Brooker and Kikvidze 

2008, Gaucherand et al. 2006). An intensity of 0.1 denotes a reduction of relative 

basal area increment by 10% due to interactions with neighbours. Competition 

importance is the proportional impact of competition relative to the overall impact 
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Tab. 1: Regression terms of the candidate models (cf. Eq. 3).

Model βP βP2 βT βT2 βPT βDBH βDBH2 βC βCP βCT βCP2 βCT2

2 x x x x x x x x x x x

3 x x x x x x x x x x

4 x x x x x x x x x x

5 x x x x x x x x x

6 x x x x x x x x x

7 x x x x x x x x x

8 x x x x x x x x

9 x x x x x x x x
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of the environment.  Index  Cimp can be used to express changes in competition 

importance along productivity gradients (Eq. 5).

C imp=
G−N−G+ N

Gmax−min (G+ N ;G−N )  
Eq. 5

Again,  G+N and  G-N denote growth of the target species in the presence (+N) 

and absence (-N) of neighbours, Gmax is the growth without neighbours at the cli-

matic optimum regarding precipitation and temperature. Since this index for com-

petition importance depends on the abiotic growth optimum of each species it is 

highly sensitive to the abiotic range considered and has to be interpreted carefully.

Competition intensity and importance were calculated along the precipitation 

and temperature gradient (but only shown for precipitation because temperature 

had almost no effect). For symmetric competition  AC was set to zero and SC to 

the  dataset  mean,  and vice  versa.  T was  set  to  the 11 °C (data  set  mean was 

11.5° C but P. uncinata did not occur at this temperature), DBH was set to the spe-

cies means.

The absolute increase or decrease of these two competition indices (Cint and 

Cimp) over the gradient depends on the definition of ‘with neighbours’. The more 

neighbours the stronger is the change of the indices along the climatic gradient 

(given that an interaction exists). If the interaction between the abiotic variable 

and  competition  is  weak  (and  given  that  G+N <  G-N)  the  indices  could  even 

increase for low competition values (low stand density or tall trees) and decrease 

for high values (high stand density or small trees).

Stand basal area and thereby symmetric and asymmetric competition presum-

ably change along the stress gradient, i.e. productivity decreases with increasing 

aridity (Tomé et al. 1996, Boisvenue and Running 2006). Under dry conditions 

individuals are subjected to lower absolute values of symmetric and asymmetric 

competition.  Thereby,  relevant  levels  of  competition  (values  of  SC and  AC) 

decrease along the aridity gradient. ‘Actual’ SC and AC were calculated along the 

gradient using a linear regression. Competition intensity and importance were than 

calculated using these actual occurring values. These values were used to calcu-

late the ‘actual’ competition intensity and importance (cf. Kunstler et al. 2011).
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Results

Final models

Model selection was based on DIC, R2 and the posterior distributions of the 

parameters. Best models according to the DIC were the models with less para-

meters with posteriors close to zero (Tab. 2). R2 ranged between c. 0.07 (Q. suber) 

and 0.25 (P. sylvestris) (Tab. 3). For all but F. sylvatica the final models contained 
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Tab. 2: DIC for candidate models calculated by JAGS. Bold: Final models.

Species Model 
1

Model 
2

Model 
3

Model 
4

Model 
5

Model 
6

Model 
7

Model 
8

Model 
9

P. halepensis -46334 -46063 -46134 -46258 -46029 -46362 -46195 -46088 -46138

P. nigra -47432 -49262 -48516 -49001 -48477 -48674 -48463 -48697 -48933

P. pinaster -48945 -43350 -43013 -43298 -43433 -42824 -43022 -42976 -42902

P. pinea -43057 -47311 -47057 -47178 -47432 -46831 -46750 -46893 -47138

P. sylvestris -47821 -48238 -48058 -47842 -48397 -48253 -47962 -48357 -48249

P.  uncinata -55857 -55738 -55728 -55771 -55699 -55711 -55612 -55735 -55698

Q. faginea -54498 -54831 -54612 -54776 -54666 -54688 -54714 -54609 -54673

Q. ilex -56683 -56416 -56279 -55878 -55921 -56296 -56457 -56306 -55988

Q. pyrenaica -51888 -52217 -52123 -51957 -52790 -52375 -52457 -52284 -52342

Q. robur -38915 -38915 -38917 -38918 -38916 -38920 -38920 -38922 -38908

Q. suber -56031 -56240 -55818 -56180 -56048 -55997 -56309 -56197 -56203

F. sylvatica -55467 -55052 -55255 -55483 -54799 -55422 -55127 -55162 -55505

Tab. 3: R2 for candidate models. R2 was calculated as the explained variance relative to 

a Null-model only containing the intercept (= mean relBAI). Bold: Final models.

Species Model 
1

Model 
2

Model 
3

Model 
4

Model 
5

Model 
6

Model 
7

Model 
8

Model 
9

P. halepensis 0.192 0.182 0.194 0.184 0.181 0.194 0.175 0.173 0.183

P. nigra 0.234 0.252 0.270 0.270 0.263 0.268 0.265 0.261 0.276

P. pinaster 0.258 0.261 0.267 0.261 0.269 0.234 0.239 0.246 0.261

P. pinea 0.281 0.231 0.242 0.235 0.240 0.230 0.233 0.234 0.235

P. sylvestris 0.247 0.258 0.241 0.258 0.263 0.259 0.238 0.253 0.258

P.  uncinata 0.235 0.232 0.229 0.231 0.232 0.228 0.224 0.228 0.225

Q. faginea 0.149 0.151 0.149 0.149 0.149 0.149 0.148 0.147 0.149

Q. ilex 0.154 0.151 0.152 0.150 0.146 0.147 0.152 0.143 0.147

Q. pyrenaica 0.135 0.137 0.139 0.136 0.140 0.137 0.133 0.131 0.138

Q. robur 0.149 0.150 0.149 0.148 0.148 0.148 0.148 0.149 0.147

Q. suber 0.060 0.058 0.058 0.057 0.062 0.055 0.068 0.062 0.060

F. sylvatica 0.107 0.107 0.102 0.102 0.102 0.106 0.104 0.104 0.104
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an interaction for climate and competition (Tab. 4). The interaction with temper-

ature  was  weaker  in  average  and  even  dropped  out  for  some  species  (P. 

halepensis, Q. robur, Q. suber, F. sylvatica).

Species response to climate and competition

Relative basal area increment was higher for pines than for oaks and beech 

(Fig.  1).  Also  plasticity  regarding  growth  was  higher  for  pines,  i.e.  absolute 

changes in growth along both the shade and precipitation/aridity gradient were 

larger for pines. We found that higher temperatures generally had a positive or 

neutral effect on growth of broadleaved species, but negative effects on conifers. 
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Fig. 1: Species response curves for temperature, precipitation and competition. Precip-

itation serves as proxy of aridity. All variables were set to their means, DBH was set to 

species specific means. (SBA: stand basal area in %; BAT: Basal area in %)
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Precipitation had a positive effect on all species, despite on Q. robur, and a pro-

nounced unimodal effect on P. pinea. Symmetric as well as asymmetric competi-

tion had a negative influence on tree growth for all species (the model structure 

did not allow for complementary absolute effects). The effect (βC) was larger for 

pines  than for  oaks and beech.  Furthermore,  parameter  γ  indicated a stronger 

effect of asymmetric competition (γ < 0.5) for all species despite Q. faginea, Q. 

ilex and Q. suber (Tab. 4). In general, for pines γ tended to be smaller than for 

oaks  and  beech.  For  increasing  asymmetric  competition  species  performances 

became  more  similar,  e.g.  differences  among  species  became  less  under  high 

shading (note that here were only adult trees assessed). A rank reversal of pines 

and oaks in absolute growth occurred at higher levels of asymmetric competition 

(AC > 40).

Interaction of aridity and competition

The  interaction  between  competition  and  precipitation  was  stronger  than 

between competition and temperature. Change of overall competition effect along 

the aridity gradient was therefore mainly mediated by parameter  βCP which was 

mostly positive (Tab. 4). This led to an additional increase of growth with precip-

itation under the presence of neighbours, i.e. an additional decrease with aridity. A 

parameter value of γCP > 0.5 means that the absolute effect of symmetric competi-

tion changed stronger than the effect of asymmetric competition (the only excep-

tion was P. pinea).

Asymmetric competition intensity increased with aridity for broadleaved spe-

cies like hypothesized (H1) but fell for conifers (Fig. 2). For  F. sylvatica asym-

metric  competition  intensity  did  not  change.  Symmetric  competition  intensity 

increased  with  aridity  for  all  species  like  hypothesized  (H2),  or  remained 

unchanged (Fig. 2). Contrary to hypothesis 3, competition importance did not fall 

with aridity but even increased for some species. Differentiation of symmetric and 

asymmetric competition importance revealed that particularly the  importance of  

symmetric competition increased for oaks while for pines it remained unchanged. 

Asymmetric  competition  importance also  increased  for  oaks, P.  pinea  and P.  

uncinata. Only for P. halepensis, P. nigra, P. pinaster and P. sylvestris asymmetric 

competition importance fell like hypothesized (H3). These patterns did not change 
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for both intensity and importance, when not median competition levels were used 

but the quantiles 0.1 and 0.9.

Pearson  correlation  of  stand  basal  area  with  precipitation  was  r  =  0.35 

(Tab. S1). Linear regressions resulted in a decrease of SC=7.98+ 0.014⋅P and 

AC =3.56+ 0.0076⋅P (no significances are given because the regressions were 

used for interpolation). Thereafter, actual occurring competition levels decreased 

with aridity. Calculation of competition importance using these SC and AC gradi-
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Fig. 2: Intensity of symmetric competition increases for for oaks while is remains rather 

the  same for  more  drought  tolerant  pines.  Asymmetric  competition  intensity  also 

increases for oaks but decreases for some pines.

Fig. 3: Importance of competition increases with aridity, particularly symmetric com-

petition importance for rather drought intolerant oaks. Only asymmetric competition 

importance decreases for most pines (Exceptions: P. nigra, P. sylvestris).
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ents resulted in the expected pattern of lower importance under arid conditions 

and higher values under moist conditions compared to the calculations with con-

stant competition levels (Fig. S2). Actual symmetric competition importance fell 

for pines which showed a neutral pattern for the other calculation (Fig. 3). For 

oaks actual symmetric competition importance did not change considerably with 

aridity. The same pattern was also true for intensity (Fig. S1).

Discussion

This study deals with the question whether the effect of competition on tree 

growth changes along the Mediterranean aridity gradient. This question is closely 

related to three basic theories: The shade-drought tolerance trade-off, the supply 

and demand theory and Grime´s C-S-R framework (see introduction). By separ-

ating competition into its symmetric and asymmetric component it was possible to 

address these theories, carefully choosing the competition index, i.e. intensity and 

importance of competition (Brooker et al. 2005). The hypotheses specified in the 

introduction were not entirely supported by the model results, which allows for an 

interesting discussion and opens further research opportunities.

Species response to climate and competition

The final models for tree growth showed the well known reaction of species to 

temperature and precipitation (cf. Gómez-Aparicio et al. 2011). Conifers distribu-

tion ranges reached the dry edge of the Mediterranean climate whereas the optima 

of broadleaved oaks and beech occurred at intermediate precipitation. While pre-

cipitation representing aridity had a positive effect on tree growth for most species 

the effect of temperature was not that univocal. Remarkably, temperature had a 

negative effect on conifers while for broadleaved a positive effect was found (see 

also Gómez-Aparicio et al. 2011). A possible reason for the negative effect of tem-

perature on growth for conifers might be that they cannot react to higher evapo-

transpiration following higher temperatures due to their leaf architecture and fur-

ther  morphological  and  physiological  differences  between  gymnosperms  and 

angiosperms (Bond 1989). However, a recent study by Ruiz-Benito et al. (2013) 

using the same data (Spanish NFI) showed a general negative effect of temper-

ature on both, conifers and broadleaved by an increase in mortality (exceptions are 

P. uncinata, Q. suber, P. pinea).
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Besides the modelled effect of climate on growth, a stronger effect of asym-

metric competition on conifers than on broadleaved is in agreement with ecolo-

gical knowledge, i.e. shade tolerances of species (Zavala et al. 2000, Niinemets 

and Valladares 2006; Tab. S3). Furthermore, the common pattern of lower plasti-

city  in  growth  (Chambel  et  al.  2005,  Valladares  et  al.  2007)  of  rather  shade-

tolerant species (beech, oaks) than that of shade-intolerant species also appeared 

in our growth model (Sánchez-Gómez et al. 2006, Richter et al. 2012). However, 

it  has to  be considered that  this  plasticity  was observed within a large spatial 

extent and might also be caused by genetic diversity due to local adaptation of 

provenances  (for  example  for  Pinus  nigra; Jagielska  et  al.  2007,  Lucic  et  al. 

2010). Together with the response of species to climate induced aridity the studied 

species can be arranged in Grime´s C-S-R triangle: Broadleaved oaks and beech 

are more at the competitors side whereas coniferous pines are more at the stress-

tolerator side (Grime 1977).

Besides direct effects of the independent variables on growth also interactions 

among them were included in the model structure. The interaction term for tem-

perature and precipitation mostly had a positive sign. This supports the negative 

effect  of  aridity  on growth (increased temperatures  increase evapotranspiration 

which was attenuated by coinciding increase in precipitation). The interaction of 

competition and climate ranged in the same amplitude. Whereas the direct effect 

of competition was stronger for the asymmetric component the interaction with 

climate was stronger for the symmetric component (see also below ‘competition 

importance’). This is plausible because the resource water strongly changes with 

precipitation whereas the resource light changes only slightly due to the correla-

tion of canopy density and aridity (or site capacity and aridity).

Despite the present model gave reasonable results which are in agreement with 

former  studies  and ecological  expectations,  it  had a  relatively  low fraction  of 

explained  variance  R2.  A hierarchical  model  accounting  for  variability  among 

survey plots caused by other factors than climate and competition, insect infesta-

tions, soil fertility etc. could increase R2 for such a large dataset. However, we 

decided to only use measured variables since the aim of this study was not to 

make predictions on future tree growth at the same sites but to assess ecological 

principles. As long as non of the unknown variables which could be represented 
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by the variable ‘survey site’ is correlated with the used ones general results will 

not differ.

