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Abstract

The continuous increase in energy consumption worldwide, together with the problematic
environmental and climate impact of traditional power plants that burn fossil fuels in
limited supply, make a shift to renewable energy sources inevitable. Among these sources,
solar power holds great potential as a sustainable solution to meet our growing energy
demand. Since nature has optimized the use of solar light through photosynthesis,
gaining a deeper understanding of the natural processes could provide valuable insights
for improving the design of human-engineered solar cells. In addition to the experimental
investigation of natural model systems and materials relevant for technical applications,
a key focus lies on improving the theoretical description of central physical processes,
including charge-transfer excitations and electronic properties such as the band gap.

Density functional theory (DFT), together with its time-dependent formulation
(TDDFT), has become a widely used framework for calculating electronic properties
of organic molecules as well as solids due to its favorable ratio between accuracy and
computational cost. In particular, its real-space and real-time implementation is highly
parallelizable, enabling efficient simulations of large-scale molecular systems. Its predic-
tive power, however, fundamentally depends on the approximations employed for the
exchange-correlation (xc) energy and the corresponding xc potential. Frequently used
(semi-)local xc functionals, like the local density approximation (LDA) or generalized
gradient approximations (GGAs), exhibit well-known limitations, such as underestimat-
ing band gaps in solids and failing to describe charge-transfer processes in molecules
accurately. These limitations result from shortcomings inherent in (semi-)local func-
tionals, including their inability to account for nonlocal effects and their insufficient
correction of the nonlocal self-interaction error of the Hartree term, which describes
the average classical electron-electron interaction. Although functionals that partly
include Fock exchange, like range-separated hybrids, can address these issues, they
come at high computational costs, making them impractical for the application to large
systems. Meta-generalized gradient approximations (meta-GGAs) offer a promising
solution because, in addition to the electron density, they depend on the kinetic energy
density and can exhibit nonlocal features similar to Fock exchange while maintaining the
computational cost of semilocal functionals. This property has been shown to improve
the description of band gaps in solids and, therefore, raises the hope of enhancing the
accuracy in describing charge-transfer excitations in organic molecules within TDDFT.

However, meta-GGAs cannot be straightforwardly used in TDDFT, as their depen-
dence on the kinetic energy density introduces a gauge dependence. To address this
issue, a previously proposed current-density correction of the kinetic energy density is
adapted in this thesis to apply meta-GGA functionals within TDDFT. Subsequently, the
performance of meta-GGAs in describing charge-transfer excitations is investigated using
two different organic model systems. The results demonstrate that the current-density
correction can significantly influence the excitation spectrum obtained with meta-GGAs.
Additionally, despite some improvement in the description of charge-transfer excitations
with the meta-GGA functional TASK, it remains insufficient to resolve the fundamental
charge-transfer problem of (semi-)local xc functionals. This limitation can be attributed
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to the persistent self-interaction error of the Hartree term when using meta-GGA
exchange functionals and the incorrect asymptotic behavior of the meta-GGA potential.

To address these shortcomings, this thesis revisits the Perdew-Zunger self-interac-
tion correction (PZ-SIC), which eliminates the (one-electron) self-interaction error and
restores the correct asymptotic behavior of the xc potential. Subsequently, the PZ-SIC
is extended to systems with non-integer particle numbers to examine the extent to
which the straight-line condition, a measure for the correction of the many-electron
self-interaction error, can be fulfilled. Based on previous approaches in the literature,
an algorithm for efficiently calculating the PZ-SIC ground state of various systems is
developed as well. Calculations for a small test set show that applying the algorithm
to the LDA and the GGA functional PBE is straightforward. However, calculating the
PZ-SIC ground state using meta-GGA functionals leads to numerical challenges. These
challenges are addressed by introducing a construction principle for meta-GGAs that
ensures numerical stability within the PZ-SIC framework. While PZ-SIC calculations
for small molecules lead to an improved description of the straight-line condition relative
to uncorrected xc functionals, they also reveal signs of an overcorrection.

To mitigate the overcorrection of the full PZ-SIC while maintaining the correct
asymptotic behavior of the xc potential, a new strategy based on a range-separation
approach combining the PZ-SIC and the LDA functional is introduced. Within this
approach, a range-separation parameter can control the specific range at which the
self-interaction correction is applied. Using this approach on a test set of small molecules
shows that the range-separation parameter can be tuned to closely satisfy the straight-line
condition.
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Kurzfassung

Der stetige Anstieg des weltweiten Energieverbrauchs sowie die negativen Folgen herkömm-
licher, mit fossilen Brennstoffen betriebener Kraftwerke auf Umwelt und Klima machen
einen Wandel hin zu erneuerbaren Energiequellen unausweichlich. Unter den umwelt-
freundlichen Alternativen bietet vor allem die Solarenergie großes Potenzial, unseren
wachsenden Energiebedarf bedienen zu können. Die Natur hat sich die Sonnenenergie
durch die Photosynthese schon früh zunutze gemacht und im Laufe der Evolution
perfektioniert. Ein detailliertes Verständnis dieses natürlichen Prozesses könnte daher
wertvolle Erkenntnisse für die Weiterentwicklung technischer Solarzellen liefern. Neben
der experimentellen Untersuchung natürlicher Modellsysteme und geeigneter Materialien
für technische Anwendungen ist insbesondere eine verbesserte theoretische Beschreibung
zentraler physikalischer Prozesse, wie Ladungstransferanregungen, sowie elektronischer
Materialeigenschaften, wie der Bandlücke, von wesentlicher Bedeutung.

Aufgrund ihrer guten Balance zwischen Vorhersagekraft und Rechenaufwand ist
die Dichtefunktionaltheorie (DFT), einschließlich der zeitabhängigen Dichtefunktional-
theorie (TDDFT), zu einer weitverbreiteten Methode zur Berechnung elektronischer
Eigenschaften von organischen Molekülen und Festkörpern geworden. Besonders die
Propagationsmethode auf einem Realraumgitter ist hochgradig parallelisierbar und
erlaubt die Simulation großskaliger molekularer Systeme, wobei die Genauigkeit der
Ergebnisse wesentlich vom verwendeten Funktional zur Näherung der Austauschkor-
relationsenergie (xc-Funktional) und des dazugehörigen Potentials (xc-Potential) ab-
hängt. Allerdings zeigen häufig verwendete (semi-)lokale xc-Funktionale, wie die lokale
Dichtenäherung (LDA) oder verallgemeinerte Gradientennäherungen (GGAs) bekannte
Schwächen. Beispiele dafür sind die Unterschätzung von Bandlücken in Festkörpern sowie
die fehlerhafte Beschreibung von Ladungstransferprozessen in Molekülen. Diese Defizite
resultieren aus dem Fehlen von nichtlokalen Eigenschaften sowie der unzureichenden Kor-
rektur des nichtlokalen Selbstwechselwirkungsfehlers des Hartree-Terms, der die mittlere
klassische Wechselwirkung der Elektronen untereinander beschreibt. Funktionale, die
einen Anteil an Fock-Austausch enthalten, wie reichweitenseparierte Hybridfunktionale,
können diese Probleme größtenteils beheben, sind aber für die Anwendung auf große
Systeme oft zu rechenintensiv. Meta-GGAs bieten eine vielversprechende Alternative,
da sie zusätzlich zur Elektronendichte noch von der kinetischen Energiedichte abhängen
und somit unter Beibehaltung des Rechenaufwands semilokaler Funktionale ähnliche
nichtlokale Eigenschaften wie das Fock-Austauschfunktional aufweisen können. Dies
verbessert die Beschreibung von Bandlücken von Festkörpern und weckt deshalb die
Hoffnung auf eine genauere Beschreibung von Ladungstransferanregungen in organischen
Molekülen innerhalb der TDDFT.

Meta-GGA Funktionale können jedoch nicht direkt in der TDDFT eingesetzt werden,
da ihre Abhängigkeit von der kinetischen Energiedichte eine Eichvarianz zur Folge
hat. Um dieses Problem zu lösen, wird in dieser Arbeit eine bereits vorgeschlagene
Stromdichtekorrektur der kinetischen Energiedichte für die Anwendung von meta-GGA
Funktionalen in der TDDFT übernommen. Anschließend wird die Vorhersagekraft der
meta-GGAs bei der Beschreibung von Ladungstransferanregungen an zwei organischen

v



Modellsystemen untersucht. Die Ergebnisse zeigen, dass die Stromdichtekorrektur das
mit meta-GGAs berechnete Anregungsspektrum erheblich beeinflussen kann. Trotz einer
gewissen Verbesserung in der Beschreibung von Ladungstransferanregungen durch das
meta-GGA TASK, kann diese Korrektur das fundamentale Problem der fehlerhaften
Beschreibung von Ladungstransferanregungen durch (semi-)lokale Funktionale nicht
beheben. Dies lässt sich auf den verbleibenden Selbstwechselwirkungsfehler des Hartree-
Terms und das falsche asymptotische Verhalten des meta-GGA Potentials zurückführen.

Als Ansatz diese Defizite zu beheben, wird die Perdew-Zunger Selbstwechselwirkungs-
korrektur (PZ-SIC) aufgegriffen, die den (Ein-Elektronen-)Selbstwechselwirkungsfehler
eliminiert und das korrekte asymptotische Verhalten des xc-Potentials wiederherstellt.
Anschließend wird die PZ-SIC auf Systeme mit nicht-ganzzahligen Teilchenzahlen erweit-
ert, um zu prüfen, inwieweit die sog. straight-line condition, ein Maß für die Korrektur
des Vielteilchenselbstwechselwirkungsfehlers, erfüllt werden kann. Aufbauend auf bis-
herigen Methoden in der Literatur wird schließlich ein Algorithmus entwickelt, der
eine effiziente Berechnung des PZ-SIC-Grundzustands ermöglicht. Während sich bei
der Anwendung des PZ-SIC-Algorithmus in Kombination mit dem LDA bzw. PBE
Funktional jeweils die Berechnungen der Grundzustände für einen Satz von Testsystemen
problemlos durchführen lassen, treten bei der Anwendung des Algorithmus in Verbindung
mit meta-GGAs numerische Herausforderungen auf, die jedoch durch die Einführung
eines speziellen Konstruktionsprinzips überwunden werden können. Die Ergebnisse für
kleine Modellsysteme zeigen, dass die PZ-SIC die straight-line condition zwar besser
erfüllt als unkorrigierte xc-Funktionale, aber Anzeichen einer Überkorrektur aufweist.

Um die Überkorrektur durch die volle PZ-SIC zu mildern und gleichzeitig das korrekte
asymptotische Verhalten des xc-Potentials zu bewahren, wird eine neue Selbstwechsel-
wirkungskorrekturmethode eingeführt, die die PZ-SIC mit dem LDA Funktional auf
Grundlage eines Reichweitenseparationsansatzes kombiniert. Hierbei wird durch einen
Skalierungsparameter die Reichweite, in der die Selbstwechselwirkungskorrektur auf das
i. A. (semi-)lokale Funktional wirkt, eingestellt. Die Anwendung eines solchen Ansatzes
auf den Testsatz kleiner Moleküle zeigt, dass der Skalierungsparameter so gewählt werden
kann, dass die straight-line condition in hohem Maße erfüllt ist.

vi



Contents

Abstract iii

Kurzfassung v

1 Introduction 1

2 Density Functional Theory and Time-Dependent Density Functional
Theory 5
2.1 Ground-State Density Functional Theory . . . . . . . . . . . . . . . . . . 5
2.2 Time-Dependent Density Functional Theory . . . . . . . . . . . . . . . . 7
2.3 Numerical Realization: The BTDFT Program Package . . . . . . . . . . . 8
2.4 Real-Time Propagation in TDDFT . . . . . . . . . . . . . . . . . . . . . 10
2.5 Calculation of Excitation Spectra in Real-Time TDDFT . . . . . . . . . 11

3 Exact Properties of Exchange-Correlation Functionals 13
3.1 Correct Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Freedom from Self-Interaction . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Straight-Line Condition and Derivative Discontinuity . . . . . . . . . . . 15
3.4 Janak’s Theorem and IP Theorem . . . . . . . . . . . . . . . . . . . . . 16
3.5 Connection Between Correct Asymptotic Behavior, Freedom from Self-

Interaction and Straight-Line Condition . . . . . . . . . . . . . . . . . . 17
3.6 Further Exact Properties of Exchange-Correlation Functionals . . . . . . 18

3.6.1 Size Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.2 Unitary Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.3 Spin Scaling Relations . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Exchange-Correlation Approximations 21
4.1 Explicitly Density Dependent xc Functionals . . . . . . . . . . . . . . . . 21
4.2 Meta-GGA Functionals: Orbital Functionals at Semilocal Cost . . . . . 22

4.2.1 Optimized Effective Potential Method and its Approximation . . 23
4.2.2 Generalized Kohn Sham Scheme . . . . . . . . . . . . . . . . . . 25

4.3 Limitations and First Solution Strategies for Semilocal Functionals . . . 26

5 Meta-Generalized Gradient Functionals in Generalized Kohn-Sham 29
5.1 Ground-State Results: Using Pseudopotentials in Meta-GGA Calculations 29
5.2 Meta-GGAs in TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Conceptual Challenges for Kinetic Energy Density in TDDFT . . 32
5.2.2 Time-Dependent (C)GKS Calculations Using the TASK Meta-

GGA Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 Time-Dependent (C)GKS Calculations Using the r2SCAN Meta-

GGA Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



6 Self-Interaction Correction in Density Functional Theory 47
6.1 Average Density Self-Interaction Correction . . . . . . . . . . . . . . . . 48
6.2 Perdew-Zunger Self-Interaction Correction Energy Functional . . . . . . 49
6.3 Minimization of the PZ-SIC Energy Expression . . . . . . . . . . . . . . 51
6.4 PZ-SIC for Meta-GGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 PZ-SIC Expressions for Non-Integer Particle Numbers . . . . . . . . . . 54
6.6 Orbital Energies in PZ-SIC . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.7 Unitary Transformation with Fractional Occupation Number . . . . . . 57
6.8 Algorithm for Minimizing the PZ-SIC Energy . . . . . . . . . . . . . . . 58

6.8.1 Outer Loop: Orbital Variation Algorithm . . . . . . . . . . . . . 60
6.8.2 Inner Loop: Energy-Minimizing Unitary Transformation . . . . . 62

7 Results for the Perdew-Zunger Self-Interaction Correction 65
7.1 Results for LSDA and PBE Using the PZ-SIC . . . . . . . . . . . . . . . 65
7.2 Application of the PZ-SIC to Meta-GGA Functionals . . . . . . . . . . . 70

7.2.1 Numerical Challenges of Using the PZ-SIC with Meta-GGA Func-
tionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.2 Results for α0TASK-SIC . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Modifications of the Perdew-Zunger Self-Interaction Correction 79
8.1 Review of PZ-SIC Modification Strategies . . . . . . . . . . . . . . . . . 80
8.2 Long-Range Self-Interaction Correction for Hartree and (Semi-)Local

Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.3 Long-Range LSDA Expression . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4 Results for Long-Range Self-Interaction Correction for Hartree and (Semi-)Local

Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4.1 Straight-Line Condition for LSDA-lrSIC . . . . . . . . . . . . . . 85
8.4.2 IP Theorem for LSDA-lrSIC . . . . . . . . . . . . . . . . . . . . . 90
8.4.3 Numerical Difficulties for LSDA-lrSIC Calculations . . . . . . . . 93

8.5 Short-Range (Semi-)Local Exchange with Long-Range Hartree Self-Interaction
Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.6 Results for Short-Range Exchange with Long-Range Hartree Self-Interaction
Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.6.1 Straight-Line Condition for sr-LSDA-lrHcSIC . . . . . . . . . . . 97
8.6.2 IP Theorem for sr-LSDA-lrHcSIC . . . . . . . . . . . . . . . . . . 101

8.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Complementary Work Meta-GGAs in GKS 107
A.1 Functional Derivatives of Meta-GGA Exchange Including the Nonlinear

Core Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Functional Derivatives of Meta-GGA Correlation Including the Nonlinear

Core Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3 Continuity Equation for Meta-GGAs in Time-Dependent GKS . . . . . . 113

B Complementary Work Self-Interaction Correction 117
B.1 Hermiticity of the Lagrange Multiplier in PZ-SIC . . . . . . . . . . . . . 117
B.2 Hamiltonian for Meta-GGAs Using the PZ-SIC with Current-Density

Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.3 Derivation of the PZ-SIC Energy Variation with Respect to the Unitary

Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

viii



B.4 Alternative Formulation of the PZ-SIC Ground-State Energy through
Orbital Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.5 Consistency of Single-Orbital Energies in PZ-SIC and Kohn-Sham Theory121
B.6 Alternative Definition of the Unitary Transformation with Fractional

Occupation Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.7 Maximum Estimated Eigenvalue on the Real-Space Grid . . . . . . . . . 124
B.8 Löwdin Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.9 Numerical Details of the PZ-SIC Calculations . . . . . . . . . . . . . . . 125
B.10 Oscillatory Features in vloc for the TASKx-SIC Calculation of CO . . . . 126
B.11 Functional Derivatives of the TASK and r2SCAN Meta-GGAs . . . . . . 127
B.12 Enhancement Factor for α0TASK . . . . . . . . . . . . . . . . . . . . . . 130
B.13 Results for α0TASK-SIC with Current-Density Correction . . . . . . . . 132
B.14 HOMO Energy Curves for CO, H2O, and N2 with and without Using the

PZ-SIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.15 Influence of Boundary Condition for Solving the Screened Poisson Equation138
B.16 Derivation of the Long-Range LSDA Expression . . . . . . . . . . . . . . 139
B.17 Numerical Details of lrSIC Calculations . . . . . . . . . . . . . . . . . . 141
B.18 Attempts for Mitigating the Numerical Difficulties within the Screened

LDA Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.19 HOMO Energy Curves for CO, H2O, and N2 Using LSDA-lrSIC . . . . . 142
B.20 HOMO Energy Curves for CO, H2O, and N2 Using sr-LSDA-lrHcSIC . . 145

List of Abbreviations 149

Bibliography 151

ix





Chapter 1

Introduction

The ongoing use of traditional power plants that use fossil fuels is problematic, not
only because these energy sources are finite, but also primarily due to their negative
environmental impacts as their combustion emits greenhouse gases that drive climate
change [MR80]. Therefore, we are facing the problem that we have to reduce the
severe environmental impact of our increasing energy consumption. One form of energy
that is particularly promising in fulfilling these needs is solar energy. The process of
using this form of energy has long been optimized by nature, and its efficiency can still
not be matched by modern human-designed solar cells. In order to improve existing
technologies, it is beneficial to reach a better understanding of the underlying processes
of solar energy harvesting in organic model systems [SŞS12; Cor+19; LZ20]. In addition
to the experimental investigation of natural model systems and materials suitable for
technical applications, a key focus lies on an enhanced theoretical understanding of
central physical processes, including charge-transfer (CT) excitations, and electronic
properties, such as the band gap.

Computational methods that are suitable for investigating the electronic structure of
large-scale organic systems must, on the one hand, be efficient enough to handle several
hundred or even thousands of electrons but, on the other hand, accurate enough to predict
the physical properties of different materials or molecules outside the initially tested
model systems. One theoretical framework that can meet these requirements is density
functional theory (DFT) with its time-dependent expansion (TDDFT). Its ground-state
theory of many-body quantum mechanics, originally developed by Hohenberg and Kohn
[HK64], reduces the computational cost enormously by using the electron density as the
main quantity instead of the many-body wave function within Schrödinger’s formulation
[Sch26]. Later, it was made broadly applicable by the Kohn-Sham formulation [KS65],
which introduces an auxiliary system of noninteracting particles described by single-
particle orbitals.

The predictive power of DFT fundamentally depends on the approximations used
to describe exchange-correlation (xc) effects. The physical properties calculated using
(semi-)local approximations, such as the local density approximation (LDA) [HK64]
and generalized gradient approximations (GGAs) [Bec86; Per+92; PBE96], often show
reasonable agreement with experimental results for many systems [Par20]. However,
these approximations exhibit significant shortcomings as they typically underestimate
the band gap of solids [PL83; GSS86] and fail to describe CT processes accurately, which
manifests in systematically underestimating CT excitation energies within TDDFT
[Toz03; DWH03; DH04; Mai05; KK08; Mai17; Küm17; Sch+19; Keh+20]. These
limitations of (semi-)local xc approximations, which lead to overly delocalized electrons
are discussed in detail in Chapter 3: because such approximations depend (semi-)locally
on the electron density, they inherently lack nonlocal features and cannot correct the self-
interaction error introduced by the Hartree term, which describes the average classical
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Chapter 1. Introduction

electron-electron interaction. Although range-separated hybrid functionals can address
these issues [SKB09; Kro+12; AS14; Küm17], their partial dependence on Fock exchange
significantly increases computational costs. This is because Fock exchange involves
numerous Coulomb integrals, thereby making their practical application increasingly
expensive for large systems. Consequently, there is a need for xc approximations that
integrate the advantages of range-separated hybrids with the efficiency of semilocal
functionals.

Meta-generalized gradient approximations (meta-GGAs), introduced in Chapter 4,
might fulfill this requirement, as they depend not only on the electron density but also on
the kinetic energy density and can, therefore, exhibit nonlocal features while maintaining
the computational cost of semilocal functionals. This characteristic of meta-GGAs has
led to an enhanced description of band gaps [AK19; Bor+20; KBM23; Leb+23; LAK24],
raising the hope that they could also improve the accuracy of CT excitations in TDDFT.
However, applying meta-GGA functionals in TDDFT is not straightforward because
their dependence on the kinetic energy density introduces a gauge dependence [Tao05;
BF12]. Chapter 5 addresses this issue. It explores the influence of applying a previously
proposed current-density correction of the kinetic energy density [Bec02; Tao05] when
using meta-GGA functionals within TDDFT for various model systems. Chapter 5
further examines the performance of meta-GGAs at the description of CT excitations in
TDDFT, using two model systems as benchmarks. The results of this investigation are
also presented in Ref. [Ric+23].

Although the results of Chapter 5 indicate a somewhat improved description of
CT excitations using the meta-GGA TASK [AK19; Ric+23], it becomes evident that
meta-GGAs cannot resolve the CT problem inherent to semilocal xc functionals. This
limitation can be attributed to the persistent inability of meta-GGA exchange functionals
to fully correct the self-interaction error introduced by the Hartree term and the incorrect
asymptotic behavior of the xc potential. To address these shortcomings, Chapter 6
revisits the Perdew-Zunger self-interaction correction (PZ-SIC) [PZ81], which eliminates
the (one-electron) self-interaction error and restores the correct asymptotic behavior of
the xc potential. However, because of its special form, the PZ-SIC breaks the invariance
of the energy functional under unitary transformations of the single-particle orbitals.
Chapter 6 discusses the upcoming challenges due to the unitary variance and rigorously
extends the PZ-SIC formalism to fractional particle numbers. This extension enables
the investigation of the straight-line condition, a criterion that measures the correction
of the many-electron self-interaction error, for semilocal xc approximations within the
PZ-SIC framework (cf. Section 3.3) [VSP07]. Additionally, a new algorithm based on
existing approaches from the literature [GU97; KKJ11; Hof+12; Bor+15] is presented
for the practical application of the PZ-SIC.

Chapter 7 presents the results for the ionization potential and the straight-line
condition for three different small model systems using the PZ-SIC with the LDA and
the GGA functional PBE [PBE96]. Applying the PZ-SIC to the TASK [AK19] and
r2SCAN [Fur+20a; Fur+20b] meta-GGAs leads to additional numerical challenges, which
can be addressed by introducing a new construction principle that explicitly ensures
numerical stability for meta-GGAs within the PZ-SIC framework. The results for LDA,
PBE, and a modified version of TASK for improved numerical stability within the PZ-SIC
framework indicate that the self-interaction error is overcorrected for all considered
semilocal density functional approximations using the PZ-SIC.

Therefore, Chapter 8 introduces a modification of the PZ-SIC in combination with the
LDA. In this formulation, inspired by the concept of range-separated hybrid functionals
[HSE03; YTH04; SKB09], the self-interaction correction of the Hartree term is applied
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Chapter 1. Introduction

only in the long-range regime, with the range of this correction controlled by a parameter
γ. For the exchange part, two different strategies are employed: in the first, only the
self-interaction error of the LDA is corrected in the long-range regime; in the second, the
entire LDA functional evaluated on the total electron density is screened to its short-range
contribution. While the second approach proves to be numerically advantageous, the
range-separation parameter γ in both cases can be tuned to closely fulfill the straight-line
condition for the total energy as a function of the particle number and to yield accurate
values for the ionization potential.
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Chapter 2

Density Functional Theory and
Time-Dependent Density Functional
Theory

Density functional theory (DFT) and time-dependent density functional theory (TDDFT)
are exact formalisms for describing many-particle quantum mechanical problems. This
chapter provides a brief introduction to the basics of DFT and TDDFT, along with
their numerical realization in the BTDFT program code [Sch17; SK18], which is based on
real-space and real-time simulation techniques.

2.1 Ground-State Density Functional Theory

Predicting quantum physical properties using the original formulation of quantum
mechanics involves solving the time-independent Schrödinger equation [Sch26]

Ĥ|Ψi⟩ = Ei|Ψi⟩ , (2.1)

where Ei is the energy eigenvalue corresponding to the quantum state |Ψi⟩, and the
N -particle Hamiltonian operator is given by

Ĥ =
N∑

j=1

− ℏ2

2m
∇2

rj

︸ ︷︷ ︸
=:T̂

+
N∑

j=1

v(rj)

︸ ︷︷ ︸
=:V̂

+
1

2

N∑

j,k=1
j ̸=k

ω(rj , rk)

︸ ︷︷ ︸
=:Ŵ

. (2.2)

Here, ℏ is the reduced Planck constant, m is the mass of the particle, and ∇2
rj denotes

the Laplace operator acting on the coordinate rj of the jth particle. The terms T̂ ,
V̂ , and Ŵ represent the kinetic, potential, and interaction energies, respectively. The
many-particle wave function Ψi(x1,x2, . . . ,xN ) in Eq. (2.1) depends on the coordinates
xk = (rk, σk), where each xk is a tuple consisting of the space coordinate rk and spin
σk of the kth particle. Because this wave function depends on 3N spatial coordinates,
solving Eq. (2.1) becomes computationally infeasible as N increases. Consequently, the
numerical cost grows exponentially, a challenge that Walter Kohn famously referred to
as the “exponential wall” of quantum mechanics [Koh99].

Numerous approaches have been developed to approximate the solution. These
include the variational ansatz by James and Coolidge [JC33] for early studies of the
H2 molecule and Hartree-Fock theory [Har28; Foc30] for later applications. However,
in most practical applications, the many-body wave function itself is not of primary
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interest. Instead, the focus lies on physical properties such as the ground-state energy,
dipole moment, or polarizability.

The fundamental principle of DFT is that the electron density n(r) uniquely de-
termines all ground-state properties, a result that was formally proven by Hohenberg
and Kohn (HK) in 1964 [HK64]. Their second theorem establishes the existence of a
universal functional,

F [n] = ⟨Ψ[n]|T̂ + Ŵ |Ψ[n]⟩, (2.3)

where T̂ and Ŵ denote the kinetic and interaction energy operators, respectively.
Together with the external potential vext(r), this functional defines the total energy,

Ev[n] = F [n] +

∫
vext(r)n(r) d

3r . (2.4)

The true ground-state density n0(r) can then be obtained by minimizing the energy
functional with respect to the density

δ

δn(r)

{
Ev[n]− µ

(∫
n(r′) d3r′ −N

)}
= 0 , (2.5)

where µ = ∂Ev/∂N , the chemical potential, is a Lagrange multiplier enforcing the
constraint of the correct particle number N [Cap06; Lev79; Lev82].

In the Kohn-Sham (KS) formulation [KS65] using the Born-Oppenheimer approxi-
mation [BO27] the energy functional is partitioned as

EKS[n] = Ts[n] + Eext[n] + EH[n] + Exc[n↑, n↓] , (2.6)

with the spin-up and spin-down densities n↑ and n↓, respectively. The first term describes
the (single-particle) kinetic energy

Ts[n] = Ts[{φiσ[n]}] = −
ℏ2

2m

∑

σ=↑,↓

Nσ∑

j=1

∫
φ∗
jσ(r)∇2φjσ(r) d

3r , (2.7)

which depends on the Nσ occupied non-interacting fermionic KS quasi-particles {φiσ}
with spin σ. The Hartree energy, expressed in Gaussian units (which are used throughout
this work), is given by

EH[n] =
e2

2

∫∫
n(r)n(r′)
|r− r′| d3r′ d3r , (2.8)

with the elementary charge e and describes the classical electrostatic interaction between
the electrons. The external energy is expressed as

Eext[n] =

∫
vext(r)n(r) d

3r , (2.9)

with vext being the external potential which contains e. g. the electrostatic potential of the
nuclei. The exchange-correlation (xc) energy Exc[n↑, n↓] contains all remaining energy
contributions from the interaction of the particles in the system. The single-particle KS
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equations, shown in the spin-polarized formulation [BH72], are given by
(
− ℏ2

2m
∇2 + vKSσ[n↑, n↓](r)

︸ ︷︷ ︸
ĤKSσ

)
φjσ(r) = ϵjσφjσ(r), (2.10)

where ĤKSσ represents the KS Hamiltonian and φjσ are the KS orbitals. The eigenvalues
{ϵjσ} are the associated single-particle energies (with ϵ1σ < · · · < ϵNσ). vKSσ is the
effective KS potential calculated via the functional derivative of the energy formulation
of Eq. (2.6):

vKSσ[n↑, n↓](r) =
δEKS[n]

δnσ(r)
= vext(r) + vH[n](r) + vxcσ[n↑, n↓](r) , (2.11)

with the Hartree potential

vH[n](r) = e2
∫

n(r′)
|r− r′| d

3r′ (2.12)

and vxcσ[n↑, n↓] = δExc[n↑, n↓]/δnσ. Together with the kinetic energy operator, vKSσ

builds the KS Hamiltonian ĤKSσ. For the exact energy functional, the absolute squared
KS orbitals sum up to the true ground-state density

n(r) = n↑(r) + n↓(r) =
∑

σ=↑,↓

Nσ∑

j=1

|φjσ(r)|2 . (2.13)

This KS formulation consisting of Eqs. (2.10), (2.11), and (2.13) is typically solved in
an iterative scheme to obtain the ground-state quantities of a system.

At the core of every DFT calculation lies the xc part of the energy functional
Exc[n↑, n↓] and its derivative vxcσ[n↑, n↓]. This term is typically divided into its exchange
Ex[n] and correlation Ec[n↑, n↓] components to simplify the development of suitable
approximations. Since no exact expression for Exc[n↑, n↓] is known yet, appropriate
approximations are essential. Neglecting Exc[n↑, n↓] entirely would reduce DFT to the
Hartree approximation, which provides significantly less accurate results. As a result,
the success of DFT in accurately describing physical properties depends crucially on
the quality of the chosen xc approximation. Furthermore, the specific choice of the xc
functional not only affects the accuracy of the results but also impacts the computational
cost of solving the KS ground-state equations. Thus, the main goal of any density
functional approximation (DFA) is to strike an optimal balance between accuracy and
computational efficiency.

2.2 Time-Dependent Density Functional Theory

The HK theorems provide the foundation for calculating physical ground-state properties
such as the ground-state energy or polarizability. However, they are insufficient for
time-dependent or truly excited-state quantities, as they establish a connection only
between the ground-state density and the external potential. In contrast, for excited-state
problems, the time-dependent electron density becomes the central quantity. In TDDFT,
the Runge-Gross theorem [RG84] finds analogously to the HK theorem a connection
between the time-dependent density n(r, t) and the time-dependent external potential
vext(r, t): Given an initial many-body state |Ψ0⟩ with a fixed two-particle interaction,
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there exists a one-to-one mapping between the time-dependent density n(r, t) and the
external potential vext(r, t) up to a purely time-dependent constant c(t), i. e.

n(r, t)
fixed |Ψ0⟩←−−−−−→ vext(r, t) . (2.14)

As a consequence, the time-dependent Hamilton operator Ĥ[n,Ψ0](t) is also a functional
of n(r, t) as well as the many-body wave function Ψ[n](t) (up to a time-dependent
phase). Accordingly, all time-dependent physical observables become functionals of
n(r, t) and Ψ0, i. e., O(t) = O[n,Ψ0](t) [Ull16]. Starting from the special case where the
many-body ground state serves as the initial state, |Ψ0⟩ itself becomes a functional of the
ground-state density. This makes O a functional that depends solely on n(r, t) [MBW02].
Runge and Gross proposed a variational principle based on the action functional for the
practical calculation of the dynamic properties. However, this led to inconsistencies in
symmetry properties and causality, which were resolved by van Leeuwen by introducing
a new action functional within the Keldysh formalism (for details, see Refs. [Lee98;
Lee01]). The resulting variational principle leads to the time-dependent KS (TDKS)
equations (

− ℏ2

2m
∇2 + vKSσ(r, t)

︸ ︷︷ ︸
ĤKSσ(r,t)

)
φjσ(r, t) = iℏ

∂

∂t
φjσ(r, t) (2.15)

for j = 1, . . . , Nσ, with the TDKS potential

vKSσ(r, t) = vext(r, t) + e2
∫

n(r′, t)
|r− r′| d

3r′ + vxcσ(r, t) , (2.16)

and the imaginary unit i. Together with the kinetic energy operator (first term in
Eq. (2.15)), this defines the TDKS Hamilton operator ĤKSσ(r, t). The time-dependent
electron density is then given by Eq. (2.13), with the ground-state orbitals substituted
with the time-dependent orbitals φjσ(r, t). Similar to the ground-state xc potential, the
time-dependent equivalent can be calculated via a functional derivative of the xc action
functional Axc

vxcσ(r, t) =
δAxc

δn(r, τ)

∣∣∣∣
n=nσ(r,t)

, (2.17)

with τ being the Keldysh contour time (see Refs. [Lee98; Lee01]). However, since finding
approximations for the xc action in practical applications is challenging, the adiabatic
approximation is commonly employed. This approximation involves evaluating the
ground-state xc functional with the time-dependent density n(r, t), thus neglecting any
memory effects [FNM03]. For a detailed description of the action functional and an
explicit expression using a non-interacting TDKS system, see Ref. [Vig08].

2.3 Numerical Realization: The BTDFT Program Package

A wide range of quantum chemistry codes for calculating the physical properties of
organic molecules, such as e. g. QChem [Sha+14] and Turbomole [Bal+20], use basis
sets constructed from Gaussian or Slater functions, which are combined linearly to
approximate the KS orbitals {φjσ} [Sch+07]. Gaussian basis sets, in particular, offer
the advantage of enabling efficient evaluation of integral expressions similar to the Fock
integral [Jen12]. However, the computational cost and accuracy of such calculations
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strongly depend on the specific choice of the basis set [Hil12], making careful selection
crucial for reliable results.

An alternative approach is to represent the KS orbitals directly on a real-space
grid instead of using predefined basis functions. This work follows this strategy by
employing the BTDFT (Bayreuth density functional theory) program package [SK18],
which represents the KS orbitals (along with all related quantities, such as the KS
potential) on an equidistant real-space grid, also referred to as “δ-basis” [Sch17; SK18].
The real-space grid on which the orbitals are calculated and the KS potential is evaluated
can be either chosen to be an ellipsoid or defined by a density threshold around the
center of the atoms in the molecule (typically chosen to be 10−7 a−3

0 in this work). The
derivatives on this real-space grid are calculated by finite differences of sixth order.
This real-space approach is highly parallelizable due to the sparsity of the matrix
representation of the KS equations. However, its accuracy depends on the chosen grid
size and spacing. Representing core orbitals, which typically exhibit high-frequency
oscillations, on a real-space grid would require an impractically small grid spacing. Since
valence electrons primarily govern chemical binding in molecules, the effects of core
electrons and atomic cores on the valence electrons are efficiently incorporated using
pseudopotentials (PPs) [HSC79; KB82; Pic89; TM91; Kro+06].