Shade-drought tolerance trade-off ‒ intensity of asymmetric competition

At the interspecific level the shade-drought tolerance trade-off was observed 

for broadleaved angiosperms and coniferous gymnosperms (Niinemets and Val-

ladares 2006). Conifers do not tolerate so well shading but are less vulnerable to 

drought due to strong stomata regulation to avoid hydraulic failures under water 

scarcity (‘stress avoiders’), whereas broadleaved suffer more from drought stress 

but  are  considered to  be more shade tolerant (Bond 1989, Zavala et  al.  2000, 

Hallik et al. 2009). The first hypothesis in the present study refers to an intraspe-

cific shade-drought tolerance trade-off. We presumed that a shade-drought toler-

ance trade-off should lead to an increase in intensity of asymmetric competition 

with aridity. Interestingly, this pattern was only found for oaks. Relative to other 

tree species within the Mediterranean forest communities oaks are rather shade 

tolerant and drought sensitive angiosperms (Tab. S2). An explanation therefore 

might be the ability of oaks as broadleaved angiosperms to adjust leaf structure 

and photosynthesis related properties in response to shading and increased aridity 

(e.g.  Niinemets 2010, Wyka et  al.  2012 for shade;  Abrams 1990 for drought). 

Coniferous pines have lower abilities to adjust their leave structure and therefore 

no such trade-off could be observed (Bond 1989). This finding leads to the expect-

ation that broadleaved oaks and beech might loose their advantage of higher shade 

tolerance  to  some  degree  under  increased  aridity  (as  expected  due  to  climate 

change).

Supply and demand ‒ intensity of symmetric competition

We hypothesized that the intensity of symmetric competition, e.g. competition 

for water, increases with aridity, according to the supply and demand theory. This 

proved to be true for all species. Assuming constant stand basal area a movement 

along the aridity gradient led to falling supply while demand remained unchanged. 

If demand remains unchanged and supply decreases, a shortage occurs, leading to 

a  higher  resource  ‘price’,  i.e.  higher  competition intensity.  The relationship of 

symmetric competition intensity and stand basal area was similar to the relation of 

price and demand and can be interpreted as a movement on the demand curve in 

terms of microeconomics. In contrast, the relationship of symmetric competition 
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intensity and supply is not similar to the relation of price and supply. This is due 

to the essential difference between most economic and ecological systems that 

there is no feedback of supply on changes in demand (mediated by price) (Rapport 

1991). The economic principle of supply and demand (Thweatt 1983) can thus be 

found  in  Mediterranean  forest  communities,  with  the  mentioned  modification. 

Under more arid conditions like expected due to climate change this might lead to 

a more competitive environment regarding symmetric competition for water.

Competition importance and aridity

Changes of competition importance along the stress gradient are closely related 

to Grime´s C-S-R framework and the stress gradient hypothesis as well as to the 

Tillman debate. To address this topic it was essential to separate symmetric and 

asymmetric  competition  because  they  represent  competition  for  different 

resources,  here water  and light.  While  water  supply  changes  along the  aridity 

gradient,  light  availability  is  not  directly  influenced.  Contrary  to  expectations 

according to  Grime´s  C-S-R framework,  the  importance  of  competition  rather 

increased with aridity (but refer to discussion on actual competition importance 

below).  The  strong  effect  of  supply  and  demand  in  the  studied  communities 

provides  a  reason for  the  increase  of  symmetric  competition  importance.  The 

effect of supply and demand was stronger than the general growth reduction due 

to aridity. This is in agreement with Tilman’s idea that competition moves from 

canopies to roots with increasing aridity (e.g Brooker et al. 2005). Also the shade-

drought tolerance trade-off for oaks is in accordance with an increase of sym-

metric and asymmetric competition importance under aridity. However, for most 

pines at least asymmetric competition importance fell, i.e. growth reduction due to 

aridity actually gained importance (refer to Liebig's law of the minimum; Odum 

and Barrett 2005). This is in accordance with lack of a shade-drought tolerance 

trade-off for pines.

According to the present findings in more arid environments competition might 

gain importance (Gómez-Aparicio et al. 2011). A more differentiated evaluation 

results in a shift of relative importance of symmetric and asymmetric competition 

in favour of the first (Zang et al. 2012). This is advantageous for pines and could 

outbalance negative effects of increased importance of overall competition in a 

probably more arid future.
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Actual competition intensity and importance

Under  dry  conditions  individuals  actually  are  subjected  to  lower  absolute 

values of symmetric and asymmetric competition. Accounting for changed stand 

basal  area  ‘actual’ competition  intensity  and  importance  were  calculated. 

According to Kunstler et al. (2011) the actual importance of competition falls with 

increasing abiotic stress which is largely in accordance with the present study. 

However, the patterns for intensity differ among the studies. Contrary to Kunstler 

et al. (2011), particularly actual intensity of asymmetric competition changed with 

aridity. Differences in findings could not only be attributed to differences in the 

representation of competition and model structure but also to the climatic gradi-

ents.  Whereas Kunstler et al.  (2011) assessed a spatially smaller and generally 

moisture site in France the aridity gradient of the Spanish peninsula is longer as 

well as more extreme.

Moreover, when actual competition intensity and importance are used it has to 

be considered that there is a reason for lower stand basal area: Carrying capacity 

of the site is lower due to lower resource supply. The regulation of stand basal 

area is at least partly mediated by competition and not only by abiotic growth 

reductions and increased mortality (Ruiz-Benito et al. 2013). Symmetric competi-

tion intensity  as  local  value of  the resource water  was found to increase with 

aridity  whereas  the effect  was smaller  under  consideration  of  actual  occurring 

competition levels. This supports the presumption that symmetric competition is a 

candidate for regulation of stand basal area with decreasing resource supply, par-

ticularly for oaks. In contrast,  actual asymmetric competition intensity strongly 

fell and is therefore not good a candidate.

In the present study a consideration of actual levels of competition along the 

aridity gradient did result in a decrease of actual competition importance. This is 

in accordance with Grime´s C-S-R framework that is  perhaps better  addressed 

using actual occurring conditions (e.g. a consideration of actual occurring levels 

of competition). Particularly, the decrease in actual occurring asymmetric compet-

ition  results  in  a  strong  loss  of  competitiveness  of  shade  tolerant  oaks  with 

increasing  aridity.  Thereby,  an  underestimation  of  changes  in  competitiveness 

with aridity is likely when only the mere interplay of shade and drought tolerance 

with aridity is evaluated but changes in stand basal area are not considered.
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Conclusions

For the Iberian Peninsula under climate change a temperature rise is expected 

while  precipitation  is  projected  to  decrease.  According  to  the  IPCC  ‘there  is 

medium confidence that droughts will intensify in the 21st century in some seasons 

and areas, due to reduced precipitation and/or increased evapotranspiration’ (IPCC 

2012, p. 14). Although Mediterranean species are adapted to summer drought, an 

impact on forests is expected because already today the conditions in drier regions 

are near their limit.

In Mediterranean forests competition for both light and water strongly influ-

ences tree growth along the entire aridity gradient. The importance of competition 

even increases with aridity, with some exceptions. This indicates more compet-

itive environments with proceeding climate change. The model indicated that par-

ticularly the effect of symmetric competition for water changes along the aridity 

gradient.  Thereby  growth  reductions  due  to  symmetric  competition  for  water 

increase stronger than growth reductions due to asymmetric competition for light. 

This leads to the expectation that symmetric competition might gain importance in 

shaping Mediterranean forest communities under increased aridity. Shade tolerant 

and drought sensitive species such as broadleaved oaks and beech might thereby 

have a  relative disadvantage under future climate,  additionally  to  mere abiotic 

causes. This disadvantage might even be larger when changes of basal area due to 

site  productivity  and  falling  levels  of  actual  asymmetric  competition  are  con-

sidered. In any case, expected increase in aridity due to climate change has neg-

ative effects on all studied species.
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Supplement

Fig. S1: ‚Actual‛ competition intensity: Intensity of symmetric competition increased for 

most species or remained more or less unchanged. Asymmetric competition intensity 

fell for pines and some oaks.
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Fig. S2: ‚Actual‛ competition importance: Actual symmetric competition importance fell 

for pines. For oaks actual symmetric competition importance did not change consider-

ably with aridity.

Tab. S1: Correlation between variables in the Spanish NFI. relBAI: Relative basal area 

increment;  T:  Temperature;  P:  Precipitation;  SC:  Symmetric  competition;  AC:  Asym-

metric competition.

relBAI
(mm)

T
(°C)

P
(mm) SC AC

T 0.05

P 0.09 -0.31

SC -0.17 -0.36 0.35

AC -0.06 -0.26 0.25 0.70

DBH -0.29 0.03 0.13 0.15 -0.20
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Tab. S2: Species ranges in the Spanish NFI for the variables considered in the model.  

relBAI: Relative basal area increment; T: Temperature; P: Precipitation; SC: Symmetric 

competition;  AC:  Asymmetric  competition;  DBH:  Diameter  at  breast  hight.  Mean 

(Minimum-Maximum).

Species relBAI (mm) T (°C) P (mm) SC AC DBH (cm)

P. halepensis
0.043

(0-0.84)
14

(9.9-19)
550

(170-1500)
12 

0.39-53)
5.8

(0-43)
200

(75-990)

P. pinaster 0.037
(0-0.55)

11
(6.2-16)

780
(360-2300)

20
(0.39-67)

9.9
(0-63)

210
(75-960)

P. pinea
0.049
(0-1.4)

12
(6.7-18)

850
(320-3100)

24
(0.39-74)

12
(0-67)

260
(62-1100)

P. nigra 0.041
(0-0.81)

14
(9.6-19)

630
(300-1700)

16
(0.4-57)

7.3
(0-56)

260
(75-1300)

P. sylvestris
0.038
(0-1.2)

9
(3.4-15)

960
(430-2000)

26
(0.42-81)

13
(0-80)

230
(54-1100)

P. uncinata 0.025
(0-0.43)

5.8
(1.8-11)

1200
(520-2000)

29
(0.62-76)

15
(0-72)

240
(75-1300)

Q. faginea
0.028

(0-0.41)
11

(6.3-19)
780

(410-1500)
14

(0.39-68)
7.2

(0-49)
200

(75-1600)

Q. ilex 0.025
(0-0.59)

13
(6.6-19)

740
(270-2000)

11
(0.39-70)

6
(0-70)

230
(75-1500)

Q. pyrenaica
0.031
(0-1.1)

11
(6.4-16)

930
(440-2300)

18
(0.4-67)

9.1
(0-66)

210
(75-1500)

Q. robur 0.036
(0-0.77)

12
(6.3-15)

1400
(630-2300)

22
(0.45-80)

11
(0-70)

310
(74-1300)

Q. suber
0.024
(0-1.6)

15
(10-19)

870
(430-1900)

16
(0.43-53)

8.1
(0-50)

300
(75-1500)

F. sylvatica 0.025
(0-0.91)

9.1
(4.2-14)

1200
(590-2500)

27
(0.53-80)

15
(0-80)

290
(72-1600)

Tab. S3: Shade and drought tolerances according to Niinemets and Valladares (2006).

Species Shade 
tolerance

Drought 
tolerance

P. halepensis 1.35 4.97

P. pinaster 2.46 2.2

P. pinea - -

P. nigra - -

P. sylvestris 1.67 4.34

P. uncinata 1.2 3.88

Q. faginea - -

Q. ilex 3.02 1.04

Q. pyrenaica - -

Q. robur 2.45 2.95

Q. suber - -

F. sylvatica 4.56 2.4
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Supplement 1: JAGS-Code for the full model including priors and the error distri-

bution.
model{
   for (i in 1:n) { # Distribution of response variable relBAI[i] ~ 
dgamma(pow(mu[i],2)/pow(sigma,2), mu[i]/pow(sigma,2)) # Model formula 
log(mu[i]) <- alpha + beta.P * P[i] + beta.P2 * pow(P[i], 2) + beta.T * 
T[i] + beta.T2 * pow(T[i], 2)+ beta.TP * P[i]* T[i] + beta.DBH * DBH[i] + 
beta.DBH2 * pow(DBH[i],2) + beta.C * (gamma * SC[i] + (1-gamma)*AC[i]) + 
beta.PC * P[i] * (gamma.P * SC[i] + (1-gamma.P)*AC[i]) + beta.TC * T[i] * 
(gamma.T * SC[i] + (1-gamma.T)*AC[i]) + beta.PC2 * pow(P[i],2) * (gamma.P 
* SC[i] + (1-gamma.P)*AC[i]) + beta.TC2 * T[i] * (gamma.T * SC[i] + (1-
gamma.T)*AC[i]) }

    # Priors for parameters; uninformative
    alpha ~ dnorm(0, 0.001)
    beta.P ~ dnorm(0, 0.001)
    beta.P2 ~ dnorm(0, 0.001)
    beta.T ~ dnorm(0, 0.001)
    beta.T2 ~ dnorm(0, 0.001)
    beta.TP ~ dnorm(0, 0.001)
    beta.DBH ~ dnorm(0, 0.001)
    beta.DBH2 ~ dnorm(0, 0.001)
    beta.C ~ dnorm(0, 0.001)
    beta.PC ~ dnorm(0, 0.001)
    beta.PC2 ~ dnorm(0, 0.001)
    beta.TC_S ~ dnorm(0, 0.001)
    beta.TC2_S ~ dnorm(0, 0.001)
    gamma ~ dunif(0, 1)
    gamma.P ~ dunif(0, 1)
    gamma.T ~ dunif(0, 1)
    sigma ~ dgamma(0.001, 0.001)
    beta.TC <- beta.TC_S / 1000
    beta.TC2 <- beta.TC2_S /1000
}

References
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Abstract

Growing conditions for trees are expected to change drastically with climate change. The introduc-

tion of presumably better-adapted populations (i.e. ecotypes) from other locations is therefore cur-
rently in discussion. One strategy is to grow the ecotype which is best adapted to a future climate. 

This ecotype will provide optimal yields. However, this strategy ignores uncertainties in climate 
projections and the long-term performance of particular ecotypes. One way to deal with uncer-

tainty frequently applied in economics is ‘conservative bet-hedging’ aiming at benefiting from the 
portfolio effect. The portfolio effect stabilizes yield, however, it also decreases chances for high 

yields. Competition between tree individuals is likely to be based on the same measure as yield,  
i.e.  performance.  Thereby the portfolio  effect  might  be exempted from its  drawback of  lower 

chances for high yields by natural self-thinning. In order to evaluate the combined effects of stat -
istical  averaging underlying the portfolio effect  and self-thinning on yield, a simulation model  

based on data from common garden experiments was applied. The results show that the portfolio  
effect  is actually largely exempted from its drawbacks via natural  self-thinning. Thus, ecotype 

mixing is a valid opportunity to adapt forest stands to on-going climate change.

Keywords: Provenance, Pinus nigra, Fagus sylvatica, insurance, simulation model, artificial data, 

risk management
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Introduction

Present climate change is expected to affect forests considerably (Allen et al. 