The fundamental concept of PPs is to partition the all-electron density into two
components: one generated by the valence orbitals {φv

jσ} and the other by the core
orbitals {φc

jσ}. The modified KS potential acting on the valence particles is then
expressed as

vpsKSσ[nv](r) = vps(r) + vH[nv](r) + vxcσ[nv↑, nv↓](r) , (2.18)

where vps is the PP. To create the PP for a single atom, the modified KS potential,
vpsKSσ[nv], is constructed such that it reproduces the same valence KS orbitals {φv

jσ}
as the all-electron KS potential vKSσ[n] outside a given cutoff radius rc. Finally, the
contributions of vH[nv] and vxcσ[nv↑, nv↓] are subtracted from vpsKSσ to calculate vps
[Cap06; Che+03]. The resulting vps is then used as an element-specific PP in a KS
calculation of a molecule. In practice, there are different construction principles for
calculating vpsKSσ. In this work, norm-conserving Troullier-Martins type PPs are used
[HSC79; KB82; TM91].

At this point, it should be noted that subtracting vxcσ[nv↑, nv↓], which depends
only on the valence density nv, is an approximation. Unlike the Hartree potential
vH[n] = vH[nc] + vH[nv], the xc potential can be highly nonlinear, i. e.,

vxcσ[n](r) ̸= vxcσ[nc](r) + vxcσ[nv](r) , (2.19)

with n = nc + nv. As a result, this approximation is valid only if there is no significant
overlap between the core density nc and the valence density nv. This issue can be resolved
by employing the nonlinear core correction (NLCC) [LFC82; Wil+13]. For the NLCC,
vxcσ[nv↑, nv↓] in the subtraction step is replaced by vxcσ[nc↑ + nv↑, nc↓ + nv↓]. Since the
PP vps no longer includes the xc effects of the core and valence electrons, the core density
must be added explicitly when evaluating the xc potential in Eq. (2.18). However, using
the full core charge would be numerically cumbersome since it contains high-frequency
components. To address this, and based on the observation that incorporating the core
density has significant effects only where its magnitude is comparable to the valence
density, the core density is replaced by a pseudo-core charge npsc . This pseudo-core
charge equals nc outside a given cutoff radius rpc [PPL99].

Another important aspect for real-space codes, such as BTDFT, is the numerical
challenge of calculating the Hartree potential vH[n] directly in its integral expression of
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Eq. (2.12). To circumvent this problem, BTDFT solves the corresponding Poisson equation

∇2vH(r) = −4πe2n(r) (2.20)

to obtain vH. However, since the Hartree potential decays slowly as ∼ 1/r, using a
zero-boundary condition would still require a computationally challenging large grid.
Therefore, BTDFT employs a different boundary condition, adapted from the real-space
code PARSEC [Kro+06; Bur+03]. In this scheme, the Hartree potential is divided into an
internal part within the grid and a boundary part outside the grid, i. e., vH = vinH +vboundH .
By choosing vinH to be zero outside the grid, a new Poisson equation

∇2vinH (r) = −4πe2n(r)− ∇2vboundH (r)︸ ︷︷ ︸
=−4πe2nbound(r)

(2.21)

can be formulated, while vboundH is computed via a multipole expansion of 9th order
[Bur+03]. The Laplacian acting on the boundary potential vboundH can then be evaluated,
yielding a boundary density nbound (multiplied by the constant −4πe2). By defining
the boundary condition at the grid edge through the boundary density calculated with
a 9th-order multipole expansion, the grid used to solve the Poisson equation and to
calculate vinH in Eq. (2.21) can be chosen significantly smaller than if a zero-boundary
condition is used to calculate vH, as in Eq. (2.20).

2.4 Real-Time Propagation in TDDFT

The key challenge in TDDFT lies in solving the TDKS equations numerically to cal-
culate physical excitation properties such as excitation energies, oscillator strengths,
or transition densities. Within quantum chemistry codes, like QChem [Sha+14] and
Turbomole [Bal+20], employ the frequency-domain formulation of the TDKS equations
within the linear-response formalism [Cas95; Cas+98]. In contrast, in the real-time
propagation scheme on a real-space grid used in this work, the time-dependent density
n(r, t) is the only observable that can be accessed directly. Consequently, although the
excitation spectrum is not immediately available, a few straightforward evaluation steps
are required to obtain it, as discussed in the next section. Despite this inconvenience,
the real-time, real-space approach offers several advantages [SK18; Mar03]: It is highly
parallelizable both in real space and over the orbitals, making it particularly suitable
for calculating larger systems compared to the linear-response approach. Moreover,
unlike the linear-response formalism, real-time propagation is not limited to the linear
regime, enabling the study of nonlinear phenomena, such as systems in intense laser
fields [Kru+20; Coc+14; Cal+00; LG11].

A typical starting point for our real-time (and real-space) approach is the propagation
of the TDKS orbitals using the time-propagation operator Û(t, t0):

φjσ(r, t) = Û(t, t0)φjσ(r, t0) = τ̂ exp

{
− i

ℏ

∫ t

t0

ĤKSσ(t
′) dt′

}
φjσ(r, t0) , (2.22)

with the time-ordering operator τ̂ [CMR04]. For numerical implementations, the time t
is discretized into time steps tk = t0 + k∆t, where ∆t is the step length and k ∈ N0. If
∆t is chosen sufficiently small, the exponential term in Eq. (2.22) can be approximated
as

U(tk +∆t, tk) ≈ exp

{
− i

ℏ
ĤKSσ

(
tk +

∆t

2

)
∆t

}
. (2.23)
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Since in a step-by-step propagation scheme, the time-propagation operator is applied in
a causal manner, the time-ordering operator τ̂ can be neglected. In practice, BTDFT uses
a predictor-corrector scheme [Pre07] to calculate the KS Hamilton operator at t+∆t/2.
Using this midpoint approximation, the Crank-Nicolson propagator [CN47] provides an
efficient scheme to approximate the exponential operator as

exp

{
− i

ℏ
ĤKSσ∆t

}
≈ 1− i

ℏĤKSσ
∆t
2

1 + i
ℏĤKSσ

∆t
2

, (2.24)

which is used in this work. Substituting Eq. (2.23) and Eq. (2.24) into Eq. (2.22) leads
to a discretized equation
[
1 +

i

2ℏ
ĤKSσ

(
tk +

∆t

2

)
∆t

]
φjσ(tk +∆t) =

[
1− i

2ℏ
ĤKSσ

(
tk +

∆t

2

)
∆t

]
φjσ(tk) ,

(2.25)
which must be solved for each KS orbital j. In this work, the orbitals are discretized on
a real-space grid, which causes Eq. (2.25) to expand into a matrix equation that can be
solved numerically [Ull16]. For this purpose, BTDFT uses an iterative conjugate gradient
method [Sch17]. While the Crank-Nicolson propagator is employed here, various other
propagation algorithms are also available, as detailed in Ref. [CMR04].

2.5 Calculation of Excitation Spectra in Real-Time TDDFT

Since in real-time TDDFT, the only directly accessible physical observable is the time-
dependent density n(r, t), excitation energies are not immediately available and must be
computed in several steps. The details of these steps, as presented below, can be found
in Ref. [SK18].

Calculating the absorption spectrum of a system starts by exciting the ground-state
orbitals, {φ(0)

jσ }, which correspond to the ground-state density n0, with a so-called boost
excitation. This boost excitation matches an infinitesimal short laser pulse that excites
the system and is done by applying a space-dependent phase to all the orbitals

φjσ(r, t = 0) = eik·rφ(0)
jσ (r) , (2.26)

where k determines the boost direction, and the boost energy is given by Eboost =
Nℏ2|k|2/(2m) [SK18; BLL16; MK07; Rep+15]. A weak δ-like excitation ensures that
all frequencies of the many-particle system are excited.

The theoretical absorption spectrum is given by the dipole strength function, defined
as [Rub+12]

S(ω) = − 2mω

3πeℏ2k
Im
{
Tr
[
δµ̃(ϑ)γ (ω)

]}
. (2.27)

Here, δµ̃(ϑ)γ (ω) is the γ-component of the Fourier transform of the induced dipole moment

δµ(t) = −e
∫

r (n(r, t)− n0(r)) d3r , (2.28)

after a boost excitation in the ϑ-direction, depending on the frequency ω. Ref. [SK18]
shows that Tr

[
δµ̃

(ϑ)
γ (ω)

]
can be calculated analytically for a boost excitation within the
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linear response regime, leading to

Tr
[
δµ̃(ϑ)γ (ω)

]
= −3eℏk

m

∞∑

j=1

f0j
ω0j

sin(ω0jt) , (2.29)

where

f0j =
2mω0j |d0j |2

3ℏ
(2.30)

is the oscillator strength of the transition 0→ j with its frequency ω0j and d0j = ⟨0|r̂|j⟩.
Inserting this expression into the dipole strength function of Eq. (2.27) gives the analytical
form of the photoabsorption spectrum

S(ω) =

∞∑

j=1

f0j
ω

ω0j

sin((ω − ω0j)T )

πℏ(ω − ω0j)
, (2.31)

where T is the propagation time [Sch17].
This analytical form is then fitted to the numerical form to extract the excitation

frequencies ω0j (and oscillator strengths f0j). The highest excitation frequency, ωmax

that can be calculated, is determined by the time step during the real-time propagation,
with ωmax ∼ 1/∆t. Thus, the time step must be chosen small enough to calculate
excitations up to a desired frequency ωmax [Sch17].
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Chapter 3

Exact Properties of
Exchange-Correlation Functionals

The accuracy of DFT and TDDFT calculations crucially depends on the chosen xc
approximation Exc[n↑, n↓] and its functional derivative vxc[n↑, n↓]. In this work, we
investigate and apply xc approximations with a particular focus on accurately describing
charge-transfer (CT) processes in DFT and TDDFT. Therefore, this chapter begins
with an introduction to the CT problem within DFT, which has been the subject of
numerous studies [Toz03; VZ07; Fuk16; Küm17; MK22; AK19].

A paradigm example of a CT process that illustrates many of the challenges in DFT
is long-range CT, where an electron moves from a donor (D) molecule to an acceptor (A)
molecule (or donor and acceptor region) over a large distance R, as illustrated in Fig. 3.1.
For long-range separations, where the orbital overlap between D and A is negligible, the

Figure 3.1: Illustration of a long-range CT process, where IPD and IPA

denote the ionization potentials of the donor and acceptor
molecules, respectively, separated by a distance R, and EAD

and EAA represent their electron affinities.

lowest CT energy is given by

ΩCT = IPD − EAA − e2 1
R
. (3.1)

Here, IPD is the ionization potential of the donor, EAA is the electron affinity of
the acceptor, and the last term accounts for the electrostatic interaction between the
additional charge on A and the extracted charge on D [Mai17]. In the limit R → ∞,
this reduces to ΩCT = IPD−EAA [Toz03]. To accurately describe CT processes, such as
the one given by Eq. (3.1), the xc approximation must satisfy certain exact properties,
as discussed below.
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3.1 Correct Asymptotic Behavior

In asymptotic regions, i. e., at large distances r from the nuclei of a neutral (and finite)
system, the xc potential should decay as

vxc(r) ∼ −
e2

r
, (3.2)

which is governed by the exchange part of the potential, vx(r) [LPS84; AB85]. Ensuring
the correct asymptotic behavior of the potential is crucial to accurately reproduce
the −1/R dependence in Eq. (3.1). Intuitively, this behavior can be understood by
considering a KS particle, specifically the highest occupied molecular orbital (HOMO),
located at a large distance r from the center of the molecule. At this distance, the KS
orbital should experience an attractive potential arising from two contributions: the
attractive potential due to the nuclei, ∼ −e2N/r, and the screening effect from the
remaining N − 1 charges, ∼ e2(N − 1)/r. This results in the asymptotic behavior of
the KS potential as −e2/r. Since the Hartree potential and the external potential of
the nuclei cancel each other asymptotically, the correct asymptotic behavior must be
determined by the xc potential vxc [KK20]. HOMOs that incorporate nodal planes
present additional challenges, as discussed in Refs. [GGB16; GB18].

Functionals that depend locally on the density, such as the local density approximation
(LDA) [HK64], which will be introduced in Section 4.1, decay exponentially and thus
underestimate the electron-nucleus interaction at large distances [VZ07].

3.2 Freedom from Self-Interaction

The one-particle self-interaction error (SIE) is evident in the KS decomposition of the
ground-state energy, where the Hartree energy models the electrostatic interaction
between electrons. For a one-electron (1e) system, where the density is determined by
a single (spin-)orbital, n1e = |φ1|2, the ground-state energy should be determined by
the kinetic energy, Ekin, and the energy contribution of the electron in its external field,
Eext. Thus, the contributions of the Hartree energy and the exchange energy should
cancel each other out, i. e.,

EH[n1e] + Ex[n1e]
!
= 0 , (3.3)

and the correlation energy should vanish [KK20; PZ81],

Ec[n1e, 0]
!
= 0 . (3.4)

Condition (3.3) is automatically satisfied for the exact exchange energy functional, since
for a one-electron system, the energy expression

Eexact
x = −e

2

2

∑

σ=↑,↓

Nσ∑

i,j=1

∫∫
φ∗
iσ(r

′)φ∗
jσ(r)φiσ(r)φjσ(r

′)

|r− r′| d3r d3r′ (3.5)

reduces to −EH[n1e].
Overall, this repulsion error, arising from an electron interacting with itself, results

in a spurious favoring of charge delocalization, leading to an underestimation of the
ionization potential (IP) values [MCY06; VS05]. While the exact exchange functional,
defined in Eq. (3.5), can address the (one-particle) SIE, it is computationally expensive.
Therefore, finding ways to capture the SIE using computationally less demanding
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(semi-)local approximations, as introduced in Chapter 4, remains an ongoing challenge
in DFT and strategies for achieving freedom from self-interaction will be discussed in
later sections.

3.3 Straight-Line Condition and Derivative Discontinuity

Perdew et al. [Per+82] introduced an ensemble extension of DFT for systems with
density n(r) integrating to a non-integer electron number, N0+η, where N0 is an integer
and 0 < η < 1. Such systems are described as statistical mixtures of the ground state
of two systems: one with N0 electrons and the other with N0 + 1. Consequently, the
energy as a function of N follows a straight line between the integer points, given by
[Per+82; YZA00]

E(N) = (1− η)E(N0) + ηE(N0 + 1) . (3.6)

This linear behavior is illustrated in Fig. 3.2. Taking Eq. (3.6) and the relation

Total energy

Particle
number

N0 − 1 N0 N0 + 1

E(N0 − 1)

E(N0)

E(N0 + 1)

IP(N0)

EA(N0)

Figure 3.2: Illustration of the straight line condition: Piecewise linear
ground-state energy function E(N) for fractional particle
numbers N .

∂E(N)/∂N = µ, the chemical potential µ exhibits a discontinuity at integer electron
numbers

µ(N) =

{
−IP(N0) N0 − 1 < N ≤ N0,

−EA(N0) N0 < N ≤ N0 + 1 ,
(3.7)

where the IP and electron affinity (EA) are given by IP = E(N0 − 1)−E(N0) and EA =
E(N0)−E(N0 + 1) [Per+82]. The fundamental gap ∆g is the derivative discontinuity
of the energy [YCM12]

∆g = IP(N0)− EA(N0)

= lim
η→0

{
∂E(N)

∂N

∣∣∣∣
N0+η

− ∂E(N)

∂N

∣∣∣∣
N0−η

}

= lim
η→0

{
δE[n]

δn(r)

∣∣∣∣
N0+η

− δE[n]

δn(r)

∣∣∣∣
N0−η

}
.

(3.8)
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Within the KS formulation of DFT, the fundamental gap ∆g is given by

∆g = lim
η→0

(
δTs[n]

δn(r)

∣∣∣∣
N0+η

− δTs[n]

δn(r)

∣∣∣∣
N0−η

)

︸ ︷︷ ︸
=:∆KS

+ lim
η→0

(
δExc[n]

δn(r)

∣∣∣∣
N0+η

− δExc[n]

δn(r)

∣∣∣∣
N0−η

)

︸ ︷︷ ︸
=:∆xc

,

(3.9)

where the derivatives of the Hartree energy, δEH[n]/δn, and of the external energy,
δEext[n]/δn, are continuous at N0 and, consequently, do not contribute to ∆g. Here,
∆KS is referred to as the KS gap, i. e. ∆KS = ϵLUMO − ϵHOMO, and ∆xc is the xc gap or
derivative discontinuity [PL83; SS83].

The derivative discontinuity corresponds to a discontinuous jump of the xc potential
when the electron number crosses an integer point. This feature is decisive for describing
CT processes correctly, as can be understood as follows: Consider again a system
consisting of two molecules, donor (D) and acceptor (A), separated by a large distance.
When a small static external potential is applied, no CT should occur from D to A.
Simple xc approximations that explicitly depend on the density, like the LDA, respond
in the direction of the external field. However, the exact xc potential must counteract
the static external potential to prevent the CT process. This property, fulfilled by
the exact exchange functional, is also often referred to as “ultranonlocality” [Gis+99;
GGB02; Faa+02; AK19; Asc+23]. When the external potential increases beyond a
critical threshold – corresponding to the difference between the ionization potential
(IPD) of D and the electron affinity (EAA) of A – exactly one electron should transfer
from D to A. At this point, the xc potential must exhibit a sudden jump to stabilize the
new electron configuration. This crucial discontinuous jump in the potential at integer
electron numbers corresponds to the derivative discontinuity, ∆xc [Gis+99; KKP04;
KK18; Toz03].

However, (semi-)local functionals like the LDA do not exhibit a derivative discon-
tinuity at integer particle numbers ∆xc. As a consequence, the error in the predicted
CT excitation energies by (semi-)local xc approximations is significant since it has been
explicitly shown (see Ref. [Toz03]) that this error is proportional to the sum of the
missing ∆xc contributions at the donor and acceptor molecules.

3.4 Janak’s Theorem and IP Theorem

The previous section introduced the IP as the energy difference between an N0-electron
system and an (N0 − 1)-electron system. However, it turns out that although the KS
eigenvalues are introduced merely as mathematical objects in an auxiliary system of
non-interacting particles, the HOMO eigenvalue does have a rigorous physical meaning:
According to Janak’s theorem [Jan78],

∂E

∂N
= ϵHOMO(N) , (3.10)
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and Straight-Line Condition

and given the relationship ∂E/∂N = µ(N), it can be shown that for the exact xc
functional

ϵHOMO(N) =

{
−IP(N0) for N0 − 1 < N ≤ N0

−EA(N0) for N0 < N ≤ N0 + 1
(3.11)

holds [Per+82; LPS84]. Consequently, the exact xc functional must satisfy the so-called
IP theorem [PL83; PL97]

E(N0 − 1)− E(N0) = −ϵHOMO(N0) . (3.12)

For the exact functional, the last equation must also hold for ϵHOMO(N) with N0 − 1 <
N ≤ N0. However, in practice, ϵHOMO(N0) is often considered when verifying the IP
theorem.

3.5 Connection Between Correct Asymptotic Behavior,
Freedom from Self-Interaction and Straight-Line Con-
dition

Although we introduced the correct asymptotic behavior, the freedom from self-interaction,
and the straight-line condition as different properties of the exact xc functional, it is
important to note that, while these properties are not equivalent, they all follow the
principle of avoiding spurious electron-electron interactions in the system.

The connection between these three properties can be understood by considering
simple hydrogen-based model systems, as outlined in Ref. [KK20]: Without eliminating
the one-electron SIE, (semi-)local functionals such as the LDA typically overestimate
the ground-state energy of a single hydrogen atom, predicting values higher than −1Ry.
Additionally, due to the incorrect asymptotic behavior of the LDA, the negatively charged
hydrogen ion H− is predicted to be unbound. Since the LDA exchange potential decays
exponentially rather than as −1/r, it is not sufficiently binding to stabilize the H−

molecule. Moreover, the dissociation process of the H+
2 molecule is incorrectly described

by widely used (semi-)local xc approximations [BS97; ZY98; GKC04b]. Whereas the
exact functional is required to yield an energetic degeneracy between a state with one
electron fully localized on one nucleus and a state with 0.5 e on each nucleus (semi-)local
functionals such as the LDA spuriously favor a charge distribution of −0.5 e on each
nucleus. This error, which is not limited to the H+

2 molecule but has also been observed
in various other systems [Per+82; Ruz+06], is a direct consequence of the violation of
the straight-line condition by (semi-)local functionals. These functionals typically tend
to exhibit a convex deviation from piecewise linearity, making fractional occupations
energetically more favorable [KK20].

Due to the connection between these exact properties, improving one property
typically enhances the description of others. This will be explicitly demonstrated
for the Perdew-Zunger self-interaction correction, which removes the SIE introduced
in Section 3.2 and, at the same time, improves the description of the straight-line
condition. A detailed discussion of the relationship between the properties can be found
in Ref. [KK20].
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3.6 Further Exact Properties of Exchange-Correlation Func-
tionals

In addition to the exact properties relevant for the accurate description of CT processes,
we now turn to further exact conditions of the xc functional that are considered in this
work.

3.6.1 Size Consistency

Consider a system composed of two well-separated subsystems, 1 and 2. The total
energy E of the combined system should equal the sum of the ground-state energies of
the individual subsystems, E1 and E2, i. e.,

E = E1 + E2 . (3.13)

Similarly, the total electron density n should be the sum of the densities of the subsystems,

n(r) = n1(r) + n2(r) , (3.14)

where n1 and n2 are the densities of subsystems 1 and 2, respectively [FNM03]. Commonly
used xc functionals, such as the LDA, inherently satisfy this size consistency property.
However, certain approximations designed to correct the SIE in DFT, such as the average
density self-interaction correction (see Section 6.1), compromise this property [LSR02;
Keh+20].

3.6.2 Unitary Invariance

Another fundamental condition for any DFA is unitary invariance. This principle ensures
that the total energy remains unchanged under unitary transformations of the occupied
orbitals. To illustrate, consider a unitary transformation defined by a unitary matrix
Uσ, such that

∑Nσ
i=1 UilσU

∗
ikσ = δkl. Applying this transformation to a set of N orbitals

{φiσ} results in a new set of orbitals {φ′
iσ} by

φ′
iσ(r) =

Nσ∑

j=1

Uijσφjσ(r) . (3.15)

Both sets lead to the same density n(r) since

n[{φ′
iσ}](r) =

∑

σ=↑,↓

Nσ∑

i=1

|φ′
iσ(r)|2 =

∑

σ=↑,↓

Nσ∑

k,l=1

Nσ∑

i=1

U∗
ikσUilσ

︸ ︷︷ ︸
=δlk

φ∗
kσ(r)φlσ(r)

=
∑

σ=↑,↓

Nσ∑

k=1

|φkσ(r)|2 = n[{φiσ}](r) .

(3.16)

The condition of unitary invariance is automatically satisfied for xc approximations
that depend solely on the density. In contrast, it is not immediately evident whether
this condition holds for approximations that explicitly depend on the orbitals. To ensure
unitary invariance for such orbital-dependent functionals, the orbital dependence is often
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reformulated in terms of the positive definite kinetic energy density

τ(r) =
ℏ2

2m

∑

σ=↑,↓

Nσ∑

i=1

|∇φiσ(r)|2 , (3.17)

which is invariant under unitary transformations of the orbitals.
Nevertheless, not all orbital-dependent functionals satisfy this condition. While the

exact exchange functional defined in Eq. (3.5) is unitary invariant by construction, the
self-interaction correction (SIC) introduced by Perdew and Zunger [PZ81] violates this
invariance. The implications of this violation and its challenges are discussed in detail
in Chapter 6.

3.6.3 Spin Scaling Relations

The spin-polarized versions of the non-interacting kinetic energy Ts as well as the
exchange energy Ex can be expressed in terms of their spin-unpolarized versions by the
spin-scaling relations [OP79]

Ts[n↑, n↓] =
1

2
Ts[2n↑] +

1

2
Ts[2n↓] (3.18)

and
Ex[n↑, n↓] =

1

2
Ex[2n↑] +

1

2
Ex[2n↓] , (3.19)

since these terms can be split into contributions depending on the spin-up and spin-down
densities separately. For xc functionals depending on the previously introduced kinetic
energy density τ(r) the spin-scaling of Eq. (3.19) becomes

Ex[n↑, n↓] =
1

2
Ex[2n↑, 2τ↑] +

1

2
Ex[2n↓, 2τ↓] . (3.20)

This scaling relation similarly applies to the corresponding exchange potential vx, i. e.

vx[n↑, n↓] = vx[2n↑, 2τ↑] + vx[2n↓, 2τ↓] . (3.21)

In contrast, the correlation energy does not obey a simple spin-scaling relation [FNM03].
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Chapter 4

Exchange-Correlation
Approximations

The exact exchange functional defined in Eq. (3.5) not only eliminates the SIE but
also satisfies all properties of the exact exchange functional by definition. However,
its practical use is limited since evaluating the double-integral expression of the exact
exchange functional is computationally demanding, making it impractical for large-scale
systems. In addition to the computational cost, a further challenge is finding a suitable
correlation functional to pair with the exact exchange. Combining exact exchange with
standard correlation functionals often leads to worse predictions of physical properties,
such as atomization energies, compared to the simpler LDA, which will be introduced
in the following section [KK08]. For simplicity, the spin index σ is neglected when
introducing the DFAs.

4.1 Explicitly Density Dependent xc Functionals

The first and still widely used approximation is the local density approximation (LDA)
[HK64], which extends to spin-dependent systems as the local spin-density approxima-
tion (LSDA) [BH72]. The exchange energy density for the LDA is derived from the
homogeneous electron gas and is denoted by ehomx (n), where n is the constant electron
density. The exchange energy for the LDA is then expressed as an integral over ehomx

ELDA
x [n] =

∫
ehomx (n)

∣∣∣
n→n(r)

d3r = Ax

∫
n4/3(r) d3r , (4.1)

where the constant density n is replaced by the spatially dependent density n(r), and
Ax = −(3/4)(3/π)1/3. For the correlation part, the parametrization by Perdew and
Wang [PW92] based on Monte Carlo simulations [CA80] is commonly used. Since the
LDA potential vxc[n](r) depends solely on the density at position r, it is classified as a
local xc approximation. Although one might expect this functional to yield accurate
results only for slowly varying densities, it provides reasonably good results for real
molecular systems, which often exhibit highly nonuniform electron densities [Cap06;
KK08]. It is argued in the literature that these beneficial properties stem from favorable
error cancellation in the description of exchange and correlation within the LDA potential
(for details, see Ref. [DG90]).

The next step beyond local xc functionals is the development of semilocal DFAs.
These functionals depend not only on the local electron density n but also on its
derivatives. Generalized Gradient Approximations (GGAs) are derived from the gradient
expansion [KS65; MB68] of the xc energy Exc[n] and the KS kinetic energy Ts[n] for
slowly varying electron densities. However, using the gradient expansion directly as an
approximation results in worse performance for the xc energy than the LDA, particularly
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leading to spurious positive values of the correlation energy for atoms. This issue is
resolved by modifying the LDA energy expression of Eq. (4.1) via an enhancement factor
Fxc(n,∇n)

EGGA
xc [n,∇n] = Ax

∫
n4/3(r)Fxc(n(r),∇n(r)) d3r . (4.2)

The density gradient is typically represented by the reduced density gradient [FNM03]

s(r) =
|∇n(r)|

2(3π2)1/3n4/3(r)
. (4.3)

There is a great variety of empirically and nonempirically constructed GGAs [Cap06].
Later in this work, the nonempirical GGA constructed by Perdew, Burke, and Ernzerhof
(PBE) [PBE96] is specifically used within the PZ-SIC framework.

Due to the explicit density dependence of the LDA and GGA functionals, they
inherently lack nonlocal features and do not exhibit a derivative discontinuity and,
therefore, cannot fulfill multiple of the exact properties discussed in Chapter 3.

4.2 Meta-GGA Functionals: Orbital Functionals at Semilo-
cal Cost

Meta-generalized gradient approximations (meta-GGAs) are xc functionals that in-
corporate explicit orbital dependence, allowing them to exhibit nonlocal features, as
demonstrated in Refs. [Yan+16; AK19; Asc+23; Leb+23; LAK24]. This explicit orbital
dependence in meta-GGAs is realized through the kinetic energy density

τ(r) =
ℏ2

2m

N∑

j=1

|∇φj(r)|2 . (4.4)

Since τ is still a local quantity that is straightforward to calculate, meta-GGAs retain
the computational cost characteristic of semilocal functionals. Furthermore, including τ
ensures that the meta-GGA energy functional remains invariant under unitary transfor-
mations of the KS orbitals. The corresponding xc energy functional of a meta-GGA can
be written as

EmGGA
xc [n,∇n, τ ] =

∫
emGGA
xc (n(r),∇n(r), τ(r)) d3r

= Ax

∫
n4/3(r)FmGGA

xc (n(r),∇n(r), τ(r)) d3r,
(4.5)

where emGGA
xc (n,∇n, τ) is the xc energy density, and FmGGA

xc is the meta-GGA enhance-
ment factor. In principle, meta-GGA functionals can additionally depend on the Laplace
of the density ∇2n. Since the meta-GGAs considered in this work only depend on the
quantities defined in Eq. (4.5), this additional dependency is neglected here [AK19;
SRP15; Fur+20a; Fur+20b]. In practice, the exchange part of the enhancement factor
FmGGA
x is parametrized via the reduced density gradient, defined in Eq. (4.3), and an

iso-orbital indicator, such as

z(r) =
τW(r)

τ(r)
, (4.6)

or

α(r) =
τ(r)− τW(r)

τunif(r)
, (4.7)
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with the von Weizsäcker kinetic energy density

τW(r) =
ℏ2

8m

|∇n(r)|2
n(r)

(4.8)

as the single-orbital limit of τ .

τunif(r) = Asn
5/3(r) (4.9)

with

As =
3ℏ2(3π2)2/3

10m
(4.10)

is the uniform density limit of τ . Using this parametrization, meta-GGAs can detect
spatial regions within the system where the density is dominated by a single orbital,
i. e., α = 0 (or z = 1) or homogeneous-density regions, where α = 1 (or z = 0 and s = 0)
[KPB99].

This work focuses on two different meta-GGA functionals derived from first principles.
The first is the r2SCAN functional [Fur+20a; Fur+20b], a numerically improved version
of the original meta-GGA SCAN [SRP15], designed to address some of the numerical
intricacies present in the original formulation. The SCAN or r2SCAN meta-GGAs are
widely used for different applications, leading to a generally more accurate description of
electronic bonding than the LDA [SRP15; Bra+16]. The second meta-GGA is the TASK
functional [AK19], which fulfills the same construction principles in the exchange energy
as SCAN but is explicitly designed with the focus on modeling a reasonable derivative
discontinuity in the exchange part ∆x. This is achieved by following the construction
principle [AK19]

∂emGGA
x

∂τ
> 0 . (4.11)

Using this construction principle, the TASK meta-GGA has been shown to enhance the
description of band gaps in solids [AK19; Leb+23; Bor+20].

While the explicit orbital dependence of meta-GGAs through the kinetic energy
density offers the significant advantage of incorporating nonlocal features at semilocal
computational cost, this orbital dependence introduces its own challenge: Unlike for
the LDA or GGA expressions, the functional derivative δEmGGA

xc /δn, and thus the
corresponding xc potential, cannot be calculated straightforwardly. In principle, there
are two different approaches for evaluating the potential expression for an orbital-
dependent xc functional: First, within the KS framework, one can calculate the functional
derivative of the orbital-dependent functional to obtain a multiplicative KS potential via
the optimized effective potential method. Second, a corresponding (operator) potential
can be determined within a generalized Kohn-Sham scheme by directly minimizing the
energy functional with respect to the orbitals. In the following, both approaches are
briefly introduced.

4.2.1 Optimized Effective Potential Method and its Approximation

Within the KS formalism, determining the KS potential requires evaluating the functional
derivative δEmGGA

xc /δnσ. For explicitly orbital-dependent xc functionals, this derivative
can be calculated using the optimized effective potential (OEP) scheme [SH53; TS76],
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which begins by applying the chain rule:

vOEP
xcσ (r) =

∑

α,β=↑,↓

Nσ∑

i=1

∫∫
δExc[{φjτ}]
δφiα(r′)

δφiα(r
′)

δvKSβ(r′′)
δvKSβ(r

′′)
δnσ(r)

d3r′ d3r′′ + c.c. , (4.12)

where c.c. denotes the complex conjugate. By identifying δvKS/δnσ as the inverse KS
response function and evaluating δφiα/δvKSβ (and the KS response function) using first-
order perturbation theory, the equation can be rewritten in integral form (for details,
see Ref. [KK08]). This formulation, first proposed by Krieger et al. [KLI92b], leads to
the most commonly used form of the OEP equation:

vOEP
xcσ (r) =

1

2nσ(r)

Nσ∑

i=1

{
|φiσ(r)|2

[
uxciσ(r) +

(
v̄OEP
xciσ − ūxciσ

)]

− ℏ2

m
∇ · [ψ∗

iσ(r)∇φiσ(r)]

}
+ c.c. , (4.13)

where ψ∗
iσ(r) is the first-order orbital shift of the ith KS orbital, and

uxciσ(r) =
1

φ∗
iσ(r)

δExc[{φjτ}]
δφiσ(r)

. (4.14)

Equation (4.13) is an integral equation due to the terms

v̄OEP
xciσ =

∫
φ∗
iσ(r)v

OEP
xcσ (r)φiσ(r) d

3r and ūxciσ =

∫
φ∗
iσ(r)uxciσ(r)φiσ(r) d

3r , (4.15)

and the orbital shift

ψ∗
iσ(r) = −

∞∑

j=1
j ̸=i

⟨φiσ|uxciσ − vOEP
xcσ |φjσ⟩

ϵiσ − ϵjσ
φ∗
jσ(r) . (4.16)

Solving the integral equation (4.13) with the orbital shift term is a highly challenging
computational task, as the sum in Eq. (4.16) runs over all occupied and unoccupied
orbitals.

The most commonly used approach to simplify this problem is the approximation
introduced by Krieger, Li, and Iafrate (KLI) [KLI92b; KLI92a]. This approximation
replaces the orbital energy differences ϵiσ − ϵjσ with a mean value ∆ϵσ. After additional
steps (see Ref. [KK08]), this yields the KLI expression for the xc potential

vKLI
xcσ (r) =

1

2nσ(r)

Nσ∑

i=1

|φiσ(r)|2
[
uxciσ(r) +

(
v̄KLI
xciσ − ūxciσ

)]
+ c.c. , (4.17)

with v̄KLI
xciσ and ūxciσ defined analogously to Eq. (4.15). This equation can either be

solved iteratively or reformulated as a set of linear equations, which can then be solved
directly. This reformulation significantly reduces the computational cost compared to
solving the full OEP equation.

Even though the KLI approximation provides a computationally less expensive
alternative to the full OEP, it introduces its own challenges. In particular, the time-
dependent formulation of the KLI approximation [UGG95] has been shown to violate
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the zero-force theorem for some systems [Mun+07]. This theorem states that there must
be no net force due to xc effects across the system, i. e.,

∫
n(r, t)∇vxc(r, t) d3r = 0 . (4.18)

This violation leads to a self-excitation of the system and can cause numerical instabilities
when real-time propagation schemes are applied to calculate the excitation spectra of
physical systems. While it has been shown that the time-dependent OEP formulation
[UGG95] satisfies the zero-force theorem, it is even more computationally demanding
and often leads to numerical instabilities. As a result, it has so far only been solved for
one-dimensional systems [MK06; WU08].

4.2.2 Generalized Kohn Sham Scheme

In order to avoid the difficulties that come with the time-dependent OEP, this work
primarily uses a generalized Kohn-Sham (GKS) scheme to handle the explicit orbital
dependence of meta-GGA functionals following Refs. [Sei+96; BF12; BK18].

Whereas the ground-state formulation of KS introduces a single Slater determinant,
constructed from non-interacting single-particle orbitals, to describe the real system, the
GKS formulation employs partially interacting particles that can still be represented
by a single Slater determinant Φ. Consequently, the basic energy functional in GKS
can be defined as S[Φ], which must be invariant under unitary transformations of the
single-particle orbitals building the Slater determinant. The corresponding energy density
functional F S[n] is obtained by minimizing S with respect to the orbitals that yield the
density n [Sei+96],

F S[n] = min
{φjσ}→n(r)

S[{φjσ}] . (4.19)

Similar to the energy functional of Eq. (2.4), the total energy in GKS can then be written
as

E[n] = F S[n] +

∫
n(r)vext(r) d

3r +RS[n] , (4.20)

where RS[n] is the reminder energy functional. Analogous to the KS equations, the GKS
equations

ÔS[{φjσ}]φjσ(r) + vRσ(r)φjσ(r) + vext(r)φjσ(r) = ϵjσφjσ(r) (4.21)

must be solved to determine the GKS orbitals {φjσ} and their corresponding eigenvalues
{ϵjσ}, where the remainder potential vRσ(r) is obtained via the functional derivative

vRσ(r) =
δRS[n]

δnσ(r)
. (4.22)

Moreover, ÔS[{φjσ}] represents a, in general, non-multiplicative potential operator
determined by the specific choice of S [Sei+96].

Given the remainder energy functional, one could, in principle, develop approxi-
mations for RS[n] instead of the xc energy functional Exc[n]. In practice, however,
orbital-dependent functionals are typically still based on approximations to Exc. There-
fore, for meta-GGAs, the energy functional S takes the form

S[{φjσ}] = ⟨Φ|T̂ |Φ⟩+ EmGGA
xc [{φjσ}] , (4.23)
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with T̂ = −ℏ2/2m∑σ=↑,↓
∑Nσ

j=1∇2
j [BK18; Ric+23]. Calculating the functional deriva-

tive of EmGGA
xc with respect to the orbitals leads to

v̂mGGA
σ (r) = vlocσ (r) + v̂GKS

τσ (r) . (4.24)

The local, multiplicative part is given by

vlocσ (r) =
∂emGGA

xc

∂nσ
(r)−∇ ·

[
∂emGGA

xc

∂∇nσ
(r)

]
(4.25)

and the operator part of v̂mGGA
σ is

v̂GKS
τσ (r) = − ℏ2

2m
∇ · ∂e

mGGA
xc

∂τσ
(r)∇ . (4.26)

This leads to the meta-GGA form of the GKS equations [BK18; Ric+23]
[
− ℏ2

2m
∇2 + vH[n](r) + v̂mGGA

σ [n↑, n↓](r) + vext(r)

]
φjσ(r) = ϵjσφjσ(r) . (4.27)

In summary, the GKS formulation with its Eqs. (4.21) is formally exact since the
exact remainder potential vRσ would lead to a set of GKS orbitals that reproduce the
true ground-state density of the real interacting system [Sei+96]. In the context of using
Eq. (4.23) as the meta-GGA expression for the energy functional S, solving the resulting
GKS Eqs. (4.27) is significantly less computationally expensive than solving the integral
equations of the OEP discussed in the previous section.

However, employing the time-dependent GKS formulation for meta-GGAs introduces
additional challenges, as the kinetic energy density τ(r, t) used in the meta-GGA
expressions leads to as gauge variance and violates the continuity equation [Bec02;
Tao05; BK18; BF12; Ric+23]. This issue is examined in detail in Chapter 5.

4.3 Limitations and First Solution Strategies for Semilocal
Functionals

Due to their (semi-)local density dependence, the LDA and the PBE functional, as
a GGA introduced in Section 4.1, fail to fulfill several exact properties discussed in
Chapter 3 required for accurately describing CT processes:

(1) The LDA and PBE exhibit a convex behavior in the E(N)-curve and fail to
capture the derivative discontinuity ∆xc entirely. Therefore, the LDA and PBE cannot
show any counteracting to an external field driving CT processes (as described at the
end of Section 3.3). (2) The LDA and GGA energy functionals are unable to correct
the SIE present in the Hartree energy term. This limitation arises from their local or
semilocal density dependence preventing them from capturing the nonlocal character
of the Hartree SIE. Moreover, they even introduce an additional SIE as the correlation
energy within the LDA and PBE does not vanish for one-electron densities. (3) Although
there have been attempts to design GGAs that exhibit the correct asymptotic behavior
[LB94; WAY03; AK13; Car+15], common GGAs, such as the PBE potential, and local
functionals like the LDA, decay exponentially rather than following the correct −1/r
asymptotic form.

These deficiencies of the LDA and PBE are well-known, and practical calculations
have demonstrated that they result in a poor description of CT excitations in TDDFT
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[Toz+99; SK18; Keh+20]. In contrast, the TASK meta-GGA, introduced in Section 4.2,
is designed to exhibit a reasonable derivative discontinuity in the exchange part ∆x

enabling it to generate field-counteracting terms similar to those of the exact exchange
functional [AK19]. Consequently, it is of great interest to investigate the performance of
the TASK meta-GGA, as well as the r2SCAN meta-GGA (which inherits a smaller ∆x),
in describing CT excitations within the time-dependent GKS framework, as discussed in
the next chapter.

Additionally, the meta-GGA approach provides a step toward mitigating SIEs. Using
the iso-orbital indicator α, which approaches zero in regions dominated by a single orbital,
the meta-GGA correlation energy EmGGA

c can be constructed to vanish when α = 0 and
full spin polarization is present [Per+99]. However, addressing the SIE in the exchange
part is significantly more challenging than achieving freedom from self-correlation, as the
spurious nonlocal self-interaction introduced by the Hartree energy must be compensated
for by the exchange functional. A common construction principle for the exchange part
in functionals such as TASK and r2SCAN is to ensure that, in the one-electron limit,
the exchange energy recovers the exact result for the hydrogen atom – a system with a
known analytical solution. However, satisfying this condition alone does not guarantee
accurate results for general many-electron systems and is therefore insufficient for a
proper correction of the SIE of Hartree term [SRP15; Fur+20a; AK19].

To address the SIE in both the exchange and correlation components, Perdew and
Zunger [PZ81] proposed a universal correction scheme that can, in principle, be applied
to any DFA. This is achieved by defining the Perdew-Zunger SIC energy functional as

ESIC
xc = Eapp

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑

i=1

{
EH[|φiσ|2] + Eapp

xc [|φiσ|2, 0]
}
, (4.28)

where EH[|φiσ|2] and Eapp
xc [|φiσ|2, 0] are the single KS particle contributions to the

Hartree and xc energy the PZ-SIC is applied on, respectively. A central difficulty of
this SIC scheme is that the resulting energy functional is not invariant under unitary
transformations of the orbitals. This introduces significant challenges in practical
implementations that will be discussed in Chapter 6.
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Chapter 5

Meta-Generalized Gradient
Functionals in Generalized
Kohn-Sham

This chapter presents the results of applying the meta-GGA approximations TASK
[AK19] and r2SCAN [Fur+20a; Fur+20b] within a GKS scheme. The discussion begins
with the technical aspects of implementing meta-GGAs in the BTDFT program package
using PPs. Next, the formal challenges posed by the gauge variance of the kinetic
energy density and the violation of the continuity equation when using meta-GGAs in a
time-dependent generalized Kohn-Sham scheme (TDGKS) are reviewed. Subsequently,
the results of adopting a current-density-corrected kinetic energy density, as proposed by
Becke [Bec02] and Tao [Tao05], which restores both gauge invariance and the continuity
equation, are demonstrated using our real-time propagation scheme for various model
systems.

Since TASK and r2SCAN capture a derivative discontinuity through their explicit
orbital dependence, we compare their ability to describe CT excitations to that of the
LDA, which is known to fail in this context [Toz03; Mai05; Sch+19; Keh+20], as well as
to more computationally expensive methods that provide an accurate description of CT
excitations.

The results from this comparison and for considering the current-density correction
are also published in Ref. [Ric+23]. For simplicity, the spin dependence is omitted in
the expressions presented in this chapter.

5.1 Ground-State Results: Using Pseudopotentials in Meta-
GGA Calculations

As discussed in Section 2.3, the real-space code BTDFT [SK18] employs norm-conserving
Troullier-Martins type PPs [TM91] to model the interaction between atomic cores and
valence electrons. However, consistent meta-GGA PPs are not yet available due to
the inherent difficulty of constructing reliable PPs for orbital-dependent functionals.
Although some progress has been made in developing PPs for meta-GGA functionals
[YK17], the process remains complicated. In the KS framework, constructing PPs
typically involves inverting pseudo-orbitals to obtain a local potential; however, for
meta-GGAs, this task is further complicated by the nonlocal and non-multiplicative term
v̂GKS
τ . Moreover, whereas studies on the exact exchange functional indicate that the use

of inconsistent PPs does not necessarily result in large deviations [Eng09], meta-GGAs
introduce additional challenges because they rely on iso-orbital indicators, such as z or
α (see Eq. (4.6) and Eq. (4.7)), to identify specific spatial regions and adjust the energy
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functional accordingly. This sensitivity can lead to differences between all-electron and
PP-based calculations. This discrepancy can be particularly evident in systems with a
single valence electron and multiple core electrons, such as the sodium atom, where only
the 3s electron is treated as a valence electron. In such cases, the iso-orbital indicator
within the meta-GGA functional may mistakenly classify the entire valence density as
an iso-orbital region. In all-electron calculations, the iso-orbital indicator is evaluated
on the total density, which can lead to noticeably different values for z or α. As a result,
meta-GGA functionals can be more sensitive to inconsistent PPs than the LDA or GGA
functionals, depending on the system in question.

This issue can, however, be mitigated in many cases through a workaround previously
proposed for local hybrid functionals [SK16], which is also applicable to meta-GGA
functionals. By incorporating the NLCC discussed in Section 2.3, the total core density
nc is available in addition to the PP. This core density, together with the valence
density nv, can be used to evaluate the iso-orbital indicator α, thereby avoiding a
spurious detection of single-orbital regions. For this purpose, the kinetic energy density
is evaluated as

τ(r) =
ℏ2

2m





∣∣∣∇
(
n1/2c

)∣∣∣
2
+



∑

k
valence
states

|∇φv
k|2







, (5.1)

with its iso-orbital and homogeneous electron gas limits given by

τW(r) =
ℏ2

8m

|∇(nc(r) + nv(r))|2
nc(r) + nv(r)

, (5.2)

τunif(r) =As(nc(r) + nv(r))
5/3 , (5.3)

where As is defined in Eq. (4.10), {φv
k} are the valence orbitals, and

∑

k
core states

|∇φc
k(r)|2 ≈

∣∣∣∇
(
n1/2c (r)

)∣∣∣
2
, (5.4)

where {φc
k} are the core orbitals. The last expression is only exact for atoms with one

single (doubly occupied) s core orbital. The meta-GGA equations and their derivatives,
including the core correction, are shown in Appendices A.1 and A.2 for the exchange
and correlation, respectively.

To evaluate the influence of incorporating the core density on the calculation of
the kinetic energy density using Eq. (5.1), we compare the HOMO eigenvalues of
the CO molecule and of the Li2 molecule obtained from PP-based BTDFT calculations
with those from all-electron calculations performed using the real-space code DARSEC
[MKK09; MKK11]. Both approaches employ the TASK functional for exchange (with
no correlation, denoted as “x”). The results are summarized in Tab. 5.1. Since the

Table 5.1: Comparison of HOMO eigenvalues for CO and Li2 calculated
using TASKx-KLI: BTDFT without NLCC, BTDFT with NLCC,
and an all-electron reference calculation performed with the
DARSEC code.

BTDFT without nc BTDFT with nc DARSEC
CO −8.54 eV −8.51 eV −8.48 eV
Li2 −2.89 eV −2.80 eV −2.68 eV
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operator potential for meta-GGAs within the GKS scheme, v̂mGGA, is not implemented
in the DARSEC program, we compare the TASKx eigenvalues obtained using the KLI
approximation, as introduced in Section 4.2.1. As shown in Table 5.1, incorporating the
core density nc in the BTDFT calculation enhances agreement with the highly accurate
all-electron DARSEC results. For the CO molecule, including the core correction reduces
the deviation from 0.06 eV (without nc) to 0.03 eV (with nc). The improvement is
even more pronounced for Li2: without applying Eq. (5.1), the BTDFT results deviate
by 0.21 eV from the DARSEC calculation, whereas incorporating nc reduces the error to
0.12 eV.

The more pronounced effect of the core correction scheme in Eq. (5.1) for Li2
compared to CO can be attributed to the different electron configurations of the atoms
involved. With a single valence electron, the Li atom can mislead the iso-orbital indicator
α, causing it to spuriously identify one-orbital regions near the Li cores when evaluated
solely on the valence density. In contrast, for the C and O atoms, which have multiple
valence electrons, the evaluation of α is less prone to such errors, resulting in more
accurate predictions.

For the calculations presented in the following sections, we incorporate the core
density nc for the light atoms C, O, N, and Li to ensure that molecules containing these
elements are not affected by iso-orbital detection errors. Standard PPs are used for
heavier atoms with more than just 1s core electrons. This approach provided reliable
results when compared to all-electron calculations. For future work, the development of
consistent meta-GGA PPs or, as a first step, the use of a core kinetic energy density

τc(r) =
ℏ2

2m

∑

k
core states

|∇φc
k(r)|2 (5.5)

instead of nc in Eq. (5.1) would be desirable.

5.2 Meta-GGAs in TDDFT

In the TDGKS scheme, meta-GGAs are typically employed in an orbital-adiabatic
approximation where the meta-GGA expressions are evaluated with the time-dependent
orbitals. Since meta-GGAs depend on both the electron density and the kinetic energy
density, these quantities are computed as follows:

n(r, t) =
N∑

j=1

|φj(r, t)|2 (5.6)

and

τ(r, t) =
ℏ2

2m

N∑

j=1

|∇φj(r, t)|2 , (5.7)

with the number of valence electrons N . The kinetic energy density τ is well defined for
real-valued ground-state orbitals. However, conceptual difficulties arise when evaluating
τ using complex-valued, current-carrying time-dependent orbitals, as discussed by Bates
and Furche [BF12] and Bear and Kronik [BK18]. These challenges are discussed in the
next section.
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5.2.1 Conceptual Challenges for Kinetic Energy Density in TDDFT

The first conceptual issue with using τ in TDDFT becomes apparent when considering
the gauge transformation

Aext[Λ](r, t) = Aext(r, t) +∇Λ(r, t) (5.8)

vext[Λ](r, t) = vext(r, t)−
∂

∂t
Λ(r, t) (5.9)

of the external vector potential Aext and the external potential vext using the real-valued
gauge function Λ(r, t). This gauge transformation of the external potentials leads to a
time- and position-dependent phase in the KS orbitals

φj [Λ](r, t) = φj(r, t) exp

(
− ie

ℏ
Λ(r, t)

)
(5.10)

(with the imaginary unit i). Calculating the kinetic energy density with {φk[Λ]} leads to

τ [Λ](r, t) = τ(r, t)− e(∇Λ(r, t)) · jp(r, t) +
e2

2m
|∇Λ(r, t)|2n(r, t) , (5.11)

with the paramagnetic current density

jp(r, t) =
ℏ
m

N∑

j=1

Im
[
φ∗
j (r, t)∇φj(r, t)

]
. (5.12)

This result demonstrates that the kinetic energy density τ in TDDFT is not gauge
invariant. Since the exact xc functional is a pure functional of the density n(r, t), which is
inherently gauge invariant, the xc functional itself must also be gauge invariant. However,
in meta-GGAs, this invariance is not preserved due to the explicit dependence of the
GKS potential on τ .

While the gauge variance of the kinetic energy density is present in both the KS
and GKS frameworks, an additional issue arises exclusively within the GKS framework.
Specifically, the non-multiplicative term v̂mGGA within the GKS Hamiltonian leads to
a violation of the continuity equation, which can be seen as follows: Considering the
TDGKS equations

iℏ
∂

∂t
φj(r, t) = ĤGKS(r, t)φj(r, t) , (5.13)

with the TDGKS Hamiltonian (analogous to Eq. (4.27)),

ĤGKS(r, t) = −
ℏ2

2m
∇2 + vH(r, t) + v̂mGGA(r, t) + vext(r, t) , (5.14)

one can calculate the time derivative of the orbital density

∂

∂t
|φk(r, t)|2 =

1

iℏ

[
φ∗
k(r, t)ĤGKS(r, t)φk(r, t)− φk(r, t)ĤGKS(r, t)φ

∗
k(r, t)

]

=
2

ℏ
Im
[
φ∗
k(r, t)ĤGKS(r, t)φk(r, t)

]
.

(5.15)
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By substituting the GKS Hamiltonian from Eq. (5.14) and the definition of v̂mGGA from
Eq. (4.24) (along with its components from Eqs. (4.25) and (4.26)), we obtain

∂

∂t
|φk(r, t)|2 =

2

ℏ
Im

{
φ∗
k(r, t)

[
− ℏ2

2m
∇2φk(r, t) + [vH(r, t) + vloc(r, t) + vext(r, t)]φk(r, t)

− ℏ2

2m
∇ ·
(
∂emGGA

xc

∂τ
∇φk(r, t)

)]}

= −∇ ·
{

ℏ
m

Im [φ∗
k(r, t)∇φk(r, t)]

(
1 +

∂emGGA
xc

∂τ
(r, t)

)}
.

(5.16)

Finally, summing over all orbitals k leads to

∂n(r, t)

∂t
= −∇ ·

[
jp(r, t)

(
1 +

∂emGGA
xc

∂τ
(r, t)

)]
. (5.17)

This result demonstrates that the continuity equation no longer holds due to the
additional term involving ∂emGGA

xc /∂τ .
Both the gauge variance and the violation of the continuity equation can be restored

by replacing the kinetic energy density of Eq. (5.7) with the modified definition

τ̂(r, t) = τ(r, t)−m |jp(r, t)|
2

2n(r, t)
, (5.18)

as suggested by Becke [Bec02] and Tao [Tao05]. This modified kinetic energy density
can still be used to evaluate the iso-orbital indicator α. In the following, we denote the
approach using τ̂ as “CGKS” and the one using τ as “GKS”. With this modification, the
operator potential v̂GKS

τ (see Eq. (4.26)) is replaced by

v̂CGKS
τ̂ =

1

2m
π̂(r, t)

∂emGGA
xc

∂τ̂
(r, t)π̂(r, t), (5.19)

where
π̂(r, t) = p̂−m jp(r, t)

n(r, t)
. (5.20)

Here, p̂ = −iℏ∇ is the momentum operator. In Appendix A.3, we explicitly demonstrate
that the modified definition in Eq. (5.18) restores the continuity equation. Although the
continuity equation is not strictly satisfied for the individual orbital densities, it holds
“on average”.

The violation of the continuity equation is a specific problem in the GKS approach
due to the non-multiplicative nature of the GKS potential for meta-GGAs. Recently
performed TDDFT calculations [HK20] within the KS scheme do not suffer from this
deficiency due to the multiplicative KS potential. However, following the KS scheme
with orbital-dependent functionals, as described in Section 4.2.1, is limited to the KLI
approximation due to the complexity of the OEP equation. TDDFT calculations within
a GKS scheme using the current-density correction have been performed by Bates and
Furche [BF12] using the TPSS meta-GGA functional [Tao+03], where they found the
differences between GKS and CGKS to be relatively small. While these results provide
useful information for the TPSS meta-GGA, they may not be directly applicable to other
meta-GGAs, such as TASK and r2SCAN. In particular, the construction of TASK and
r2SCAN involves a stronger τ -dependence, which, as shown in Eq. (5.17) and Eq. (5.19),
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is directly related to the violation of the continuity equation. Therefore, the impact of
the current-density correction on these functionals within the GKS framework requires
further investigation. In the following, we investigate the influence of the current-density
correction on the excitation spectrum across various model systems, comparing the
results with experimental values. We begin by examining small diatomic molecules and
then analyzing conjugated aromatic molecules and an organic semiconductor system.

5.2.2 Time-Dependent (C)GKS Calculations Using the TASK Meta-
GGA Functional

Results for Diatomic Molecules

We begin by investigating the absorption spectra of the diatomic molecules CO and Li2
calculated with the TASKx meta-GGA (where “x” indicates that we are considering only
the exchange part of the xc functional without including any correlation functional).
The impact of combining the TASKx functional with the LDA correlation, referred
to as TASKx+LDAc, is explored as a subsequent step for both diatomic molecules.
Although for open-shell systems, the LDA-based self-interaction corrected correlation
(CC) functional from Ref. [LAK22] offers an alternative that improves upon standard
LDA correlation – particularly by removing SIEs and yielding accurate ground-state
energies for a wide range of systems – we employ the LDA correlation directly in this
work. This choice is justified for the closed-shell systems Li2 and CO, where the SIC in
the CC functional vanishes and, therefore, has no effect.

Since we have only assessed the relative accuracy of ground-state calculations using
core-corrected PPs for meta-GGAs, as discussed in Section 5.1, we now extend the
comparison to the absorption spectra. Specifically, we compare the results obtained
with the BTDFT program package with all-electron reference calculations performed using
the Turbomole code [Bal+20], which employs various Gaussian basis sets. For the CO
molecule, a bond length of 2.1421 a0 is used, following Ref. [Loo+18]. The computed
absorption spectra are shown with a Gaussian broadening of the spectral lines, given
by exp[−(ℏ(ω − ω0)/η)

2], where η = 0.025 eV and ℏω0 denotes the excitation energy.
The individual excitation energies are listed in detail in the supplementary material of
Ref. [Ric+23].

Figure 5.1 shows the vertical spectra calculated with BTDFT and Turbomole within
the TDGKS scheme, i. e., without using the current-density correction scheme for the
kinetic energy density. The left panel displays the TASKx spectra obtained without
including the LDA correlation. For the BTDFT calculations, we used a grid spacing of
0.2 a0 and a spherical grid with a radius of 15 a0. Increasing the grid radius to 22 a0
led to a negligible shift in the excitation energy of less than 0.01 eV. The Turbomole
results shown in the same panel are affected by the choice of Gaussian basis sets. As the
basis set size increases, the excitation energies systematically shift toward the values
obtained from the real-space real-time calculation. This trend is consistent with earlier
findings that the excitation spectrum of CO is highly sensitive to the completeness
of the basis set [HSK18]. The right panel of Fig. 5.1 shows a similar trend, though
the basis set dependence in the Turbomole calculations appears less pronounced when
incorporating the LDA correlation. The BTDFT results are shifted upward by ∼ 0.1 eV
from the TASKx to the TASKx+LDAc calculation. Since the results in the left and right
panels of Fig. 5.1 are qualitatively the same, we conclude that the differences between
BTDFT and Turbomole would disappear for calculations approaching numerical limits.

After establishing the numerical accuracy of our approach, we now turn to evaluating
the impact of the current-density correction scheme applied to the TASK functional.
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Figure 5.1: Vertical excitation spectra for CO calculated with BTDFT
and Turbomole using TASKx-GKS in panel (a) and
TASKx+LDAc in panel (b) using different basis sets.

The results for the CO molecule are presented in Fig. 5.2, which compares the excitation
spectra calculated with (CGKS) and without (GKS) the current-density correction,
using TASKx in panel (a) and TASKx+LDAc in panel (b). In both panels, the solid
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Figure 5.2: Vertical excitation spectra for CO calculated with (CGKS)
and without (GKS) the current-density correction, using
TASKx in panel (a) and TASKx+LDAc in panel (b).

lines correspond to calculations using the corrected kinetic energy density τ̂ , while the
dashed lines represent the uncorrected τ . The influence of the current-density correction
is substantial in both cases. For TASKx, using τ̂ instead of τ shifts the excitation energy
from 9.00 to 8.54 eV, corresponding to a redshift of 0.46 eV. A comparable redshift is
observed for TASKx+LDAc, where the excitation energy decreases from 9.10 to 8.64 eV.
These shifts bring the calculated excitation energies closer to our reference values. In
particular, the first experimental excitation energy for CO is reported at 8.51 eV [NJO80],
while a coupled-cluster calculation (CC3) calculation using Dunning’s aug-cc-pVQZ
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basis set [Dun89] yields a value of 8.47 eV [Loo+18].
The second diatomic molecule investigated is Li2, for which we chose a bond length of

5.051 a0 based on experimental data from Ref. [PJJ00]. Figure 5.3 shows the absorption
spectra calculated with our real-space real-time method (BTDFT) and linear-response
TDDFT (Turbomole) using TASKx-GKS without the current-density correction. For the
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Figure 5.3: Vertical excitation spectra for Li2 calculated with BTDFT and
Turbomole using TASKx-GKS.

BTDFT calculations, we employed a real-space grid with a radius of 15 a0 and a grid spacing
of 0.2 a0. TASKx-GKS calculations reveal two prominent excitation lines at 2.62 eV and
3.33 eV. Similar to the results for the CO molecule, the Turbomole calculations show a
strong dependence on the chosen basis set, which is particularly prominent for the second
excitation line. With the TZVPP basis set, the first excitation line closely matches
the BTDFT result, whereas the second excitation line deviates significantly. Increasing
the basis size to QZVPP and further to QZVPPD improves agreement and reduces the
deviation in the second excitation line to approximately 0.09 eV. This level of consistency
is expected, given the fundamental differences between the numerical frameworks of the
two methods. Interestingly, using the aug-cc-pVQZ basis set introduces larger deviations:
the second excitation line shifts to lower energies, and an additional third excitation line
emerges at higher energies. Since this calculation appears sensitive to numerical details
and reveals a previously unseen excitation, we consider the QZVPP/QZVPPD results to
be the most reliable for our Turbomole calculations.

After verifying the numerical accuracy of our real-space real-time approach, we
examine the influence of the current-density correction on the TASKx meta-GGA applied
for the Li2 system. The results from our BTDFT calculations are presented in Fig. 5.4.
The dashed line represents the TASKx results obtained from calculations without the
current-density correction (GKS), whereas the solid line corresponds to results from
calculations that include the correction (CGKS). For the TDGKS calculations, the two
prominent excitation lines are located at 2.63 eV and 3.33 eV. When incorporating the
current-density correction (CGKS), these excitation energies undergo significant redshifts
to 1.90 eV and 2.46 eV, corresponding to shifts of 0.73 eV and 0.87 eV for the first and
second excitation lines, respectively.

In order to evaluate the effect of the current-density correction, our results are com-
pared to experimental reference values and to CC3 calculations reported in Ref. [PJJ00].
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Figure 5.4: Vertical excitation spectra for Li2 calculated with (CGKS)
and without (GKS) the current-density correction using
TASKx.

Using the harmonic approximation, we calculated the vertical excitation energies based
on the reported data. From this, we determined the two prominent excitation lines to
be at 1.86 eV and 2.57 eV for the experimental data and at 1.83 eV and 2.57 eV for the
CC3 calculations. Comparing this reference data with our findings for TASKx reveals,
similar to the CO calculations, that including the current-density correction leads to
significantly improved agreement with the reference data. For the first excitation line,
the relative error is reduced from 40.9% with TASKx-GKS to 2.2% with TASKx-CGKS,
and for the second excitation line, it is reduced from 29.6% to 4.3%. Therefore, the
results suggest that the current-density correction has a significant impact, with the
CGKS results showing better agreement with the reference values.

Results for Organic Molecules

Having examined diatomic molecules, we now turn our attention to organic molecules.
As a starting point, we investigate the impact of the current-density correction on the
absorption spectrum for benzene (C6H6), a well-established model system characterized
by its π electron configuration. Our results using the real-space real-time approach
are shown for TASKx in Fig. 5.5. Looking at the energy range in which the excitation
spectrum is plotted in Fig. 5.5, it becomes evident that the energy shift from GKS to
CGKS for benzene is smaller compared to the previous results for CO and Li2. The
prominent excitation line for TASKx-GKS is located at 7.62 eV, while for TASKx-CGKS,
it shifts to 7.48 eV, resulting in a smaller energy shift of 0.14 eV compared to our previous
results. A possible explanation for the smaller shift lies in Eq. (5.17), which quantifies
the extent to which the continuity equation is violated. This equation shows that
the violation is directly related to the derivative ∂emGGA

xc /∂τ of the energy density (or
enhancement factor) of the employed meta-GGA functional. For the TASK meta-GGA,
the magnitude of this derivative is intentionally increased to enhance its (ultra-)nonlocal
features. However, this derivative’s specific value depends on the system’s physical
properties under investigation, including the values of n, s, and α, which parameterize
the meta-GGA functional. This derivative is expected to be less pronounced for systems
closely resembling the homogeneous electron gas, as the meta-GGA functionals TASK
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Figure 5.5: Vertical excitation spectra for benzene (C6H6) calculated with
(CGKS) and without (GKS) the current-density correction
using TASKx.

and r2SCAN are designed to recover the correct homogeneous electron gas limit. In the
case of benzene, its aromatic ring structure implies that the electronic distribution is
more homogeneous compared to the diatomic molecules CO and Li2. Consequently, the
magnitude of ∂emGGA

xc /∂τ is expected to be smaller, leading to a reduced violation of the
continuity equation and, in turn, a smaller influence of the current-density correction.

In addition to the smaller energy shift, it is also evident that, unlike the diatomic
molecules, where a notable reduction in oscillator strength was observed when transition-
ing from GKS to CGKS calculations, Fig. 5.5 indicates a marginal increase in oscillator
strength for benzene.

Next, we focus on the organic semiconductor molecule NDI-1. This molecule exhibits
a CT excitation as its first spectral line. The naphthalene diimide core of NDI-1 serves
as an acceptor region, while the thiophene units attached to the molecule act as donor
regions, enabling a CT process. This phenomenon has been extensively studied in
previous works [Kar+11; HK20], as NDI-1 was specifically designed for applications in
organic solar cells.

In contrast to the previously studied molecules, which consist solely of 1s core orbitals,
the NDI-1 molecule also includes sulfur (S) atoms. For sulfur, the core correction to the
kinetic energy density, as defined in Eq. (5.1), is not applicable. Therefore, we apply
the core correction only to the PPs for atoms with 1s-like core electrons. For all other
cases, we use standard Troullier-Martins PPs [TM91]. Detailed parameters for these PPs
can be found in the supplementary material of Ref. [Ric+23]. To evaluate whether this
approximation introduces deviations compared to all-electron calculations, we explicitly
compare our real-space real-time results with those obtained using Turbomole with the
QZVPP basis set, as shown in Fig. 5.6. The vertical excitation spectra calculated with
BTDFT and Turbomole using the TASKx meta-GGA exhibit close agreement, with a
slight deviation of 0.04 eV for the CT excitation, labeled with “CT”. This agreement
indicates that neglecting the core correction for the sulfur atoms in the PP does not
introduce significant errors in the excitation spectra.

Figure 5.7 illustrates the vertical excitation spectra of NDI-1 calculated using TASKx
without (GKS) and with (CGKS) the current-density correction, employing our real-
space real-time method. Including the current-density correction results in only minor
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Figure 5.6: Vertical excitation spectra for NDI-1 calculated with BTDFT
and Turbomole using TASKx-GKS.
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Figure 5.7: Vertical excitation spectra for NDI-1 calculated with (CGKS)
and without (GKS) the current-density correction using
TASKx.

differences between the two calculations. Specifically, the CT excitation energy is
2.05 eV for TASKx-GKS and 2.03 eV for TASKx-CGKS, resulting in a minimal shift of
0.02 eV. Moreover, given that the TASK meta-GGA is specifically designed to exhibit
(ultra-)nonlocal features, comparing the CT excitation energy predicted by TASK to
results obtained with other xc approximations is particularly interesting. For instance, the
time-dependent LDA (TDLDA) functional predicts the CT excitation energy at 1.69 eV
with GGA functionals yielding similar values. In contrast, an optimally tuned range-
separated hybrid functional predicts a significantly higher excitation energy of 2.52 eV,
which closely matches experimental observations [Kar+11]. These findings highlight
the well-documented underestimation of CT excitations by (semi-)local functionals such
as the LDA and GGAs. This limitation can be partly attributed to the absence of a
derivative discontinuity in these functionals, as discussed in Section 4.3 [Toz+99]. The
TASK meta-GGA, however, is explicitly designed to incorporate a reasonably sized
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derivative discontinuity [AK19], which leads to an upward shift in the CT excitation
energy by approximately 0.36 eV, improving its alignment with the experimental value.
Nevertheless, while the TASK meta-GGA demonstrates significant improvement over
the TDLDA, it can still not resolve the CT problem. Its prediction remains noticeably
below both the experimental value and the result obtained with a range-separated hybrid
functional, indicating that further improvements are necessary for accurately capturing
the CT excitation.

These findings are further supported by the results from our final model system, a
coupled system of two Bacteriochlorophyll (BChl) molecules. The two chromophores
under consideration, BChl-302 and BChl-303, are part of the B850 ring in the light-
harvesting complex 2 of the purple bacterium Rhodoblastus acidophilus. The absorption
spectrum of a single BChl molecule is characterized by two prominent excitation lines,
the Qy and Qx excitation. The interaction between the two molecules in the coupled
system of BChl-302 and BChl-303 results in four excitations: two coupled Qy excitations
and two Qx excitations. The Qy excitations form a J-aggregate, consisting of one
symmetric coupled excitation with a high oscillator strength and one antisymmetric
coupled excitation with a low oscillator strength [SK18]. In contrast, the Qx excitations
are only weakly coupled and primarily show the characteristics of the individual BChl-
302 and BChl-303 molecules. Figure 5.8 shows the absorption spectrum of the coupled
system for different xc approximations. The dotted line in the left panel represents

Figure 5.8: Vertical excitation spectra for the combined BChl-302-BChl-
303 molecular system calculated with TDLDA and ωPBE in
panel (a) and TASKx-GKS and TASKx-CGKS in panel (b).
Small arrows below the energy axis highlight excitations with
very low oscillator strength that lie close to stronger ones.

the excitation spectrum calculated using the optimally tuned range-separated hybrid
functional ωPBE, as adapted from Ref. [Sch+19]. This spectrum exhibits the expected
result of two Qy lines around 1.8 eV: one with a high oscillator strength just below 1.8 eV
and another with a low oscillator strength slightly above 1.8 eV. Additionally, two Qx

lines are observed in the energy range of 2.2 to 2.3 eV. Within the energy range shown
in Fig. 5.8, an additional excitation with a small oscillator strength is present, which is
marked by a small arrow below the energy axis. The left panel of Fig. 5.8 also shows
the absorption spectrum calculated using the TDLDA functional. Here, the typical
shortcomings of (semi-)local functionals in describing CT excitations become evident.
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While the weak coupling between the two Qx excitations is captured similarly to the
ωPBE functional, with a slight shift to lower energies, the Qy coupling is significantly
affected by spurious CT excitations. Near the expected two coupled Qy lines, four
additional spurious excitations appear around 1.8 eV, as indicated by small arrows below
the energy axis.

The absorption spectra calculated using the TASKx meta-GGA, both with and
without the current-density correction, are presented in the right panel of Fig. 5.8.
Consistent with the results for NDI-1, the influence of the current-density correction is
negligible. However, evaluating the TASKx meta-GGA’s ability to accurately describe
the spectrum of the combined BChl-302-BChl-303 system is less straightforward. While
the number of spurious CT excitations near the Qy line is reduced compared to the
TDLDA results, one spurious line appears even below the Qy line, and another emerges
near the coupled Qx excitations. These findings confirm the results for NDI-1, indicating
that the TASKx meta-GGA improves the TDLDA results but cannot fully address the
CT problem.

5.2.3 Time-Dependent (C)GKS Calculations Using the r2SCAN Meta-
GGA Functional

Results for Diatomic Molecules

We now examine the impact of the current-density correction when using the r2SCAN
meta-GGA functional [Fur+20a; Fur+20b]. For a direct comparison with the exchange
functional TASK, we only consider the exchange part of the r2SCAN functional. An
additional reason for this choice is that the derivative ∂emGGA

xc /∂τ , and consequently
the derivative discontinuity, exhibits the opposite sign in the correlation part of r2SCAN
compared to its exchange part. As indicated by Eq. (5.17), the opposite sign of this
derivative within the correlation part is expected to cause a shift in the excitation
line in the opposite direction when applying the current-density correction, thereby
counteracting the effect of the correction on the exchange part of the r2SCAN functional.

The absorption spectra for CO (Fig. 5.9a) and Li2 (Fig. 5.9b), calculated using our
real-space real-time propagation scheme with the r2SCANx meta-GGA, both with and
without the current-density correction, are shown in Fig. 5.9. For CO, we observe a
notable shift of the prominent excitation line from r2SCAN-GKS to r2SCAN-CGKS. The
excitation energy decreases from 8.82 eV (r2SCAN-GKS) to 8.46 eV (r2SCAN-CGKS),
corresponding to a shift of 0.36 eV. Although this shift is smaller than that observed for
TASKx, it remains significant. Similar to TASKx, by introducing the current-density
correction, the r2SCAN results show closer agreement with the reference value.