2010, Hanewinkel et al. 2012). Aside from the expected alterations in mean cli-

mate conditions, increasing variability and more frequent occurrences of extreme 

events (IPCC 2012) pose challenges for ecosystem management. Particularly, the 

management  of  long-lived  ecosystems  such  as  forests  faces  uncertain  future 

growing conditions, where long-term decisions are essential and need to be made 

now. One possible way to deal with expected changes is the introduction of indi-

viduals of the same tree species but from another ecotype (‘provenance’), which 

are better  adapted to expected future environments (Jentsch and Beierkuhnlein 

2010, Beierkuhnlein et al. 2011, Kreyling et al. 2011). With the term ecotype we 

refer to distinct genotypes (or populations) within a species, resulting from adapt-

ation to local environmental conditions (Hufford and Mazer 2003). Local adapta-

tions to climate, i.e. a higher fitness of local individuals at their home site com-

pared with that of non-local individuals of the same species (Biere and Verhoeven 

2008) are commonly found for trees species (e.g. O’Neill et al. 2008, Reich and 

Oleksyn 2008, Bennie et al. 2010). Therefore, it is hypothesized that best-adapted 

ecotypes could be selected based on the similarity between current climate at the 

origin  of  donor  ecotypes  and  future  climate  projections  for  the  target  area 

(Kreyling et al. 2011). Growing the best-adapted ecotype would provide optimal 

yields in the future. However, local adaptations might have evolved in lieu of spe-

cific stressors, e.g. frost and drought occurrence eventually controversially for the 

same set of ecotypes (Kreyling et al.  2012b, C. Wellstein and C. Cianfaglione 

unpublished manuscript). In addition, climate projections cannot yet be made with 

sufficient  precision,  in  particular  with  regard  to  weather  extremes.  These  two 

drawbacks hamper the selection of a single best-adapted ecotype for the manage-

ment of a given stand. Alternatively, mixing of several ecotypes from different 

regions (presumably containing various adaptations) within the distribution range 

of a species, has been suggested recently by several authors as a promising silvi-

cultural measure to dampen the adverse effects of climate change (and its uncer-

tainty) and to enhance the adaptive potential of the species (Sgrò et al. 2011, Fras-

caria-Lacoste and Fernández-Manjarrés 2012, Thiel et al. 2012).

Unlike economics,  ecosystem management has hardly introduced systematic 

risk  management  accounting  for  uncertainty  into  decision  making  processes 
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(Knoke  et  al.  2005,  Hanewinkel  et  al.  2011;  but  compare  to  Linder  2000, 

Hildebrandt and Knoke 2011). One possible way to deal with uncertainty that is 

frequently applied in economics is conservative bet-hedging aiming at benefiting 

from the portfolio effect (cf. Childs et al. 2010, Starrfelt and Kokko 2012). The 

portfolio  effect  (described by Markowitz  1952) states  that  a  diversification  of 

investments, thus betting on several assets and not only on the apparently best 

asset, reduces the risk of a complete loss of yield while also limiting the achieve-

ment of high yields (Hopper 1999, Boyce et al. 2002, Childs et al. 2010). Several 

assets not entirely positively correlated together result in lower variability of yield 

than each single asset due to the effect of statistical averaging. In forests, the port-

folio effect can be related to reduced variability of a population property such as 

biomass, due to complementary dynamics in different components such as spe-

cies, ecotypes, and individuals of the ecosystem (Cottingham et al. 2001). Eco-

system stability  regarding  the  target  property  thereby  increases  due  to  unsyn-

chronized responses of the components.

Although perception and application of the principle underlying the portfolio 

effect is gaining attention in ecology, the closely related insurance hypothesis is 

still more familiar (Yachi and Loreau 1999, Bodin and Wiman 2007). According 

to the insurance hypothesis ecosystem stability in face of changing environments 

increases with increasing species diversity due to their individualistic behaviour. 

In addition to statistical averaging, the insurance hypothesis considers compens-

atory responses of species. It is assumed that the decline of one species might not 

only affect the aggregated system property directly (such as total biomass) but 

also other species due to biotic interactions such as competition (Pretzsch et al. 

2013). If species functions in ecosystems are redundant, the decline in one species 

population can be compensated by the increase of another (Ehrlich and Ehrlich 

1981, Walker 1992). Both the portfolio effect and the insurance hypothesis cannot 

only be applied to different species but also to intraspecific variability, e.g. dif-

ferent ecotypes of the same species.

Proper ecosystem management should maximize the expected net present value 

of stands and at the same time minimize risk (Yousefpour and Hanewinkel 2009). 

In forests, growth determines stand biomass and yield. Conservative bet-hedging 

as opposed to dependence upon the ‘right choice’ of a specific species or ecotype 

could help adapt forest stands to climate change uncertainties as well as the uncer-
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tainty of the (long-term) performance of species or specific ecotypes (Donaldson-

Matasci et al. 2008). The complexity of effects and possible advantages of mixed 

stands is currently intensively studied (Pretzsch et al. 2010, Pretzsch et al. 2012). 

However, there is an important difference between forest management and other 

fields of product management. In forests, self-thinning takes place due to competi-

tion among individuals. Forest management modifies this selection process further 

(Huuskonen and Hynynen 2006, Bradford and Palik 2009, Tikkanen et al. 2012). 

This natural process reduces the number of individuals considerably over time 

(Pickard 1983, Lonsdale 1990). Thereby, in forests, not all assets (i.e. individual 

trees) of the portfolio (the stand) remain until the date of harvest (i.e. they die due 

to  competition).  While  in  economic product  management  a drop out  of single 

assets of the portfolio usually comes along with profit losses, in forests the drop 

out of tree individuals is necessary to provide space for the surviving trees to grow 

well.  In the present study, two different plantation strategies appear apart from 

betting on the apparently best ecotype. The first strategy is to grow ecotypes in 

several  single-ecotype  stands,  the  second is  to  mix  ecotypes  within  one  stand 

(termed ‘ecotype mixing’). The type of planting strategy determines whether only 

individuals of the same or of several ecotypes compete. It can be expected that 

considering  self-thinning  together  with  ecotype  mixing  gives  different  results 

regarding yield depending on the planting strategy.

We consider the competitive ability among tree individuals to be correlated 

with growth and general performance as yield (Bigler and Bugmann 2003, Shifley 

et al. 2006, Wunder et al. 2008, Luo and Chen 2011). In order to evaluate the 

combined effect of statistical averaging and self-thinning with ecotype mixing, we 

apply a simulation model which we term ‘maximum selection’.  Compensatory 

effects, such as increased growth of tree individuals due to a release from compet-

ition as suggested in the insurance hypothesis, are not considered in this study. 

Two alternative models in addition to maximum selection are tested. Hereby lot-

tery sampling is  applied as a  null-model,  including only the effect  of  ecotype 

mixing but without a selection mechanism. Ecologically, this means that perform-

ance and survival during self-thinning and yield are uncorrelated. By means of 

this selection method the simulation model can further be related to the mere port-

folio effect. Minimum selection is applied as the inversed scenario compared to 

maximum  selection.  Ecologically,  this  means  that  performance  and  survival 

during self-thinning and yield are negatively correlated.
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In this study we utilize experimental data from common garden experiments 

(Kreyling et al. 2012A, Thiel et al. 2012) with important European tree species 

(Fagus sylvatica L. and Pinus nigra Arn.) as well as artificial data. Due to experi-

mental constraints, the present study is based on sapling growth. Sapling growth 

during competition in the self-thinning phase might not adequately reflect the per-

formance of adult  trees. Nevertheless,  we do not expect a negative correlation 

between growth at different ontogenetic stages if environmental conditions remain 

similar during the overall tree life span (or rotation period). By means of artificial 

data, constituting a known ‘truth’, mathematical artefacts in methodology can be 

detected (Austin 1976, Steinbauer et al. 2012). Furthermore, such analysis enables 

ecologists to test hypotheses in the lack of data. Thus, the simulations were scaled 

by the experimental data, whereby the artificial data aided in the understanding of 

the influence of the data structure. Expected yield was simulated for each dataset 

under different mixing strategies (no mixing and mixing of two to n ecotypes) and 

selection mechanisms (maximum selection, lottery sampling, minimum selection). 

This simulation model explores the effect of ecotype mixing, self-thinning, and 

statistical averaging on expected yield; the risk of low and the chance for high 

yield. The consequences of an increase of within-stand variability in biomass pro-

duction by ecotype mixing on expected yields and their uncertainty are assessed. 

We hypothesize that the reduced risk of low yields due to the portfolio effect are 

not accompanied by lower chances for high yields in forest stands as a result of 

self-thinning. If this is the case, ecotype mixing constitutes an opportunity for the 

adaptation of forest stands to current climate change.

Methods

Experimental data

Here, we focus on two species: Pinus nigra (European black pine), a generally 

drought-resistant species with a patchy (sub-) Mediterranean distribution range 

(Isajev 2003), which is a potential candidate to replace climate change-threatened 

conifer species such as Picea abies (Norway spruce) in Central Europe. We also 

consider  Fagus sylvatica  (European beech), which is the dominant native forest 

species in Central Europe yet considered threatened in the face of climate change 

(Geßler et al. 2006, Ohlemuller et al. 2006). The data used in this study stemmed 

from a common garden experiment (EVENT 3) in the Ecological-Botanical gar-
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dens of the University of Bayreuth, Germany (Jentsch and Beierkuhnlein 2010, 

Beierkuhnlein et al. 2011) where the differences in performance among various 

ecotypes of key European forest species were studied. Seedlings of eight ecotypes 

of P. nigra (Thiel et al. 2012) and seven ecotypes of F. sylvatica (Kreyling et al. 

2012a)  were  planted  in  pots  and  through  2009/2010  (P.  nigra)  and  2010  (F. 

sylvatica). The P. nigra dataset included 42 replicates per ecotype, whereas the F. 

sylvatica dataset comprised of 18 replicates per ecotype. The individuals of both 

species were irrigated according to the local daily 30-year average precipitation. 

Application occurred twice a week, using collected rain water. The height of the 

plants was recorded before and at  the end of the growing season. The relative 

increment rate was determined as the difference between these two measurements 

in percent (Fig. 1 and 2).

Artificial data

In addition to the experimental data, artificial datasets with the same structure 

were created using R 2.15.2 (R Development Core Team 2012, R-Code provided 

in online Supplement 1). The artificial datasets consisted of seven ecotypes char-

acterized by mean growth and variation (normal distributed data represented by 

100 individuals). Means of the ecotypes were randomly selected from a normal 

distribution. Variation within each ecotype was held constant (Fig. 1A). This basic 

dataset  A was  modified  to  assess  the  influence  of  data  structure  on  expected 

yields. Firstly, the means of the ecotypes were multiplied with a constant in order 

to increase differences between them (Fig. 1B, constant is 10). Next, the basic 

dataset was modified by creating an over-performing ecotype with significantly 

higher increment rates than others (Fig. 3C, adding 10 to ecotype g). The fol-

lowing data-scenario was the same as in Fig. 1C, i.e. one over-performer, but also 

contained an under-performing ecotype (Fig. 1D). The same was done with two 

over-performers  (Fig.  1E),  where one data  scenario again  contained an  under-

performer  (Fig.  1F).  The  three  different  selection  procedures  described  below 

were applied to these datasets in the same way as for the experimental data.

Maximum selection

Maximum selection mimicked an experiment where several individuals were 

hypothetically planted together. The best performing individual (i.e. best growing) 

of  each plantation was assumed to survive and its  growth was measured.  The 
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underlying assumption was that performance/growth is closely linked to competit-

iveness and survival and thereby controls the result of self-thinning (Bigler and 

Bugmann 2003, Wunder et al. 2008). In the sampling procedure carried out in R 

2.15.2 (R Development Core Team 2012, R-Code provided in online Supplement 

2) the first step was to create a data subset for each possible combination of eco-

types. The resulting number of subsets corresponded to the binomial coefficient. 

Then, five individuals were selected randomly from a subset and the value of the 

best performing individual was saved. The number of five individuals determined 

the difference between mean performance of the ecotype and the increase due to 

maximum selection. As the same value for that parameter was used in all simula-

tions, a change only resulted in absolute differences but not relative differences 

between resulting patterns. Ecologically, this parameter represents the number of 

individuals which compete in a stand in first order neighbourhood, for which five 

seems to be a reasonable estimate. This selection rule was repeated 5000 times for 

each subset. For each subset, the minimum, median, maximum and the quantiles 

0.05, 0.25, 0.75, and 0.95 were calculated from the repetitions. Quantile data was 

then grouped according to the number of ecotypes of the originating subset, i.e. to 

their degree of ecotype mixing, and the median for each quantile and number of 

ecotypes was given. From this point onward ‘quantiles’ refers to the median of 

these quantiles from the sampling procedure. The 0.50 quantile, i.e. the median, 

means that yield is higher than the quantile value with a probability of 0.5 (thus in 

50% of cases). The 0.05 quantile means that yield is higher than the quantile value 

with a probability of 0.95.

For P. nigra with eight ecotypes this resulted in 255 subsets belonging to eight 

ecotype richness groups and for  F. sylvatica  and the artificial data 127 subsets 

occurred which belonged to seven ecotype richness groups. The number of data 

points within the groups differed according to the number of possible combina-

tions.  The  effect  of  this  was  attenuated  by  the  method  of  calculation  of  the 

quantiles.

Lottery sampling

For lottery sampling one random individual was selected out of five randomly 

chosen individuals instead of the best performing. This simulation procedure was 

considered as an ecological and methodological ‘null-model’, although we did not 

test the model for significance but only for the effect that the process maximum 
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selection had (Gotelli 2001). Ecologically, lottery sampling means that survival of 

self-thinning and yield are uncorrelated. This can occur due to a lack of correla-

tion  between  performance  and  self-thinning  or  due  to  a  lack  of  correlation 

between  performance  and  yield.  Methodologically,  simulations  with  lottery 

sampling give the same results as simply mixing the distributions (individuals rep-

resenting the distributions) of the subsets for each group and calculating quantile 

values. In case subsets consist of only one ecotype, i.e. no ecotype mixing, the res-

ulting quantiles are the same as the quantiles of a mixed distribution consisting of 

the single-ecotype distributions. This relates directly to the portfolio effect. 

Minimum selection

In order to develop an ecologically ‘worst-case’ model, or a methodologically 

inversed model,  we selected not for the best  performing individual  (maximum 

selection), but for the worst, i.e. we selected for the minimum (minimum selec-

tion). This represents a negative correlation between performance and self-thin-

ning  or  a  negative  correlation  between  performance  and  yield  (which  is  con-

sidered unlikely). A negative correlation between performance and self-thinning 

might occur if other factors than competition (mediated by performance) are the 

main causes of mortality such as herbivory or other disturbances (Franklin et al. 

1987, White and Jentsch 2001, Dietze and Moorcroft 2011).

Results

Maximum selection resulted in increasing medians for yield with an increasing 

number of ecotypes, particularly for datasets with high variability among ecotypes 

and  presence  of  over-performers.  Inter-quantile  distances  increased  along  the 

gradient of ecotype richness, resulting in asymmetrically higher chances for high 

yield in more diverse stands (Fig. 1). The artificial dataset A, with normally dis-

tributed median performances and low variance between the ecotypes, resulted in 

almost no changes of median yield with increasing number of mixed ecotypes. A 

higher variance between ecotypes, like in dataset B, led to a stronger increase of 

the median yield with increasing ecotype richness in one stand. Inter-quantile dis-

tances were asymmetric to the benefit  of higher yield the more ecotypes were 

combined.  Adding one  over-performer  to  the  low variance  dataset  (dataset  C) 

caused a steep increase of the upper quantiles (0.5, 0.75, 0.95 and maximum) of 

expected growth response from subsets with three ecotypes to subsets with four 
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ecotypes, with a slight decrease of the median with five or more ecotypes included 

in the subset. Adding one under-performer did not change these patterns consider-

ably (dataset D). Dataset E, with two over-performers, exhibited a steep increase 

of expected growth from the single-ecotype subset to subsets with two ecotypes 

and a stable performance from that point on. Again, adding one under-performer 

did not change the pattern (dataset F).

Maximum  selection  of  the  experimental  data  for  F.  sylvatica  showed  an 

increase of yield from subsets with one ecotype to subsets with two ecotypes for 

the quantiles 0.05 to 0.75. The expected maximum growth (0.95 and maximum) 

increased with increasing number of ecotypes. Subsets with more than four eco-

types did not yield additional positive effects on expected growth maxima. For P. 

nigra,  with  an increasing  number  of  ecotypes,  only  the upper  quantiles  (0.95, 

maximum) increased. However, the increase in expected growth maxima (max-

imum, 0.95) culminated when 5-6 ecotypes were included. More ecotypes did not 

have additional positive effects.  All other quantiles (minimum, 0.05,  0.25,  0.5, 

0.75)  remained  remarkably  stable,  independent  of  the  number  of  ecotypes 

included. Experimental data for  P. nigra and  F. sylvatica  thus showed patterns 

similar  to  the  artificial  datasets  C  ‘one  over-performer’  and  E  ‘two  over-

performers’. This indicated that the variability among ecotypes was large enough 

to show an effect for ecotype mixing and that it was not as small as in the artificial 

dataset A where the effect was not detectable (within versus between ecotype vari-

ability). However,  P. nigra  was a rather low variability dataset with only one or 

two weak over-performers (ecotypes c and e; boxplots in Fig. 2). Under maximum 

selection, the increase in median profit was therefore low, but still detectable. The 

dataset of F. sylvatica contained over-performers (ecotype a and e) and showed a 

clear increase of yields with increasing ecotype mixing.

For the lottery sampling, the medians for yield remained unchanged with an 

increasing  number  of  ecotypes.  Inter-quantile  distances  increased,  implying 

stronger  effects  with increasing  ecotype  richness.  The influence  of  under-  and 

over-performers was directly reflected in the quantile lines. Over-performers led 

to asymmetric patterns in the direction of high yield, under-performers in the dir-

ection of low yield (because the mixed distributions were skewed). The effect of 

statistical averaging causing the portfolio effect appeared in Fig. 1 and 2 by the 

comparison of the median of the lottery sampling for growing ecotypes separately, 
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Fig. 1: Artificial data sets. A) Low variance, B) variance increased by factor ten, C) low 

variance data set with one over-performer, D) with one over-performer and one under-

performer, E) with two over-performers and F) with two over-performers and one under 

performer on the right side, and on the left side the corresponding results of the simu-

lations. Lines represent the medians of the quantiles (0, 0.05, 0.25, 0.5, 0.75, 0.95, 1) 

of 5000 replicates grouped according to number of ecotypes included.
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i.e. single-ecotype stands, with the medians of the data boxplots. A change in the 

median performance of ecotype g between the datasets A and C only had a weak 

influence on the median of the simulated performance (Fig. 1). The results for the 

experimental data for F. sylvatica and P. sylvestris differed from the artificial data 

regarding the lower quantiles because they were truncated at zero. Contrary to the 

artificial data, lower quantiles were therefore close to zero and did not change 

with ecotype mixing.

For minimum selection, inverse patterns regarding under- and over-performers 

compared  to  the  maximum  selection  were  observed,  i.e.  medians  for  yield 

decrease with increasing ecotype richness. In the artificial datasets B and D (con-

taining under-performers), minimum selection resulted in a strong reduction of 

median yields (Fig. 1). Over-performers had almost no effect, only in dataset E 

with two strong over-performers. For the results of the experimental data the same 

was true as under lottery sampling, i.e. lower quantiles were close to zero and did 

not change.

In the introduction it was argued that optimal yield could be reached when the 

‘best’ ecotype is chosen (and grown without mixing). Therefore, the simulation 

results for single-ecotype stands with the highest median yield are also shown for 

each simulation (Fig. 1; ‘Best’). It appears that for maximum selection the optimal 
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Fig. 2: Data and results of the three selection methods for  P. nigra and  F. sylvatica. 

Lines represent the medians of the quantiles (0, 0.05, 0.25, 0.5, 0.75, 0.95, 1) of 5000 

replicates grouped according to number of ecotypes included. Additionally the same 

quantiles for the best performing ecotype are given.
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choice actually led to higher yield than mixed stands. Also for the experimental 

data choosing the best ecotype resulted in higher yield (Fig. 2; ‘Best’). This was 

also true for lottery sampling and minimum selection, where the difference was 

even larger.

Discussion

The present simulation study aids to understand the effects of self-thinning and 

statistical averaging (i.e. the portfolio effect) on expected yields applying ecotype 

mixing. We hypothesized that the interplay of these two processes linked by per-

formance might exempt the portfolio effect from its drawback of lower chance for 

high  profits  (Hopper  1999,  Boyce  et  al.  2002,  Childs  et  al.  2010)  while  the 

advantage of stabilization remains (Markowitz 1952). If this is the case, ecotype 

mixing constitutes an opportunity for the adaptation of forest stands to present cli-

mate change, above all to prevent possibly high yield losses. Although we only 

explore intra-species diversity in terms of ecotypes, these results also apply to the 

species level (i.e. mixing species instead of ecotypes).

In  the  present  study,  two  different  plantation  strategies  are  addressed  as 

opposed to betting on the apparently best ecotype. The first strategy of growing 

ecotypes in separate stands is directly related to the classical portfolio effect with 

its advantage of stabilization of products compared to betting on the assumed best 

ecotype under high uncertainty. In this strategy, single-ecotype stands can be con-

sidered as assets of a portfolio of stands. For the portfolio effect the expected yield 

of each single asset is compared to the expected yield of the bundle of assets. The 

expected yield of the portfolio  has  a  lower variability  than the expected yield 

when only one asset with unknown performance was chosen. However, the oppor-

tunity provided by the process of self-thinning does not apply for this planting 

strategy as self-thinning would only take away individuals of the same ecotype.

The second planting strategy is ecotype mixing. Only when ecotypes are actu-

ally mixed in the same stand do they compete, and the beneficial effect of self-

thinning can occur (individuals as assets, stand as portfolio). However, mixing of 

ecotypes results in mixed distributions. Assuming lottery sampling, expected yield 

in such stands is the same as the expected yield for the portfolio of single-ecotype 

stands. However, the variance of a mixed distribution is larger than the variances 

of the single distributions in case their means differ (Boes 1966).This is the reason 
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for the divergence of the quantile lines representing the probabilities to obtain a 

yield equal  or  lower than  that  value,  with increasing ecotype  richness  (Fig.  1 

and 2). The uncertainty of the median yield is therefore higher for the strategy of 

ecotype mixing than for a portfolio of single-ecotype stands. Thus, in case the 

reaction of ecotypes is not known, and under the assumption of lottery sampling, 

the  median  yield  is  not  stabilized  by  ecotype  mixing  as  compared  to  single-

ecotype stands (finding 1).

However, under the assumption that both, selection and yield are determined 

by performance, ecotype mixing leads to higher median yield than a portfolio of 

single-ecotype stands (maximum selection). This is due to self-thinning removing 

low performance individuals from the stands. By this, especially low quantiles are 

increased considerably as compared to lottery sampling and minimum selection. 

The  more  over-performers  are  among  the  ecotypes,  the  earlier  the  median 

increases (probability  larger than 0.5 that  over-performer is  in  the mixture).  If 

maximum selection is an appropriate model for the interplay of performance, self-

thinning and yield, ecotype mixing increases the chance for high yield but does 

not increase the risk of low yield despite an increase of within-stand variability. 

However, yield is not as high as it could be under the optimal choice of the best 

performing  ecotype.  The  portfolio  effect  is  thereby  not  entirely  but  largely 

exempted from its drawback of lower chances for high yields (finding 2).

Patterns for the experimental data are similar to the artificial datasets with one 

and two over-performers and show an increase of expected yields under ecotype 

mixing.  This  points  to  the  opportunity  that  the  intra-species  variability  for 

F. sylvatica and P. nigra have a structure, which results in a positive effect of eco-

type mixing (for low variability datasets ecotype mixing has no effect). The res-

ults for the experimental data differ from the artificial data because they have a 

lower boundary of growth (zero). Under-performers are therefore limited and the 

lower quantiles change less with ecotype mixing. The other patterns described 

above are found for the experimental data, especially for  F. sylvatica while the 

effects are rather small for  P. nigra. This is caused by the lack of strong over-

performers in the P. nigra dataset. Contrary to the data used in the present study, 

former studies have found high intra-specific differences on a genetic level not 

only for  F. sylvatica (Konnert 1995, Vornam et al.  2004) but also for  P. nigra 

(Aguinagalde et al. 1997, Varelides et al. 2001, Jagielska et al. 2007, Lucic et al. 
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2010). These findings imply that, particularly for species with large intra-specific 

differences  within  their  distribution  range,  ecotype  mixing  might  ensure  pro-

ductivity of stands under variable/unknown climatic conditions.

Opportunities and drawbacks

Our simulations suggest that increasing the number of ecotypes (or species) 

can stabilize yield for a given forest stand in accordance with the portfolio effect. 

In  addition,  self-thinning  based on performance increases  the  chance  for  high 

yield beyond the expectations from the portfolio effect (under the assumption of 

maximum selection), making forests a special case. Highest yield, however, can 

still be expected by the use of the best adapted ecotype. Even for maximum selec-

tion,  the  expected  median yield  is  still  lower than  the one  of  the best  single-

ecotype stand but much higher than in the classical case, i.e. a portfolio of single-

ecotype stands. One could argue that the local ecotype in combination with silvi-

cultural  experience comes closest  to  this  optimal  choice  under  stable  environ-

mental conditions. This view is supported by the multitude of studies showing 

superior performance of ecotypes at their  home sites (e.g. O’Neill et al.  2008, 

Reich and Oleksyn 2008, Bennie et al. 2010). With regard to climate change and 

the  uncertainty  of  future  growing  conditions,  however,  our  data  suggests  that 

increasing ecotype  richness  of  forest  stands  is  reasonable in  order  to  stabilize 

yield.

All of these considerations depend on the assumption that maximum selection 

is  a  realistic  model  for  the  interplay  between  performances,  self-thinning  and 

yield. Seedling growth during competition in the self-thinning phase might not 

adequately reflect the performance as adult trees. Nevertheless, we would at least 

not expect a negative correlation between growth at these different ontogenetic 

stages if environmental conditions remain similar for a tree life span (or rotation 

period).

Under temporally varying growing conditions, no or even negative correlations 

between growth during self-thinning and growth later on are hypothetically pos-

sible. If selection and self-thinning occur under well-watered conditions, highly 

drought-tolerant ecotypes cannot profit as strongly as less-drought tolerant eco-

types, they will be outcompeted and disappear from the stand. If conditions then 

become very dry, these lost ecotypes might, however, be the ones which would 
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grow best or, in the worst case, be the only ones which would survive. Such scen-

arios would tend towards minimum selection where ecotype mixing could even 

result  in  a  loss  of  yield.  Under  the  influence  of  climate  change,  self-thinning 

occurs along a climatic gradient and could possibly comprise of such effects. Nev-

ertheless, ecotype mixing allows for the postponement of the decision on which 

ecotype to plant to a latter and possible better informed point in time. Examples of 

such trade-offs between adaptations to different environmental stressors have been 

found (Hereford 2009), e.g. soft, broad leafs being beneficial against shading but 

disadvantageous against drought (cf. Niinemets and Valladares 2006, Hallik et al. 

2009).

Extreme climatic events represent another case where mortality can occur inde-

pendently of performance. Selection towards tolerant ecotypes will not occur prior 

to these events. Drought and heat-waves emerge as the main reasons for tree mor-

tality (Allen et al. 2010) and it remains unclear whether this mortality is related to 

performance.  Other  factors  that  can  influence  survival  during  self-thinning 

include, e.g., herbivory, diseases and sensitivity to pollution (Franklin et al. 1987, 

Dietze and Moorcroft 2011).

Until now, the introduction of species or ecotypes from warmer or drier regions 

is proposed to counter the negative impacts of rapid climate change in Europe 

(Bolte et  al.  2009, Rose et  al.  2009, Beierkuhnlein et  al.  2011, Kreyling et al. 

2011, Pedlar et al. 2011, Wortemann et al. 2011). General plasticity in terms of 

growth is assumed to be smaller for stress tolerant species and ecotypes (Grime 

1977, Valladares et al. 2005, Sánchez-Gómez et al. 2006, Aranda et al. 2010, but 

see  also  Gimeno et  al.  2008).  Particularly  for  P.  nigra, growth  differentiation 

among ecotypes is found to be more likely on productive sites, which will lower 

yield when good conditions exist (Varelides et al. 2001). For F. sylvatica, general 

differences in growth among ecotypes are reported as well (Jazbec et al. 2007). A 

concentration on a particular drought adapted species or ecotype might therefore 

lead to yield reductions and thereby limit the effectiveness of the introduction of 

new ecotypes for climate change mitigation (Richter et al. 2012). These considera-

tions emphasize the necessity to better understand the interplay between self-thin-

ning and performance, both early on and later in the ontogenetic development of 

single trees in order to make optimal use of ecotype mixing. With a better under-

standing, management measures regarding thinning such as low or crown thin-
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ning,  ecological  thinning  and  commercial  thinning  (Huuskonen  and  Hynynen 

2006, Bradford and Palik 2009, Tikkanen et al. 2012) could further improve the 

benefits of ecotype mixing.

The introduction of non-local ecotypes might further have important genetic 

consequences  which  are  likely  irreversible  (Frascaria-Lacoste  and  Fernández-

Manjarrés  2012).  The  introduction  of  non-local  genes  (Savolainen  and 

Kärkkäinen 1992) might lead to hybridization which might lead to a disruption of 

co-adapted  gene  complexes  through  recombination  and  might  result  in  out-

breeding depression (Hufford and Mazer 2003, Lefèvre 2004). The introduction of 

non-local  genotypes  might  additionally  result  in  the  demographic  or  genetic 

swamping  of  local  genotypes  and  consequently  the  loss  of  local  adaptations 

(Lesica and Allendorf 1999).  Hybridization,  genetic swamping or loss of local 

adaptations might have negative consequences for performance and intraspecific 

biodiversity, which are not only unwanted from the foresters viewpoint, but also 

where nature conservation is concerned (Hooper et al. 2005).