The absorption spectra for the Li2 molecule reveal an analogous trend. As shown in
the right panel of Fig. 5.9, the first excitation line exhibits a redshift of 0.22 eV, from
2.15 eV (r2SCAN-GKS) to 1.93 eV (r2SCAN-CGKS). The second excitation line shifts
by 0.28 eV, from 2.77 to 2.49 eV. Both excitation energies obtained with r2SCAN-CGKS,
i. e. with the current-density correction, are in closer agreement with the experimental
reference values of 1.86 eV and 2.57 eV, respectively.

Results for Organic Molecules

Regarding our first organic model system, benzene, Fig. 5.10 illustrates the difference
between r2SCAN-GKS and r2SCAN-CGKS. Similar to our observations for TASKx, the
influence of the current-density correction for benzene is significantly smaller than for
CO and Li2, with a redshift of the prominent excitation line of just 0.07 eV. This can

41



Chapter 5. Meta-Generalized Gradient Functionals in Generalized Kohn-Sham

0

0.05

0.1

0.15

0.2

0.25

8.2 8.4 8.6 8.8 9 9.2 9.4

r2SCANx-GKS
r2SCANx-CGKS

Energy (eV)

O
sc
il
la
to
r
st
re
n
gt
h

(a) Vertical excitation spectrum for CO.
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(b) Vertical excitation spectrum for Li2.

Figure 5.9: Vertical excitation spectra for CO (left panel) and Li2 (right
panel) calculated with (CGKS) and without (GKS) the
current-density correction.
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Figure 5.10: Vertical excitation spectra for benzene (C6H6) calculated
with (CGKS) and without (GKS) the current-density cor-
rection using r2SCANx.

again be attributed to the dependence of the current-density correction in Eq. (5.17)
on ∂emGGA

xc /∂τ and the electronic structure of the benzene molecule, which is closer
to that of the homogeneous electron gas compared to CO or Li2. The smaller energy
shift observed for r2SCANx compared to TASKx can be further explained by the weaker
τ -dependence of the r2SCANx meta-GGA relative to the TASKx meta-GGA.

The results using the r2SCANx meta-GGA for the NDI-1 molecule are presented in
Fig. 5.11. The absorption spectrum exhibits a trend comparable to that observed for
TASKx: the differences between r2SCAN-GKS and r2SCAN-CGKS are negligible, with
an energy shift of less than 0.01 eV for the CT excitation. When comparing the two
meta-GGAs, the CT excitation for r2SCAN-CGKS occurs at 1.92 eV, which is slightly
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Figure 5.11: Vertical excitation spectra for NDI-1 calculated with
(CGKS) and without (GKS) the current-density correction
using r2SCANx.

lower than the corresponding TASKx-CGKS result of 2.04 eV. As a result, r2SCAN-
CGKS deviates more from the reference value of 2.52 eV (computed using ωPBE) than
TASKx-CGKS. This finding suggests that TASKx, with its design focusing on a stronger
τ -dependence and a more pronounced derivative discontinuity, more effectively mitigates
the spurious downshift of the CT excitation.

Finally, the results for our last model system, the combined BChl-302-BChl-303
system, are shown in Fig. 5.12. Again, the current-density correction has a minor effect.
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Figure 5.12: Vertical excitation spectra for the combined BChl-302-BChl-
303 system calculated with (CGKS) and without (GKS) the
current-density correction using r2SCANx.

Both r2SCANx and TASKx describe the coupling of the Qy excitations between the
individual BChl molecules with comparable accuracy. However, r2SCAN introduces a
spurious CT excitation just below the coupled Qy excitations.
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The situation becomes more complex in the energy range of the Qx excitations. With
r2SCANx, two spurious CT excitations appear near the weakly coupled excitations. In
contrast, the TASKx absorption spectrum (shown in the right panel of Fig. 5.8) reveals a
single spurious CT excitation, which is separated from the coupled Qx lines. As a result,
the coupling of the Qx lines is more distorted in r2SCANx due to the presence of two
closely spaced spurious CT excitations. In summary, while TASKx provides a slightly
better description of the CT excitations compared to r2SCANx, neither functional
achieves the level of accuracy achieved by the tuned range-separated hybrid ωPBE.

5.3 Summary and Conclusion

This chapter demonstrated using the r2SCAN and TASK functionals in real-space
real-time TDDFT within the TDGKS scheme. We compared the results for different
model systems with and without using a current-density correction that restores gauge
invariance and addresses the violation of the continuity equation caused by the meta-
GGA potential operator within the GKS framework. Additionally, we introduced an
approach to improve the reliability of using non-consistent PPs in meta-GGA calculations
by applying a core correction scheme. This approach led to enhanced accuracy, making
the results comparable to those obtained from all-electron calculations.

Our results using the current-density correction for TASKx and r2SCANx demonstrate
that the correction can significantly influence the energetic positions of the excitation
lines. The most pronounced effect is observed for the excitation spectrum of the Li2
system, where the excitation energy shifts by more than 0.8 eV. In general, we observed
a downshift in the calculated excitation energies for all model systems considered
when transitioning from GKS to CGKS calculations, i. e., when including the current-
density correction. Furthermore, for TASKx and r2SCANx, applying the current-density
correction results in better agreement with our reference values for the excitation energies
of the diatomic systems. For larger conjugated organic molecules, the influence of the
current-density correction (nearly) vanished. This can be explained by the following:
Since the violation of the continuity equation depends on the derivative ∂emGGA

xc /∂τ
(see Eq. (5.17)), the influence of the current-density correction is a direct consequence
of the differences in the electronic structure of the different systems to which emGGA

xc

is sensitive. Specifically, the magnitude of ∂emGGA
xc /∂τ is a direct consequence of the

system-dependent values of n, ∇n and τ upon which the meta-GGAs are parametrized.
This is particularly evident for the r2SCANx meta-GGA, whose τ -derivative of the
enhancement factor is constructed to vanish in the homogeneous electron gas limit. As
a result, the influence of the current-density correction is reduced for conjugated organic
molecules with more delocalized densities, compared to the more localized densities
of diatomic model systems such as CO and Li2. Furthermore, because the TASKx
meta-GGA is intentionally constructed to exhibit higher absolute values of ∂emGGA

xc /∂τ
(and thus stronger nonlocal features, see Eq. (4.11)), the absorption spectra calculated
with TASKx generally exhibit a more pronounced influence from the current-density
correction. However, since it is challenging to predict the influence of the current-density
correction across different systems and meta-GGA functionals, applying it in all TDDFT
calculations that employ meta-GGAs is recommended.

Looking at the somewhat better description of CT excitations by the TASK meta-
GGA, the findings are in line with the construction strategies of the functionals, with
r2SCAN focusing on the ground-state energetics and TASK focusing on incorporating
(ultra-)nonlocal features. However, neither functional can achieve the accuracy of
optimally tuned range-separated hybrid functionals for CT excitations. This result is,
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to some extent, expected: although the TASK functional is intentionally designed to
exhibit a reasonably sized derivative discontinuity [Gis+99; KKP04; KK18] other factors,
such as freedom from self-interaction and correct asymptotic behavior, remain important
for accurately describing CT excitations. However, both TASK and r2SCAN are not free
from self-interaction, as they cannot entirely cancel the nonlocal SIE of the Hartree term,
and their corresponding potentials exhibit exponential decay rather than the correct
asymptotic behavior of −1/r.
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Chapter 6

Self-Interaction Correction in
Density Functional Theory

While meta-GGA functionals provide accurate results for many physical properties – such
as the atomization energies of molecules, surface energies of metals, lattice constants of
solids, and band gaps of solids [KPB99; SRP15; AK19; LAK24] – the previous chapter
demonstrated that the considered meta-GGAs cannot resolve the CT problem inherent
to (semi-)local xc approximations. A systematic underestimation of CT excitation
energies in molecules characterizes this problem. The TASK meta-GGA functional
attempts to mitigate this issue by incorporating a derivative discontinuity that introduces
field-counteracting terms, thereby shifting these excitation energies closer to their
accurate, higher values. However, TASK and r2SCAN still fall short of the accuracy
of describing CT excitations in molecules achieved by optimally tuned range-separated
hybrid functionals [SKB09; Mai17; Küm17; Sch+19; Ric+23]. A known limitation of
meta-GGA functionals that contributes to their deficiency in describing CT excitations is
their inability to eliminate the spurious SIE (see Section 3.2) introduced by the Hartree
energy term [DWH03; KK08]. Additionally, the xc potential derived from meta-GGA
functionals does not exhibit the correct asymptotic behavior, further restricting their
ability to describe long-range interactions accurately [Mai17; KK20].

For ground-state DFT calculations, these shortcomings lead to a delocalization error
in (semi-)local xc approximations, which manifests as a failure to satisfy the straight-line
condition, introduced in Section 3.3 [Per+82; YZA00; Bry+23]. This violation of the
piecewise linearity can be explicitly demonstrated for the diatomic CO model system.
Figure 6.1 illustrates the energy curves E(N) for the CO molecule, calculated with the
LSDA and the TASK functional (with LSDA correlation) within the GKS framework.
The straight-line reference, which connects E(N0) and E(N0− 1), is indicated by dotted
and dashed lines, where N0 denotes the number of electrons in the neutral system. The
E(N) curve (with N = N0 + ∆N) for LSDA exhibits the strongly convex behavior
characteristic of (semi-)local xc approximations. While the TASK-GKS energy curve
shows a slightly smaller curvature than the LSDA energy curve, it still has a pronounced
convex shape, violating the piecewise linearity condition.

Both the (one-electron) SIE as well as the wrong asymptotic behavior can be
addressed using a SIC scheme introduced by Perdew and Zunger [PZ81] that replaces
the xc energy functional Exc[n↑, n↓] in the ground-state energy functional by

ESIC
xc [{φiσ}] = Eapp

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑

i=1

(
EH[|φiσ|2] + Eapp

xc [|φiσ|2, 0]
)
, (6.1)

where EH[|φiσ|2] is the Hartree energy, Eapp
xc [|φiσ|2, 0] represents the xc approximation,

both evaluated with the orbital density |φiσ|2, and Nσ is the number of particles with
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Figure 6.1: Total energy E(N0 +∆N) relative to the energy E(N0) of
the neutral CO molecule as a function of the electron number
∆N (difference to neutral CO), calculated with LSDA and
TASK-GKS. The dotted and dashed lines are the straight
lines that connect E(N0) and E(N0 − 1).

spin σ. The basic idea of the Perdew-Zunger self-interaction correction (PZ-SIC) is to
identify the energy contribution arising from the interaction of a single orbital with itself
and to subtract this spurious self-interaction from an existing xc approximation Eapp

xc .
It is important to note that interpreting the orbital density as the contribution of a
single electron to the total density is already an approximation. While the PZ-SIC can
be generally applied to any xc approximation, it was initially formulated for the LDA
functional. Due to the explicit dependence of Eq. (6.1) on the orbital densities |φiσ|2,
this energy functional introduces several challenges, which are thoroughly discussed in
this chapter. First, we briefly discuss a simplified approximation of the full PZ-SIC that
circumvents these challenges.

6.1 Average Density Self-Interaction Correction

The average density self-interaction correction (ADSIC) [LSR02; Mes+11; Klü+13]
provides a substantially simplified alternative to the PZ-SIC expression in Eq. (6.1).
Within the ADSIC approach, the orbital densities |φiσ|2 are approximated by their
average values, yielding the energy functional

EADSIC
xc [n↑, n↓] = Eapp

xc [n↑, n↓]−
(
NEH

[ n
N

]
+N↑E

app
xc

[
n↑
N↑

, 0

]
+N↓E

app
xc

[
0,
n↓
N↓

])
,

(6.2)
where N↑ and N↓ denote the number of spin-up and spin-down electrons, respectively,
and N = N↑ + N↓ is the total number of electrons. The computational cost of the
ADSIC is significantly lower than that of the full PZ-SIC or functionals that employ
the exact exchange functional. Similar to the full PZ-SIC, Eq. (6.2) can, in principle,
be applied to any xc approximation but is typically used with the LSDA functional.
One of the key advantages of the ADSIC is that it solely depends on the density, which
avoids the technical challenges associated with orbital-dependent functionals, such as
the need for the OEP method or a GKS scheme. Therefore, the xc potential can be
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directly obtained by the functional derivative δEADSIC
xc /δnσ. The resulting potential

exhibits the correct asymptotic behavior of −1/r.
The ADSIC approach has demonstrated reliable accuracy in describing ionization

processes for several model systems [Mes+11; Klü+13; Dun+17]. However, it fails to
satisfy the straight-line condition, which can be demonstrated for our diatomic test
system, the CO molecule: the E(N) curve obtained with ADSIC, as shown in Fig. 6.2,
exhibits no improvement over the LSDA results.
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Figure 6.2: Total energy E(N0 +∆N) relative to the energy E(N0) of
the neutral CO molecule as a function of the electron number
∆N (difference to neutral CO), calculated with LSDA and
LSDA-ADSIC. The dotted and dashed lines are the straight
lines that connect E(N0) and E(N0 − 1).

This finding is consistent with our previous study in Ref. [Keh+20], where we
demonstrated that the application of the ADSIC in TDDFT fails to properly describe
the absorption spectrum of the BChl-302 molecule, one of the two components of the
combined BChl-302-BChl-303 system introduced in Section 5.2. We identified multiple
spurious CT excitations in the energy range between the Qy and Qx excitation lines,
resulting in a qualitatively similar (and in some cases even worse) description of CT
excitations compared to the TDLDA results (for details, see Ref. [Keh+20]). In addition
to the explicit dependence of the energy functional in Eq. (6.2) on the particle number,
which breaks the size consistency of the ADSIC approach, the replacement of the orbital
density |φiσ|2 in the PZ-SIC expression with the averaged value nσ/Nσ renders ADSIC
a global functional. As a result, it cannot fully correct the intrinsically nonlocal SIE
introduced by the Hartree term in KS theory. Moreover, since the ADSIC depends solely
on the density, it lacks a derivative discontinuity and, therefore, cannot provide the
necessary field-counteracting effect against an external potential driving the CT process.
Consequently, this simplified SIC scheme fails to resolve the CT problem inherent to
(semi-)local xc approximations.

6.2 Perdew-Zunger Self-Interaction Correction Energy
Functional

Since the simplified ADSIC functional fails to accurately fulfill the straight-line condition,
we revert to the original PZ-SIC formulation given by Eq. (6.1). The full ground-state
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energy functional using the PZ-SIC can then be expressed as

ESIC = Ekin+Eext[n]+EH[n]+E
app
xc [n↑, n↓]−

∑

σ=↑,↓

Nσ∑

i=1

(EH[niσ] + Eapp
xc [niσ, 0])

︸ ︷︷ ︸
=ESIC

xc

, (6.3)

where niσ = |φiσ|2 is the orbital density, and n =
∑

σ=↑,↓
∑Nσ

i=1 niσ is the total electron
density.

The PZ-SIC formulation of the xc energy functional offers several formal advantages:
For any one-electron system with a single occupied orbital φ1↑, the PZ-SIC energy
correction in Eq. (6.3) simplifies to ESIC

xc = −EH[|φ1↑|2], exactly canceling the Hartree
energy EH[|φ1↑|2]. Consequently, the PZ-SIC provides an exact description for all one-
electron densities. At the same time, any SIC would be redundant for the exact xc
functional, as it satisfies EH[niσ] + Exc[niσ] = 0. This condition is correctly maintained
within the PZ-SIC. Beyond eliminating SIEs, the PZ-SIC ensures that the corresponding
SIC potential exhibits the correct asymptotic behavior of −1/r. Unlike the uncorrected
LSDA or LSDA-ADSIC, using the LSDA (or a GGA) in combination with the PZ-SIC
introduces a derivative discontinuity due to its explicit orbital dependence of the self-
Hartree and self-xc terms in Eq. (6.3) [KK08; Per90]. Furthermore, in contrast to the
simplified ADSIC approach, the full PZ-SIC energy functional preserves size consistency
[Per90].

While the PZ-SIC energy functional offers several formal advantages, its special
dependence on orbital densities has several challenging consequences: In principle, the
PZ-SIC defined in Eq. (6.1) can be applied to any given xc approximation. However,
since most xc functionals are designed for ground-state densities that do not exhibit
nodal planes, it remains unclear whether their evaluation on orbital densities is fully
justified. Additionally, because the xc functional directly depends on orbital densities,
the PZ-SIC energy functional is not invariant under unitary transformations of the
occupied orbitals, a property of the xc functional that is discussed in Section 3.6.2.
Consequently, the total ground-state energy obtained from the PZ-SIC can change under
a unitary transformation, described by a (unitary) matrix Uσ, of the occupied orbitals,
even though the ground-state density itself remains unchanged. This transformation
maps an initial set of orbitals {φiσ} to a new set {φ′

iσ} as follows:

φ′
iσ(r) =

Nσ∑

j=1

Uijσφjσ(r) . (6.4)

In practice, the unitary transformation that minimizes the PZ-SIC ground-state energy
functional typically results in more localized orbitals, as these tend to increase the
magnitude of the correction terms in Eq. (6.1).

In order to find the minimum of the PZ-SIC energy functional (Eq. (6.3)), its explicit
orbital dependence (or implicit density dependence) can be addressed in two ways.
The first approach, within the KS framework, involves treating orbital-dependent xc
functionals using the OEP scheme. For the PZ-SIC, this method has been extensively
discussed in previous works [Hof+12; HK12; HKK12]. However, solving the full OEP
integral equation and extending this formalism to the time-dependent regime poses well-
known challenges, as previously outlined. Consequently, applying the PZ-SIC through
the OEP method is primarily restricted to ground-state calculations.

The second approach is based on the original formulation of the SIC by Perdew and
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Zunger [PZ81] where the energy functional of Eq. (6.3) is directly minimized with respect
to the orbitals. However, the resulting ground-state orbitals are no longer automatically
orthonormal. While for ground-state calculations of atoms, it has been shown that the
orthogonality constraint has a negligible impact on physical results [PZ81; HHL83], for
molecules, it has been demonstrated that the missing orthogonality of the orbitals can
have a decisive impact [PHL85]. In this work, we adopt the approach of minimizing
the energy functional in Eq. (6.3) while enforcing the orthonormality of the orbitals, as
detailed in the following section.

6.3 Minimization of the PZ-SIC Energy Expression

The direct variation of the ground-state energy expression using the PZ-SIC (Eq. (6.3))
leads to

δESIC[{φiσ}]
δφ∗

iσ(r)
= Ĥiσφiσ(r) (6.5)

with a set of orbital-dependent Hamilton operators

Ĥiσ = − ℏ2

2m
∇2 + vext(r) + vH[n](r) + vxc[n↑, n↓](r) + vSI[niσ](r) , (6.6)

where

vSI[niσ](r) =−
δ

δniσ


 ∑

σ′=↑,↓

Nσ′∑

j=1

EH[njσ′ ] + Exc[njσ′ , 0]




=− [vH[niσ](r) + vxc[niσ, 0](r)]

(6.7)

is the orbital-specific SIC potential term with the orbital density niσ = |φiσ|2. Since the
Hamilton operator Ĥiσ in Eq. (6.6) depends on the specific orbital index iσ, the orbitals
themselves are no longer eigenfunctions of the same Hamiltonian. Consequently, the
resulting orbitals are not automatically orthogonal. To ensure orthogonality between
the orbitals, it is necessary to explicitly incorporate the orthogonality constraint using a
Lagrange multiplier λjiσ, thereby defining the new energy functional [HHL83]

S[{φiσ}] = ESIC[{φiσ}]−
∑

σ=↑,↓

Nσ∑

i,j=1

λjiσ (⟨φiσ|φjσ⟩ − δij) . (6.8)

The variation of S[{φiσ}] with respect to φ∗
iσ leads to

Ĥiσφiσ(r) =

Nσ∑

j=1

λjiσφjσ(r) with (6.9a)

λσ = λ†
σ , (6.9b)

where the hermiticity of λσ (i. e. Eq. (6.9b)) is explicitly derived in Appendix B.1.
Projecting Eq. (6.9a) onto a single state yields the expression

λjiσ = ⟨φjσ|Ĥiσ|φiσ⟩ (6.10)

for the Lagrange multiplier [KKJ11; KKJ12; Bor+15; Mes+09]. Solving the ground-state
Eq. (6.9a) with Eq. (6.9b) yields the energy-minimizing orbitals. Since these orbitals are

51



Chapter 6. Self-Interaction Correction in Density Functional Theory

typically more localized than the KS ground-state orbitals, they are often referred to as
localized orbitals. For these localized orbitals, Fermi-Löwdin orbitals (FLOs) have been
used in various studies [PRP14; Ped15]. FLOs are commonly constructed by applying a
predetermined localization criterion to the KS orbitals. In contrast to this approach,
we employ a variational method to determine the unitary transformation that directly
minimizes the PZ-SIC energy functional with respect to the unitary transformation
[PHL84; PHL85].

Unlike the (generalized) KS equations, Eq. (6.9a) is not an eigenvalue equation of a
single hermitian Hamiltonian. As a result, the localized orbitals are not necessarily real-
valued eigenfunctions but are generally complex-valued. This introduces an additional
degree of freedom in the energy minimization during the ground-state calculation. The
importance of using complex orbitals in PZ-SIC ground-state calculations has already
been highlighted, for instance, in Refs. [KKJ11; Hof+12; LHJ16].

Due to the intricate form of Eqs. (6.9) compared to the well-known KS equations,
the practical computation of the PZ-SIC ground state is technically challenging, and
various algorithms have been developed [GU97; KKJ11; Hof+12; Bor+15]. In principle,
the PZ-SIC ground state can be obtained by directly solving Eq. (6.9a) (with Eq. (6.9b))
using methods such as steepest descent or damped gradient schemes [GU97; Küm04;
Mes+11; Bor+15; LHJ16]. Among the available techniques for the minimization step, we
focus on the straightforward and transparent damped gradient method. In this approach,
the orbitals are iteratively updated from step k to step k + 1 according to the equation

φ
(k+1)
iσ (r) = φ

(k)
iσ (r)− d

t̂+ e
δφ

(k)
iσ (r) , (6.11)

where δφ(k)
iσ represents the search direction. Here, t̂ = −ℏ2/(2m)∇2 is the kinetic energy

operator, while d and e are real-valued parameters controlling the step size and providing
stabilization for components with low kinetic energy, respectively. Since the denominator
of Eq. (6.11) is an operator, the equation is usually multiplied by t̂+ e to transform it
into a linear equation, which can then be solved using standard algorithms to obtain
φ
(k+1)
iσ . After each damped-gradient iteration step, the new orbitals {φ(k+1)

iσ } must be
normalized and the orbital-dependent Hamilton operators {Ĥiσ} with the new set of
orbitals and the corresponding density n(k+1) must be calculated.

For the search direction δφ(k)
iσ at the kth iteration step, the gradient expression

δS[{φiσ}]
δφ∗

iσ(r)
= Ĥiσφiσ(r)−

Nσ∑

j=1

λjiσφjσ(r) (6.12)

is typically chosen. However, Goedecker and Umrigar [GU97] proposed an alternative
gradient formulation that directly incorporates the hermitian constraint of the Lagrange
multiplier in Eq. (6.9b) during the minimization of the energy functional. This approach
modifies Eq. (6.12) by replacing λjiσ with the symmetrized expression 1/2(λjiσ + λ∗ijσ),
thereby ensuring that the hermiticity of λσ is automatically preserved throughout the
iteration steps. Since we explicitly ensure the hermiticity of λσ through a unitary
transformation of the orbitals, the two gradient formulations are equivalent, as detailed
below.

Several studies have reported that the direct minimization scheme for calculating the
PZ-SIC ground state exhibits poor convergence [Bor+15; Mes+09; Mes+11]. This poor
convergence observed in the calculation of the PZ-SIC ground state compared to standard
algorithms for solving the KS equations can be attributed to the fact that the PZ-SIC
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energy functional of Eq. (6.1) is no longer invariant under uniform transformations. To
handle the unitary variance of the energy functional and to improve the convergence of
the algorithm, a two-step minimization procedure has been proposed:

The first step, or outer loop, involves the direct minimization of the energy functional
with respect to the orbitals

min
{φiσ(r)}→n(r)

S[{φiσ}] , (6.13)

which can be performed using the damped gradient steps described above. The second
step, or inner loop, focuses on minimizing the energy functional with respect to unitary
transformations of the orbitals

min
Uσ

S[{φiσ}] = min
Uσ

ESIC[{φiσ}] . (6.14)

For the inner loop minimization step, the derivative of the energy expression in Eq. (6.3)
with respect to an infinitesimal unitary transformation is required. This derivative was
first calculated for orthogonal transformations by Pederson et al. [PHL84] and can be
straightforwardly extended to infinitesimal unitary transformations, yielding the gradient
[Hof+12]

Gijσ =
∂ESIC

∂U∗
ijσ

∣∣∣∣∣
U∗
ijσ=δij

=

∫
φ∗
jσ(r)

[
vSI[niσ](r)− vSI[njσ](r)

]
φiσ(r) d

3r . (6.15)

Here, vSI[niσ] represents the self-interaction potential associated with the orbital density
niσ of Eq. (6.7). At the energy minimum, i. e., Gijσ = 0 ∀i, j ∈ {1, . . . , Nσ}, the
hermitian condition of the Lagrange multiplier λσ, Eq. (6.9b), is inherently satisfied.
This relation follows from

λjiσ − λ∗ijσ = ⟨φjσ|Ĥiσ − Ĥjσ|φiσ⟩ = ⟨φjσ|vSI[niσ]− vSI[njσ]|φiσ⟩ = 0 , (6.16)

where the last equality is equivalent to Gijσ = 0. In our experience, ensuring the
hermiticity of λσ during the inner loop through the variation of the orbitals with respect
to the unitary transformation improves the convergence of the PZ-SIC ground-state
calculation. A detailed description of our algorithm, including both the outer and inner
loop, will be provided in Section 6.8.

6.4 PZ-SIC for Meta-GGAs

The PZ-SIC scheme can be straightforwardly applied to the LDA and GGA functionals,
where the SIC in Eq. (6.1) effectively eliminates the spurious self-interaction contributions
from both the exchange and correlation components of the LDA or GGA functional,
as well as the Hartree term. For meta-GGAs, the PZ-SIC exhibits a different impact
compared to other (semi-)local xc functionals. As previously discussed, meta-GGAs, such
as the r2SCAN [Fur+20a; Fur+20b] (or the LAK [LAK24] functional), can be constructed
to be self-correlation-free, i. e., EmGGA

c [niσ] = 0. Consequently, the correction term
of the PZ-SIC scheme for these functionals is reduced to the exchange part of the xc
functional and the Hartree term (EH[niσ]+Ex[niσ]). The orbital-dependent Hamiltonian
can be derived analogously to the GKS case in Section 4.2.2 by varying the meta-GGA
energy expression with respect to the orbitals. For meta-GGAs, written in terms of
the parameters {s2σ, ασ} as employed in TASK and r2SCAN (see Appendix A.1), the
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orbital-dependent Hamiltonian within the PZ-SIC framework is expressed as

Ĥτ
iσ = − ℏ2

2m
∇2 + vext(r) + vH[n](r) + vlocσ [s2σ, ασ](r) + v̂GKS

τσ [s2σ, ασ](r)

−
(
vH[niσ](r) + vlocσ [s2iσ, α = 0](r) + v̂GKS

τσ [s2iσ, α = 0](r)
)
, (6.17)

where
siσ(r) =

|∇niσ(r)|
2(3π2)1/3n

4/3
iσ (r)

(6.18)

is the reduced gradient density evaluated at the orbital density niσ, and the iso-orbital
indicator α is defined in Eq. (4.7). The terms vlocσ and v̂GKS

τσ denote the multiplicative and
operator components of the meta-GGA potential, as defined in Eq. (4.25) and Eq. (4.26),
respectively. However, evaluating the TASK and r2SCAN meta-GGA expressions at
orbital densities with α = 0 instead of ground-state densities introduces numerical
challenges. These issues, which can significantly affect the stability of our PZ-SIC
ground-state calculations, are discussed in detail in Section 7.2.1.

Additionally, the use of meta-GGA functionals within the ground-state PZ-SIC
framework introduces an important subtlety: since Eq. (6.9a) does not correspond to an
eigenvalue equation, the resulting orbitals are generally complex-valued. This property
can result in a gauge variance of the kinetic energy density and a violation of the
continuity equation, analogous to the challenges observed in the TDGKS framework.
As in the TDGKS case, these issues can be addressed by replacing the kinetic energy
density τ with the gauge-invariant formulation

τ̂(r) = τ(r)−m |jp(r)|
2

2n(r)
, (6.19)

where jp(r) is the paramagnetic current density. The full expression for the orbital-
dependent Hamiltonian incorporating the current-density correction for meta-GGAs is
provided in Appendix B.2.

6.5 PZ-SIC Expressions for Non-Integer Particle Numbers

So far, we have only discussed the PZ-SIC ground-state equations for systems with
an integer number of electrons. To investigate the delocalization error of various xc
approximations within the PZ-SIC framework, we aim to compute the E(N) curve
for different functionals and evaluate the extent to which the straight-line condition is
satisfied, similar to Fig. 6.1. However, extending the PZ-SIC formalism to non-integer
particle numbers is less straightforward than in the KS scheme due to the unitary
variance inherent to the PZ-SIC.

Similar to the extension of the KS theory to systems with non-integer electron
numbers [Per+82], we introduce an occupation number fiσ for each orbital. The total
charge density is then expressed as

n(r) =
∑

σ=↑,↓

Nσ∑

i=1

niσ(r) =
∑

σ=↑,↓

Nσ∑

i=1

fiσ|φiσ(r)|2, (6.20)

where the orbital density is given by niσ = fiσ|φiσ|2. Using these definitions for n and
niσ to evaluate the PZ-SIC energy functional ESIC, the variation of the energy functional
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S[{φiσ}] of Eq. (6.8) with respect to φ∗
iσ leads to

fiσĤiσφiσ(r) =

Nσ∑

j=1

λjiσφjσ(r) with (6.21a)

λσ = λ†
σ, (6.21b)

where Ĥiσ depends on the modified expressions for the density and orbital density while
Nσ is the number of orbitals with fiσ > 0. By projecting Eq. (6.21a) onto a single
orbital, we obtain the Lagrange multiplier as

λjiσ = ⟨φjσ|fiσĤiσ|φiσ⟩ . (6.22)

However, applying the unitary transformation that minimizes the PZ-SIC energy
functional to a set of orbitals with a non-integer number of electrons introduces a
unique challenge not encountered within the KS formalism. In KS theory, handling
occupation numbers is straightforward: the occupation numbers {fiσ} are determined
according to the Aufbau principle, resulting in fully occupied orbitals up to the HOMO−1,
with only the HOMO being fractionally occupied. This procedure establishes a direct
relationship between the occupation numbers and the set of KS orbitals. Within the
PZ-SIC formalism, however, two key challenges arise when attempting to apply the
Aufbau principle, both of which are addressed in the following sections: (1) Since the
PZ-SIC ground state equation (6.21a) is not an eigenvalue equation and therefore lacks
eigenvalues, no quantity can be directly interpreted as an orbital energy. This raises the
question: Is there a quantity within the PZ-SIC formalism that can be interpreted as
single-particle energies analogous to the KS eigenvalues? (2) How do the occupation
numbers of a set of orbitals change when a unitary transformation is applied, which,
simply put, generates the new orbitals by mixing (and/or rotating) the old orbitals (see
Eq. (6.4))?

6.6 Orbital Energies in PZ-SIC

In KS theory, the physical interpretation of the KS eigenvalues as ionization energies is
justified by Janak’s theorem [Jan78]

∂E

∂fiσ
= ϵiσ , (6.23)

where the derivative of the ground-state energy with respect to the occupation number
fiσ exactly yields the KS eigenvalue ϵiσ. As discussed in Section 3.4, this relation can
be used to show that the HOMO eigenvalue in KS theory is equal to the negative of the
IP, i. e., ϵHOMO = −IP which is commonly referred to as the IP theorem in DFT.

In order to find an expression for the localized orbital energies within the PZ-SIC
formalism that is equivalent to the KS eigenvalues, we can extend Janak’s theorem by
calculating the derivative of the energy expression ESIC with respect to the occupation
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number fiσ:

∂ESIC

∂fiσ
=

∂

∂fiσ


− ℏ2

2m

∑

σ′=↑,↓

Nσ′∑

k=1

fkσ′

∫
φ∗
kσ′(r)∇2φkσ′(r) d3r




+

∫
δ

δnσ

{
EH[n] + Exc[n↑, n↓] +

∫
vext(r

′)n(r′) d3r′
}
∂nσ
∂fiσ

d3r

−
∑

σ′=↑,↓

Nσ′∑

j=1

∫
δ

δnjσ

{
EH[njσ′ ] + Exc[njσ′ , 0]

} ∂njσ
∂fiσ

d3r

=− ℏ2

2m
⟨φiσ|∇2|φiσ⟩+ ⟨φiσ|vH[n] + vxc[n↑, n↓] + vext|φiσ⟩

− ⟨φiσ|vH[niσ] + vxc[niσ, 0]|φiσ⟩

=⟨φiσ|Ĥiσ|φiσ⟩ =
λiiσ
fiσ

=: λ′iiσ .

(6.24)

This implies that the diagonal elements, λ′iiσ = ⟨φiσ|Ĥiσ|φiσ⟩, can be interpreted as
orbital energies, as first pointed out by Vydrov et al. [VSP07]. Due to this physical
interpretation, and because the PZ-SIC energy expression can be rewritten in a form
that explicitly includes the sum over the diagonal elements of the Lagrange multiplier
λ′iiσ, as shown in Appendix B.4, the PZ-SIC energy functional is minimized by occupying
the localized orbitals in ascending order of λ′iiσ, with only the HOMO being fractionally
occupied (0 < fHOMO ≤ 1). As a consequence, the IP theorem within the PZ-SIC
framework takes the form

λ′HOMOHOMO =
λHOMOHOMO

fHOMO
= −IP . (6.25)

However, this result may appear contradictory if the PZ-SIC energy functional ESIC

in S of Eq. (6.8) is replaced by a unitary-invariant expression, such as the conventional
KS energy EKS. Any unitary transformation can then be applied without changing
the energy, making the diagonal elements of λσ arbitrary. In that case, how can these
diagonal elements have a physical interpretation? In Appendix B.5, we resolve this
apparent contradiction by demonstrating that the Hermiticity condition ensures that
the largest diagonal element of λσ is equivalent to the KS HOMO eigenvalue.

We close this section with an additional remark: Historically [GU97; VS05; PHL85],
the eigenvalues of the Lagrange multiplier λσ, commonly referred to as the canonical
eigenvalues {ϵcaniσ }, have been frequently used as the PZ-SIC equivalent to the KS
eigenvalues. These canonical eigenvalues can be computed by

ϵcaniσ δij =
(
W†

σλσWσ

)
ij
, (6.26)

with the unitary matrix Wσ consisting of the eigenvectors of λσ. The interpretation
of {ϵcaniσ } as the orbital energies, analogous to the KS eigenvalues, stems from the fact
that the PZ-SIC ground-state equation can be transformed using the so-called canonical
orbitals,

ψcan
iσ (r) =

Nσ∑

k=1

W ∗
kiσφkσ(r) , (6.27)
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into an eigenvalue equation similar to the KS equation. This takes the form

Ĥcan
σ ψcan

iσ (r) = ϵcaniσ ψcan
iσ (r) (6.28)

with the (not orbital-dependent) Hamiltonian [Mes+09; KKJ11]

Ĥcan
σ = − ℏ2

2m
∇2 + vext(r) + vH[n](r) + vxc[n↑, n↓](r)

−
Nσ∑

i=1

(vH[niσ](r) + vxc[niσ, 0](r))|φiσ⟩⟨φiσ| . (6.29)

Solving the eigenvalue equation (6.28) yields the canonic orbitals {ψcan
iσ }. However, since

these canonic orbitals do not minimize the PZ-SIC energy functional of Eq. (6.3), the
corresponding canonic eigenvalues do not have the physical interpretation of orbital
energies.