Model reconsideration & further research

The present simulation study constitutes a highly simplified representation of 

the processes which actually occur in forest stands. Particularly the representation 

of self-thinning appears to be critical for final conclusions about ecotype mixing. 

In the present study, we assume that yield is positively correlated with perform-

ance and that the correlation of self-thinning and performance can change from a 

positive one to a negative one. Maximum selection assumes a positive correlation 

between performance (determining competitiveness) and the survival of the self-

thinning phase, which relates to regular mortality (Keane et al. 2001, Bigler and 

Bugmann 2003), while lottery sampling assumes no correlation between perform-

ance during self-thinning and yield. Survival of self-thinning can even be negat-

ively correlated with performance when adaptation trade-offs are considered, rep-

resented by minimum selection. Aside from the model for self-thinning mechan-

isms, also the data contain some constraints. In the present study, the simulation of 

ecotype mixing is based on experimental data of one growing season, in which 

one-year old saplings were grown under long term mean conditions. This experi-

mental design provides a basis for the assessment of the opportunities provided by 

the  classical  portfolio  effect  together  with  ecotype  mixing  for  climate  change 

adaptation. It lacks, however, the option to test self-thinning and long-term per-
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formance under variable climatic conditions. In order to paint a more realistic pic-

ture, experimental data are required in which individuals are exposed to ‘normal’ 

conditions  for several  years  in  order  to  select  towards  these conditions  before 

being subjected to extreme climatic conditions (Jentsch and Beierkuhnlein 2010). 

Hereby, possible trade-offs for stability and plasticity as well as adaptation trade-

offs could appear.

These considerations show that the conclusions based on our abstract simula-

tion model cannot directly answer whether ecotype mixing will be successful at a 

particular site. Which of the described cases actually applies to a particular site, 

i.e.  the impact of climate time series (occurrence of climatic extremes such as 

drought) and disturbance regimes together with adaptation trade-offs could be fur-

ther  assessed  by  the  application  of  more  complex  models  together  with  site-

specific expert knowledge and empirical data. Data from experimental studies are 

particularly useful because experiments can be designed specifically (Luo et al. 

2011). Existing gap models and landscape models can be adapted to such specific 

research  questions  by  the  implementation  of  the  following involved processes 

(Pretzsch  et  al.  2007):  Climate  in  sufficiently  high  spatio-temporal  resolution 

(Lasch et al. 1998), disturbance regimes (Schumacher et al. 2006, Colombaroli et 

al. 2010) and mortality (Manusch et al. 2012).

Conclusions

The trade-off between stabilizing yield and low chances for high yield due to 

the portfolio effect does not apply for forestry. If selection during self-thinning is 

based on tree performance, increasing the number of assets (ecotype richness, spe-

cies richness) leads to better chances for high yields without impeding the well-

known reduced risk of strong losses. Increasing ecotype (or species) richness is 

therefore a promising management option for uncertain future environmental con-

ditions  for  which  best-adapted  ecotypes  or  species  cannot  be  determined.  If, 

however,  growth during self-thinning and growth afterwards are not  positively 

correlated,  e.g.  if  mortality  is  uncorrelated  with growth due  to  single  extreme 

events, this positive effect of mixing can be lost. A negative effect of increasing 

within-species richness appears unlikely, although genetic consequences such as 

outbreeding depressions, genetic swamping or loss of local adaptations need to be 

explored. A better understanding of the self-thinning process under increasingly 
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variable climate conditions is required to make optimal use of ecotype (or species) 

mixing in forest management.
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Supplement

Supplement 1: R-Code to create the artificial datasets.
### Create data
data<- vector("list", 9)
np <- 7   # Number of ecotypes
means <- rnorm(np, mean=0, sd=1)  # Mean performance of ecotypes
data[[1]] <- createData(means=means, sds=rep(2, np))
data[[2]] <- createData(means=means*10, sds=rep(2, np))
data[[3]] <- createData(means=means+c(0,0,0,0,0,0,+10), sds=rep(2, np), 
ni=100) 
data[[4]] <- createData(means=means+c(0,0,0,0,0,-10,+10), sds=rep(2, np), 
ni=100) 
data[[5]] <- createData(means=means+c(0,0,0,0,0,+10,+10), sds=rep(2, np), 
ni=100) 
data[[6]] <- createData(means=means+c(0,0,0,0,-10,+10,+10), sds=rep(2, 
np), ni=100) 
save(data, file="…/artifDat.RData")

### Plot data
abc<- paste(letters[1:9], ")", sep="")
windows(width=7, height=7)
par(mfrow=c(3,3))
for(i in 1:length(data)) boxplot(response~ prov, data=data[[i]], ylab="", 
xlab="Provenance", col="lightgrey", main=abc[i], ylim=c(-15, 17))
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Supplement 2: R-Code used for maximum and minimum selection and lottery 

sampling applied on the artificial data.
### Load data: provenances differ in their means, not in standard 
deviations
load(".../artifDat.RData")
##################################################################
### Variable values for SIMULATIONS
response <- "response" # Name of response column in dataset.
ns <- 5      # Number of individuals of same provenance which "compete" 
by func.
funcs <- c(max = function(x) max(x), lottery=function(x) sample(x, 1), 
min=function(x) min(x))
reps <- 5000
resultnames <- paste("Daten/", c("maximumSelection.RData", 
"lotterySampling.RData", "minimumSelection.RData"), sep="")

### SIMULATIONS: max, lottery and minimum.
for(j in 1:length(funcs)){
  result<- vector("list", length(data))  
  print(paste(Sys.time(), " Start Simulation with function ", 
names(funcs)[j],  
  ".",sep=""))
  for(i in 1:length(data)){ print(i) result[[i]] <- simulate(data[[i]], 
response=response, n=ns, func=funcs[[j]], replicates=reps) result[[i]]
$data <- i }

  Sys.time()
  result<- do.call(rbind, result)   
  save.image(resultnames[j])
}
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Towards a better understanding of forest disturbance 

interactions: Lessons from a strategic model
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Abstract

Forests are subjected to multiple disturbances shaping their structure and species composition. 

These disturbances, e.g. fire, bark beetles, windthrow and drought, interact with each other, ren-
dering  estimations  of  shifts  in  disturbance  regimes  due  to  environmental  changes  difficult. 

Assessing the character of interactions, i.e. whether interactions are positive or negative, is gener-
ally challenging and a common framework for  their  quantification remains missing. However, 

empirical studies often find that positive interactions predominate and even form closed feedback 
loops. Since systems containing such interactions are considered to be mostly unstable, the ques-

tion arises why and under which conditions forest persist.

Based on a concept  of disturbance interactions derived from empirical  studies  a  mathematical  

model is developed. It suggests the most parsimonious way to quantify interaction strength and 
shows that although there were exclusively positive interactions and self-feedbacks among disturb-

ances, a stable equilibrium might exist. At the same time the interaction model reveals that at least 
in this highly simplified model a threshold for interaction strengths can be specified that character -

izes the stability or instability of a given forest. Furthermore, disturbance interactions might cause  
only a minor part of overall disturbances regimes and alterations in climate are of much higher  

importance. The model clearly names the system components involved in disturbance interactions, 
i.e. disturbance history, physical features, direct interactions, and the indirect effect of amount of 

susceptible forest. It  enables quantitative study comparisons and a discussion about the overall 
importance of disturbance interactions.

Keywords: Climate change, system analysis, regime shift, tipping point, temperate forest
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Introduction

Disturbances  are  one  key  factor  influencing  forest  structure  and  dynamics. 

Dale et al. (2000) identify ‘fire, drought, introduced species, insect and pathogen 

outbreaks, hurricanes, wind storms and ice storms’ as the key forest disturbance 

agents.  These disturbance regimes are influenced by physical  and vegetational 

features such as climate and tree species composition. Forests are exposed to mul-

tiple interacting disturbances, and synergistic effects as well as mutual reinforce-

ment of disturbance regimes are important but difficult to predict (Turner 1989). 

Interactions between disturbances might be positive or negative and can contain 

one or more feedback loops. While the direct influence of climate on disturbances 

has been frequently assessed (Seidl et al. 2009, Lorz et al. 2010) the contribution 

of interactions to the total abundance of disturbances has not been conclusively 

quantified to date (Veblen et al. 1994, Bebi et al. 2003, Jactel et al. 2012). Never-

theless, recently an increasing number of studies on disturbances and also their 

interactions are conducted (Seidl et al. 2011). With the future climate expected to 

systematically alter  disturbance regimes (Dale et  al.  2001) an improved under-

standing of disturbance interactions is called for in order to evaluate and manage 

future risks (Ayres and Lombardero 2000).

To take a step forward in the understanding how disturbance interactions affect 

in particular temperate forests we suggest a concept of disturbance interactions 

that we believe is implicitly used in the planning and statistical analysis of empir-

ical studies but has not yet been explicitly outlined and studied. Based on this 

concept of disturbance interactions we develop a mathematical model. This model 

helps to assess theoretical consequences, particularly for forest persistence under 

multiple positive feedback loops, and facilitates quantitative comparisons between 

results of empirical studies.

Disturbance interactions

We first like to introduce into the topic of disturbance interactions and show 

that mostly positive interactions between disturbances have been found. A review 

of each disturbance and of their interactions within this article could not nearly 

satisfy the complexity and diversity of forests. We therefore relegate to already 

existing, comprehensive reviews on each interaction for elaborated descriptions 

(references are given below) and give only a simplified overview.
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With disturbance interaction we refer to a change of occurrence probability for 

one disturbance due to another. This has a different implication than the com-

pounde effect of several disturbances on an ecosystem. The compound effect of 

disturbances occurring in a short time span has in some cases been found to be 

stronger than just the sum of the effects of each single disturbance (Paine et al. 

1998). For example Kulakowski et al. (2013) found that the compound effect of 

fire  and  windthrow  on  a  Sub-alpine  forest  in  north-western  Colorado  could 

change the species dominance from conifers to  Populus tremuloides while each 

single disturbance does not have such high impact. The probability of conjoint 

occurrences of several disturbances increases when the probability for each single 

disturbance becomes higher, either due to climatic changes, land use changes, or 

also due to positive interactions. Thus changes of occurrence probability of dis-

turbances due to interactions and compound effects of co-occurring disturbances 

on an ecosystem are closely linked research topics and have to be considered 

together in evaluations of impacts of changed disturbance regimes on ecosystems.

The focus of this study lies on interactions including bark beetles. This biotic 

disturbance is particularly interesting in the face of climate change because their 

life history is highly sensitive to temperature (Logan et  al.  2003, Wermelinger 

2004, Jonsson et al. 2007), and because bark beetle outbreaks interact with fire, 

drought and windthrow. The multiple ways in which bark beetles interact with 

fire,  drought,  and  windthrow,  particularly  in  temperate  coniferous  forests,  are 

integrated by our conceptual framework that highlights two main feedback loops 

(Fig. 1). This framework constitutes the basis on which the mathematical model of 

disturbance interactions is developed.

Fire

Recent review papers on the basis of numerous empirical studies show that the 

interaction between bark beetles and fire is complex and two-sided (Parker et al. 

2006, Jenkins et al. 2008, Negron et al. 2008). Firstly, on small scale, fire creates 

suitable habitats by partial burned and therefore weakened trees. This results in a 

relaxation from intraspecific competition within bark beetle populations. In addi-

tion, Geiszler et al. (1980) and others observed special attraction mechanisms of 

bark beetles to partially burned trees in some cases. Thereby, populations can pro-

liferate and potentially become strong enough to attack healthy trees within the 

burned area and in the surrounding. In contrast, it has also been found that in some 
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cases fire advances defence of surviving trees by increasing resin flow (Knebel 

and  Wentworth  2007).  Secondly,  on  larger  time scales  like  several  years,  fire 

influences stand age structure in a way that inhibits population dynamics of bark 

beetles (pine: Dordel et al. 2008, Kulakowski et al. 2012; spruce: Veblen et al. 

1994, Bebi et al. 2003). Higher fire frequency decreases stand age and thereby 

decreases bark beetle risk because trees have to exceed a certain age before they 

can serve as suitable hosts for many bark beetles species (e.g. about 70 years for 

Ips typographus; Veblen et al. 1994). Thus the observed influence of fire on bark 

beetle  infestations depends on the considered time scale.  Assessing short  term 

interactions  resulted mostly  in  a  positive  effect,  while  studies  addressing long 

term interactions found a negative effect. It is thus of particular interest to distin-

guish between these mechanisms and to ask which effect outbalances.

Generalizations about the effects of bark beetle on fire characteristics are still 

unresolved (Hicke et al. 2012) but found (Geiszler et al. 1980, Bigler et al. 2005, 

Lynch et al. 2006, Parker et al. 2006). During and after bark beetle outbreaks dead 

and alive fuel accumulates due to injured or killed trees and falling branches. This 

potentially increases fire severity. However, the amount of fuel accumulation and 

fuel types depend on the time since bark beetle outbreak and can even change the 

interaction from positive to negative (Page and Jenkins 2007, Jenkins et al. 2008). 

Additionally it has to be taken into account that fire risk and severity not only 

depend on fuel availability but also on weather conditions, ignition frequency and 

further factors (Berg and Anderson 2006). This can diminish the importance of the 

positive feedback of bark beetles on the fire regime especially in regions with fre-

quent  ‘fire weather’, such as intense drought, high winds and lightning (Bessie 

and Johnson 1995).

Drought

Recent articles show that the influence of drought on bark beetles is mediated 

through defence mechanisms of  trees  (Rouault  et  al.  2006,  Fettig  et  al.  2007, 

Jactel et al. 2012). Low intensity drought stress can actually increase tree defence 

by lowering growth rates and shifting the use of photosynthates to the synthesis of 

defensive chemicals thus resulting in a negative feedback between mild drought 

and  bark  beetle  infestation  success.  In  contrast,  extended  drought  or  severe 

drought  stress  (which  usually  refers  to  drought  as  a  disturbance)  reduces  tree 

defence and increases the probability of bark beetle outbreaks due to depleted 
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carbon reserves (Christiansen et al.  1987, Berg et al.  2006, Jactel et al.  2012). 

Therefore, a positive feedback with bark beetle infestations can be assumed for 

drought stressed trees (Powers et al. 1999, Dobbertin et al. 2007, Hebertson and 

Jenkins 2008).

Windthrow

The third main forest disturbance interacting with bark beetles is windthrow 

(Kulakowski and Veblen 2003, Bouget and Duelli 2004, Gandhi et al. 2007). This 

interaction is mediated through habitat availability. Windthrown injured and killed 

trees provide suitable habitats for bark beetles because of low or lacking defence 

mechanisms (Okland and Bjornstad 2003, Hebertson and Jenkins 2007, Schroeder 

2007). Killed trees are suitable for bark beetles for about two years until decay has 

progressed too much (Schmid and Frye 1977). Injured or partially broken trees 

still have roots connected to the soil and might thus provide easily accessible hab-

itats  for  several  years.  Schroeder  (2007)  found  that  besides  a  release  from 

intraspecific competition, an escape from enemies on windthrow areas facilitates a 

proliferation of bark beetles. Other disturbances producing downed host material 

(such as avalanches, snow and ice damage) can contribute to the rapid increase of 

bark beetle populations in the same way (Hebertson and Jenkins 2007). Eriksson 

et al. (2005) additionally suggest that the effectiveness of colonizations of wind-

thrown trees depends on the population level  before the storm. Particularly in 

years with favourable climatic conditions which might differ across systems, such 

as winters with low hibernation mortality followed by warm spring temperatures, 

bark  beetles  can  proliferate  (e.g.  for  genus  Dendroctonus in  forests  of  North 

America; Coulson 1979). Healthy trees in the neighbourhood of a windthrow area 

can be infested due to high bark beetle attack intensity. This increases the probab-

ility of an outbreak.

Feedbacks

Since windthrow, drought and fire interact with bark beetles and additionally 

reinforce each other, a complex interaction system results and it is challenging to 

estimate how this system will respond to changes in environmental conditions. 

Within this disturbance interaction framework we identified two closed feedback 

loops (Fig. 1).
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The first possible feedback loop within temperate forests contains bark beetles, 

fire and drought. Drought does influence both, bark beetle outbreak risk and the 

probability of wildfires. Fuel properties and amount depend on the drought regime 

and as a generalization it can be assumed that more frequent and longer lasting 

phases  of  drought  enhance  the  probability  of  wildfires  (Cumming  2001, 

Reineking et al. 2010). However, the interaction between fire and drought is much 

more  specific  than  indicated.  In  particular  the  influence  of  different  drought 

regimes (respective frequency, time of occurrence and severity) on types of fire, 

like crown and ground fires, is mediated by the kind of fuel created and differs 

among forest types. Concurrently to the effect on fire, drought affects bark beetle 

infestation success by lowering tree defence. Bark beetle outbreaks can at least 

temporarily alter fuel load of forests and by this influence fire severity. Wildfires 

reduce bark beetle infestations in the long term indirectly by influencing stand age 

structure and increase bark beetle infestations directly in the short term by weak-

ening tree defence. The observed character of feedback – positive or negative – 

hence, depends on the focal time scale. This first feedback loop emphasizes the 

importance of the considered time scale and thereby of the medium of interaction.

The second feedback loop contains bark beetles, fire and windthrow. It acts 

similar to the first loop concerning the interactions of bark beetles and fire. Addi-

tionally, windthrow enhances fire through fuel creation and concurrently creates 

162

Fig. 1. Conceptual framework of the main disturbance agents and their interactions 

with a focus on bark beetles. Findings of empirical studies suggest that positive inter-

actions predominate.
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suitable habitat for bark beetles. A further interaction between fire and windthrow 

might be possible, especially for spruce forests. Fire-weakened spruces have been 

observed to  fall  in wind storms after  wildfires because their  shallow roots are 

damaged (Ryan and Amman 1994,  Gibson et  al.  1999).  On the  opposite,  fire 

reduces stand age and thereby reduces susceptibility to windthrow (Kulakowski 

and Veblen 2002). Additionally, the susceptibility to windthrow is known to be 

increased at stand edges (Mitchell 1995). Severe bark beetle outbreaks and fire 

occasional  create  clearings  which  could  function  as  contact  surface  for  wind 

storms. The relative, quantitative importance of these effects is not well studied 

yet and thus largely unknown. Therefore, these interactions are not considered fur-

ther within this study.

Concept of disturbance interactions

The basic concept underlying empirical studies is found to be that the current 

disturbance state of the forest is influenced by past conditions, by physical and 

vegetational features (e.g. climate, tree species) and additionally by interactions 

between disturbances. Few empirical studies actually quantify interactions, many 

only find significant correlations. Additionally, even the character of interaction, 

i.e. whether it is positive or negative, could not be established unambiguously, 

especially for bark beetles and fire (Knebel and Wentworth 2007, Hicke et  al. 

2012). Three main sources hindering an integration of results could be identified. 

Firstly, different measures for the disturbance impact (e.g. affected area, beetle 

number, number of killed trees;  Bebi et  al.  2003, Okland and Berryman 2004, 

Fettig et al. 2007) and also for the interaction strength (a parameter which charac-

terizes the change of a disturbance due to another one) were used (e.g. effect sizes, 

regression parameters: Bradley and Tueller 2001, Schroeder and Lindelow 2002, 

Okland and Berryman 2004, Lynch et al. 2006; importance of a variable in a clas-

sification tree: Kulakowski and Veblen 2007, Hebertson and Jenkins 2008; frac-

tion  of  affected  area:  Kulakowski  and Veblen  2006).  Secondly,  different  time 

scales ranging from years to decades were considered (Schroeder and Lindelow 

2002, Bigler et al. 2005). Direct interactions such as impact of drought or fire on 

tree defence were thereby conceptually not distinguished from the indirect effect 

of changes in susceptible forest (e.g. bark beetles infest only older stands) on the 

amount of newly disturbed forest.  Thirdly,  data scarcity  and shortness of time 

series limit parameter estimation of statistical models as much as process-based 
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models  (Okland  and  Berryman  2004).  This  diversity  in  methodological 

approaches, naturally emerging due to diverging research interests, funding con-

strains and possibly a missing common framework, prevented a quantitative com-

parison of results of disturbance interaction studies as well as the practicability of 

predictions. However, both, comparison of results among studies and the practic-

ability of predictions are basic principles of science. Furthermore, it prevented to 

identify important interactions regarding management decisions.

Nevertheless,  findings  of  positive  interactions  clearly  predominate  (Fig.  1). 

Mutual positive feedback is a self-enhancing process in comparison to the self-

controlling property of negative feedback. In systems dominated by positive feed-

backs we should expect  very  large effects  building  up from very  small  initial 

causes. When positive feedback loops dominate we will usually observe unstable 

behaviour (cf. Berryman and Kindlmann 2008 p.11ff). On the other hand, neg-

ative feedback loops will tend to control. On a conceptual level this raises the 

question whether and why forests persist with all interactions being positive. Fur-

thermore, there might exist a tipping point (parameter threshold) for disturbance 

abundance and/or interaction strength for which being passed the ecosystem will 

change dramatically  in  taxonomic  composition,  structure,  ecological  functions, 

and process rates (cf. Folke et al. 2004 on regime shifts in ecosystems). Paine et 

al. (1998) show a schematic representation of the possible effects of co-occurring 

disturbances on ecosystems which will happen more often when their individual 

frequency increases, partly caused by positive interactions: Recovery after mul-

tiple disturbances or a long-term alteration of the system. As one example they 

describe possible changes of boreal forests subjected to the compound effect of 

wildfires, fragmentation, and logging. Especially for tropical rain forests a tipping 

point  due  to  disturbances  and  their  interactions  is  suggested  and  assessed  in 

numerous studies (Laurance and Williamson 2001, Nobre and de Borma 2009).

Study aims

To improve our understanding of forest disturbance interactions we develop a 

mathematical model that represents the concept of disturbance interactions found 

in literature. Contrary to earlier studies profoundly examining the functioning of 

disturbance interactions, one strength of this mathematical approach is to allow 

for a general perspective (cf. Grimm 1994). Reduced complexity indeed reduces 

precision of predictions (Levins 1966) but can help to understand which processes 
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produce at least some of the empirically observed patterns. Application of dif-

ferent approaches on the same topic (profound research together with a bird´s eye 

view) and their consolidated interpretation strengthens the reliability of conclu-

sions.

In this study we aim at clearly naming the components of the system ‘disturb-

ance regime’ to enable a discussion about their definition and importance. Fur-

thermore, the model illustrates one possible way to define and quantify ‘interac-

tion  strength’ facilitating  a  quantitative  consolidation  of  results  of  different 

studies. By means of this model we assess the theoretical consequences of the 

concept of disturbance interactions for forest persistence under increased disturb-

ance rates and interaction strength (Fig. 1). We ask why and under which condi-

tions forests might persist like they are despite all interactions being positive. We 

show that even assuming that there are exclusively positive interactions and self-

feedbacks a  stable equilibrium exists  following a condition of stability.  At the 

same time the interaction model reveals that a threshold of the cumulative interac-

tion strengths can be specified characterizing the stability or instability of a given 

ecosystem (e.g. persistence or collapse) regarding the disturbance regime.

The  established  interaction  model  is  a  non-linear  discrete-time  model  con-

taining parameters for the basic susceptibility of the forest  to each disturbance 

(physical and vegetational features) and one parameter for each direct interaction. 

Thereby the abundance of a disturbance without considering interactions and the 

emerging disturbance regime including interactions  are  conceptually  separated. 

Susceptible area which captures the indirect negative interaction between disturb-

ances due to stand age (or hight in the case of windthrow) is integrated. We do not 

decide for more complexity because we believe that already in this very simplified 

model plenty phenomena require understanding. We consider our approach as a 

point of departure for further model development and discussion on such theoret-

ical approach to assess disturbance interactions.

Methods

Disturbance interaction model

The interaction model is based on an assumption of many empirical studies, 

namely that the current disturbance state of the forest is influenced by past condi-
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tions, by physical and vegetational features (e.g. climate, tree species) and addi-

tionally by interactions between disturbances. Within the model only disturbance 

interactions are explicitly taken into account while physical and vegetational fea-

tures are represented only generally by a constant. Thus, only the abundance of a 

disturbance  ‘without’ considering one-way and two-way (mutual) interactions is 

integrated. The model outcome is the emerging disturbance regime including the 

effect of interactions. For an exemplary ecosystem with the four disturbances fire 

(F), bark beetles (B), windthrow (W) and drought (D) and the assumption of dis-

crete time the concept can be generally formulated as follows:

F t+ 1= f 1(F t , B t ,W t , Dt , S t)

B t+ 1= f 2(F t , Bt ,W t , D t , S t)

W t+ 1= f 3(F t , Bt ,W t ,D t , S t)

Dt+ 1= f 4(F t , Bt ,W t ,D t , S t)

 Eq. 1,

where  f1,  f2,  f3 and  f4 are linear functions relating the past disturbances to the 

current state and include the physical features (Eq. 1). Ft ,  Bt ,  Wt and Dt are the 

affected fractions of the total area in m2/m2 at time t. St denotes the fraction of the 

total area which can be affected by a disturbance in a particular time step, i.e. the 

fraction of insusceptible forest Gt , e.g regrowing forest (Eq. 2).

S t=1−G t  Eq. 2

By  including  susceptible  area  it  is  possible  to  separate  direct  interactions 

between disturbances (such as host material for bark beetles, alive/dead fuel load 

for wildfires) from the indirect effect of stand structure influencing the amount of 

susceptible forest (the less susceptible forest the less disturbances occur). Insus-

ceptible area Gt is updated in each time step as it depends on the disturbance his-

tory. It increases by newly disturbed area and is diminished by regrown forest area 

(Eq. 3).

Gt=G t−1⋅(1−
1
τ )+ Σ Rt−1

 Eq. 3

Gt: Insusceptible forest.

τ: Recovery time. Time during which a regenerating forest is insusceptible for disturbances.

Rt: Newly disturbed area. Area size for each time step.

As time step we select  ‘one year’, because disturbances in temperate ecosys-

tems often occur preferentially in particular seasons. In temperate regions bark 

beetles (e.g. Ips typographus) proliferate from spring to autumn, windthrow typic-
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ally occurs in autumn, wildfires and drought usually in the hot and dry summer 

period. In order to simulate and analyse this model, functions relating past disturb-

ances  to  the  current  state  are  specified.  We  follow  Schroeder  and  (Lindelow 

2002), who employed linear functions of type y=a+ b⋅x in a regression. The 

intercept a can be interpreted as an ecosystem’s inherent susceptibility to the dis-

turbance caused by unobserved factors while slope b of the regression line repres-

ents the incidence of the disturbance due to another, e.g. the interaction strength. 

Using  this  parsimonious  approach  the  model  for  four  interacting  disturbance 

regimes can be formulated, in matrix notation, as follows (Eq. 4):

Rt+1=(c+ M⋅Rt)⋅S t

(
F t+ 1

B t+ 1

W t+ 1

D t+ 1
)=((

cF

c B

cW

cD
)+ (

mFF mBF mWF mDF

mFB mBB mWB mDB

mFW mBW mWW mDW

mFD mBD mWD mDD
)⋅(

F t

B t

W t

D t
) )⋅S t

 Eq. 4.

Rt: Disturbance regime at time t

St: Susceptible area at time t

c: Base value. Disturbance regime due to physical features before accounting for interactions.

M: Interaction matrix

For definition of the other parameters refer to Tab. 1.

Rt is the affected proportion of the total susceptible area at time t, and c (cF, cB, 

cW, cD) are the ecosystem inherent susceptibilities to each disturbance due to phys-

ical features before accounting for interactions (Tab. 1). The parameters in matrix 

M (mFF, mBF, mBB etc.) quantify the interaction, i.e. the increase or decrease of the 

incidence of one disturbance due to another. To give an example, a value mBF = 1 

means that for each bark beetle disturbed forest unit in the previous time step the 

same amount would be added to the base value of fire cF.

Variables and parameter values are constrained by their definitions:

0≤F , B ,W ,D ,G ,S , c , cF , cB , cW , cD≤1
F+ B+ W + D+ G+ S≤1

.

As a special case of the model recovery time is set to one, resulting in St being 

constantly  1.  This  assumption  yields  a  linear,  affine,  discrete  time  model.  In 

matrix  notation,  a  model  with  the  four  main  forest  disturbances  (fire  F,  bark 

beetles B, windthrow W, drought D, Tab. 1) is presented in Eq. 5
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Rt+ 1=(c+ M⋅Rt)

(
F t+ 1

B t+ 1

W t+ 1

D t+ 1
)=(

c F

cB

cW

c D
)+ (

mFF mBF mWF mDF

mFB mBB mWB mDB

mFW mBW mWW mDW

mFD mBD mWD mDD
)⋅(

F t

Bt

W t

Dt
)  Eq. 5,

where all symbols retain the meaning as in Eq. 4 and with the following parameter 

constrains:

0≤F , B ,W ,D ,c , c F , cB , cW , cD≤1
F+ B+ W + D≤1

.

Model analysis

An important advantage of the model formulation as a linear, affine, discrete-

time model is that standard techniques for its analysis are available (Otto and Day 

2007, Maxima 2011). The equilibria are calculated by solving the linear equation 

system for Rt+1 = Rt (Eq. 5). Stability of the equilibrium is analysed by means of 

eigenvalues and eigenvectors of matrix M. For the real part of the leading eigen-

value ranging between -1 and 1 an equilibrium is stable. From this condition para-

meter ranges for a tipping point can be calculated for which being passed the 

forest collapses. If an equilibrium exists the system can approach its equilibrium 

smoothly or it can spiral towards it. When the leading eigenvalue has a complex 

part, the system will spiral towards its equilibrium (or to infinity for the unstable 

case).