6.7 Unitary Transformation with Fractional Occupation
Number

In the KS formalism, a direct connection between the occupation numbers {fiσ} and
the orbitals {φiσ} is maintained by following the Aufbau principle after solving the KS
equations. However, within the PZ-SIC formalism, this connection is broken by applying
the energy-minimizing unitary transformation, which involves mixing (and/or rotating)
all occupied orbitals {φiσ} to obtain the new set {φ′

iσ}. This raises the question of how
to update the occupation numbers {fiσ} of the original set of orbitals to {f ′iσ} after
applying the unitary transformation. To address this, we transform the normalized
orbitals by using Eq. (6.4) while keeping the occupation numbers fixed, i. e., f ′iσ ≡ fiσ.
Varying the SIC energy expression in Eq. (6.3) with respect to the unitary transformation
defined in Eq. (6.4), as part of the inner-loop minimization, results in the gradient

Gijσ =
∂ESIC

∂U∗
ijσ

∣∣∣∣∣
U∗
ijσ=δij

=

∫
φ∗
jσ(r)

[
fiσĤiσ − fjσĤjσ

]
φiσ(r) d

3r . (6.30)

Unlike the gradient expression in Eq. (6.15), this formulation explicitly incorporates
the occupation numbers fiσ and fjσ. A detailed derivation of Gijσ is provided in
Appendix B.3. As in the case of integer electron numbers, the condition Gijσ = 0
enforces the hermiticity of the newly defined Lagrange multiplier λσ in Eq. (6.22).
However, in contrast to the PZ-SIC formulation with an integer number of electrons,
the unitary transformation of the normalized orbitals can lead to a change in the
electron density. Specifically, the density before the unitary transformation, given
by
∑

σ=↑,↓
∑Nσ

i=1 fiσ|φiσ|2, may differ from the density after the transformation, given
by
∑

σ=↑,↓
∑Nσ

i=1 fiσ|φ′
iσ|2. Therefore, the electron density must be recalculated after

applying the unitary transformation.
In order to ensure the energy-minimizing occupation of the orbitals during our

PZ-SIC ground-state calculation, both the electron density and the Lagrange multiplier
λσ are updated throughout the algorithm. Specifically, after each damped gradient step
in the outer loop and the application of the energy-minimizing unitary transformation,
the diagonal elements of λσ, λiiσ, are recalculated. The occupation numbers are then
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assigned in ascending order of the orbital energies, corresponding to λ′iiσ = λiiσ/fiσ.
The details of our algorithm are described in the following section.

However, one might consider an alternative approach to address the challenge of
transforming the occupation numbers from {fiσ} to {f ′iσ} by directly transforming the
occupation numbers along to their corresponding orbitals. This can be achieved by
redefining the unitary transformation as

√
f ′iσφ

′
iσ(r) =

Nσ∑

j=1

Uijσ

√
fjσφjσ(r) . (6.31)

While it is straightforward to show that the density calculated via Eq. (6.20) using
{φ′

iσ} with {f ′iσ} preserves the density spanned by {φiσ} with {fiσ}, the transformed
orbitals are not necessarily orthogonal within the spin channel containing the fractionally
occupied HOMO, this can be seen as follows:

⟨
√
f ′iσφ

′
iσ|
√
f ′jσφ

′
jσ⟩ =

Nσ∑

k,l=1

U∗
ikσUjlσ

√
fkσflσ

∫
φ∗
kσ(r)φlσ(r) d

3r

︸ ︷︷ ︸
=δkl

=

Nσ∑

k=1

U∗
ikσUjkσfkσ

=

Nσ∑

k=1

U∗
ikσUjkσ

︸ ︷︷ ︸
=δij

+(fHOMO − 1)U∗
iHOMOσUjHOMOσ

=δij + (fHOMO − 1)U∗
iHOMOσUjHOMOσ ̸= δij

√
fiσfjσ .

(6.32)

Moreover, the transformation of the occupation numbers in Eq. (6.31) would result in the
fractional occupation of multiple orbitals, which contradicts the principle of minimizing
the energy by ensuring that only the highest-energy orbital (HOMO) is fractionally
occupied, as discussed in Section 6.6. Given these shortcomings concerning orthogonality
and the violation of the principle that only the HOMO is fractionally occupied (discussed
in detail in Appendix B.6), we discard this approach.

6.8 Algorithm for Minimizing the PZ-SIC Energy

The following section presents the algorithm steps for calculating the PZ-SIC ground
state. As previously mentioned, the algorithm consists of two steps: an outer loop
that minimizes the PZ-SIC energy functional S defined in Eq. (6.8) with respect to the
orbitals,

min
{φiσ(r)}→n(r)

S[{φiσ}] , (6.33)

and an inner loop that optimizes the PZ-SIC energy with respect to the unitary trans-
formation,

min
Uσ

S[{φiσ}] = min
Uσ

ESIC[{φiσ}] . (6.34)

A quick overview of the whole algorithm as a simplified flow chart is given in Fig. 6.3.
The detailed steps of the algorithm, including both the outer and inner loop, will be

described in the following. The occupation numbers {fiσ} are explicitly included in all
equations of both loops. For a ground-state calculation with an integer particle number,
the condition fiσ = 1 holds for all i ∈ {1, . . . , Nσ}.
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Figure 6.3: Schematic illustration of the PZ-SIC algorithm. The algo-
rithm is initialized with a standard KS calculation. The outer
loop optimizes the PZ-SIC energy with respect to the orbitals
by damped gradient steps. The inner loop finds the optimal
unitary transformations for the PZ-SIC energy functional.
Subsequently, this optimal unitary transformation is applied
to obtain the localized orbitals {φloc

iσ }.
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6.8.1 Outer Loop: Orbital Variation Algorithm

The variation of the energy functional S with respect to the orbital φ∗
iσ leads to the

ground-state equations in Eq. (6.21). In the following, we use the notation

λ′jiσ = ⟨φjσ|Ĥiσ|φiσ⟩ (6.35)

and
λjiσ = ⟨φjσ|fiσĤiσ|φiσ⟩ , (6.36)

where λjiσ = fiσλ
′
jiσ. The steps marked with ⋆ are specifically required for calculating

the ground state of a system with a non-integer electron number.

Initialization

1. In order to improve the convergence of the algorithm for determining the PZ-SIC
ground state, the KS ground state of the underlying xc functional (without the
PZ-SIC) is first obtained self-consistently through a standard DFT calculation by
solving the KS equations

(
− ℏ2

2m
∇2 + vext(r) + vH[n](r) + vxc[n↑, n↓](r)

)
φ̃
(0)
iσ (r) = ϵiσφ̃

(0)
iσ (r) (6.37)

to obtain a set of initial orbitals {φ̃(0)
iσ } ∈ R and the corresponding KS eigenvalues

{ϵiσ}. The initial occupation numbers {f (0)iσ } are obtained by following the Aufbau
principle.

2. Using the simple Foster-Boys (FOBO) localization scheme [Boy60; FB60], which
will be described in more detail in the following section, the orbitals are pre-localized
and broken in their symmetry to obtain {φFOBO

iσ }. For this purpose, the same
algorithm as for finding the energy-minimizing transformation (see Section 6.8.2)
is applied using the orbital-specific term [PM89; Mes+11; Hof+12]

vFOBO
iσ (r) = r2 − 2r · ⟨φ̃(0)

iσ |r|φ̃
(0)
iσ ⟩ . (6.38)

3. Multiply the orbitals with a small complex phase

φ
(0)
iσ (r) = e−iϵiσφFOBO

iσ (r) , (6.39)

with the eigenvalue ϵiσ of the KS calculation, to shift them into the complex plane,
i. e. {φiσ} ∈ C.

4. Calculate the orbital-dependent Hamiltonians {Ĥiσ} of Eq. (6.6) by evaluating the
potentials with the density n(0) =

∑
σ=↑,↓

∑Nσ
i=1 f

(0)
iσ |φ

(0)
iσ |2 and the orbital densities

{n(0)iσ = f
(0)
iσ |φ

(0)
iσ |2}.

5. Calculate the energy-minimizing transformation using the algorithm described in
Section 6.8.2, transform the orbitals {φ(0)

iσ } to obtain the corresponding localized
orbitals {φloc(0)

iσ }, and use the localized orbitals to recalculate {Ĥiσ}.

6. Calculate the matrix elements λ′(0)jiσ = ⟨φloc(0)
jσ |Ĥ(0)

iσ |φ
loc(0)
iσ ⟩.

7.⋆ Assign the occupation numbers in ascending order of λ′(0)iiσ to obtain {f loc(0)iσ }.
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8. Calculate the error criterion

∆(k)
errorσ =

√√√√√√√√
1

Nσ

Nσ∑

j=1




√∫ ∣∣∣Ĥ(k)
jσ φ

loc(k+1)
jσ −∑Nσ

l=1 λ
′(k)
ljσ φ

loc(k+1)
lσ

∣∣∣
2
d3r

|ϵmax|+
√∫ ∣∣∣

∑Nσ
l=1 λ

′(k)
ljσ φ

loc(k+1)
lσ

∣∣∣
2
d3r




2

. (6.40)

where ϵmax is the estimated maximum eigenvalue on the grid (described in Ap-
pendix B.7) and check if it is under a set threshold (e. g. 1.0× 10−6). Alternatively
to the error criterion of Eq. (6.40), one could use |λjjσ| instead of ϵmax as |λjjσ| is
independent of the grid spacing.

Algorithm Steps

1. Perform a damped gradient step as described in Section 6.3:

• Update the orbitals:

φ
(k+1)
iσ (r) = φ

loc(k)
iσ (r)− d(k)

t̂+ e


Ĥ(k)

iσ φ
loc(k)
iσ (r)−

Nσ∑

j=1

1

2

λ
(k)
jiσ + λ

∗(k)
ijσ

f
loc(k)
iσ

φ
loc(k)
jσ (r)


 .

(6.41)
d(k) is the step size for which an initial value is chosen, t̂ is the kinetic-energy
operator, and e is a value that approximately corresponds to the depth of
the density-dependent part of the potential. A smaller value of e speeds up
convergence but reduces the stability of the iterations.

• Orthogonalize the orbitals using the Löwdin orthogonalization scheme [Löw50]
(for details see Appendix B.8) and then normalize them.1

• Calculate the error criterion ∆
(k+1)
errorσ using the new orbitals {φ(k+1)

iσ }.
• Depending on whether the error criterion has decreased or increased, set

a new value for the step size d(k+1). In this work, we chose the following
criterion for adjusting d:

– If
∆

(k+1)
error

∆
(k)
error

< 0.95: d(k+1) = 1.05d(k).

– If
∆

(k+1)
error

∆
(k)
error

≥ 1.00: d(k+1) = 0.90d(k).

– Otherwise: d(k+1) = d(k),

with ∆error =
∑

σ=↑,↓∆errorσ. Before the start of the algorithm, a starting
value for d(0), an upper limit dmax, and a lower limit dmin must be set.

2. Calculate the new density n(k+1) =
∑

σ=↑,↓
∑Nσ

i=1 f
(k)
iσ |φ

(k+1)
iσ |2 and the orbital-

dependent Hamiltonians {Ĥ(k+1)
iσ }.

3.⋆ Determine the diagonal elements ⟨φ(k+1)
iσ |Ĥ(k+1)

iσ |φ(k+1)
iσ ⟩ and set the occupation

numbers to obtain {f (k+1)
iσ }.

1Since the search direction of Eq. (6.41) already incorporates the orthogonality constraint, the
orthogonalization step is only included for numerical stability.
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4. Calculate the energy-minimizing unitary transformation and apply the transfor-
mation to {φ(k+1)

iσ } to obtain {φloc(k+1)
iσ } and update {Ĥ(k+1)

iσ }.

5. Calculate the Lagrange multiplier λ′(k+1)
jiσ = ⟨φloc(k+1)

jσ |Ĥ(k+1)
iσ |φloc(k+1)

iσ ⟩.

6.⋆ Set {f loc(k+1)
iσ } in ascending order to the diagonal elements λ′(k+1)

iiσ .

7. Check whether the error criterion ∆error is fulfilled (e. g., 1.0×10−6). If not, repeat
the algorithm steps until convergence.

6.8.2 Inner Loop: Energy-Minimizing Unitary Transformation

To find the energy-minimizing unitary transformation, we adapt the algorithm developed
by Hofmann et al. [Hof+12], which employs a conjugate gradient method while directly
accounting for the unitary constraint of the transformation. Additionally, this algorithm
incorporates a step-length optimization scheme following an idea based on Ref. [AEK09]
to enhance computational performance. A detailed description of the quantities involved
in this algorithm is provided in Ref. [Hof+12]. The additional steps we introduced,
specifically required for calculating the energy-minimizing unitary transformation in
systems with non-integer electron numbers, are marked with ⋆.

Initialization

1. Set the number of iterations k = 0, the directional derivative of the previous step
H

(−1)
ijσ = 0, and φ̃(0)

iσ (r) =
∑Nσ

j=1 U
(0)
ijσφjσ(r) with U

(0)
σ = I (where I is the identity

matrix).

2. Set a trial step length ltrial.

Algorithm Steps

1. Compute:

• the energy gradient2 G(k)
ijσ = ⟨φ(k)

jσ |fiσĤ
(k)
iσ − fjσĤ

(k)
jσ |φ

(k)
iσ ⟩.

• the search direction H(k)
ijσ = G

(k)
ijσ + γ(k)H

(k−1)
ijσ with γ(k)σ = ⟨G(k)

σ −G
(k−1)
σ ,G

(k)
σ ⟩

⟨G(k−1)
σ ,G

(k−1)
σ ⟩

,

where the brackets are defined as ⟨X,Y⟩ = 1
2 Re{Tr(XY†)}, X,Y ∈ Cn×n.

• the derivative of the SIC energy with respect to the step size lσ (evaluated at
lσ = 0) m(k)

σ (0) = −2⟨H(k)
σ ,G

(k)
σ ⟩.

2. Determine M
(k)
σ and D

(k)
omσ = λ

(k)
mσδom from the diagonalization of −iH(k)

σ =

M
(k)†
σ D

(k)
σ M

(k)
σ . Here, {λ(k)mσ} are the eigenvalues of −iH(k)

σ .

3. Perform a trial step (for the step length optimization) with the step length ltrial

and compute:

• U trial
ijσ =

∑Nσ
n,m=1M

∗(k)
miσ exp{−iltrialλ

(k)
mσ}M (k)

mnσU
(k)
njσ

• φ̃trial
iσ (r) =

∑Nσ
j=1 U

trial
ijσ φjσ(r) and {vSI trial[niσ](r)}

•⋆ ñtrial(r) =
∑

σ=↑,↓
∑Nσ

i=1 fiσ|φ̃trial
iσ (r)|2 and thus completely {Ĥtrial

iσ }
• Gtrial

ijσ = ⟨φ̃trial
jσ |fiσĤtrial

iσ − fjσĤtrial
jσ |φ̃trial

iσ ⟩
2For integer particle number the gradient G(k)

ijσ reduces to G
(k)
ijσ = ⟨φ(k)

jσ |vSI(k)[niσ]− vSI(k)[njσ]|φ(k)
iσ ⟩.
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• m
(k)
σ (ltrial) = −2⟨H(k)

σ ,Gtrial
σ ⟩

• l
opt(k)
σ = −m

(k)
σ (0)ltrial

m(k)(ltrial)−m
(k)
σ (0)

4. Set the step length according to the cutoff criterion lcut(k)
σ = π

2maxλ
(k)
mσ

:

If 0 ≤ lopt(k)
σ ≤ lcut(k)

σ , then choose l(k)σ = l
opt(k)
σ . Otherwise, set l(k)σ = 0.2lcut(k).

5. Perform a conjugate gradient step with the step size l(k) and compute:

• U
(k+1)
ijσ =

∑Nσ
n,m=1M

(k)∗
miσ exp{−il(k)σ λ

(k)
mσ}M (k)

mnσU
(k)
njσ

• φ̃
(k+1)
iσ (r) =

∑Nσ
j=1 U

(k+1)
ijσ φjσ(r) and {vSI(k+1)[niσ](r)}

•⋆ ñ(k+1)(r) =
∑

σ=↑,↓
∑Nσ

i=1 fiσ|φ̃
(k+1)
iσ (r)|2 and thus completely {Ĥ(k+1)

iσ }

6. Check the convergence criterion max(Gσ). If it is not below a defined threshold,
repeat the algorithm until convergence.

FOBO Minimization and Avoidance of Numerical Oscillations

For improved convergence in finding the energy-minimizing unitary transformation after
the initial KS ground state calculation (see initialization of the outer loop algorithm), we
pre-localize the KS orbitals. This is achieved by calculating the unitary transformation
that minimizes the simple FOBO [Boy60; FB60] spatial localization criterion, given by

Bσ[{φiσ}] =
Nσ∑

i=1

[
⟨φiσ|r2|φiσ⟩ − ⟨φiσ|r|φiσ⟩2

]
(6.42)

for every spin channel σ. Minimizing this criterion with respect to a unitary transforma-
tion yields the gradient

Gijσ =
∂Bσ[{φiσ}]
∂U∗

ijσ

∣∣∣∣∣
U∗
ijσ=δij

= ⟨φjσ|vFOBO
iσ − vFOBO

jσ |φiσ⟩ , (6.43)

which can be used in the described algorithm, where vFOBO
iσ is the orbital-dependent

FOBO potential defined in Eq. (6.38) [PM89; Hof+12].
In some cases, oscillations between different states are observed during the algorithm

used to calculate the energy-minimizing or FOBO unitary transformation. These oscilla-
tions can be observed in the error criterion max(Gσ). In order to reduce unnecessary
iterations, a simple criterion for detecting oscillations is employed. Specifically, the
absolute difference between the current error criterion at iteration step k and the error
criterion values from the previous ten iterations (i. e., from k− 1 to k− 11) is computed,
and the minimum of these differences is taken. This value is then divided by the average
of the error criterion values from the last ten iterations. The criterion can be written as

E(k)σ =
1

1
10

∑k−11
i=k−1max

(
G

(i)
σ

) min







∣∣∣max
(
G

(k−1)
σ

)
−max

(
G

(k)
σ

)∣∣∣
...∣∣∣max

(
G

(k−11)
σ

)
−max

(
G

(k)
σ

)∣∣∣





 . (6.44)

If the value of E(k)σ falls below 10−8, we abort the inner loop minimization algorithm.
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Chapter 7

Results for the Perdew-Zunger
Self-Interaction Correction

In this chapter, the PZ-SIC [PZ81] is applied in combination with various xc functionals
to a small test set. We begin by focusing on the LSDA and the GGA in the form of
the PBE functional [PBE96]. To assess the performance of these xc functionals within
the PZ-SIC framework, we analyze the delocalization error by studying the total energy
curve E(N) as a function of fractional electron numbers.

In addition, we investigate the IP obtained via the ∆SCF approach, defined as
∆SCF = E(N0− 1)−E(N0), where N0 is the number of electrons of the neutral system.
We compare these values to the HOMO energy, determined either as the KS eigenvalue
in calculations using the uncorrected functional (without using the PZ-SIC) within KS
theory, or as the highest occupied diagonal element λ′iiσ = ⟨φiσ|Ĥiσ|φiσ⟩ within the
PZ-SIC formalism, as described in Section 6.6.

Finally, we extend the application of the PZ-SIC to meta-GGAs and address numerical
challenges encountered in calculations performed using our real-space code BTDFT [SK18].
To resolve the numerical challenges obtained with the TASK and r2SCAN metaGGAs
using the PZ-SIC, we introduce a modified version of the meta-GGA TASK. Subsequently,
we present the results for our model systems, calculated using this modified meta-GGA
within the PZ-SIC framework.

7.1 Results for LSDA and PBE Using the PZ-SIC

We apply our algorithm described in Section 6.8 for calculating the PZ-SIC ground
state for a small test set using the real-space program BTDFT, which employs norm-
conserving LSDA PPs of the Troullier-Martins type [TM91]. The influence of employing
LSDA PPs in LSDA calculations using the PZ-SIC (LSDA-SIC) is not immediately
apparent. However, since Goedecker and Umrigar reported only a minor impact from
employing consistent LSDA-SIC PPs, we adopt LSDA PPs with the cutoff radii specified
in Appendix B.9. For our real-space grid, we used a grid spacing of 0.2 a0, and its size
is enclosed by atomic-centered spheres with radii determined by the point at which
the electron density taken from the PPs falls below the threshold of 10−7 a−3

0 . Further
numerical parameters for the chosen grid, the PPs, and the PZ-SIC ground state
algorithm are listed in Appendix B.9.

We begin by applying the PZ-SIC algorithm to the diatomic CO molecule and
calculating its energy curve as a function of fractional occupation numbers. To compare
our results with the experimental IP reported in Ref. [Hub79], we use the experimental
bond length of 2.132 a0. We apply our algorithm to compute the energy curve for the
LSDA and the PBE functional, with and without using the PZ-SIC. The calculations
cover electron numbers ranging from the neutral molecule (N0 electrons) to the positively
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charged cation, with fractional occupation numbers varied in steps of 0.05. The resulting
curves are shown in Fig. 7.1. The left panel of Fig. 7.1 shows the energy curve between
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Figure 7.1: Total energy E(N0+∆N) relative to the energy E(N0) of the
neutral CO molecule as a function of the electron number ∆N
(difference to neutral CO), calculated with LSDA, LSDA-SIC
(left panel), and PBE, PBE-SIC (right panel). The dotted
and dashed lines are the straight lines that connect E(N0)
and E(N0 − 1).

the neutral CO molecule and its cation, calculated using the LSDA with and without the
PZ-SIC. The dotted and dashed lines are included to highlight deviations from the exact
straight-line connection, representing the linear interpolations between the total energies
of the N0- and (N0− 1)-electron systems for the respective functionals. The LSDA leads
to a strongly convex energy curve with a pronounced deviation from the exact straight-
line connection between E(N0) and E(N0 − 1) with a nearly quadratic shape. Applying
the PZ-SIC reduces this deviation significantly, resulting in a closer approximation to
the straight line. However, upon closer inspection, the energy curve shows a slightly
concave behavior, indicating an overcorrection. Closer to the positively charged CO+

molecule, the energy curve shows a change in curvature to a slightly convex curvature.
This change in curvature of the energy curves can also be observed in the HOMO energy
as a function of the fractional particle number since ∂E/∂N = ϵHOMO in KS DFT and
∂E/∂N = λHOMOHOMO/fHOMO within the PZ-SIC formalism, as illustrated for all our
calculations in Appendix B.14.

The overcorrection observed in the energy curves when employing the PZ-SIC is
consistent with our results for the IP, presented in Table 7.1. For the CO molecule,

Table 7.1: IP values for CO calculated as the total energy difference
∆SCF = E(N0 − 1) − E(N0) and the HOMO eigenvalue of
the neutral molecule (in eV). The experimental IP is taken
from Ref. [Hub79].

CO LSDA LSDA-SIC PBE PBE-SIC Exp. IP
∆SCF 13.98 14.61 13.78 13.87 14.01
ϵHOMO −9.07 −16.39 −9.06 −16.01
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the IP obtained via the ∆SCF approach, defined as ∆SCF = E(N0 − 1) − E(N0), is
remarkably accurate when calculated with the LSDA, deviating from the experimental
value by only 0.03 eV. However, applying the PZ-SIC worsens the agreement, increasing
the deviation to 0.60 eV. Despite the accurate ∆SCF result within LSDA, the HOMO
eigenvalue, which should match the negative IP value according to the IP theorem,
deviates significantly from the experimental value by 4.94 eV. This discrepancy arises
from the incorrect asymptotic behavior of the LSDA potential and the spurious SIE, both
of which contribute to a pronounced underestimation of the absolute value of ϵHOMO.
With the application of the PZ-SIC, the HOMO energy, given by the diagonal element
⟨φHOMO|ĤHOMO|φHOMO⟩ (see Section 6.6), is shifted to lower values. Although this
correction reduces the deviation from the experimental value to 2.38 eV, the predicted
ϵHOMO is now overcorrected and becomes too negative. Overall, the description of the
IP using the HOMO eigenvalue is significantly less accurate compared to the ∆SCF
method.

The energy curve for the CO molecule obtained with the PBE functional, shown
in the right panel of Fig. 7.1, exhibits a behavior similar to that of the LSDA result,
with a strongly convex shape. While applying the PZ-SIC improves the agreement with
the exact piecewise linear behavior of the total energy, the PBE-SIC curve shows a
more pronounced concave curvature than the LSDA-SIC result. This suggests that the
PBE-SIC approach leads to a stronger overcorrection of the SIE.

Similar to the LSDA, the PBE potential also exhibits deficiencies in describing the
IP, leading to a significant underestimation of the experimental IP by the absolute value
of the HOMO energy, as shown in Tab. 7.1. Although applying the PZ-SIC improves
the HOMO eigenvalue, it overcorrects, overestimating the absolute value of the HOMO
eigenvalue by 2.00 eV relative to the experimental reference value. The ∆SCF value
for PBE-SIC is closer to the experimental result than that of the uncorrected PBE
functional, with a deviation of only 0.14 eV.

The next system under investigation is the single-bonded H2O molecule, for which
we use the structural coordinates provided by the NIST Computational Chemistry
Comparison and Benchmark Database [Joh22]. The results for the energy curves E(N)
are shown in Fig. 7.2. The results for both the LSDA and PBE functionals exhibit a
pronounced convex curvature, which is more pronounced for the H2O molecule than for
the CO molecule. This enhanced delocalization error in H2O is plausible, as its molecular
structure – characterized by hydrogen atoms and single bonds – likely results in a higher
fraction of iso-orbital regions. As illustrated in the left panel of Fig. 7.2, the LSDA-SIC
curve is considerably closer to the exact straight-line connection between E(N0) and
E(N0−1) compared to the uncorrected LSDA functional. However, similar to the results
for the CO molecule, the LSDA-SIC energy curve is slightly overcorrected, resulting
in a concave curvature. Notably, near the positively charged H2O+ molecule (around
∆N = −0.75), a change in curvature is observed, resulting in an overall S-shaped energy
curve. The PBE-SIC result presented in the right panel of Fig. 7.2 exhibits a slightly
stronger deviation from its straight-line connection than LSDA-SIC. Like the LSDA-SIC
results, the PBE-SIC energy curve also changes curvature close to the H2O+ cation,
resulting in an S-shaped energy curve.

The ∆SCF values and the HOMO energies for the H2O molecule calculated with
the different functionals are shown in Tab. 7.2. The ∆SCF value of the uncorrected
LSDA functional overestimates the experimental IP by 0.49 eV. Unlike the case of the
CO molecule, where the application of the PZ-SIC increased the ∆SCF value for both
the LSDA and PBE, the correction for the H2O molecule reduces the ∆SCF value. This
adjustment decreases the error relative to the experimental IP for LSDA-SIC, bringing
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Figure 7.2: Total energy E(N0 +∆N) relative to the energy E(N0) of
the neutral H2O molecule as a function of the electron num-
ber ∆N (difference to neutral H2O), calculated with LSDA,
LSDA-SIC (left panel), and PBE, PBE-SIC (right panel).
The dotted and dashed lines are the straight lines that con-
nect E(N0) and E(N0 − 1).

Table 7.2: IP values for H2O calculated as the total energy difference
∆SCF = E(N0 − 1) − E(N0) and the HOMO eigenvalue of
the neutral molecule (in eV). The experimental IP is taken
from Ref. [Joh22].

H2O LSDA LSDA-SIC PBE PBE-SIC Exp. IP
∆SCF 13.09 12.82 12.69 12.19 12.60
ϵHOMO −7.39 −17.63 −7.29 −17.05

it down to 0.22 eV. Similarly, for PBE, the ∆SCF value decreases when the PZ-SIC
is applied; however, this reduction leads to a slight increase in the deviation from the
experimental IP, from 0.09 to 0.41 eV. For the HOMO eigenvalues, the behavior is
consistent with the results observed for the CO molecule. Both the LSDA and PBE
significantly underestimate the experimental IP, and applying the PZ-SIC to either
functional results in a pronounced overcorrection. This overcorrection only marginally
reduces the error relative to the experimental IP.

Finally, we turn to our last model system, the nitrogen molecule N2, a symmetric
system characterized by triple bonds. Because of its molecular symmetry, the binding
region is closer to the uniform density limit than that of CO. We adopt a bond length of
2.074 a0 from Ref. [Hub79] for the following calculations. The energy curves E(N) for
the considered functionals are shown in Fig. 7.3. Consistent with our observations for
the other model systems, the LSDA and PBE energy curves exhibit a strongly convex
behavior. In contrast, the LSDA-SIC curve, shown in the left panel of Fig. 7.3, has
almost no curvature. I. e., the straight-line condition between E(N0) and E(N0 − 1) is
well reproduced, with only minor deviations visible for ∆N values smaller than −0.8.
However, a slight overcorrection, leading to a concave shape, is visible for the PBE-SIC
curve in the right panel of Fig. 7.3.
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Figure 7.3: Total energy E(N0+∆N) relative to the energy E(N0) of the
neutral N2 molecule as a function of the electron number ∆N
(difference to neutral N2), calculated with LSDA, LSDA-SIC
(left panel), and PBE, PBE-SIC (right panel). The dotted
and dashed lines are the straight lines that connect E(N0)
and E(N0 − 1).

The results for the IP are summarized in Tab. 7.3. Although applying the PZ-SIC

Table 7.3: IP of N2 calculated as the total energy difference ∆SCF =
E(N0 − 1) − E(N0) and the HOMO eigenvalue of the neu-
tral molecule (in eV). The experimental IP is taken from
Ref. [Hub79].

N2 LSDA LSDA-SIC PBE PBE-SIC Exp. IP
∆SCF 15.57 16.87 15.41 16.01 15.58
ϵHOMO −10.41 −17.90 −10.37 −18.21

improves the description of the straight-line condition, the ∆SCF value for LSDA-SIC
is less accurate than for the uncorrected LSDA. The uncorrected LSDA ∆SCF value
deviates from the experimental IP by only 0.01 eV, while the LSDA-SIC value deviates
by 1.29 eV. A similar trend is observed for PBE, where the ∆SCF value for PBE is in
closer agreement with the experimental value than that for PBE-SIC. The behavior of
the absolute value of the HOMO energy follows the trends observed for the other model
systems. The uncorrected LSDA and PBE functionals significantly underestimate the
IP, while applying the PZ-SIC leads to severe overcorrections for both LSDA-SIC and
PBE-SIC. However, for N2, the overestimation is somewhat smaller, with deviations of
2.32 eV for LSDA-SIC and 2.63 eV for PBE-SIC, compared to the other systems.

Finally, comparing the results across all test systems, applying the PZ-SIC generally
improves the fulfillment of the straight-line condition compared to the uncorrected
functionals. However, for CO and H2O, LSDA-SIC introduces an overcorrection, leading
to concave energy curves, whereas, for N2, it results in only minor deviations from the
straight-line condition. Across all systems, PBE-SIC performs worse than LSDA-SIC,
exhibiting stronger overcorrections and a more pronounced concave behavior in E(N).
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The accuracy of the ∆SCF values compared to the experimental IPs varies: for LSDA,
applying the PZ-SIC improves the ∆SCF value for H2O but worsens it for CO and N2.
For PBE, only the ∆SCF value for CO improves with the PZ-SIC. In all cases, the
PZ-SIC significantly overcorrects ϵHOMO, with the largest deviations observed for H2O:
5.03 eV for LSDA-SIC and 4.45 eV for PBE-SIC.

7.2 Application of the PZ-SIC to Meta-GGA Functionals

In contrast to the LSDA and GGA functionals, meta-GGAs explicitly depend on the
orbitals via the kinetic energy density τ . This orbital dependence enables meta-GGAs to
identify iso-orbital regions and enhances their sensitivity to electron localization, thereby
reducing SIEs. However, these same properties can introduce numerical challenges when
applying the PZ-SIC to the meta-GGA functionals TASK [AK19] and r2SCAN [Fur+20a;
Fur+20b]. In the following, we discuss these challenges and a construction principle for
meta-GGAs to address them.

7.2.1 Numerical Challenges of Using the PZ-SIC with Meta-GGA
Functionals

As an initial numerical test, we apply our PZ-SIC ground-state algorithm using meta-
GGAs to our first model system, carbon monoxide (CO). The calculations are performed
using the algorithm described in Section 6.8 in combination with the TASK and r2SCAN
meta-GGAs (without using the current-density correction). For simplicity, we restrict
the calculations to the exchange-only versions of the functionals (denoted by an “x”
at the end of the functional name) and to real-valued orbitals. Figure 7.4 presents
the error criterion ∆

(k)
error (see Eq. (6.40)) as a function of the iteration step k in the

outer-loop minimization. As shown in the figure, the error criterion for the TASKx-SIC
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Figure 7.4: Error criterion ∆
(k)
error as a function of damped gradient itera-

tion steps k for TASKx-SIC, r2SCANx-SIC, and α0TASKx-
SIC calculations for CO. The α0TASKx functional is de-
scribed at the end of Section 7.2.1.

and r2SCANx-SIC calculations decreases exponentially over several iterations but then
experiences an abrupt increase. This oscillatory behavior reoccurs multiple times during
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the calculations, hindering the convergence of the PZ-SIC ground-state algorithm. In
contrast, for the modified meta-GGA functional, α0TASK, which will be introduced
later, the error criterion decreases exponentially throughout the calculation.

To identify the source of the numerical instability, we examine the individual compo-
nents of the PZ-SIC potential within the Hamiltonian operator, as defined in Eq. (6.17),
during the damped gradient iteration steps on the real-space grid in BTDFT. The analysis
reveals that oscillatory features appear in the local potential vloc[siσ, α = 0] of the
self-xc potential of the PZ-SIC. These spurious features emerge when the meta-GGA
potential is evaluated on the orbital densities. In particular, the spatial regions in which
the oscillations occur correspond to those of the nodal planes of the orbital density, as
illustrated in Appendix B.10 for the TASKx-SIC calculation of CO. These oscillatory
features are particularly noticeable because the local potentials for TASK and r2SCAN,
when evaluated on the total electron density, typically exhibit smooth behavior on our
real-space grid.

The observed oscillatory features in the local part of the meta-GGA potential,
evaluated on orbital densities, are not restricted to the CO molecule; they occur across
various systems, leading to instabilities in the PZ-SIC ground-state calculations. To
identify the specific characteristics of the local part of the meta-GGA potential that
contribute to these numerical challenges, we analyze the behavior of vloc using a simple
and transparent model orbital density. Specifically, we utilize the pz-orbital density
adapted from Ref. [AAK17] of the Na4 cluster, defined as

np = 2n0pz
2 exp

(
−αp

√
x2 + y2 + z2

)
, (7.1)

where αp ≈ 1.0587 and n0p = α5
p/(32π). This model orbital density exhibits a dumbbell

shape, characterized by a nodal plane at z = 0. The local potentials vloc, evaluated with
np for the TASKx and r2SCANx meta-GGA functionals, are displayed in Fig. 7.5 in the
yz-plane at x = 0, perpendicular to the nodal plane. For the local potentials of TASKx
in panel (a) and r2SCANx in panel (b) of Fig. 7.5, spurious oscillatory features are visible
in the region of z = 0 which corresponds to the nodal plane of the p-orbital density.
These features distort the local potential for both functionals, with more pronounced
oscillations visible for the TASKx functional compared to the r2SCAN results. The
panel (c) of Fig. 7.5 shows the local potential for the α0TASKx functional, which will
be introduced later in this section.

So far, we have identified that the numerical difficulties in the PZ-SIC calculations
arise from the local potential of the TASK or r2SCAN functionals when evaluated on
orbital densities with nodal planes. To gain a more precise understanding of which
terms in the local potential contribute to the oscillatory features, we will examine the
expressions in detail: As shown in Eq. (4.25), the local part of the meta-GGA exchange
potential is defined as

vloc(r) =
∂emGGA

x

∂n
(r)−∇ ·

[
∂emGGA

x

∂∇n (r)

]
. (7.2)

With the parametrization of the meta-GGA exchange energy density in terms of s,
defined in Eq. (4.3), and t = τ/τunif , we have

emGGA
x (s(r), t(r)) = Axn

4/3(r)Fx(s(r), t(r)) , (7.3)

where Ax = −(3/4)(3/π)1/3 and Fx is the enhancement factor. Using this parametriza-
tion, the derivative of the exchange energy density can be expressed in terms of Fx(s, t)
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Figure 7.5: Local part of the meta-GGA potential vloc[s2p, α = 0] dis-
played in the yz-plane at x = 0 for TASKx (a), r2SCANx
(b), and α0TASKx (c), evaluated with the orbital density np.
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as [Asc19]
∂ex(s, t)

∂n
= Axn

1/3

[
4

3
Fx(s, t)−

4

3
s
∂Fx

∂s

∣∣∣∣
t

− 5

3
t
∂Fx

∂t

∣∣∣∣
s

]
. (7.4)

Additionally, we can write

−∇ ·
[
∂ex
∂∇n(r)

]
= −Ax

[
∇√n√
n
· ∇
(

1

2γ2n1/3
1

s

∂Fx

∂s

∣∣∣∣
t︸ ︷︷ ︸

=:hs

)

+
1

2γ2n1/3
1

s

∂Fx

∂s

∣∣∣∣
t︸ ︷︷ ︸

=:hs

∇2√n√
n
− 1

2
n1/3s

∂Fx

∂s

∣∣∣∣
t

]
, (7.5)

with γ = (3π2)1/3. Finally, using the auxiliary functions hs defined in Eq. (7.5), the
local potential can be expressed as

vloc(r) = Axn
1/3

[
4

3
Fx −

5

6
s
∂Fx

∂s

∣∣∣∣
t

− 5

3
t
∂Fx

∂t

∣∣∣∣
s

]
−Ax

[∇2√n√
n

hs +
∇√n√
n
· ∇hs

]
. (7.6)

For numerical reasons, the density is treated at the same numerical level as the orbitals.
This means that n is expressed in terms of

√
n, since in the single-orbital limit (with

real-valued orbitals), the relation φ = ±√n holds [Sch+14b; Asc19].
Using the p-orbital density defined in Eq. (7.1), we systematically analyze the

individual terms of Eq. (7.6) through the following steps:

1. First, we analyze each term of Eq. (7.6) individually on our real-space grid in the
yz-plane at x = 0 to identify the origin of the oscillatory features. This analysis
reveals that the oscillatory behavior arises from the term

∇hs ·
∇√n√
n
. (7.7)

2. Since the term ∇2√n/√n, which also appears in Eq. (7.6), does not exhibit any
oscillations and has a similar form to ∇√n/√n, we conclude that the latter is not
the source of the numerical instability.

3. Having excluded the second term of Eq. (7.7), we turn to the first term, ∇hs. To
simplify the analysis and avoid examining the individual components of this vector
quantity on the grid, we focus on |∇hs|2. This term is shown in Fig. 7.6 in the
yz-plane (with x = 0) for the TASKx functional. In this figure, the oscillatory
characteristics that appeared in the local potential, shown in panel (a) of Fig. 7.5,
are recognizable once again.

4. To further investigate the auxiliary function hs, it must be rewritten as hs(s2, α),
since the TASK and r2SCAN meta-GGAs are parameterized in terms of {s2, α}
rather than {s, t}. This transformation can be achieved using the relation

1

2s

∂Fx

∂s

∣∣∣∣
t

=
∂Fx

∂s2

∣∣∣∣
α

− 5

3

∂Fx

∂α

∣∣∣∣
s2
. (7.8)

Up to this point, the vertical bar next to the derivative indicates the variable that
is held constant. In the following, this notation is omitted, and the vertical bar is
used only to denote the evaluation of the derivative at a specific point.
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Figure 7.6: |hs|2 displayed in the yz-plane at x = 0 for TASKx evaluated
on the orbital density np.

When the gradient of the auxiliary function hs within Eq. (7.6) is evaluated with
the orbital density np (i. e., α = 0), it takes the form

∇hs
(
s2, α = 0

)
= ∇

[
1

2γ2n1/3

(
∂Fx

∂s2

∣∣∣∣
α=0

− 5

3

∂Fx

∂α

∣∣∣∣
α=0

)]
. (7.9)

5. Finally, Eq. (7.9) contains two possible sources for the oscillatory features observed
in the local potential depicted in Fig. 7.5: the derivative of the enhancement factor
Fx with respect to s2 and the derivative with respect to α. Notably, the terms
∂Fx/∂s

2|α=0 are identical for the TASKx and r2SCANx meta-GGAs because they
share the same limit for α = 0, as shown in detail in Appendix B.11. However,
Fig. 7.5 reveals a difference in the amplitude of the oscillatory features in the local
potential between the TASK functional in panel (a) and the r2SCAN functional in
panel (b). This discrepancy suggests that the derivative

∂Fx

∂α

∣∣∣∣
α=0

(7.10)

is likely responsible for the numerical instabilities.

Based on this observation, we introduce a modified version of the TASK meta-GGA
functional, α0TASK, where the specific form is proposed by Timo Lebeda (Theoretical
Physics IV, University of Bayreuth). This modification incorporates the construction
principle

∂Fx

∂α

∣∣∣∣
α=0

!
= 0 , (7.11)

which ensures that the derivative of the enhancement factor with respect to α vanishes
at α = 0 (see Appendix B.12 for the definition of the enhancement factor). The resulting
functional successfully removes the oscillatory features in the local potential, as evident
in panel (c) of Fig. 7.5. Additionally, the PZ-SIC ground state for the CO molecule,
using complex-valued orbitals, can now be computed straightforwardly (see Fig. 7.4 for
the error criterion as a function of iteration steps). These results confirm our assumption
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that the derivative in Eq. (7.10) is responsible for the numerical instabilities observed in
the PZ-SIC calculations for TASKx and r2SCANx.

The origin of the numerical instability due to the derivative ∂Fx/∂α|α=0, as well as
the differences between the amplitudes of the oscillatory features in the local potential
between TASKx and r2SCANx, can be further understood by examining this derivative
of the enhancement factor for TASKx and r2SCANx as a function of s, evaluated at
α = 0. The corresponding plots for both meta-GGAs are shown in Fig. 7.7. This figure
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Figure 7.7: Derivative ∂Fx/∂α|α=0 as a function of s for TASKx and
r2SCANx.

illustrates that both functionals exhibit a pronounced slope in ∂Fx/∂α|α=0. This steep
gradient leads to significant changes in the derivative of the enhancement factor, even
for minor variations in s. As a result, the local potential vloc experiences even more
pronounced variations because the spatial gradient of ∂Fx/∂α|α=0, which contributes
to vloc (see Eq. (7.9)), directly amplifies these changes in ∂Fx/∂α|α=0. The differences
in the slopes between TASKx and r2SCANx explain the differing amplitudes of the
oscillations observed in their respective local potentials (see Fig. 7.5). Specifically, the
steeper slope of TASKx in Fig. 7.7 results in stronger oscillatory features for TASKx
compared to r2SCANx.

7.2.2 Results for α0TASK-SIC

The α0TASK meta-GGA successfully resolves the numerical instabilities described in
the previous section. Details on the impact of modifying the TASK functional to
α0TASK, which shows only minor effects on ground-state observables calculated in
GKS, are provided in Appendix B.12. The energy curves E(N), obtained by applying
α0TASK exchange with LSDA correlation to the respective system, both with and
without using the PZ-SIC (using Ĥτ

iσ, see Eq. (6.17)), are shown in Fig. 7.8. For all
considered systems, the α0TASK meta-GGA without the PZ-SIC leads to a convex
behavior of the energy curve. Applying the PZ-SIC improves the behavior of E(N)
across all model systems, bringing the energy curve closer to the exact linear connection
between E(N0) and E(N0 − 1). However, as observed in PBE-SIC calculations (see
Section 7.1), an overcorrection occurs, leading to predominantly concave energy curves
with α0TASK-SIC. This concave behavior is most pronounced for H2O, as shown in
panel (b) of Fig. 7.8. Like the PBE-SIC energy curve, the α0TASK curve exhibits a
change in curvature around ∆N = −0.8, resulting in an overall S-shaped curve.
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The results for the IP are presented in Tab. 7.4. The ∆SCF value for CO using
α0TASK-SIC is slightly closer to the experimental value of 14.01 eV than for α0TASK
without the PZ-SIC. The absolute value of the HOMO energy of α0TASK, which severely

Table 7.4: Calculated IP values for CO, H2O, and N2 as the total en-
ergy difference ∆SCF = E(N0 − 1)− E(N0) and the HOMO
eigenvalue of the neutral molecule (in eV). The values for the
experimental IP are adapted from Section 7.1.

α0TASK α0TASK-SIC Exp. IP
∆SCF ϵHOMO ∆SCF ϵHOMO

CO 14.36 −10.01 13.91 −16.51 14.01
H2O 12.75 −7.93 12.06 −18.13 12.60
N2 16.02 −11.22 15.79 −18.01 15.58

underestimates the experimental IP by 4.00 eV, becomes overcorrected upon applying
the PZ-SIC, resulting in an overestimation of 2.50 eV. This overcorrection is even more
pronounced for H2O: with α0TASK, the HOMO eigenvalue is underestimated by 4.67 eV,
whereas applying the PZ-SIC leads to an overestimation of 5.52 eV compared to the
experimental IP. For N2, the deviation in the HOMO eigenvalue is 4.36 eV for α0TASK
and 2.43 eV for α0TASK-SIC. While applying the PZ-SIC reduces the deviation, the
resulting HOMO energy still differs strongly from the experimental value.

In comparison to the uncorrected LSDA and PBE functionals, the uncorrected
α0TASK meta-GGA systematically shifts the HOMO eigenvalue to lower energies for all
three molecular systems considered. This shift reduces the underestimation of the IP as
given by the absolute value of the HOMO energy. However, the impact of α0TASK on
the ∆SCF value is less consistent. For CO and N2, the application of α0TASK results in
a larger deviation from the experimental IP compared to the LSDA and PBE, whereas
for H2O, it provides a slight improvement over the LSDA but remains marginally less
accurate than PBE. Upon applying the PZ-SIC, the overcorrection of the HOMO energy
is even more pronounced for CO and H2O with α0TASK-SIC than with LSDA-SIC or
PBE-SIC, while for N2, the HOMO energy obtained with α0TASK-SIC lies between
the values predicted by LSDA-SIC and PBE-SIC. The impact on the ∆SCF value is
similarly system-dependent: α0TASK-SIC improves the agreement with experiment for
CO compared to LSDA-SIC and PBE-SIC but worsens the accuracy for H2O, while
for N2, it yields an intermediate result between LSDA-SIC and PBE-SIC. Overall,
the application of α0TASK-SIC does not systematically improve the accuracy of the
HOMO energy and the ∆SCF value compared to LSDA-SIC and PBE-SIC. Instead, the
performance varies across different molecular systems.

As discussed above, the localized orbitals within the PZ-SIC framework are, in general,
complex-valued. Consequently, they can carry a current density, which may necessitate
the inclusion of the current-density correction of Eq. (6.19) for the kinetic energy density
in meta-GGAs. Within the TDGKS framework, this correction can significantly influence
physical properties, as shown in Chapter 5. However, no significant impact of the current-
density correction is observed in the ground-state PZ-SIC calculations presented in this
section. Detailed energy curves for our model systems, including the correction from
Eq. (6.19), are provided in Appendix B.13.
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7.3 Summary and Conclusion

To summarize, we calculated energy curves for fractional electron numbers using the
algorithm described in Section 6.8 with the LSDA and PBE. These functionals were
applied to a test set including the CO, H2O, and N2 molecules to assess their performance
with and without using the PZ-SIC. The uncorrected functionals produced strongly
convex energy curves for all model systems. In contrast, applying the PZ-SIC led to an
overcorrection, resulting in concave energy curves or, in some cases, an S-shaped behavior.
A similar trend was observed for the HOMO eigenvalues: while the LSDA and PBE
significantly underestimated the IP, applying the PZ-SIC introduced an overcorrection,
yielding overestimated IPs.

A direct application of the PZ-SIC to the meta-GGA functionals TASK and r2SCAN
resulted in numerical challenges within our real-space code BTDFT. These challenges
arise from a stronger sensitivity of meta-GGAs to density variations caused by nodal
planes due to their explicit dependence on the density gradient ∇n and the kinetic
energy density τ , in contrast to the LSDA. Our results demonstrate that by following a
construction principle outlined in Eq. (7.11), one can resolve the numerical issues and
can develop meta-GGA functionals, like the introduced meta-GGA α0TASK, compatible
with the PZ-SIC. However, the results obtained with the newly introduced α0TASK
functional using the PZ-SIC exhibit similar trends to those of LSDA-SIC and PBE-SIC,
namely, an overcorrection in both the energy curves and the HOMO eigenvalues.

This observation raises new considerations for the use of meta-GGA functionals
in combination with the PZ-SIC since one of the design principles of the TASK and
r2SCAN meta-GGAs is to reproduce the exact exchange energy of the hydrogen atom
in the single-orbital limit. However, applying the PZ-SIC to any xc approximation
already ensures the correct description of the hydrogen atom. Consequently, combining
the PZ-SIC with meta-GGAs designed to enforce this hydrogen atom norm effectively
duplicates efforts to achieve the same physical result. This observation suggests a shift
in perspective: instead of applying the PZ-SIC to existing meta-GGA functionals, it
may be more beneficial for future work to design meta-GGAs specifically tailored to use
the strengths of the PZ-SIC. For such meta-GGAs, the hydrogen atom norm can be
relaxed, introducing a new degree of freedom in their development.

Instead of modifying the underlying xc approximation to address the overcorrection
observed when applying the PZ-SIC, the following chapter starts with exploring an
approach that modifies the PZ-SIC itself to improve the description of the straight-line
condition and achieve better agreement with experimental IPs through the HOMO
energy.
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Chapter 8

Modifications of the Perdew-Zunger
Self-Interaction Correction

The influence of the PZ-SIC has been examined in several studies. When applied to the
LSDA, it improves the description of transition states in chemical reactions, leading to
more accurate reaction barrier heights [PZ02; KKJ12]. It also yields better dissociation
curves for odd-electron systems [GKC04b; GKC04a], improves binding energy curves for
diatomic molecules, and corrects the erroneous description of the dissociation process in
heteronuclear molecules by (semi-)local functionals [Ruz+06].

Despite its success, the PZ-SIC does not consistently improve results and often
worsens near-equilibrium properties, a conflicting behavior known as the “Paradox of
PZ-SIC” [Per+15]. For instance, LSDA-SIC has been shown to systematically predict
bond lengths that are too short [GU97; CJ98; VS04; VS05; Hof+12]. While it yields a
moderate improvement in atomization energies compared to the uncorrected LSDA, its
accuracy remains inferior to that of GGA and meta-GGA functionals [CP82; PHL84;
PHL85]. Additionally, when applied to GGA and meta-GGA functionals, the PZ-SIC
frequently leads to less accurate atomization energy predictions than those obtained
with the uncorrected functionals [VS04].

In the previous chapter, we investigated the effect of the PZ-SIC on the total
energy curve as a function of fractional electron number. While (semi-)local functionals
typically exhibit a convex behavior of the energy curve between integer electron numbers,
applying the PZ-SIC yields a more linear behavior but tends to overcorrect. For the
LSDA and more pronounced for PBE [PBE96] and the introduced meta-GGA functional
α0TASK (a modification of TASK [AK19]), applying the PZ-SIC results in a concave or
S-shaped behavior of the total energy curve. A similar trend is observed for the HOMO
energy: standard (semi-)local functionals such as the LSDA, PBE, and meta-GGAs
(e. g., TASK [AK19] and r2SCAN [Fur+20a; Fur+20b]) systematically underestimate
the IP. Although PZ-SIC shifts the HOMO energy downward, it overcorrects, leading to
deviations from the experimental IP of comparable magnitude but opposite sign relative
to the uncorrected functional.

Given these limitations, this chapter explores various strategies to mitigate some of
the shortcomings of the PZ-SIC discussed above. First, we review existing approaches
that scale down its effect to improve energetic performance. Subsequently, we introduce
alternative methods that prioritize an accurate description of experimental IPs via the
HOMO energy while also aiming to enforce the straight-line condition discussed in the
previous chapter.
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8.1 Review of PZ-SIC Modification Strategies

The simplest approach to modify the PZ-SIC involves scaling the self-Hartree and self-xc
terms by multiplying them with a global factor between 0 and 1. This method has been
employed in applications such as band gap calculations, as well as in studying electronic
states and binding energies, using PBE-SIC with the SIC terms often scaled by a factor
of 0.5 [Jón11; KKJ12; Val+12]. However, while this approach has led to improved results
for specific observables [KKJ12], it lacks a universal choice of the scaling factor and does
not preserve the correct asymptotic −1/r behavior of the xc potential.

Vydrov and Scuseria proposed a more systematic approach to apply a global scaling
factor [Vyd+06]. This method introduces an orbital-dependent scaling factor defined as

Xk
iσ =

∫ (
τWσ (r)

τσ(r)

)k

niσ(r) d
3r =

∫
zkσ(r)niσ(r) d

3r . (8.1)

Here, τW is the single-orbital limit of the kinetic energy density, and the ratio zσ = τWσ /τσ
therefore serves as an iso-orbital indicator that approaches 1 in single-orbital regions.
The parameter k ≥ 0 is a real-valued scaling factor, and Xk

iσ takes values between 0 and
1. Using this definition, the modified SIC functional is (with k = 1) given by [Yam+23]

ESIC
xc = Eapp

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑

i=1

Xk
iσ (EH[niσ] + Eapp

xc [niσ, 0]) . (8.2)

While this scaling procedure improves the description of equilibrium properties and
barrier heights compared to the full PZ-SIC, it deteriorates the accuracy of dissociation
processes [Ruz+07]. Moreover, the optimal scaling factor k depends on both the chosen xc
approximation and the specific physical property under consideration, such as atomization
energies, IPs, or reaction barrier heights [Vyd+06] and the correct asymptotic behavior
is only restored for k = 0, i. e., the full PZ-SIC. For any nonzero scaling factor, the
resulting scaled PZ-SIC potential instead decays as −Xk

HOMO/r [Ruz+07]. Beyond this
specific scaling approach, alternative definitions for the global scaling factor have been
proposed; see, e. g., Refs. [TKH03; VS06; Yam+20].

To further improve the approach of using a global scaling of the PZ-SIC, Zope et
al. [Zop+19] introduced the local-scaling SIC (LSIC). In LSIC, the SIC is applied only
in those spatial regions where the SIE is expected to be dominant, while the limit of
the uncorrected (semi-)local xc approximation is preserved in uniform-density regions.
This approach employs the iso-orbital indicator zσ = τWσ /τσ locally, following an idea
originally proposed in Ref. [TKH03]. Since the choice of the scaling function is not
unique, alternative definitions have also been explored [Bha+21; Rom+21]. Following
the LSIC framework, the SIC energy functional is modified as

ELSIC
xc = Eapp

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑

i=1

(
ELSIC

H [niσ] + Eapp-LSIC
xc [niσ, 0]

)
, (8.3)

where

ELSIC
H [niσ] =

e2

2

∫∫
[zσ(r)]

kniσ(r)niσ(r
′)

|r− r′| d3r d3r′ (8.4)

is the locally scaled self-Hartree term, and

Eapp-LSIC
xc [niσ, 0] =

∫
[zσ(r)]

k niσ(r) ϵ
app
xc [niσ, 0](r) d

3r (8.5)
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is the locally scaled self-xc term, where ϵappxc donates the approximate xc energy density
per particle. The scaling parameter k is a real number, typically set to 1. By applying
the SIC in a spatially selective manner, LSIC significantly improves the description
of physical properties such as barrier heights and dissociation curves of heteronuclear
molecules. At the same time, it mitigates the deficiencies of the full PZ-SIC in describing
near-equilibrium properties, including total ground-state and atomization energies.
LSDA-LSIC provides more accurate atomization energies than the PBE functional
and achieves a level of accuracy comparable to that of the meta-GGA SCAN (see
Ref. [Zop+19] for these results).

Nevertheless, the LSIC approach has drawbacks: The orbital-dependent potential
expression in LSIC, obtained from the functional derivative of Eq. (8.3) with respect to
φ∗
iσ leads to an expression that contains additional terms that depend explicitly on the

iso-orbital indicator zσ and its derivative δzσ/δφ∗
iσ [Yam+23]. Due to these additional

terms, calculating the LSIC ground state fully self-consistently is numerically more
demanding. Similar to previous applications of the PZ-SIC [YPP17; Yam+19; Sch+20;
Yam+20; WJP22], recent studies of the LSIC have used the FLO-SIC method for
finding the localized orbitals [PRP14; PB15]. Within this method, Fermi orbitals serve
as localized orbitals, circumventing the need for the fully energy-minimizing orbitals
obtained via the energy-minimizing unitary transformation. To further reduce the
computational cost, several applications of the LSIC approach have been restricted to
evaluating the energy expression in Eq. (8.3) using ground-state densities obtained from
full PZ-SIC calculations [Zop+19] or employing a quasi-self-consistent approach that
neglects terms involving the derivative δzσ/δφ∗

iσ (for details, see Ref. [Yam+23]). In
addition to the increased numerical cost of the LSIC, its original formulation cannot be
easily extended to GGAs and meta-GGAs, as these xc approximations introduce gauge
inconsistencies in the self-Hartree and self-xc energy densities within the correction terms
[Bha+20; Bha+21].

Moreover, in the literature, the LSIC approach has been motivated by addressing the
shortcomings of the global scaling SIC functional defined in Eq. (8.2) such as its false
asymptotic behavior [Zop+19; Rom+21]. However, similar to local hybrid functionals,
the LSIC potential calculated via the functional derivative of the LSIC energy functional
with respect to φ∗

iσ includes an integral term of the form

−e
2

2

∫
zσ(r

′)niσ(r′)
|r− r′| d3r′ φiσ(r) , (8.6)

in which the iso-orbital indicator zσ appears inside the integral. As explicitly shown in
Ref. [Sch+14a] for local hybrid functionals, this expression leads to a false asymptotic
behavior of the xc potential. Therefore, one can put into question whether the LSIC
energy functional generally leads to the correct asymptotic of the corresponding potential.
In any case, the LSIC approach exhibits deficiencies in describing CT-related properties.
Fully self-consistent LSIC calculations using the FLO-SIC approach indicate that the
resulting total energy curve for the C atom [ZYB24] fulfills the straight-line condition
less accurately than the results for the full PZ-SIC. Furthermore, HOMO energies from
LSDA-LSIC calculations deviate significantly from experimental IPs [Yam+23].

81



Chapter 8. Modifications of the Perdew-Zunger Self-Interaction Correction

8.2 Long-Range Self-Interaction Correction for Hartree and
(Semi-)Local Exchange

Since this work focuses on accurately describing CT-related properties, we aim to modify
the PZ-SIC using an approach that ensures the correct asymptotic −1/r decay of the xc
potential while ensuring a more accurate fulfillment of the straight-line condition and
improving the alignment of the HOMO energy with experimental IPs. Our approach can
be motivated as follows: In analogy to global hybrid functionals, where a (semi-)local
functional is mixed with exact exchange, the global scaling of the self-Hartree and self-xc
energy terms, described in the previous section, can be viewed as a hybrid between a
(semi-)local DFA and the PZ-SIC. The LSIC formulation can, in turn, be interpreted
as an approach analogous to local hybrid functionals [Zop+19]. Our method, which
will be presented below, follows the range-separated hybrid approach [HSE03; YTH04;
TCS04; Sav20], which has been shown to successfully describe CT processes by employing
(semi-)local exchange for short-range interactions and exact exchange for long-range
interactions [LB07; KK08; SKB09; Ste+10; Kur+11; Kro+12; AS14; Küm17]. To adapt
this concept to the PZ-SIC framework, we apply the full PZ-SIC only in the long-range
regime and reduce the SIC in the short-range regime. This ensures the correct asymptotic
behavior of the xc potential. At the same time, it effectively mitigates the SIE of the
Hartree term associated with the HOMO, which typically dominates the density at large
distances.

To implement this approach, we introduce the long-range scaling function

µlr(γ)(|r− r′|) = 1− exp(−γ|r− r′|) , (8.7)

where γ is the range-separation parameter. This leads to a modified SIC, the long-range
self-interaction correction (lrSIC). The expression for the xc energy is then given by

ElrSIC
xc = Eapp

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑

i=1

(
E

lr(γ)
H [niσ] + Elr-app(γ)

x [niσ] + Eapp
c [niσ, 0]

)
. (8.8)

For the long-range self-Hartree energy, we obtain

E
lr(γ)
H [niσ] =

e2

2

∫∫
µlr(γ)(|r− r′|)niσ(r)niσ(r′)

|r− r′| d3r d3r′

= EH[niσ]−
e2

2

∫∫
e−γ|r−r′|niσ(r)niσ(r′)

|r− r′| d3r d3r′

︸ ︷︷ ︸
=E

(γ)
Yukawa

.
(8.9)

The term E
(γ)
Yukawa represents the Yukawa potential, a well-known concept in electrostatics

that introduces exponential screening. In our context, this screening is employed to
modify the SIC. Next, the long-range (semi-)local exchange energy is calculated based
on the representation via its (semi-)local exchange hole happx (r, r′) [LP75; GL76] given
by

Elr-app(γ)
x [niσ] =

e2

2

∫∫
µlr(γ)(|r− r′|)niσ(r)h

app
x (r, r′)

|r− r′| d3r′ d3r . (8.10)

The usual exchange energy expression can be defined analogously to Eq. (8.10) without
the long-range scaling function µlr(γ). The expression for the LDA functional will be
introduced in the following section. Using the lrSIC approach, the corresponding energy
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functional in Eq. (8.8) smoothly interpolates between two limits: for γ →∞, it recovers
the full PZ-SIC, while for γ → 0, the Hartree and exchange correction terms vanish
entirely. In this limit, only the correlation term is self-interaction corrected.

Finally, the corresponding Hamiltonian operator can be obtained by minimizing the
ground-state energy functional using ElrSIC

xc defined in Eq. (8.8) with respect to φ∗
iσ.

This results in the following Hamiltonian

Ĥiσ =− ℏ2

2m
∇2 + vext(r) + vH[n](r) + vxc[n↑, n↓](r)

−
(
vH[niσ](r)− v(γ)Yukawa[niσ](r) + vlr(γ)x [niσ](r) + vc[niσ, 0](r)

)
,

(8.11)

where the SIC terms emerge from the functional derivative δElrSIC
xc /δφ∗

iσ. In this
expression, vlr(γ)x is the screened (semi-)local exchange potential computed using the
scaling function in Eq. (8.7), and v(γ)Yukawa is the Yukawa potential given by

v
(γ)
Yukawa[niσ](r) = e2

∫
e−γ|r−r′| niσ(r′)
|r− r′| d3r′ . (8.12)

Calculating the integral form of the Yukawa potential from Eq. (8.12) using the real-space
code BTDFT is computationally demanding. However, similar to the Hartree potential,
the Yukawa potential can be calculated by solving the screened Poisson equation

[
∇2 − γ2

]
v
(γ)
Yukawa[niσ](r) = −4πe2niσ(r) . (8.13)

Since the Yukawa potential decays slowly as γ → 0, enforcing a zero-boundary condition
for the whole Yukawa potential would require a computationally expensive large grid.
Therefore, we partition the Yukawa potential into an internal part defined within the
real-space grid and, to satisfy the boundary condition, a part defined outside the grid,
i. e., v(γ)inYukawa + v

(γ)bound
Yukawa for solving the screened Poisson equation. By choosing v(γ)inYukawa

to vanish outside the grid, the screened Poisson equation is modified to
[
∇2 − γ2

]
v
(γ)in
Yukawa(r) = −4πe2niσ(r)−

[
∇2 − γ2

]
v
(γ)bound
Yukawa (r) . (8.14)

We approximate the boundary potential by the monopole moment of the Yukawa
potential

v
(γ)mono
Yukawa [niσ](r) = e2

exp(−γr)
r

, (8.15)

where r denotes the distance from the center of the orbital density niσ to the point r.
The influence of using the monopole moment of the Yukawa potential as the boundary
condition for solving the screened Poisson equation instead of a zero-boundary condition
is discussed in Appendix B.15.

8.3 Long-Range LSDA Expression

So far, we have introduced the exponentially screened expressions for the Hartree energy.
For the exchange functional within our lrSIC formulation, we employ the LSDA functional
with the corresponding exponentially screened LSDA expression, which can be derived
using the exact exchange functional with the screening function µlr(γ)(|r− r′|) defined
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in Eq. (8.7) as a starting point:

Elr-exact(γ)
x = −e

2

2

∑

σ=↑,↓

Nσ∑

i,j=1

∫∫
µlr(γ)(|r− r′|)

φ∗
iσ(r)φ

∗
jσ(r

′)φiσ(r
′)φjσ(r)

|r− r′| d3r d3r′ .

(8.16)
Subsequently, the orbitals {φiσ} are replaced by the particle-in-a-box orbital expressions,
as described in Chapter 6 of Ref. [Par20], which presents the derivation of the LDA
exchange energy, and in Ref. [Rob+62]. By solving the integrals in Eq. (8.16), one
obtains the expression for the long-range LDA exchange energy

Elr-LDA(γ)
x [n] = Ax

∫
n4/3(r)F lr-LDA(γ)

x (rs(r)) d
3r (8.17)

with the constant Ax = −(3/4)(3/π)1/3, the Wigner-Seitz radius

rs(r) =

(
3

4πn(r)

)1/3

, (8.18)

and the enhancement factor [Rob+62]

F lr-LDA(γ)
x (rs) =

γ
{
4 c2x
r2s

[
γ + 8 cx

rs
arctan

(
2cx
γrs

)]
− γ

(
12 c2x

r2s
+ γ2

)
ln
(
1 + 4c2x

r2s γ
2

)}

24 c4x
r4s

(8.19)

where cx = (9π/4)1/3. The detailed derivation steps are provided in Appendix B.16. The
spin-dependent exponentially screened LSDA expressions can be obtained by applying
the spin-scaling relations described in Section 3.6.3, i. e., by substituting rs → 2−1/3rsσ
with rsσ = (3/(4πnσ))

1/3.
The corresponding potential is obtained by taking the functional derivative of the

long-range LDA exchange energy with respect to the density,

vlr-LDA(γ)
x (r) =

δE
lr-LDA(γ)
x [n(r′)]

δn(r)

=Ax

(
4

3
n1/3(r)F lr-LDA(γ)

x (rs(r)) + n4/3(r)
∂F

lr-LDA(γ)
x (rs)

∂rs
(r)

∂rs
∂n

(r)

)

=
1

3
Ax

[
4n1/3(r)F lr-LDA(γ)

x (rs(r))−
(

3

4π

)1/3 ∂F
lr-LDA(γ)
x (rs)

∂rs
(r)

]

(8.20)

where
∂rs
∂n

= −1

3

rs
n

(8.21)

and

∂F
lr-LDA(γ)
x (rs)

∂rs
=
γ
{
8c3x arctan

(
2cx
γrs

)
+ rsγ

(
4c2x −

[
6c2x + r2s γ

2
]
ln
[
1 + 4c2x

γ2r2s

])}

6c4x
.

(8.22)
The spin-dependent potential is obtained by

vlr-LDA(γ)
xσ (r) = vlr-LDA(γ)

x (r)
∣∣∣
n→2nσ

. (8.23)
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8.4 Results for Long-Range Self-Interaction Correction for
Hartree and (Semi-)Local Exchange

Following our previous tests for the full PZ-SIC, we apply the lrSIC approach with the
long-range LSDA (LSDA-lrSIC) to our test set consisting of CO, H2O, and N2. The
numerical details are reported in Appendix B.17; in the following, we present and discuss
our results. We begin by analyzing the influence of the range-separation parameter γ
on the behavior of the total energy as a function of the fractional electron number to
assess the fulfillment of the straight-line condition. Next, we analyze the validity of the
IP theorem depending on the value of γ employed. As numerical difficulties become
evident in the HOMO energies, particularly for small γ values, we discuss these issues in
detail in a subsequent section.

8.4.1 Straight-Line Condition for LSDA-lrSIC

We start by analyzing the fulfillment of the straight-line condition using the LSDA-lrSIC
functional for different values of the range-separation parameter γ for the CO molecule.
To quantify the degree of fulfillment for the considered γ values, we introduce an error
value, ∆lin(γ), which measures the deviation of the energy curve E(N) from the linear
connection between E(N0 − 1) and E(N0), where N0 denotes the number of electrons of
the neutral system:

∆lin(γ) =

∫ N0

N0−1 |E(γ)(N)− E(γ)
lin (N)| dN

∫ N0

N0−1E
(γ)
lin (N) dN

=

∫ N0

N0−1 |E(γ)(N)− E(γ)
lin (N)| dN

E(N0) +
1
2∆SCF

, (8.24)

where ∆SCF = E(N0 − 1) − E(N0). The exact result for the linear energy function,
which connects E(N0 − 1) and E(N0) is defined as

E
(γ)
lin (N) = E(γ)(N0) + (N −N0)

[
E(γ)(N0)− E(γ)(N0 − 1)

]
. (8.25)

The error criterion is schematically illustrated in Fig. 8.1. In this figure, the red

N0 − 1 N0
N

Energy
E(N)

Elin(N)

Figure 8.1: Schematic illustration of the error criterion ∆lin. The red
area indicates the absolute deviation between E(N) and the
linear function Elin(N) that connects E(N0) and E(N0 − 1).
The blue area corresponds to the region below Elin(N).

area represents the numerator, while the blue area corresponds to the denominator of
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Eq. (8.24). By normalizing our error criterion with the denominator (i. e., the blue
area under the straight line connecting E(N0 − 1) and E(N0)), we ensure that ∆lin(γ)
remains comparable across different model systems.

Figure 8.2 shows the results of the LSDA-lrSIC approach for the energy curves
between the neutral CO molecule and its cation for γ values of 0.3, 0.6, 0.9, and 1.2 a−1

0

shown in panel (a) to (d). As evident from the energy curve in panel (a), the correction

0

5

10

15 (a) LSDA-lrSIC γ = 0.3 a−1
0

(b) LSDA-lrSIC γ = 0.6 a−1
0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0

5

10

15 (c) LSDA-lrSIC γ = 0.9 a−1
0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

(d) LSDA-lrSIC γ = 1.2 a−1
0

∆N

E
(N

0
+

∆
N

)
−
E

(N
0
)

(e
V

)

Figure 8.2: Energy curves for CO using LSDA-lrSIC with different range-
separation parameters: γ = 0.3 (a), 0.6 (b), 0.9 (c), and
1.2 a−1

0 (d). The dotted lines indicate the straight-line refer-
ence, highlighting deviations from the straight-line condition.

terms with γ = 0.3 a−1
0 remain too weak to eliminate the convex curvature of the

uncorrected LSDA functional. Increasing the range-separation parameter also increases
the SIC, which is reflected in the energy curves: The convex behavior of the energy curve
decreases as γ increases from 0.3 to 0.6 a0

−1, and a nearly linear behavior is observed for
γ = 0.9 a0

−1 in panel (c). For γ = 1.2 a0
−1 in panel (d), however, a slight overcorrection

occurs, resulting in a mildly S-shaped energy curve.
In order to evaluate the deviation of the energy curves more rigorously, we additionally

use the error criterion ∆lin. The results for different values of γ are presented in Fig. 8.3.
The gray dashed horizontal lines represent the error of the uncorrected LSDA functional
and the LSDA functional using the full PZ-SIC (LSDA-SIC). Comparing these two
references highlights the improvement already achieved by the full PZ-SIC, as observed
in Chapter 7, where the deviation from the straight-line condition decreases significantly
from the LSDA to LSDA-SIC. To systematically analyze the effect of the range-separation
parameter γ within our lrSIC framework, we computed the deviation from the straight-
line condition for LSDA-lrSIC in steps of 0.1 a−1

0 . As the deviation approaches values
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Figure 8.3: Error value ∆lin quantifying the deviation of energy curves
from the straight-line condition for CO, computed with LSDA-
lrSIC for different γ. The gray dotted lines indicate the LSDA
and LSDA-SIC values.

comparable to the full PZ-SIC, we refined the step size to 0.05 a−1
0 to capture the

trend more accurately. The results reveal a strong decrease of ∆lin with increasing γ,
eventually falling below the value for LSDA-SIC at approximately γ = 0.6 a−1

0 . The
minimal deviation from the straight-line condition is observed at γ = 1.0 a−1

0 , reducing the
error by approximately 63% compared to the LSDA-SIC error (from ∆lin = 1.97× 10−2

to 0.73× 10−2). For γ > 1.0 a−1
0 , the deviation increases slightly, indicating a growing

overcorrection at higher γ values. This trend is consistent with the fact that, in the
limit of large γ, the lrSIC formulation approaches the full PZ-SIC, which shows an
overcorrection for the CO molecule.