The generality of the results derived with the linear model are supported using 

the  augmented  interaction  model  considering  susceptible  area  depending  on 

regeneration time (Eq. 2-4; Supplement 2).

Case studies

The interaction model is applied in four case studies with increasing degree of 

complexity. They constitute special cases of the general model (Eq. 5). Technic-

ally the most simple case study contains only one disturbance regime and no self-

feedback:  W t+ 1=cW . This trivial case can be augmented by a term for self-

feedback:  W t+ 1=cW+ mWW⋅W t .  However,  our  study  addresses  disturbance 

interactions. Therefore, as first case study the most simple model for a disturbance 
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regime  including  a  one-way  interaction  but  no  self-feedback  is  formulated.  It 

describes  the  influence  of  windthrow  on  bark  beetles  like  in  the  study  of 

Schroeder and Lindelow (2002). This case study is valid for all systems consisting 

of two disturbances with a one-way interaction, thus one disturbance influencing 

the other but not the other way around (drought/fire, drought/bark beetle, wind-

throw/fire, windthrow/bark beetle).

Case study 1: ( B t+ 1

W t+ 1
)=( cB

cW
)+ (0 mWB

0 0 )⋅( Bt

W t
) Eq. 6

For the second case study the most simple model formula for the disturbance 

regime of fire and bark beetles is used. This model contains a mutual interaction 

and thereby a closed feedback loop. The self-feedback terms are again set to zero.

Case study 2: ( F t+ 1

Bt+1
)=( c F

cB
)+ ( 0 mBF

mFB 0 )⋅( F t

B t
) Eq. 7

Study 3 assesses the influence of additionally considering self-feedbacks. This 

results in the following model:

Case study 3: ( F t+ 1

Bt+1
)=( c F

cB
)+ (mFF mBF

mFB mBB
)⋅( F t

B t
) Eq. 8.

The fourth study aims to model the concept of disturbance interactions derived 

from  literature  including  the  disturbances  bark  beetles,  fire,  windthrow  and 

drought (Fig. 1, Eq. 9).

Case study 4: (
F t+ 1

B t+ 1

W t+ 1

D t+ 1
)=(

c F

cB

cW

c D
)+ (

mFF mBF mWF mDF

mFB mBB mWB mDB

0 0 0 0
0 0 0 0

)⋅(
F t

B t

W t

Dt
) Eq. 9

Estimates for the parameters, aiming at representing a mixed temperate forest 

(e.g. spruce or pine forests) are used to investigate the influence of different para-

meter values. In practice parameter values certainly differ among forests. Beyond 

that, the main disturbances could not only involve fire, bark beetles, windthrow or 

drought but others such as avalanches or inundations. There is no study quanti-

fying all parameter values for one specific forest, thus we obtain parameter values 

169



Manuscript 5: Disturbance interactions

M and  c for an exemplary, hypothetical temperate forest from several empirical 

studies (for references see Tab. 1). For interaction parameter values the linear rela-

tion between disturbances based on given data are calculated or values directly 

given are taken (e.g. Lynch et al. 2006 for an increase in fire risk due to repeated 

mountain pine beetle infestations). A recent meta-analysis of Jactel et al. (2012) is 

the  most  comprehensive  study we  find.  While  they  report  a  mean  interaction 

strength of 0.23 for drought and bark beetles, we choose the more extreme value 

1.2 as reported by Dobbertin et al. (2007). This value still lies within the confid-

ence limits calculated by Jactel et al. (2012). In order to identify critical values of 

interaction strength which determine stability we do a sensitivity analysis for mFB 

and mBF.

Base values c of disturbances (disturbance regime without interactions) cannot 

be observed and measured directly. They can only be calculated for example as 

the intercept, i.e. an extrapolation of a linear regression (assuming constant inter-

action strength). In any case, the analytical analysis of our model reveals that base 

values do not influence the general model behaviour but only the sum of disturbed 

area. We therefore decide for example values which are similar to those in empir-

ical studies (cf. Splechtna and Gratzer 2005) and seem suitable to describe a tem-

perate  forest.  Additionally  the  base  values  are  increased  systemically  in  ten 

equidistant  steps to  a  maximum value in  order  to  test  for  sensitivity  (Tab.  1). 

Thereby, we aim at exemplary assessing possible changes in disturbance regimes 

due to climate change and further show the possibility of contra-intuitive system 

behaviour.

Case studies 1-4 are supplemented by simulations with the model accounting 

for forest regeneration, thus with τ  > 1 (R-Code in Supplement 2; results shown 

only for case study 4). Thereby, the indirect negative effect of stand structure on 

disturbance  abundance  is  represented.  Simulations  are  conducted  in  2.15.2  (R 

Development Core Team 2012) for both the linear and non-linear model (R-Code 

in Supplements 1 and 2).
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Tab. 1. Parameter descriptions and estimates used in case study 4.

Symbol Description Value 
current/max

References

Fire F

cF Fire importance before interaction 0.005/0.01 In temperate forests fires have low impact in com-
parison to windthrow and bark beetles.

mFF Self-feedback of fire. -0.10 Consumption of fuels within the  stand.

mBF Influence of bark beetles on fire 0.10 Lynch et al. (2006): 0.11

mWF Influence of windthrow on fire 0.05 Since windthrow acts similar to bark beetles (e.g. 
creation of fuels) we chose a value in the same 
range as for bark beetles.

mDF Influence of drought on fire 0.50 We assume that drought stronger influences fire 
than bark beetles. Main problem is the definition 
of drought.

Bark beetle B

cB Bark beetle importance before interaction 0.01/0.02 Fettig et al. (2006): 0.00 to 0.03
Dobbertin et al. (2007): 0.10
Bradley and Tueller (2001): 0.01

mFB Influence of fire on bark beetles 0.25 Bradley and Tueller (2001): 0.25

mBB Self-feedback of bark beetles 0.10 High population density leads to higher attack 
densities in the following year. 

mWB Influence of windthrow on bark beetles 0.10 Schroeder and Lindelow (2002): 0.40
Eriksson et al. (2006): ‘low’
Kulakowski and Veblen (2003): 0.00

mDB Influence of drought on bark beetles 1.20 Dobbertin et al. (2007): 1.2
Jactel et al. (2012): 0.29

Windthrow W

cW Windthrow importance before interaction 0.05/0.07 Splechtna and Gratzer (2005)

mFW Influence of fire on windthrow 0.00
Windthrow is mainly driven by  climate, e.g. 

stormsmBW Influence of bark beetles on windthrow 0.00

mWW Self-feedback of windthrow 0.00

mt Influence of drought on windthrow 0.00

Drought D

cD Drought importance before interaction 0.02/0.04

mFD Influence of fire on drought 0.00
Drought is mainly driven by climate and soil pro-

perties.mBD Influence of bark beetles on drought 0.00

mWD Influence of windthrow on drought 0.00

mDD Self-feedback of drought 0.00
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Results

Case study 1: One-way interaction

The equilibrium of the simplest model comprising the one-sided interaction for 

bark beetles and windthrow (Eq. 6) is  reached when  W t+ 1=W t  and Bt+ 1=Bt . 

The values of the disturbance fractions at equilibrium R* are given by:

B*
=cB+ mWB⋅cW

W *
=cW

 Eq. 10.

As long as these values are within the range of definition a stable equilibrium 

exists (eigenvalue of matrix M = 0).

Case study 2: Two-way interaction

The equilibrium of the simplest model comprising the mutual interactions for 

bark  beetles  and  fire  (Eq.  7)  can  also  be  calculated  by  solving 

F t+ 1=F t  and Bt+ 1=Bt  . The values of the disturbance fractions at equilibrium 

R* are given by:

F *
=

cF+ mBF⋅cB

1−mBF⋅mFB

B*
=

cB+ mFB⋅cF

1−mFB⋅mBF

 Eq. 11.

To analyse stability  of  the  equilibrium eigenvalues  and eigenvectors  of  the 

interaction matrix M (Eq. 7) are calculated. Local stability analysis shows that an 

equilibrium exists  for  −1< mBF⋅mFB< 1 .  The  system spirals  for  mBF⋅mFB< 0  

towards the equilibrium in case an equilibrium exists,  or to  infinity,  when the 

equilibrium condition is not fulfilled.

A time series with different starting conditions is calculated to illustrate the 

model behaviour (Fig. S1 and S2). Depending on the system state, the importance 

of each disturbance increased or decreased approaching the equilibrium.
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Case study 3: Two-way interaction considering self-feedbacks

More complexity was added to the model by considering self-feedbacks of dis-

turbances (Eq. 8). The equilibrium state R* of fire and bark beetles is given by

F *
=

cF⋅(1−mBB)+ mBF⋅cB

mBB⋅mFF−mFF−mFB⋅mFB−mBB+ 1

B*
=

cB⋅(1−mFF )+ mFB⋅c F

mBB⋅mFF−mFF−mFB⋅mBF−mBB+ 1

 Eq. 12.

Changes in the base values (cF,  cB) are directly reflected in the equilibrium of 

each disturbance. In addition, the equilibrium changes due to the self-feedback of 

the other disturbance, respectively. Adding more disturbances with self-feedbacks 

results in a further product of the base value for each self-feedback combination.

For this system an equilibrium exists when the following condition, similar to 

the model of case study 2 but modified by the self-feedbacks, is fulfilled:

mFF+ mBB+ mFF⋅mBB−1< mBF⋅mFB< mFF + mBB+ mFF⋅mBB+ 1  Eq. 13

The system spirals for  mBF⋅mFB<
−(mFF−mBB)

2

4
 (Eq. 14), thus for positive 

interactions we generally do not expect spiralling. Spiralling exclusively occurs 

when the interaction parameters have different signs (Fig. S3).

Case study 4: Conceptual framework

Finally, the conceptual framework derived from literature can be formulated 

(Eq. 9, Fig. 1). The equilibrium R* of the interaction system is calculated as 

F *
=

(1−mBB)⋅c F−mBF⋅(−mWB⋅cW−mDB⋅cD−cB)−cW⋅mWF⋅(1−mBB)−(1−mBB)⋅mDF⋅cD

mBB⋅mFF−mFF−mFB⋅mBF−mBB+ 1

B*
=

(1−mFF)⋅cB−mFB⋅(−mWF⋅cW −mDF⋅cD−c F)−cW⋅mWB⋅(1−mFF )−(1−mFF)⋅mDB⋅cD

mBB⋅mFF−mFF−mFB⋅mBF−mBB+ 1

W *
=cW

D*
=cD

 Eq.15.

The conditions for stability and spiralling are the same as in case study 3 (Eq. 

13, 14) because the lower half of the interaction matrix contains only zeros. The 

existence of an equilibrium is not affected by changes in base values c, it can only 

be influenced by the interaction matrix M. This means a potential tipping point for 
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forest collapse only depends on interaction strength, not on base values. With the 

parameter estimates of Tab. 1, an equilibrium exists and small changes in the para-

meters do not change this. We can identify critical values of interaction strength 

by a systematic variation of mBF and mFB (Fig. 2). The higher one of the interaction 

parameters the narrower is the possible range for the other one maintaining sta-

bility.  With  the  given  values  of  the  exemplary  temperate  forest  disturbances 

approach the equilibrium smoothly (Eq. 14). Spiralling can only occur if the inter-

action parameters have different signs (Fig. S3).

The disturbance regime Rt without and with interactions differs due to positive 

interactions. For those disturbances not influenced by others, e.g. windthrow and 

drought,  there  is  no  difference  whereas  the  values  for  bark  beetles  and  fire 

increase due to positive interactions (Fig. 3). This leads to a rank reversal com-

pared to the base values. The total disturbed forest at equilibrium for the ‘current’ 

values given in Tab. 1 increases from 8.5% without to 15.3% with the effect of 

interactions. 

As a further experiment the base values of the disturbances are increased sys-

tematically having in mind the impact of climate change (Fig. 3). At the maximum 

for all disturbances their base values sum up to 14% (Tab. 1) and the fraction of 

disturbed area increase to 27% due to interactions. The results demonstrate that 

the increase of each disturbance is amplified due to positive interactions but forest 

still persists. Especially forest are disturbed by bark beetles increases considerably 

due to their positive interactions leading to a rank reversal compared to the base 

values c.
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Fig. 2: Visualization of the stability condition (Eq. 13) for case study 4 (conceptual 

framework) with varying mFB and mBF for constant self-feedbacks given in Tab. 1. For 

both interaction parameters smaller than one an equilibrium generally exists.



Manuscript 5: Disturbance interactions

175

Fig. 3:Disturbance regimes for increasing base values for case study 4 (conceptual 

framework): Base values were increased systemically in ten equidistant steps from the 

minimum (=‘current’) to a maximum value (Tab. 1) for both, the linear and the non-

linear model. Grey lines in the figure for the linear model constitute the base value 

combinations 1 to 10. Disturbance regimes were calculated with and without interac-

tions to show the importance of their consideration and quantification for estimations 

of future disturbance regimes.

Fig. 4: Disturbance regimes and resulting fraction of forest area considering recovery 

time. The fraction of mature forest (older than recovery time τ) decreases while young 

stands  become more  frequent.  Fraction  of  new disturbed  area  becomes less  with 

increasing recovery time.
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Non-linear model considering regeneration time

Simulations with the non-linear model considering regeneration time result in 

the same general behaviour regarding equilibria and the condition for the exist-

ence of an equilibrium, thus the tipping point. However, mature forest naturally 

decreases with increasing recovery time τ while young stands, i.e. younger than τ 

increase. Subsequently, the fraction of newly disturbed area also decreases with 

increasing  recovery  time  to  more  realistic  values  (Fig.  4).  For  the  parameter 

values chosen in case study 4 (Tab. 1) and a recovery time of τ = 50 time steps, 

18% of the total area remains mature forest (= forest older than 50 time steps). 

The rest of the forest is younger than 50 time steps or newly affected by disturb-

ance. At each time step 1.7% of the total forest is newly affected by one of the 

four disturbances. Interactions cause a share of 1.9% of these disturbances.

In the  scenario  with  maximal  base  values  only  12% mature  forest  remains 

while each time step 1.8% of the forest is disturbed. Interactions cause a share of 

0.9% of these disturbances. In the model considering recovery time the increase of 

total disturbances in each time step in the climate change scenario is less than in 

the linear model due to the effect of susceptible area (Fig. 3).

Besides of the total amount of disturbances Rt the model outcome differs also 

in the resulting order of disturbance abundances. Whereas in the model without 

recovery  time  the  abundance  increases  from drought,  fire,  windthrow to  bark 

beetles, here the abundance increases from fire, bark beetles, drought to wind-

throw. Remarkably, windthrow decreases despite an increasing base value. This is 

caused by the  interplay  of  direct  interactions  (M)  and the  indirect  effect  of  a 

reduction of susceptible forest (S, τ).