We now turn to the H2O molecule as our second model system. Figure 8.4 illustrates
the energy curves computed with LSDA-lrSIC for the different values of the range-
separation parameter γ. The LSDA-lrSIC results for γ = 0.3 a−1

0 and 0.6 a−1
0 , shown in

panels (a) and (b), respectively, exhibit a convex deviation from the linear connection
between E(N0 − 1) and E(N0). This deviation appears more pronounced than in the
case of the CO molecule. In contrast, for γ = 0.9 a−1

0 and 1.2 a−1
0 , the deviation becomes

slightly S-shaped, with the energy curve for γ = 1.2 a−1
0 exhibiting the smallest deviation

from the straight-line condition among the considered γ values in Fig. 8.4. This effect,
where a stronger SIC is needed for the H2O molecule compared to CO, can be attributed
to the presence of two hydrogen atoms in the H2O molecule. These hydrogen atoms
create additional iso-orbital regions where SIEs are particularly pronounced. In these
regions, the cancellation between the Hartree term and the LSDA exchange is insufficient,
necessitating a larger γ to enforce the straight-line condition.

The trend observed in the energy curves for H2O is further reflected in the error
values ∆lin for the LSDA-lrSIC calculations with different range-separation parameters,
as shown in Fig. 8.5. Notably, the horizontal gray line of the uncorrected LSDA yields a
larger ∆lin value for H2O than for CO, reflecting a more pronounced convex deviation
from the straight-line condition, which aligns with the expectation that SIEs are more
pronounced in H2O than in CO when using the LSDA functional. Applying the lrSIC
approach leads again to a rapid decrease in ∆lin. For γ ≥ 0.65 a−1

0 , ∆lin falls below the
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Figure 8.4: Energy curves for H2O using LSDA-lrSIC with different range-
separation parameters: γ = 0.3 (a), 0.6 (b), 0.9 (c), and
1.2 a−1

0 (d). The dotted lines indicate the straight-line refer-
ence, highlighting deviations from the straight-line condition.

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Range-separation parameter γ (a−1
0 )

0.000

0.025

0.050

0.075

0.100

0.125

0.150

∆
li

n
(a

rb
.

u
.)

LSDA

LSDA-SIC

LSDA-lrSIC ∆lin(γ)

Figure 8.5: Error value ∆lin quantifying the deviation of energy curves
from the straight-line condition for H2O, computed with
LSDA-lrSIC for different γ. The gray dotted lines indicate
the LSDA and LSDA-SIC values.
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LSDA-SIC value, reaching a minimum at γ = 1.1 a−1
0 . For γ > 1.1 a−1

0 , ∆lin increases
again. These results are consistent with the trends observed in the energy curves and
confirm that a slightly larger range-separation parameter is required to minimize the
deviation from the exact straight-line condition in H2O compared to CO.

Finally, we turn to the last model system, the N2 molecule. The energy curves for
different values of the range-separation parameter γ are shown in Fig. 8.6. In panel (a),
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Figure 8.6: Energy curves for N2 using LSDA-lrSIC with different range-
separation parameters: γ = 0.3 (a), 0.6 (b), 0.9 (c), and
1.2 a−1

0 (d). The dotted lines indicate the straight-line refer-
ence, highlighting deviations from the straight-line condition.

the energy curve for γ = 0.3 a−1
0 exhibits a convex shape. However, a slight change in

curvature is noticeable near the neutral N2 molecule, i. e., close to ∆N = 0. Increasing
the range-separation parameter to γ = 0.6 a−1

0 (panel (b)) leads to a smaller deviation
from the straight line connecting E(N0) and E(N0 − 1). For γ = 0.9 a−1

0 , signs of
overcorrection become apparent as the energy curve forms an S-shaped behavior. For
γ = 1.2 a−1

0 , this behavior appears to get slightly more pronounced, with a change in
curvature at approximately ∆N = −0.75.

These trends are consistent with the behavior of the error value ∆lin as a function of
γ, illustrated in Fig. 8.7. Similar to the results for CO and H2O, ∆lin decreases rapidly
for small γ values, below the error value of the uncorrected LSDA, as indicated by the
upper gray dashed line in Fig. 8.7. However, in contrast to CO and H2O, the error for
N2 reaches its minimum at γ = 0.8 a−1

0 , and for larger values of γ, the error increases
again, though it slightly decreases for γ > 1.3 a−1

0 . Despite these minor fluctuations, the
∆lin(γ) curve remains above the error value of the full PZ-SIC (LSDA-SIC). However,
the error value for LSDA-SIC for N2 (∆lin = 0.42× 10−2) is considerably smaller than
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Figure 8.7: Error value ∆lin quantifying the deviation of energy curves
from the straight-line condition for N2, computed with LSDA-
lrSIC for different γ. The gray dotted lines indicate the LSDA
and LSDA-SIC values.

the corresponding values for CO (1.97× 10−2) and H2O (2.61× 10−2), suggesting that
the full PZ-SIC applied to the LSDA functional yields the most promising results for
fulfilling the straight-line condition for N2.

8.4.2 IP Theorem for LSDA-lrSIC

After analyzing the energy curves concerning the straight-line condition, we now focus on
the IP theorem for different values of the range-separation parameter γ. To explore this,
we compute the HOMO energy of the neutral molecule, as well as the total ground-state
energies of the neutral system and its cation, for γ values ranging from 0.1 to 1.0 a−1

0 in
steps of 0.05 a−1

0 . The results for the CO molecule are presented in Fig. 8.8. The HOMO
energy, defined within our SIC calculations as ϵHOMO ≡ λ′HOMOHOMO (see Section 6.6),
exhibits a strong dependence on the range-separation parameter γ, varying by 2.33 eV
from −12.88 eV for γ = 0.1 to −15.21 eV for γ = 1.0 a−1

0 . For small γ values, the
HOMO energy underestimates the experimental IP from Ref. [Hub79], with the negative
experimental IP value indicated by a gray dashed horizontal line. As γ increases and
the LSDA-lrSIC functional approaches the full PZ-SIC (LSDA-SIC), the absolute value
of the HOMO energy overestimates the experimental IP.

However, looking at the HOMO energy curve in Fig. 8.8, we observe significant
variations for γ < 0.4 a−1

0 . For these values, the HOMO energies initially become more
negative and then increase abruptly. This behavior can be attributed to numerical
difficulties in finding the true energy-minimizing unitary transformation for small values
of the range-separation parameter γ, as well as to additional issues related to the
enhancement factor of the screened LSDA energy functional (see Eq. (8.19)) evaluated
on orbital densities. These aspects will be discussed in detail in the subsequent section.

Due to the numerical artifacts for γ < 0.4 a−1
0 , our analysis focuses on larger values

of γ. At approximately γ = 0.5 a−1
0 , the HOMO energy for the CO molecule most closely

matches the experimental IP. In contrast to the HOMO energy, the negative ∆SCF value
exhibits a weaker dependence on γ, varying by only 0.73 eV across the considered range
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Figure 8.8: HOMO energies, ϵHOMO, and −∆SCF = −(E(N0 − 1) −
E(N0)) values for CO, calculated using LSDA-lrSIC, as a
function of the range-separation parameter γ. The gray
horizontal line indicates the negative experimental IP value.

of γ. The IP theorem, ∆SCF = −λ′HOMOHOMO, is satisfied for a γ value between 0.6 and
0.65 a−1

0 , where the calculated IP reaches approximately −14.26 eV. This corresponds
to a deviation of 0.25 eV from the experimental value.

The results for the HOMO energy and ∆SCF curves as a function of the range-
separation parameter for the H2O molecule, shown in Fig. 8.9, closely follow the trends
previously discussed for CO. As in the case of CO, the ∆SCF values in Fig. 8.9 show
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Figure 8.9: HOMO energies, ϵHOMO, and −∆SCF = −(E(N0 − 1) −
E(N0)) values for H2O, calculated using LSDA-lrSIC, as
a function of the range-separation parameter γ. The gray
horizontal line indicates the negative experimental IP value.

only a weak dependence on γ, with a maximum variation of 0.46 eV. However, unlike
CO, the ∆SCF values consistently overestimate the experimental IP [Joh22] for all

91



Chapter 8. Modifications of the Perdew-Zunger Self-Interaction Correction

considered range-separation parameters. This observation is consistent with our previous
findings for the uncorrected LSDA functional and LSDA-SIC, which both overestimate
the experimental IP by 0.49 eV and 0.22 eV, respectively.

An analysis of the HOMO energy as a function of γ again reveals numerical difficulties,
particularly for values near γ = 0.3 a−1

0 , where the HOMO energy curves exhibit a large
jump from γ = 0.3 to 0.35 a−1

0 (see the next section for a detailed discussion). Due to
these numerical issues, it is difficult to specify the exact γ value at which the HOMO
energy aligns with the negative experimental IP or the ∆SCF value. This value can only
be estimated to be γ = 0.27 a−1

0 for agreement with the experimental IP, and γ = 0.3 a−1
0

for fulfillment of the IP theorem.
Finally, the results for our last model system N2 are illustrated in Fig. 8.10. Similar
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Figure 8.10: HOMO energies, ϵHOMO, and −∆SCF = −(E(N0 − 1) −
E(N0)) values for N2, calculated using LSDA-lrSIC, as a
function of the range-separation parameter γ. The gray
horizontal line indicates the negative experimental IP value.

to the previously discussed systems, the HOMO energy for the N2 molecule exhibits
a stronger dependence on the range-separation parameter γ than the ∆SCF value.
However, unlike the case of H2O, the ∆SCF values do not consistently overestimate
the experimental IP. The IP theorem, ϵHOMO = −∆SCF, is fulfilled at approximately
γ = 0.53 a−1

0 , where the computed IP deviates from the experimental IP value from
Ref. [Hub79] by 0.31 eV – a larger deviation than observed for CO. Overall, the HOMO
energy curve seems to be numerically more stable for the considered values of the
range-separation parameter with only small oscillations for γ < 0.4 a−1

0 .
In summary, the range-separation parameter can be optimized depending on the

system, similar to the known optimal tuning of range-separated hybrid functionals
to satisfy the IP theorem. The value of the range-separation parameter at which
ϵHOMO = −∆SCF is system-dependent. This system dependency is especially apparent
for our test set for the H2O molecule, where the optimal value deviates strongly from
CO and N2.

Comparing the optimal values of γ for the fulfillment of the IP theorem with those for
the straight-line condition reveals that the IP-optimal γ values are consistently smaller
across all considered systems. This difference arises from a change in the curvature of
the total energy as a function of fractional particle number near the neutral molecule.
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While these changes only slightly affect the total energy, they cause strong variations –
particularly a drop – in the HOMO energies close to the neutral molecule. This behavior
of the HOMO energy curves, which is especially pronounced for the H2O molecule, is
shown in Appendix B.19.

8.4.3 Numerical Difficulties for LSDA-lrSIC Calculations

The HOMO energy curves for the CO and H2O molecules, presented in Section 8.4.2,
reveal oscillations for some values of the range-separation parameter within our LSDA-
lrSIC approach. This behavior is particularly evident for γ < 0.6 a−1

0 and can be
attributed to several numerical challenges associated with our lrSIC method, where the
self-Hartree and self-exchange terms within the SIC are screened to their long-range
regime.

The first aspect is the numerical challenge of finding the energy-minimizing unitary
transformation for small values of the range-separation parameter γ. This can be
understood by considering the gradient matrix of the derivative of the lrSIC energy
expression in Eq. (8.8) with respect to the unitary transformation for integer particle
numbers

Gijσ = ⟨φjσ|vSI(γ)[niσ]− vSI(γ)[njσ]|φiσ⟩ , (8.26)

with the self-interaction term

vSI(γ)[niσ](r) = −
[
vH[niσ](r)− v(γ)Yukawa[niσ](r) + vlr(γ)x [niσ](r) + vc[niσ, 0](r)

]
. (8.27)

The self-interaction potential defined in Eq. (8.27) reduces within our lrSIC approach to
the negative correlation potential −vc[niσ] as γ → 0. Since the correlation potential is
generally much smaller in magnitude than the exchange and Hartree terms that dominate
vSI(γ)[niσ] for larger γ, the overall self-interaction potential becomes significantly reduced
in this limit. Consequently, the difference vSI(γ)[niσ]−vSI(γ)[njσ] in Eq. (8.26) also tends
to be small, leading to small values of all elements in the matrix Gσ. Since the energy
minimum with respect to the unitary transformation is reached when Gσ = 0, we must
define a convergence criterion that requires max(Gσ) to fall below a predefined threshold
in our algorithm for finding the energy-minimizing unitary transformation. However,
as Gσ naturally decreases in magnitude for small γ, it becomes increasingly difficult
to distinguish between a genuinely converged global energy minimum and numerical
artifacts due to this automatic suppression. Therefore, we tightened the convergence
criterion for our lrSIC calculations from our previously used value of 1.0 × 10−7 to
5.0× 10−8Ry.

As illustrated in Appendix B.19, this issue is less pronounced for fractional particle
numbers, which can be understood from the differing structure of the gradient matrix.
For the spin channel containing the fractionally occupied HOMO, the matrix elements
are given by

Gijσ = ⟨φjσ|fiσĤiσ − fjσĤjσ|φiσ⟩ , (8.28)

where it explicitly depends on the occupation numbers {fiσ}, and Ĥiσ is defined in
Eq. (8.11). As only the HOMO is fractional occupied, i. e. fHOMO ̸= 1, the difference of
fHOMOĤHOMO − fjσĤjσ (with j = 1, . . . ,HOMO− 1) becomes inherently larger which
reduces the numerical problem of finding the true energy minimum with respect to the
unitary transformation.

This numerical challenge of finding the true HOMO energy, along with the energy-
minimizing ground state for small γ values, can also be understood from a more conceptual
point of view: As the range-separation parameter γ approaches 0, the magnitude of

93



Chapter 8. Modifications of the Perdew-Zunger Self-Interaction Correction

the SIC energy terms within the lrSIC energy functional that explicitly depend on the
orbital densities decreases. Consequently, the energy functional becomes less sensitive
to unitary transformations of the orbitals. However, such transformations can still
significantly change the entries of the Lagrange multiplier matrix and specifically its
diagonal elements λ′iiσ and, therefore, the HOMO energy λ′HOMOHOMO. This can be
seen, for example, in an LSDA-lrSIC calculation for CO with γ = 0.3 a−1

0 , where starting
the calculation from two different initial states (an uncorrected LSDA calculation or an
LSDA-lrSIC calculation with γ = 0.35 a−1

0 ) results in two different ground states, but
with almost the same energy differing by only 0.005 eV. However, the corresponding
HOMO energies differ strongly: the energetically lower state exhibits a HOMO energy of
−13.72 eV while for the energetically higher state, the HOMO energy is −14.61 eV. As
briefly discussed in the numerical details of our lrSIC calculations in Appendix B.17, a
similar behavior of almost degenerate ground states could be seen for the H2O molecule
for the LSDA-lrSIC calculations with γ = 0.45 a−1

0 and 0.5 a−1
0 .

The numerical difficulties due to the unitary transformation with small γ values
and the near-degeneracy of ground-state energies, despite significant variations in the
HOMO energy, are further enhanced by intrinsic numerical challenges introduced by the
long-range LSDA expression. This becomes evident when considering the enhancement
factor in Eq. (B.102), which can be rewritten as a sum of four terms

F lr-LDA(γ)
x (rs) =

1

6

γ2r2s
c2x

+
4

3

γrs
cx

arctan

(
2cx
γrs

)
− 1

2

γ2r2s
c2x

ln

[
1 +

4c2x
r2s γ

2

]

− 1

24

γ4r4s
c4x

ln

[
1 +

4c2x
r2s γ

2

]

=:F1(rs) + F2(rs) + F3(rs) + F4(rs) .

(8.29)

For small densities, i. e., n→ 0, which is equivalent to rs →∞, the enhancement factor
satisfies

lim
rs→∞

F lr-LDA(γ)
x (rs) = 1 . (8.30)

However, the individual terms in Eq. (8.29) exhibit the following asymptotic behavior

lim
rs→∞

F1 =∞, lim
rs→∞

F2 =
8

3
, lim

rs→∞
F3 = −2, lim

rs→∞
F4 = −∞ . (8.31)

This implies that only the sum of F1 and F4 converges, resulting in a partial cancellation
in the low-density limit, yielding

lim
rs→∞

(F1 + F4) =
1

3
, (8.32)

while the individual terms of F1 and F4 diverge as rs →∞. A similar behavior can be
observed for the derivative of the enhancement factor

∂F
lr-LDA(γ)
x

∂rs
=
2

3

γ2rs
c2x

+
4

3

γ

cx
arctan

(
2cx
γrs

)
− γ2rs

c2x
ln

[
1 +

4c2x
r2s γ

2

]

− 1

6

γ4r3s
c4x

ln

[
1 +

4c2x
r2s γ

2

]

=:∂rsF1(rs) + ∂rsF2(rs) + ∂rsF3(rs) + ∂rsF4(rs) ,

(8.33)

where ∂rsF2 and ∂rsF3 vanish individually as rs →∞, while ∂rsF1 and ∂rsF4 diverge to
∞ and −∞, respectively. However, their sum vanishes in this limit.
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The behavior of the enhancement factor and its derivative, where only the sum of the
individual terms converges to a constant as n→ 0 (or rs →∞), but the individual terms
diverge, can lead to numerical challenges. These difficulties become particularly relevant
when evaluating the screened LDA potential (see Eq. (8.20)) with orbital densities
incorporating nodal planes. In the spatial region corresponding to the nodal plane of
the orbital density, oscillatory features emerge in the screened LDA potential evaluated
with the orbital density. Unlike in the asymptotic outer region of the system, where all
orbitals decay to zero, the other orbitals in the region of the nodal plane of a specific
orbital do not necessarily vanish. This issue is crucial when computing the gradient of
the energy with respect to the unitary transformation (see Eq. (8.26)), as the product of
vSI(γ)[niσ] with the orbital φjσ (with i ≠ j) can amplify the spurious oscillatory features
of the potential in the spatial region of the nodal plane of orbital i, leading to numerical
difficulties in the ground-state calculation within our lrSIC approach. Various attempts
to mitigate these numerical difficulties in the screened LDA potential are discussed in
Appendix B.18.

In summary, although the application of the lrSIC approach revealed some numerical
challenges, they did not occur for values of the range-separation parameter γ that
are relevant within our test set for achieving an energy curve that closely follows the
straight-line connection between the energy values of the neutral molecule and its cation.
Therefore, these challenges are not expected to pose general limitations when applying
the lrSIC approach in physically relevant cases.

8.5 Short-Range (Semi-)Local Exchange with Long-Range
Hartree Self-Interaction Correction

Our previously introduced lrSIC approach reduced the overcorrection of the full PZ-SIC
while still ensuring the correct asymptotic behavior of the xc potential by screening the
orbital-dependent self-Hartree and self-exchange terms to its long-range regime. However,
typical range-separated hybrid functionals designed to describe CT excitations achieve
the correct asymptotic behavior of the xc potential in a slightly different way: they
screen the (semi-)local exchange functional entirely to its short-range contribution and
treat the long-range contribution by exact exchange [KK08; SKB09; Ste+10; Kur+11].
Transferring this concept even more directly to the SIC framework than in the previous
lrSIC approach, one might also consider an alternative SIC functional, defined as

ElrHcSIC
xc = Esr-app(γ)

x [n↑, n↓] + Eapp
c [n↑, n↓]−

∑

σ=↑,↓

Nσ∑

i=1

(
E

lr(γ)
H [niσ] + Eapp

c [niσ, 0]
)
,

(8.34)
where the (semi-)local exchange energy functional Esr-app(γ)

x evaluated on the total
density is screened to its short-range contribution using the function

µsr(γ)(|r− r′|) = exp(−γ|r− r′|) . (8.35)

The correction term in Eq. (8.34) is reduced to the long-range self-Hartree term E
lr(γ)
H

(using the function µlr(γ) defined in Eq. (8.7)) and the self-interaction term of the
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(semi-)local correlation functional Eapp
c [niσ, 0]. This leads to the corresponding orbital-

dependent Hamiltonian

Ĥiσ =− ℏ2

2m
∇2 + vext(r) + vH[n](r) + vsr(γ)x [n↑, n↓](r) + vappc [n↑, n↓](r)

−
(
vH[niσ](r)− v(γ)Yukawa[niσ](r) + vc[niσ, 0](r)

)
,

(8.36)

with the short-range (semi-)local exchange potential vsr(γ)x .
This approach, referred to as lrHcSIC, still ensures the correct asymptotic behavior

of the xc potential and corrects the SIE of the Hartree term in the long-range density
region, where the HOMO typically dominates the density. For γ → 0, the energy
functional in Eq. (8.34) reduces to the uncorrected (semi-)local exchange functional,
with only the SIC of the correlation functional remaining. In the limit γ →∞ and in
the long-range regime, the energy functional reduces to the SIC of the Hartree term and
a full self-correlation correction, while the short-range (semi-)local exchange vanishes.

At first glance, it may seem counterintuitive that the exchange part of the energy
functional in Eq. (8.34) in the long-range limit reduces to a pure SIC of the Hartree
term. However, this can be explained by the observation that the three approaches –
range-separated hybrids, the lrSIC approach, and the lrHcSIC approach – do not differ
in the long-range regime, where the HOMO dominates the density and, therefore, the
total density effectively reduces to an orbital density: For a range-separated hybrid
functional, the exchange energy functional in the long-range limit corresponds to the
exact exchange functional modified by the Gaussian error function erf(γ|r− r′|) which
leads to [Lei+97]

Elr-exact
x = −e

2

2

∑

σ=↑,↓

Nσ∑

i,j=1

∫∫
erf(γ|r− r′|)

φ∗
iσ(r)φ

∗
jσ(r

′)φiσ(r
′)φjσ(r)

|r− r′| d3r d3r′ . (8.37)

However, in the long-range regime, once the HOMO dominates, this expression simplifies
to

Elr-exact
x = −EH[|φHOMO|2] . (8.38)

The same behavior is straightforward to see for both the exchange part of the lrSIC and
lrHcSIC energy expressions in Eq. (8.8) and Eq. (8.34), respectively.

For practical applications of the lrHcSIC approach, we again employ the LSDA
functional as our (semi-)local xc approximation. The short-range LSDA (sr-LSDA)
energy functional Esr-LDA(γ)

x can be derived analogously to the long-range expression by
replacing µlr(γ) with µsr(γ) from Eq. (8.35). Specifically, it is obtained by replacing the
enhancement factor with

F sr-LDA(γ)
x = 1− F lr-LDA(γ)

x (8.39)

as given in Ref. [Rob+62], where F lr-LDA(γ)
x is defined in Eq. (8.19). The corresponding

potential expression vsr-LDA(γ)
x follows from Eq. (8.20), with the additional substitution

∂F
sr-LDA(γ)
x

∂rs
= −∂F

lr-LDA(γ)
x

∂rs
. (8.40)

By evaluating the potential expression of the sr-LDA functional with the total density
within the lrHcSIC approach, the numerical difficulties observed for the lr-LDA expression
evaluated on orbital densities with nodal planes (see Section 8.4.3) can be circumvented.
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8.6 Results for Short-Range Exchange with Long-Range
Hartree Self-Interaction Correction

For the application of the lrHcSIC approach together with the short-range LSDA
functional (sr-LSDA-lrHcSIC) to our test set consisting of CO, H2O, and N2, we use
the same numerical parameters as in previous applications of the lrSIC approach. The
convergence criteria are the only parameters we adjust: we set max(Gσ) = 1.0×10−7Ry
for the inner loop algorithm and ∆error,σ = 3.0× 10−6 for the outer loop algorithm (for
definitions of these criteria, see Section 6.8). Tests using a tighter convergence criterion
of 1.0 × 10−6 did not result in any changes to the results of our sr-LSDA-lrHcSIC
calculations.

As in previous sections, we begin by analyzing the straight-line condition and then
examine the predicted IP values, considering various values of the range-separation
parameter γ in both cases.

8.6.1 Straight-Line Condition for sr-LSDA-lrHcSIC

We start by applying the sr-LSDA-lrHcSIC functional to the CO molecule. The results
for different values of the range-separation parameter are shown in Fig. 8.11. Similar
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Figure 8.11: Energy curves for CO using sr-LSDA-lrHcSIC with different
range-separation parameters: γ = 0.3 (a), 0.6 (b), 0.9 (c),
and 1.2 a−1

0 (d). The dotted lines indicate the straight-
line reference, highlighting deviations from the straight-line
condition.

to the previous results for LSDA-lrSIC, panel (a) of Fig. 8.11 reveals that for a range-
separation parameter of γ = 0.3 a−1

0 , the SIC of the Hartree term remains too weak to
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significantly mitigate the spurious convex curvature of the energy curve calculated with
the LSDA functional. However, for γ = 0.6 a−1

0 in panel (b), the deviation from the
dotted straight-line connection between E(N0 − 1) and E(N0) (where N0 is the number
of electrons in the neutral molecule) is significantly reduced, leaving only a very weak
convex curvature in the energy curve. For γ = 0.9 a−1

0 in panel (c) and γ = 1.2 a−1
0

in panel (d), the SIC of the Hartree term becomes too short-ranged, leading to an
overcorrection and causing the energy curve to become increasingly concave.

This trend is also reflected in the error criterion shown in Fig. 8.12, which quantifies
the deviation of the energy curve from the exact straight-line connection for different γ
values. For this purpose, the error criterion ∆lin (for the definition, see Eq. (8.24)) is
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Figure 8.12: Error value ∆lin quantifying the deviation of energy curves
from the straight-line condition for CO, computed with
sr-LSDA-lrHcSIC for different γ. The gray dotted lines
indicate the LSDA and LSDA-SIC values.

evaluated for γ values ranging from 0.1 to 1.6 a−1
0 in steps of 0.1 a−1

0 . In the range where
the error falls below that of the full PZ-SIC, the step size is further refined to 0.05 a−1

0 .
The results show that ∆lin decreases rapidly for small values of γ and reaches the value
of the full PZ-SIC at approximately γ = 0.5 a−1

0 . Our sr-LSDA-lrHcSIC calculation
exhibits the smallest deviation from the straight-line condition at γ = 0.7 a−1

0 , where
the error criterion is reduced by 89% compared to the LSDA-SIC calculation (from
∆lin = 1.97 × 10−2 to 0.22 × 10−2). Additionally, with the lrHcSIC approach, the
minimum value obtained in our LSDA-lrSIC calculation (∆lin = 0.73× 10−2) is further
reduced by 71%. For γ values greater than 0.7 a−1

0 in Fig. 8.12, the deviation from the
exact straight-line condition increases again, indicating an increasing concave curvature
of the energy curve, as already observed in Fig. 8.11.

After analyzing the results for the CO molecule, we now turn to the H2O molecule.
The energy curves using sr-LSDA-lrHcSIC for different values of γ are again plotted in
Fig. 8.13. The results exhibit a trend similar to that of the CO molecule. For γ = 0.3 a−1

0

in panel (a), the energy curve exhibits a convex behavior. As the range-separation
parameter increases, the convexity gradually decreases, and for γ = 0.9 a−1

0 in panel (c),
the curve shows a slight concave deviation from the straight-line connection between
E(N0) and E(N0−1), indicated by a dotted line. At γ = 1.2 a−1

0 in panel (d), the energy
curve becomes concave. However, in contrast to CO, all energy curves for H2O exhibit a
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Figure 8.13: Energy curves for H2O using sr-LSDA-lrHcSIC with different
range-separation parameters: γ = 0.3 (a), 0.6 (b), 0.9 (c),
and 1.2 a−1

0 (d). The dotted lines indicate the straight-
line reference, highlighting deviations from the straight-line
condition.

noticeable change in curvature near the neutral molecule at ∆N = −0.1. This results in a
rapid decrease in the HOMO energy in this region, as shown in the corresponding figures
in Appendix B.20. The observed transition from convex to concave curvature suggests
that the optimal range-separation parameter for fulfilling the straight-line condition lies
between γ = 0.6 and 0.9 a−1

0 .
Figure 8.14, which illustrates our error criterion ∆lin for different values of the

range-separation parameter, confirms that the error decreases with increasing γ, reaching
its minimum at γ = 0.8 a−1

0 in the range where the change in curvature occurs before
increasing again as the energy curve becomes concave. At this value, the deviation from
the exact straight-line condition is reduced by 67% compared to LSDA-SIC. Notably, the
minimum error obtained with the LSDA-lrHcSIC approach lies even below the smallest
value found in our previous LSDA-lrSIC calculations, achieving an additional reduction
of 30%.

Finally, we turn to the energy curves of the N2 molecule illustrated in Fig. 8.15.
Again, the results for using sr-LSDA-lrHcSIC with a range-separation parameter of
0.3 a−1

0 in panel (a) exhibit a convex behavior of the energy curve. However, in contrast
to the transition from convex to concave observed for CO and H2O for increasing γ
values, the energy curves for larger γ values in N2 develop an S-shaped deviation from
the linear connection of the energy values of the neutral molecule and its cation. This
behavior, which is already visible for γ = 0.6 a−1

0 in panel (b), becomes more pronounced

99



Chapter 8. Modifications of the Perdew-Zunger Self-Interaction Correction

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Range-separation parameter γ (a−1
0 )

0.000

0.025

0.050

0.075

0.100

0.125

0.150

∆
li

n
(a

rb
.

u
.)

LSDA

LSDA-SIC

LSDA-lrHcSIC ∆lin(γ)

Figure 8.14: Error value ∆lin quantifying the deviation of energy curves
from the straight-line condition for H2O, computed with
sr-LSDA-lrHcSIC for different γ. The gray dotted lines
indicate the LSDA and LSDA-SIC values.
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Figure 8.15: Energy curves for N2 using sr-LSDA-lrHcSIC with different
range-separation parameters: γ = 0.3 (a), 0.6 (b), 0.9 (c),
and 1.2 a−1

0 (d). The dotted lines indicate the straight-
line reference, highlighting deviations from the straight-line
condition.
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as γ increases to 0.9 a−1
0 in panel (c) and 1.2 a−1

0 in panel (d) of Fig. 8.15.
This growing deviation from the exact straight-line behavior is also reflected in

our error criterion, shown in Fig. 8.16, where the error value increases for γ values
greater than 0.5 a−1

0 . The minimum error using our LSDA-lrHcSIC approach is found
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Figure 8.16: Error value ∆lin quantifying the deviation of energy curves
from the straight-line condition for N2, computed with sr-
LSDA-lrHcSIC for different γ. The gray dotted lines indicate
the LSDA and LSDA-SIC values.

at γ = 0.5 a−1
0 . Although the corresponding ∆lin value remains slightly above that of

LSDA with full PZ-SIC, it is strongly reduced compared to our previous LSDA-lrSIC
approach, decreasing from 1.18× 10−2 to 0.52× 10−2.

Overall, the lrHcSIC approach provides a slightly better fulfillment of the straight-line
condition for our test set than the previously tested lrSIC approach. The optimal γ
values for the three systems all fall within a range of 0.5 to 0.8 a−1

0 , raising the hope
that this range could be suitable for a broader class of systems.

8.6.2 IP Theorem for sr-LSDA-lrHcSIC

After investigating the performance of the sr-LSDA-lrHcSIC functional with respect to
the straight-line condition, we now turn to the ∆SCF = E(N0 − 1)− E(N0) values and
the HOMO energies of the respective neutral molecule. In our SIC calculations, the
latter corresponds to the highest occupied element of the Lagrange multiplier matrix
(λ′HOMOHOMO ≡ ϵHOMO).

The results for the CO molecule, evaluated in steps of 0.05 a−1
0 for the range-

separation parameter γ, are shown in Fig. 8.17. The negative ∆SCF value remains
nearly independent of γ, exhibiting only minor variations within a range of 0.22 eV from
γ = 0.1 to 1.0 a−1

0 and slightly underestimating the negative value of the experimental
IP, which is indicated by the horizontal gray dashed line in Fig. 8.17. In contrast, the
HOMO energies are highly sensitive to the choice of γ, varying from −11.13 to −14.69 eV.
Compared to the results for our previous lrSIC approach in Section 8.4.2, both the ∆SCF
and HOMO energy curves remain numerically stable for γ > 0.1 a−1

0 , as the numerical
challenges associated with evaluating the screened LSDA expressions on orbital densities
are avoided within the lrHcSIC framework.
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Figure 8.17: HOMO energies, ϵHOMO, and −∆SCF = −(E(N0 − 1) −
E(N0)) values for CO, calculated using sr-LSDA-lrHcSIC,
as a function of the range-separation parameter γ. The gray
horizontal line indicates the negative experimental IP value.

Only for γ = 0.1 a−1
0 the HOMO energy curve exhibits a pronounced drop. As in the

lrSIC approach, this strong variation for small values of the range-separation parameter
can be attributed to numerical challenges in finding the true energy-minimizing unitary
transformation when the correction terms in the SIC potential become very small (see
the discussion at the beginning of Section 8.4.3).

However, since the IP theorem is satisfied at higher values of the range-separation
parameter, this numerical artifact at small γ lies outside the physically relevant region.
The IP theorem, i. e., the point where the HOMO energy curve and the ∆SCF curve
meet, is fulfilled at approximately γ = 0.65 a−1

0 , yielding an IP value of 13.81 eV, which
underestimates the experimental IP of 14.01 eV by only 0.20 eV. When comparing the
optimal values for fulfilling the IP theorem and the straight-line condition, it becomes
clear that the two values are very close to each other, with the optimal γ for the IP
theorem being just slightly lower (γ = 0.65 a−1

0 ) than that for the straight-line condition
(γ = 0.7 a−1

0 ).
Turning to the H2O molecule, the results for the HOMO energy and the negative

∆SCF value as a function of the range-separation parameter γ are illustrated in Fig. 8.18.
The ∆SCF value is again less sensitive to variations in the range-separation parameter
(range: 1.02 eV) than the HOMO energy (range: 5.20 eV). In the case of H2O, the
numerical artifacts previously encountered with the lrSIC approach are no longer present,
indicating the improved numerical performance of the lrHcSIC method. The IP theorem
for the sr-LSDA-lrHcSIC calculation is fulfilled for a range-separation parameter of
approximately γ = 0.24 a−1

0 , where both the HOMO energy and the ∆SCF value closely
match the experimental IP, deviating by only 0.03 eV.

Comparing the optimal range-separation values for satisfying the IP theorem (γ =
0.24 a−1

0 ) and the straight-line condition (γ = 0.8 a−1
0 ) reveals a larger deviation between

the optimal values for H2O compared to the CO molecule. This more significant
discrepancy can be attributed to the change in curvature of the energy values as a
function of fractional particle numbers near the neutral molecule with N0 electrons for
the different range-separation parameters. While these lead to only minor changes in
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Figure 8.18: HOMO energies, ϵHOMO, and −∆SCF = −(E(N0 − 1) −
E(N0)) values for H2O, calculated using sr-LSDA-lrHcSIC,
as a function of the range-separation parameter γ. The gray
horizontal line indicates the negative experimental IP value.

the total energy, the more pronounced variations in curvature result in a rapid change
of the HOMO energy near the neutral molecule, as illustrated in Appendix B.20. As a
consequence, although the HOMO energy may remain approximately constant over a
wide range of fractional occupation numbers – thereby yielding a good average fulfillment
of the straight-line condition – the IP theorem may still be poorly satisfied since the value
of ϵHOMO at the neutral molecule can differ substantially from its values at fractional
occupations.

We now turn to the results of our last model system in Fig. 8.19, the N2 molecule.
Similar to the previous model systems, the ∆SCF value is less sensitive to changes in the
range-separation parameter (range: 0.87 eV) than the HOMO energy (range: 5.17 eV).
However, as observed for the CO molecule, numerical artifacts arise for small values of γ,
which are limited to the region γ ≤ 0.2 a−1

0 and can be attributed to difficulties in finding
the true energy-minimizing unitary transformation in this regime of the range-separation
parameter.