Discussion

Currently, the results of disturbance interaction studies are difficult to consol-

idate  and  quantitative  comparisons  are  prevented  because  of  differences  in 

observed parameters, considered time scales and statistics between existing empir-

ical  studies.  However,  such  quantification  would  mark  substantial  progress 

towards  evaluating  the  ecological  and  economic  relevance  of  interactions  for 

example in climate change studies. As one step towards this goal we formulate a 

concept of disturbance interactions and define its components. At the example of 

temperate forests and with the help of a mathematical model the possible con-
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sequences of this concept are assessed. The main findings of this study are the fol-

lowing:

1. Temperate forests persist even when all disturbance interactions are pos-

itive. When interaction parameters and self-feedbacks are less than one the 

equilibrium condition is  fulfilled for  most  cases,  even with exclusively 

positive interactions. There is evidence from empirical studies, that these 

parameter ranges apply to temperate forests despite our parameter estim-

ates only represent one possible scenario. At the same time the model illus-

trates that a tipping point for interaction strength necessarily exists – under 

the assumed model structure.  This tipping-point exclusively depends on 

the interaction strength and not on base values. This is particularly inter-

esting in case the interaction strength is not constant as assumed within 

this  study  but  changes  positively  with  disturbance  abundance  (plug  in 

functions depending on  Rt or  St in matrix  M instead of constants).  The 

finding that  interaction strength determines a  possible  tipping point  for 

forest stability complements the question if forests could suffer a regime 

shift due to an increase of disturbance rates due to changes in physical fea-

tures like climate.

2. The conjoint effect of direct and indirect interactions can lead to counter-

intuitive changes in disturbance regimes. The non-linear model incorpor-

ating forest regeneration time helps to clarify the difference between direct 

interactions between disturbances due to e.g. increased host material for 

bark beetles, and the naturally negative interaction due to the amount of 

susceptible  forest.  The  decrease  of  windthrow  despite  all  base  values 

increased, also the one for windthrow, can be attributed to the effect of 

reduction of susceptible forest. In this example setting the strong increase 

of base values of bark beetles and fire (cB, cF) in conjunction with positive 

mutual feedbacks (mBF, mFB) leads to an increase of these disturbances and 

a  reduction of susceptible  forest  (although assuming negative self-feed-

back of fire  mFF).  In contrast,  windthrow decreases relative to the total 

forest because the increase in its base value cW cannot compensate for the 

effect of reduced susceptible area. Thereby, the effect of the negative inter-

action mediated by susceptible area even causes a rank reversal in disturb-

ance regimes compared to the model without susceptible area. This shows 

177



Manuscript 5: Disturbance interactions

the importance of an explicit definition of the susceptible forest area rel-

ative to the total area particularly when comparing studies, e.g. at different 

sites  or  for  time  periods.  This  further  motivates  research  on  stand age 

dependence of susceptibility to each disturbance to be able to quantify the 

susceptible area.

3. The share of disturbances caused by interactions (and not by their base 

values) is rather low and depends not only on interaction strength but also 

on recovery time. In the given example a share of 1.9% of disturbances 

can be attributed to disturbance interactions and not to the physical and 

vegetational causes (climate, forest structure). This share becomes lower 

when longer recovery times are assumed. In the scenario for increasing 

disturbance base values (‘climate change’) the disturbance share caused by 

interaction even decreases.  According to  our parameter  estimations and 

concept of disturbance interactions, they have low importance compared to 

changes of disturbances due other factors. However, in the model no feed-

back  is  included  that  leads  to  a  change  of  interaction  strength  with 

increasing disturbances.

Besides the three main findings this study provides a definition of ‘interaction 

strength’ and thereby a way of quantification. Quantification is needed to enable 

comparisons between findings of different empirical as well as simulation studies 

and  to  make  projections  for  changed  conditions.  Interaction  strength  is  here 

defined by a parameter which is identical with the ‘slope’-coefficient of a linear 

regression (like in Schroeder and Lindelow 2002). We choose a linear interaction 

characterized by one single parameter because the principle of parsimony seems 

to be reasonable in the face of little knowledge about the true character of disturb-

ance interactions (e.g. about possible shapes of a more complex function). Addi-

tionally, a linear regression has the advantage that it can be calculated with very 

few data, in the most extreme case with as few as two data points. Another finding 

relevant under the aspect of quantification is that interactions observed at a partic-

ular time step might depend on the system state. Because disturbances could spiral 

towards the equilibrium if one interaction parameter for a mutual interaction is 

negative the observed interaction between to time steps could be negative. Finding 

interaction strength and equilibrium of a real disturbance regime (e.g. the long 

term mean of disturbed area) can therefore be complicated, specifically in short 
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time series, and it should be discussed in the analysis and interpretation of empir-

ical data.

The above described results are based on several model assumptions entailing 

deficiencies which is unavoidable in ecological modelling. In the following we 

discuss the main shortcomings of our disturbance interaction model and at  the 

same time urge future research opportunities.

• Most apparent is the linearity of interactions (parameters in  M) causing 

constant interaction strengths over all disturbance rates. To represent dis-

turbances that interact non-linearly (Jactel et al. 2012) functions could be 

used instead of the static interaction matrix  M (Eq. 4). This would allow 

for the influence of one disturbance on another to increase or diminish 

with increasing disturbance intensity.  However,  this  would substantially 

complicate the parametrization of the model for a real ecosystem.

• Susceptible forest area could be calculated for each disturbance separately 

accounting for differences in susceptibility to each disturbance during suc-

cessional  stages.  Furthermore,  regeneration  time  differs  among  forest 

types and disturbances influencing the amount of susceptible forest by the 

rate of regrowth.

• Feedback  on  the  disturbance  base  values  is  not  considered.  While  the 

effect of physical features is tested in the  ‘climate change scenario’ by 

increased but constant base values, an interaction with the vegetation was 

not considered. An example for changes in vegetation and feedback on the 

disturbance regime are Mediterranean fire adapted and fire facilitating pine 

forests (Fernandes and Rigolot 2007).

• The interaction model does not consider different duration of disturbance 

events and contact times (Sanchez et al. 1995). All disturbances are mod-

elled at the same time scale. As time step (of disturbance events, contact 

times and regeneration) one year is selected although it is known that the 

duration  differs  among  disturbances.  Windthrow  events  for  example 

happen almost instantaneously, while bark beetle outbreaks can last sev-

eral years. Another reasonable choice of time step would be the contact 

time,  thus  the  time  which  the  disturbance  event  continues  to  have  an 
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effect. Since contact time differs between disturbances this leads to a more 

complex model which we decide to avoid for the benefit of comprehensib-

ility.

• The interaction model is not spatially explicit. Thereby, we subsequently 

assume, like usually in spatially non-explicit models, that all disturbances 

influence each other over the entire landscape (well-mixed system). Actu-

ally, this is not exact; the influence rather declines with distance. Consider-

ation  of  a  decline  in  the  influence  of  one  disturbance  to  another  with 

increasing distance attenuates the interaction strength and thereby the total 

abundance of disturbances at the landscape scale. With increasing size of 

the assumed landscape the ‘characteristic scale’, e.g. a radius discussed by 

de Roos et al. (1991), is passed and a consideration of space becomes more 

important.  This could be assessed by converting the model into a grid-

based simulation model. Examples of how explicit considerations of space 

might alter the predictions of ecological models have been summed up for 

example by Tilman and Kareiva (1997). Despite space is one important 

property of disturbances,  within this  study we decided to avoid making 

additional assumptions on how interaction strength declines with distance 

(exponentially, linearly etc.).

• An arguable assumption is the choice of a deterministic model. Stochasti-

city could cause the disturbance regime to fluctuate around equilibrium. 

The effect of stochasticity could be assessed in further studies by analysing 

a  equivalent  stochastic  discrete-time  model  (Wilson  1998,  Allen  and 

Burgin 2000).

Within this study we keep all other processes governing disturbance regimes 

simple despite interactions, and relegate to simulation models which constitute a 

promising  approach  to  overcome  shortcomings  of  conceptual,  mathematical 

models, unfortunately at the cost of transparency. Simulation models such as the 

forest  landscape model  LandClim (Schumacher  et  al.  2004,  Schumacher  et  al. 

2006) can account for the complexity and multitude of processes and dependen-

cies in real ecosystems, such as stand structure and species composition, spatial 

patterns of affected and susceptible area and more. There is an increasing number 

of modelling studies on disturbances employing landscape or gap models. Unfor-
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tunately, until now most of them do not explicitly analyse interactions between 

disturbances. Seidl et al. (2007), for instance, combined the forest patch model 

PICUS v1.4 (Seidl et al. 2005) with the bark beetle model PHENIPS (Baier et al. 

2007) and aimed at  adding windthrow in future model  versions facilitating an 

assessment of disturbance interactions in further studies. Schumacher and Bug-

mann (2006) already assessed the conjoint effect of tree growth, climate and the 

large-scale  disturbances  fire,  windthrow  and  management  on  forest  dynamics 

using  the  forest  landscape  model  LandClim  but  did  not  quantify  interaction 

strength. Based on the forest model LANDIS the interaction of forest pest insects 

and fire were recently assessed (Chen 2011, Chen et al. 2011) and a significant 

mutual interaction between larch caterpillar and fire was found but no effect size 

reported. A further study conducted by James et al. (2011) assessed interactions 

among fire, spruce budworm, and logging. They found that their combined effect 

is greater than the sum of their individual effects but unfortunately also did not 

report the effect sizes of their ANOVAs which could be used as measure for inter-

action strength. A nice example enabling a quantitative comparison was published 

by Simard et  al.  (2011) who combined empirical  data  with the fire  behaviour 

model NEXUS.

Nevertheless,  while  the  above  issues  warrant  further  research,  our  model 

already in its present form gives us valuable lessons. Only when quantifications 

are given similarities and differences among studies regrading underlying con-

cepts can be identified and findings of simulation and empirical studies can be 

consolidated. This helps to increase the understanding of disturbance regimes, to 

improve estimations of interaction strength and their importance relative to other 

drivers. Reasonable projections of disturbance regimes under current and changed 

environmental conditions like expected due to climatic changes are the basis of 

well-grounded management.
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Supplement

Fig.  S1: Vector fields of the two way interaction model  without self-feedback (case 

study 2) with cF = cB = 0.25 . For −1< mBF⋅mFB< 1 an equilibrium exists despite 

mutual positive feedbacks in the first example. For ∣mBF⋅mFB∣> 1  no equilibrium 

exists. In the positive case the disturbances affect the entire landscape, in the neg-

ative case the disturbance with negative response approaches to zero.

Fig. S2: Phase space graphs for nine different starting values for  cF,  cB = 0.25 and 

three different interaction scenarios for the two-way interaction model without self-

feedback  (case  study  2).  In  the  first  case  the  system  approaches  its  equilibrium 

smoothly whereas in the other two cases it spirals toward the equilibrium. R-Code in 

Supplement 1.
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Fig. S3: Visualization of the condition for spiralling (Eq. 14) for case study 4 (concep-

tual framework) with varying mFB and mBF for constant self-feedbacks given in Tab. 1.

Supplement 1: R-Code of the model function for calculating time series.
### INTERACTION MODEL
model <- function(state=c(F=0, W=0, D=0, B=0), baseValues, M, 
timesteps=10){

  # Arguments
      # state:  Fraction of disturbed area. Vector of length 4 with 
entries for
      #         fire, windthrow, drought and bark beetle affected area.
      # baseValues: Ecosystem susceptibility due to environmental 
factors.
      #         Importance of each disturbances before interaction. Same 
order
      #         as state.
      # M:      Interaction matrix. 4 x 4 matrix with values for the 
interaction
      #         strength in the order given by state.
      # timestep: Number of timesteps to be calculated.
  #  Value
      # result: Matrix with 4 columns with the state in each timestep.
  
  result <- matrix(NA, nrow=timesteps, ncol=4,
    dimnames=list(NULL, c("F", "W", "D", "B")))
  result[1,] <- state
  for(t in 1:(timesteps-1)){ ### MODEL FORMULA: state <- 
cbind(baseValues, M) %*% c(1, state) if(sum(state) > 1) state <- 
state/sum(state) result[t+1,] <- state }

  result
}

### EXAMPLE
M <- matrix(0, nrow=4, ncol=4, dimnames=list(c("F", "W", "D", "B"),
   c("f", "w", "d", "b")))
M["F",] <- c(0, 0, 0, -0.3)
M["B",] <- c(0.2, 0, 0, 0)
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start <- expand.grid(F=seq(0,1, by= 0.3), B=seq(0,1, by= 0.3))
start <- start[rowSums(start)<1,]

for(i in 1:nrow(start)){
  res <- model(state = c(start[i,"F"], 0,0, start[i,"B"]),
     baseValues = c(0.3,0,0,0.3), M = M, timesteps=50)
  if(i == 1) { plot(res[,"B"] ~ res[,"F"], type="l", ylim=c(0,1), 
xlim=c(0,1), xlab="F", ylab="B") abline(1,-1) }
else { lines(res[,"B"] ~ res[,"F"]) }

}

Supplement 2: R-Code of the model considering forest recovery time τ.
### INTERACTION MODEL CONSIDERING RECOVERY TIME
model.recovery <- function(state=c(F=0, W=0, D=0, B=0, G=0), baseValues, 
M, timesteps=10, tau=1){

 # Arguments 
      # state:  Fraction of disturbed area and recovering/insusceptible 
area.
      #         Vector of length 5 with entries for fire, windthrow, 
drought
      #         and bark beetle affected area and additionally recovering 
area.
      # baseValues: Ecosystem susceptibility due to environmental 
factors.
      #         Importance of each disturbances before interaction. Same 
order
      #         as state.
      # M:      Interaction matrix. 4 x 4 matrix with values for the 
interaction
      #         strength in the order given by state.
      # timestep: Number of timesteps to be calculated.
      # tau: Recovery time. Time needed until a disturbed forest patch 
becomes
      #         susceptible again.
  #  Value
      # result: Matrix with 5 columns with the state in each timestep.
  
  result <- matrix(NA, nrow=timesteps, ncol=5,
    dimnames=list(NULL, c("F", "W", "D", "B", "G")))
  result[1,] <- state
  for(t in 1:(timesteps-1)){ disturbedArea <- sum(state) recovery <- 
(1/tau) * disturbedArea ### Recovery susceptibleArea <- 1 - 
(disturbedArea - recovery) ### MODEL FORMULA: state[1:4] <- 
cbind(baseValues, M) %*% c(1, state[1:4])* susceptibleArea state[5] <- 
disturbedArea - recovery if(sum(state) > 1) state <- state/sum(state) 
result[t+1,] <- state }

  result
}
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