The IP theorem is fulfilled for higher values of γ, at approximately 0.35 a−1
0 , with

only a slight deviation of 0.12 eV from the experimental IP value. For the N2 molecule,
the optimal range-separation parameter for satisfying the IP theorem lies closer to that
for fulfilling the straight-line condition (γ = 0.5 a−1

0 ) than in the case of H2O. This small
deviation between the two optimal values can again be attributed to more prominent
variations in the HOMO energy near the neutral N2 molecule (see Appendix B.20).
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Figure 8.19: HOMO energies, ϵHOMO, and −∆SCF = −(E(N0 − 1) −
E(N0)) values for N2, calculated using sr-LSDA-lrHcSIC,
as a function of the range-separation parameter γ. The gray
horizontal line indicates the negative experimental IP value.

8.7 Summary and Conclusion

In this chapter, we introduced new SIC approaches based on a range-separation scheme,
which divides the exchange part of the SIC energy functional into a long and short-range
part. This strategy aims to mitigate the overcorrection observed in the full PZ-SIC (see
Chapter 7) while preserving the correct asymptotic behavior of the xc potential.

In the first approach, referred to as lrSIC, the SIE of the (semi-)local exchange
functional and the Hartree term is corrected only in the long-range regime. Although
this approach violates certain formal constraints of the exact xc functional – such as
freedom from one-electron self-interaction and size consistency (for a system-dependent
tuning) – its application together with the LSDA to the test set of CO, H2O, and N2 has
demonstrated that the IP theorem can be satisfied and the straight-line condition can be
closely resembled for specific values of the range-separation parameter γ. However, the
optimal value of γ varies across systems and thus requires a system-dependent tuning
procedure.

While the overall performance of the lrSIC approach is promising, numerical difficul-
ties arise in the results for HOMO energies at specific values of the range-separation
parameter γ. In particular, for small values of γ, the lrSIC approach exhibits numer-
ical instabilities. Although this range of low γ values is not relevant for fulfilling the
straight-line condition, it can become relevant in the case of the H2O molecule, where
the IP theorem is satisfied within this numerically unstable region.

These numerical challenges can be almost completely resolved through a new ap-
proach, referred to as lrHcSIC, in which the range-separated exchange function is no
longer evaluated on orbital densities that exhibit nodal planes, which can lead to numer-
ical instabilities. Instead, the (semi-)local exchange functional, which is evaluated on
the total electron density (free of nodal planes), is screened to its short-range regime.
Within this framework, only the long-range Hartree SIE and the SIE of the correlation
functional are corrected.

Applying this new approach with the short-range LSDA functional to our test
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systems eliminates numerical instabilities within the physically relevant range of the
range-separation parameter γ where both the IP theorem and the straight-line condition
hold. Moreover, when the IP theorem is satisfied, the predicted IP value obtained with
the sr-LSDA-lrHcSIC functional is even closer to the experimental reference than that of
the previously discussed LSDA-lrSIC approach. Additionally, for specific values of the
range-separation parameter, the straight-line condition can be satisfied more accurately
for the considered model systems than with the earlier lrSIC method.

Due to its ability to satisfy the IP theorem and the straight-line condition, the
sr-LSDA-lrHcSIC functional offers a promising route for describing CT excitations in
TDDFT within a self-interaction corrected framework. In contrast to range-separated
hybrid functionals, it does not rely on exact exchange and thus avoids the computational
cost of evaluating Fock integrals. Therefore, it remains a worthwhile direction of future
work to assess how well the lrHcSIC approach can describe CT excitations in TDDFT
applications.
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Appendix A

Complementary Work Meta-GGAs
in GKS

A.1 Functional Derivatives of Meta-GGA Exchange Includ-
ing the Nonlinear Core Correction

The exchange part of a meta-GGA can generally be written as

EmGGA
x [n] =

∫
emGGA
x (s(r), t(r)) d3r = Ax

∫
n4/3(r)Fx(s(r), t(r)) d

3r , (A.1)

where Ax = −(3π2)1/3(3e2)/(4π), ex is the exchange energy density, and Fx is the
meta-GGA enhancement factor. In the following, spin-independent expressions are
given; the spin-polarized expressions can be derived using the spin-scaling relations, as
introduced at the end of this section.

The enhancement factor is parametrized by the dimensionless variables

s(r) =
|∇n(r) +∇nc(r)|
2γ(n(r) + nc(r))4/3

, (A.2)

with γ = (3π2)1/3, and

t(r) =
τ(r)

τunif(r)
=

5

3

∑N
i=1 |∇φi(r)|2 + |∇

√
nc(r)|2

γ2(n(r) + nc(r))5/3
, (A.3)

where

τ(r) =
ℏ2

2m

(
N∑

i=1

|∇φi(r)|2 + |∇
√
nc(r)|2

)
(A.4)

is the kinetic energy density and

τunif(r) = As(n(r) + nc(r))
5/3 (A.5)

is its uniform-density limit with As = 3ℏ2γ2/(10m). For Eq. (A.4), the approximation
from Section 5.1 in the main text is used, where n is the valence density and nc the core
density. Since the core density nc is kept fixed, the functional derivative

δEmGGA
x

δφ∗
i (r)

=

∫
δEmGGA

x

δn(r′)
δn(r′)
δφ∗

i (r)
d3r′ +

∫
δEmGGA

x

δτ(r′)
δτ(r′)
δφ∗

i (r)
d3r′ (A.6)

is calculated only with respect to the valence orbital φ∗
i [Asc19]. In this expression, the

dependencies on the density and the kinetic energy density are treated as independent.
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While the functional derivative is given by δEmGGA
x /δτ(r′) = (∂emGGA

x /∂τ)(r′), the
derivative with respect to the density leads to

δEmGGA
x

δn(r)
=
∂emGGA

x

∂n
(r) +

∫
δEmGGA

x

δ∇′n(r′)
· δ∇

′n(r′)
δn(r)

d3r

=
∂emGGA

x

∂n
(r) +

∫
δEmGGA

x

δ∇′n(r′)
· ∇′δ(r− r′) d3r′ =

∂emGGA
x

∂n
(r)−∇ ·

(
∂emGGA

x

∂∇n (r)

)
.

(A.7)

Together with
δn(r′)
δφ∗

i (r)
= φi(r)δ(r− r′) (A.8)

and
δτ(r′)
δφ∗

i (r)
=

ℏ2

2m
∇′φi(r

′) · ∇′δ(r− r′) (A.9)

the functional derivative of the meta-GGA exchange energy can be written as

δEmGGA
x

δφ∗
i (r)

=

{
∂emGGA

x

∂n
(r)−∇ ·

(
∂emGGA

x

∂∇n (r)

)}
φi(r)

− ℏ2

2m

{
∂emGGA

x

∂τ
(r)∇2φi(r) +∇

(
∂emGGA

x

∂τ
(r)

)
· ∇φi(r)

}
. (A.10)

In terms of the enhancement factor FmGGA
x parametrized in {s, t}, the derivatives of

the exchange energy are expressed as

∂emGGA
x

∂n
=

4

3
Axn

1/3Fx(s, t) +Axn
4/3 ∂Fx

∂s

∣∣∣∣
t

∂s

∂n
+Axn

4/3 ∂Fx

∂t

∣∣∣∣
s

∂t

∂n

= Axn
1/3

[
4

3
Fx(s, t)−

4

3

n

n+ nc
s
Fx

∂s

∣∣∣∣
t

− 5

3

n

n+ nc
t
∂Fx

∂t

∣∣∣∣
s

]
(A.11)

and

∂emGGA
x

∂∇n = Axn
4/3 ∂F

∂s

∣∣∣∣
t

∂s

∂∇n = Ax
n4/3

(n+ nc)4/3
∂Fx

∂s

∣∣∣∣
t

∇n+∇nc
2γ|∇n+∇nc|

= Ax
n4/3

(n+ nc)4/3
1

s

∂Fx

∂s

∣∣∣∣
t

∇n+∇nc
4γ2(n+ nc)4/3

, (A.12)

which leads to

−∇ ·
(
∂emGGA

x

∂∇n

)
= −1

2
Ax

[
∇n+∇nc
n+ nc

· ∇
(

n4/3

(n+ nc)4/3
1

2γ2(n+ nc)1/3
1

s

∂Fx

∂s

∣∣∣∣
t

)

+
n4/3

(n+ nc)4/3
1

2γ2(n+ nc)1/3
1

s

∂Fx

∂s

∣∣∣∣
t

∇2(n+ nc)

n+ nc

− n4/3

(n+ nc)4/3
1

2γ2(n+ nc)1/3
1

s

∂Fx

∂s

∣∣∣∣
t

|∇n+∇nc|2
(n+ nc)2

]
. (A.13)
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For numerical reasons (see Ref. [Sch+14b]), the density is typically written in terms of
its square root. Therefore Eq. (A.13) is rewritten to

−∇ ·
(
∂emGGA

x

∂∇n

)
= −Ax

[
∇√n+ nc√
n+ nc

· ∇
(

n4/3

(n+ nc)4/3
1

2γ2(n+ nc)1/3
1

s

∂Fx

∂s

∣∣∣∣
t

)

+
n4/3

(n+ nc)4/3
1

2γ2(n+ nc)1/3
1

s

∂Fx

∂s

∣∣∣∣
t

∇2√n+ nc√
n+ nc

− 1

2
n1/3

n

n+ nc
s
∂Fx

∂s

∣∣∣∣
t

]
. (A.14)

The last derivative of the energy density is

∂emGGA
x

∂τ
= Axn

4/3 ∂Fx

∂t

∣∣∣∣
s

∂t

∂τ
=

10m

3ℏ2
Ax

n4/3

(n+ nc)4/3
1

γ2(n+ nc)1/3
∂Fx

∂t

∣∣∣∣
s

(A.15)

which leads to

− ℏ2

2m

[
∂emGGA

x

∂τ
∇2φi +∇φi · ∇

(
∂emGGA

x

∂τ

)]

= −5

3
Ax

[
n4/3

(n+ nc)4/3
1

γ2(n+ nc)1/3
∂Fx

∂t

∣∣∣∣
s

∇2φi

+∇φi · ∇
(

n4/3

(n+ nc)4/3
1

γ2(n+ nc)1/3
∂Fx

∂t

∣∣∣∣
s

)]
. (A.16)

With the definition of the auxiliary functions

g(n, nc) =
n

n+ nc
=

1

1 + nc
n

, (A.17)

hs =
1

2

g(n, nc)
4/3

γ2(n+ nc)1/3
1

s

∂Fx

∂s

∣∣∣∣
t

, (A.18)

and

ht =
5

3

g(n, nc)
4/3

γ2(n+ nc)1/3
∂Fx

∂t

∣∣∣∣
s

(A.19)

one obtains the final result

δEmGGA
x

δφ∗
i

= φiAxn
1/3

[
4

3
Fx − g(n, nc)

5

6
s
∂Fx

∂s

∣∣∣∣
t

− g(n, nc)
5

3
t
∂Fx

∂t

∣∣∣∣
s

]

− φiAx

[
hs
∇2√n+ nc√

n+ nc
+∇hs ·

∇√n+ nc√
n+ nc

]
−Ax

[
ht∇2φi +∇ht · ∇φi

]
. (A.20)

The meta-GGAs used in this work are typically parametrized in {s, α} or more
specifically in {s2, α} with

α(r) =
τ(r)− τW(r)

τunif(r)
(A.21)

with the von Weizsäcker kinetic energy density

τW(r) =
ℏ2

8m

|∇n(r) +∇nc(r)|2
n(r) + nc(r)

. (A.22)
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For a change in variables α = t − 5s2/3 is used along with the derivatives of the
enhancement factor in {s2, α}:

1

2s

∂Fx

∂s

∣∣∣∣
t

=
∂Fx

∂s2

∣∣∣∣
t

=
∂Fx

∂s2

∣∣∣∣
α

− 5

3

∂Fx

∂α

∣∣∣∣
s2

and
∂Fx

∂t

∣∣∣∣
s

=
∂Fx

∂α

∣∣∣∣
s2

(A.23)

Then, Eq. (A.20) can be expressed in terms of the parameters s2, α as

δEmGGA
x

δφ∗
i

= φiAxn
1/3

[
4

3
Fx − g(n, nc)

5

3
s2
∂Fx

∂s2

∣∣∣∣
α

− g(n, nc)
5

3
α
∂Fx

∂α

∣∣∣∣
s2

]

− φiAx

[
hs
∇2√n+ nc√

n+ nc
+∇hs ·

∇√n+ nc√
n+ nc

]
−Ax

[
ht∇2φi +∇ht · ∇φi

]
(A.24)

with

hs =
g(n, nc)

4/3

γ2(n+ nc)1/3

(
∂Fx

∂s2

∣∣∣∣
α

− 5

3

∂Fx

∂α

∣∣∣∣
s2

)
(A.25)

and

ht =
5

3

g(n, nc)
4/3

γ2(n+ nc)1/3
∂Fx

∂α

∣∣∣∣
s2
. (A.26)

Current Correction in TDGKS

The current correction in the TDGKS scheme, discussed in Section 5.2 and proposed
by Becke [Bec02] and Tao [Tao05], involves modifying the kinetic energy density by
replacing τ with

τ̂(r, t) = τ(r, t)−m |jp(r, t)|2
2(n(r, t) + nc(r, t))

, (A.27)

where the paramagnetic current density is defined in Eq. (5.12). Here, the core density
nc is explicitly included to maintain consistency with the previous notation.

This modification introduces the additional term

δ

δφ∗
i (r, t)

[
−m |jp(r′, t)|2

2(n(r′, t) + nc(r′))

]
=

− jp(r
′, t)

n(r′, t) + nc(r′)
ℏ
2i
[φi(r

′, t)∇′δ(r− r′)− δ(r− r′)∇′φi(r
′, t)]

+
m

2

|jp(r′, t)|2
(n(r′, t) + nc(r′))2

φi(r
′, t)δ(r− r′) . (A.28)

Therefore, Eq. (A.10) modifies to

δEmGGA
x

δφ∗
i

= φi

{
∂emGGA

x

∂n
−∇ ·

(
∂emGGA

x

∂∇n

)}

− ℏ2

2m

{
∂emGGA

x

∂τ̂
∇2φi +∇φi · ∇

(
∂emGGA

x

∂τ̂

)}

+
ℏ
2i

[
∇ ·
(
∂emGGA

xc

∂τ̂

jp
n+ nc

φi

)
+

jp
n+ nc

∂emGGA
xc

∂τ̂
· ∇φi

]
+
m

2

|jp|2
(n+ nc)2

∂emGGA
xc

∂τ̂
φi

= φi

{
∂emGGA

x

∂n
−∇ ·

(
∂emGGA

x

∂∇n

)}
+

1

2m
π̂ ·
[
∂emGGA

xc

∂τ̂
π̂φi

]
(A.29)

where π̂ = (ℏ/i)∇−mjp/(n+ nc).
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A.2. Functional Derivatives of Meta-GGA Correlation Including the Nonlinear Core
Correction

The spin-polarized equations can be obtained using the spin-scaling relationships
introduced in Section 3.6.3, i. e. evaluating the equations at n = 2nσ = 2

∑Nσ
j=1 |φjσ|2

and τ = 2τσ = 2
∑Nσ

j=1 ℏ2/(2m)|∇φjσ|2 with Nσ as the number of occupied orbitals with
spin σ.

A.2 Functional Derivatives of Meta-GGA Correlation In-
cluding the Nonlinear Core Correction

The meta-GGA correlation is typically written as

EmGGA
c [n↑, n↓] =

∫
n(r)ϵc(rs(r), ζ(r), s(r), α(r)) d

3r (A.30)

with the correlation energy density per particle ϵc depending on the core-corrected
Wigner-Seitz radius and the spin spin-polarization factor

rs(r) =

(
3

4π(n(r) + nc(r))

)1/3

and ζ(r) =
n↑(r)− n↓(r)
n(r) + nc(r)

, (A.31)

respectively. s is defined as in Eq. (A.2) and α is defined as

α(r) =
τ(r)− τW(r)

τunif(r)

=

ℏ2
2m

(∑
σ=↑,↓

∑Nσ
i=1 |∇φiσ(r)|2 + |∇

√
nc(r)|2

)
− ℏ2

8m
|∇n(r)+∇nc(r)|2

(n(r)+nc(r))

As(n(r) + nc(r))5/3ds(ζ(r))
(A.32)

with
ds(ζ) =

1

2

[
(1 + ζ)5/3 + (1− ζ)5/3

]
. (A.33)

For the correlation expressions n = n↑ + n↓ as well as τ = τ↑ + τ↓ is used.
Analogous to the exchange part, the derivative with respect to the valence orbital

φ∗
iσ leads to

δEmGGA
c

δφ∗
iσ(r)

= φiσ(r)

{
∂(nϵc)

∂nσ
(r)−∇ ·

(
∂(nϵc)

∂∇nσ
(r)

)}

− ℏ2

2m

[
∂(nϵc)

∂τσ
(r)∇2φiσ(r) +∇φiσ(r) · ∇

(
∂(nϵc)

∂τσ
(r)

)]
. (A.34)

(The time-dependent application with the current-density correction, i. e., replacing τ
with τ̂ as discussed in Section 5.2, can be carried out analogously to the treatment of
the exchange part.)

The derivatives of rs, ζ, s and α with respect to nσ, ∇nσ and τσ are:

∂rs
∂nσ

= −1

3

rs
n+ nc

, (A.35)

∂ζ

∂nσ
=
±1− ζ
n+ nc

, (A.36)

∂s

∂nσ
= −4

3

s

n+ nc
,

∂s

∂∇nσ
=

∇n+∇nc
4γ2(n+ nc)8/3

1

s
, (A.37)
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∂α

∂nσ
= −5

3

α

n+ nc
+

1

n+ nc

τW

τunif
+

α

n+ nc
(ζ ∓ 1)

d′s(ζ)
ds(ζ)

,

∂α

∂∇nσ
= − 10

3ds(ζ)

∇n+∇nc
4γ2(n+ nc)8/3

, (A.38)

and
∂α

∂τσ
=

1

τunif
(A.39)

with
d′s(ζ) =

∂ds
∂ζ

=
5

6

[
(1 + ζ)2/3 − (1− ζ)2/3

]
. (A.40)

Using these expressions the derivatives of Eq. (A.34) can be written as

∂(nϵc)

∂nσ
=ϵc + n

∂ϵc
∂nσ

= ϵc + n

(
∂ϵc
∂rs

∂rs
∂nσ

+
∂ϵc
∂ζ

∂ζ

∂nσ
+
∂ϵc
∂s

∂s

∂nσ
+
∂ϵc
∂α

∂α

∂nσ

)

=ϵc −
1

3

n

n+ nc
rs
∂ϵc
∂rs

+ (±1− ζ) n

n+ nc

∂ϵc
∂ζ
− 4

3

n

n+ nc
s
∂ϵc
∂s

+

[
−5

3
α

n

n+ nc
+

n

n+ nc

τW

τunif
+ α

n

n+ nc
(ζ ∓ 1)

d′s(ζ)
ds(ζ)

]
∂ϵc
∂α

,

(A.41)

∂(nϵc)

∂∇nσ
=n

∂ϵc
∂∇nσ

= n

(
∂ϵc
∂s

∂s

∂∇nσ
+
∂ϵc
∂α

∂α

∂∇nσ

)

=
n

(n+ nc)8/3
∇n+∇nc

4γ2
1

s

∂ϵc
∂s
− 10

3ds(ζ)

n

(n+ nc)8/3
∇n+∇nc

4γ2
∂ϵc
∂α

,

(A.42)

and

∂(nϵc)

∂τσ
= n

∂ϵc
∂τσ

= n
∂ϵc
∂α

∂α

∂τσ
=

1

Asds(ζ)

n

(n+ nc)5/3
∂ϵc
∂α

. (A.43)

By defining the auxiliary functions

hs =
1

2γ2
1

(n+ nc)2/3
g(n, nc)

1

s

∂ϵc
∂s

, (A.44)

hα =
1

2Asds(ζ)

1

(n+ nc)2/3
g(n, nc)

∂ϵc
∂α

, (A.45)

with g(n, nc) = 1/(1 + nc/n) the derivatives can be rewritten to

∂(nϵc)

∂nσ
=ϵc −

1

3
g(n, nc)rs

∂ϵc
∂rs

+ (±1− ζ)g(n, nc)
∂ϵc
∂ζ
− 4

3
g(n, nc)s

∂ϵc
∂s

(A.46)

+

[
−5

3
αg(n, nc) + αg(n, nc)(ζ ∓ 1)

d′s(ζ)
ds(ζ)

]
∂ϵc
∂α

+ hα
|∇√n+ nc|2√

n+ nc
, (A.47)

∂(nϵc)

∂∇nσ
= [hs − hα]

∇√n+ nc√
n+ nc

, (A.48)

and
∂(nϵc)

∂τσ
= 2hα . (A.49)
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With the h0 = hs − hα the divergence of Eq. (A.46) is

∇ ·
(
∂(nϵc)

∂∇nσ

)
= ∇ ·

(
h0
∇√n+ nc√
n+ nc

)

= ∇h0 ·
∇√n+ nc√
n+ nc

+ h0
∇2√n+ nc√

n+ nc
− h0

|∇√n+ nc|2
n+ nc

. (A.50)

With

hs
|∇√n+ nc|2

n+ nc
=

1

2γ2
1

(n+ nc)2/3
g(n, nc)

1

s

∂ϵc
∂s

|∇(n+ nc)|2
4(n+ nc)2

= g(n, nc)
1

2
s
∂ϵc
∂s

(A.51)

it can be expressed as

∇·
(
∂(nϵc)

∂∇nσ

)
= ∇h0·

∇√n+ nc√
n+ nc

+h0
∇2√n+ nc√

n+ nc
−g(n, nc)

1

2
s
∂ϵc
∂s

+hα
|∇√n+ nc|2

n+ nc
.

(A.52)

This leads to the final expression for the derivative of the meta-GGA correlation energy

δEmGGA
c

δφ∗
iσ

= φiσ

[
∂(nϵc)

∂nσ
−∇ ·

(
∂(nϵc)

∂∇nσ

)]
− ℏ2

2m

[
∂(nϵc)

∂τσ
∇2φiσ +∇φiσ · ∇

(
∂(nϵc)

∂τσ

)]

= φiσ

[
ϵc −

1

3
g(n, nc)rs

∂ϵc
∂rs

+ (±1− ζ)g(n, nc)
∂ϵc
∂ζ
− 5

6
g(n, nc)s

∂ϵc
∂s

+ αg(n, nc)

(
−5

3
+ (ζ ∓ 1)

d′s(ζ)
ds(ζ)

)
∂ϵc
∂α
−∇h0 ·

∇√n+ nc√
n+ nc

− h0
∇2√n+ nc√

n+ nc

]

− ℏ2

m

[
hα∇2φiσ −∇φiσ · ∇hα

]
. (A.53)

A.3 Continuity Equation for Meta-GGAs in Time-Dependent
GKS

For meta-GGAs in TDGKS, the continuity equation can be restored by applying the
current-density correction given in Eq. (5.19). This can be explicitly demonstrated by
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evaluating the contribution of Eq. (5.19) to Eq. (5.16) in Section 5.2:
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∂emGGA

xc

∂τ̂

(
ℏ
i
∇−m jp

n

)
φk

]

=− ℏ
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m
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]
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]
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(
∇ ·
(
∂emGGA

xc

∂τ̂
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)
+
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n
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· ∇φk

)]
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m
∇ ·
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xc

∂τ̂

]
+ |φk|2∇ ·

(
∂emGGA
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∂τ̂

jp
n

)

+ 2
∂emGGA
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∂τ̂

jp
n
· Re [φ∗

k∇φk]

=− ℏ
m
∇ ·
[
Im (φ∗

k∇φk)
∂emGGA
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∂τ̂

]
+ |φk|2∇ ·

(
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∂τ̂
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)
+
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· ∇|φk|2

=− ℏ
m
∇ ·
[
Im (φ∗

k∇φk)
∂emGGA
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∂τ̂

]
+∇ ·

[
∂emGGA
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∂τ̂

jp
n
|φk|2

]

=−∇ ·
[
∂emGGA
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∂τ̂

(
jk − jp

|φk|2
n

)]

(A.54)

where jk(r, t) is the current density of orbital φk(r, t).
Summing over the occupied orbitals k gives

N∑

k=1

2

ℏ
Im

[
φ∗
k

(
1

2m
π̂
∂emGGA

xc

∂τ̂
π̂

)
φk

]
= −∇ ·

[
∂emGGA

xc

∂τ̂

(
jp − jp

n

n

)]
= 0 (A.55)

which restores the continuity equation

∂

∂t
n(r, t) = −∇jp(r, t) . (A.56)

Excluding the sum over k and explicitly including the contribution of the kinetic
energy operator in Eq. (5.16), one obtains

∂

∂t
|φk|2 = −∇ ·

[
jk +

∂emGGA
xc

∂τ̂

(
jk − jp

|φk|2
n

)]
. (A.57)

This result shows that the continuity equation does not hold for each orbital density.
Consequently, one may interpret that the continuity equation (A.56) only holds “on
average”.
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Based on an idea from Thilo Aschebrock, an alternative current-density correction
to the kinetic energy density can be defined as:

τ̂(r, t) = τ(r, t)− m

2

N∑

k=1

|jk(r, t)|2
|φk(r, t)|2

(A.58)

It can be shown that this definition of the current-density correction restores the conti-
nuity equation for each orbital density (see supplementary material of Ref. [Ric+23]).
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Complementary Work
Self-Interaction Correction

B.1 Hermiticity of the Lagrange Multiplier in PZ-SIC

The hermiticity of the Lagrange multiplier λσ in Eq. (6.9a) can be explicitly demonstrated,
as previously shown for time-dependent SIC in Ref. [Mes+09]. By decomposing λσ into
its Hermitian part µσ and anti-Hermitian part κσ, the energy functional in Eq. (6.8)
can be reformulated as

S[{φiσ}] = ESIC −
∑

σ=↑,↓

Nσ∑

i,j=1

(µjiσ + κjiσ) (⟨φiσ|φjσ⟩ − δij) . (B.1)

The functional S can be further decomposed into real and imaginary parts, where the
imaginary part is given by

Im(S[{φiσ}]) = −
∑

σ=↑,↓

Nσ∑

i,j=1

κjiσ⟨φiσ|φjσ⟩ . (B.2)

Since µσ is Hermitian, it follows that

Im


−

∑

σ=↑,↓

Nσ∑

i,j=1

µjiσ⟨φiσ|φjσ⟩


 = 0 . (B.3)

Because the real and imaginary parts of S can be varied independently, the variation of
the imaginary part with respect to φ∗

kσ gives

δ Im(S[{φiσ}])
δφ∗

kσ(r)
= 0 ⇔

Nσ∑

i=j

κjkσφjσ(r) = 0 . (B.4)

This equation must hold for all orbitals k and all spatial points r. As a result, we
conclude that

κσ = 0 , (B.5)

ensuring that λσ is Hermitian.
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B.2 Hamiltonian for Meta-GGAs Using the PZ-SIC with
Current-Density Correction

When using τ̂ from Eq. (6.19) with the paramagnetic current density

jp(r) =
∑

σ=↑,↓
jpσ =

ℏ
m

∑

σ=↑,↓

Nσ∑

i=1

Im[φ∗
iσ(r)∇φiσ(r)], (B.6)

instead of τ , and recalculating the variation of the meta-GGA energy with respect to
the orbitals, the local part of the potential vloc

σ (see Eq. (4.25)) remains unchanged.
However, for the operator part, we obtain

v̂CGKS
τ̂ [s2σ, α](r) =

1

2m
π̂σ(r)

∂emGGA
xc

∂τ̂
(r)π̂σ(r), (B.7)

where
π̂σ(r) = p̂−m jpσ(r)

nσ(r)
, (B.8)

and p̂ = −iℏ∇. The Hamiltonian operator using τ̂ , Ĥ τ̂
iσ, is derived analogously to that

in Eq. (6.17), with the corresponding operator

π̂iσ(r) = p̂−m jiσ(r)

niσ(r)
(B.9)

where jiσ = ℏ/m Im[φ∗
iσ∇φiσ] depends on a single orbital. In detail, the Hamiltonian

for a meta-GGA parametrized in {s2, α} using the PZ-SIC can be written as

Ĥ τ̂
iσ = − ℏ2

2m
∇2 + vext + vH[n] +

(
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xc [siσ, α = 0]
)

+
1

2m

[
p̂

(
∂exc

∂τ̂

∣∣∣∣
sσ ,ασ

− ∂exc

∂τ̂

∣∣∣∣
siσ ,α=0

)
p̂+m2

(
∂exc

∂τ̂

∣∣∣∣
sσ ,ασ

j2pσ
n2σ
− ∂exc

∂τ̂

∣∣∣∣
siσ ,α=0

j2iσ
n2iσ

)

−
{
m

(
∂exc

∂τ̂

∣∣∣∣
sσ ,ασ

jpσ
nσ
− ∂exc

∂τ̂

∣∣∣∣
siσ ,α=0

jiσ
niσ

)
p̂σ

+mp̂σ

(
∂exc

∂τ̂

∣∣∣∣
sσ ,ασ

jpσ
nσ
− ∂exc

∂τ̂

∣∣∣∣
siσ ,α=0

jiσ
niσ

)}]
. (B.10)

The spin-dependent components of the potential are obtained by applying the spin-
independent expressions together with the spin-scaling relations n→ 2nσ and τ → 2τσ
(and analogous for the single-orbital-dependent expressions).

B.3 Derivation of the PZ-SIC Energy Variation with Re-
spect to the Unitary Transformation

The unitary transformation of a set of orbitals {φiσ} to another set {φ′
iσ} is defined as

φ′
iσ(r) =

Nσ∑

j=1

Uijσφjσ(r), (B.11)
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where Uijσ is a unitary matrix, i. e. satisfying
∑

k U
∗
kiσUkjσ = δij . Here, Nσ denotes the

number of orbitals with occupation numbers fiσ > 0, and σ is the spin index.
For an infinitesimal unitary transformation Uijσ = δij + ωijσ, the unitarity condition

simplifies, neglecting terms of order ω2
ijσ or higher, to

Nσ∑

k=1

U∗
kiσUkjσ =

Nσ∑

k=1

(δki + ω∗
kiσ)(δkj + ωkjσ) (B.12)

=

Nσ∑

k=1

(δkiδkj + δkiωkjσ + δkjω
∗
kiσ) (B.13)

= δij + ωijσ + ω∗
jiσ

!
= δij , (B.14)

which leads to the condition
ωijσ = −ω∗

jiσ. (B.15)

The variation of the PZ-SIC energy with respect to an infinitesimal unitary transformation
can be written, using the chain rule, as

∂ESIC[{φ′
iσ}]

∂U∗
αβσ

∣∣∣∣∣
U∗
αβσ=δαβ

=

∫ Nσ∑

k=1

[
δESIC[{φ′

iσ}]
δφ′

kσ(r)

∂φ′
kσ(r)

∂U∗
αβσ

+
δESIC[{φ′

iσ}]
δφ′∗

kσ(r)

∂φ′∗
kσ(r)

∂U∗
αβσ

]∣∣∣∣∣
U∗
αβσ=δαβ

d3r (B.16)

with the PZ-SIC energy expression ESIC defined in Eq. (6.3).
The functional derivative of the PZ-SIC energy with respect to the orbital k is

δESIC[{φ′
iσ}]

δφ′
kσ(r)

∣∣∣∣
U∗
αβσ=δαβ

= fkσĤkσφ
∗
kσ(r) and (B.17)

δESIC[{φ′
iσ}]

δφ′∗
kσ(r)

∣∣∣∣
U∗
αβσ=δαβ

= fkσĤkσφkσ(r) (B.18)

with the occupation number fkσ of the kth orbital with spin σ. The derivative of the
orbital with respect to the unitary transformation reduces to

∂φ′
kσ(r)

∂U∗
αβσ

∣∣∣∣∣
U∗
αβσ=δαβ

=
∑

l

φlσ(r)
∂Uklσ

∂U∗
αβσ

=
∑

l

φlσ(r)
∂ωklσ

∂ω∗
αβσ

= −
∑

l

φlσ(r)
∂ω∗

lkσ

∂ω∗
αβσ

=−
∑

l

φlσ(r)δlαδkβ = −φασ(r)δkβ

(B.19)

and analogously

∂φ′∗
kσ(r)

∂U∗
αβσ

∣∣∣∣∣
U∗
αβσ=δαβ

=
∑

l

φ∗
lσ(r)

∂U∗
klσ

∂U∗
αβσ

= φ∗
βσ(r)δkα . (B.20)
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Inserting the results in Eq. (B.16) leads to the gradient

Gαβσ =
∂ESIC

∂U∗
αβσ

∣∣∣∣∣
U∗
αβσ=δαβ

=

∫ Nσ∑

k=1

[
fkσĤkσφkσ(r)

∗(−δkβφασ(r)) + fkσĤkσφkσ(r)δkαφ
∗
βσ(r)

]
d3r

=

∫
φ∗
βσ(r)(fασĤασ − fβσĤβσ)φασ(r) d

3r = −⟨φβσ|fβσĤβσ − fασĤασ|φασ⟩ .
(B.21)

For a system with an integer number of electrons (i. e. fiσ = 1 for all i), the gradient
reduces to

Gαβσ = −⟨φβσ|vSI[nβσ]− vSI[nασ]|φασ⟩ , (B.22)

with vSI[nβσ] = −(vH[nβσ] + vxc[nβσ, 0]).

B.4 Alternative Formulation of the PZ-SIC Ground-State
Energy through Orbital Energies

Within the KS theory, the ground-state energy expression can be written in terms of the
KS eigenvalues as [KS65; Cap06]

EKS[n] =
∑

σ=↑,↓

Nσ∑

i=1

ϵiσ − EH[n]−
∑

σ=↑,↓

∫
vxcσ[n↑, n↓](r)nσ(r) d

3r + Exc[n↑, n↓] . (B.23)

Typically, the sum over the KS eigenvalues {ϵiσ} is the main contribution to the ground-
state energy expression in Eq. (B.23). This also motivates the Aufbau principle, which
states that orbitals must be occupied in ascending order to minimize the energy functional
EKS.

A similar reformulation of the PZ-SIC energy expression can be derived by starting
from the ground-state equation (6.9a)

fiσĤiσφiσ(r) =

Nσ∑

j=1

λjiσφjσ(r)

⇔
∑

σ=↑,↓

Nσ∑

i=1

∫
φ∗
iσ(r)fiσĤiσφiσ(r) d

3r =
∑

σ=↑,↓

Nσ∑

i,j=1

∫
φ∗
iσ(r)λjiσφjσ d

3r

⇔
∑

σ=↑,↓

Nσ∑

i=1

λiiσ
fiσ

=
∑

σ=↑,↓

Nσ∑

i=1

∫
φ∗
iσ(r)Ĥiσφiσ(r) d

3r ,

(B.24)
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where the right-hand side of the equation is

∑

σ=↑,↓

Nσ∑

i=1

∫
φ∗
iσ(r)Ĥiσφiσ(r) d

3r =

Ekin + Eext +

∫
vH[n](r)n(r) d

3r

︸ ︷︷ ︸
=2EH[n]

+
∑

σ=↑,↓

∫
vxcσ[n↑, n↓](r)nσ(r) d

3r

−
∑

σ=↑,↓

Nσ∑

i=1

∫
φ∗
iσ(r) [vH[niσ](r) + vxc[niσ, 0](r)]φiσ(r) d

3r . (B.25)

With λiiσ/fiσ = λ′iiσ, the energy functional in Eq. (6.3) can be written as

ESIC =
∑

σ=↑,↓

Nσ∑

i=1

λ′iiσ − EH[n]−
∫
vxcσ[n↑, n↓](r)nσ(r) d

3r + Eapp
xc [n↑, n↓]

+
∑

σ=↑,↓

Nσ∑

i=1

EH[niσ] +
∑

σ=↑,↓

Nσ∑

i=1

∫
niσ(r)vxc[niσ, 0] d

3r −
∑

σ=↑,↓

Nσ∑

i=1

Eapp
xc [niσ, 0] .

(B.26)

Finally, reformulating Eq. (6.1) to

ESIC
xc [{φiσ}] =Eapp

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑

i=1

(EH[niσ] + Eapp
xc [niσ, 0])

⇔ −
∑

σ=↑,↓

Nσ∑

i=1

Eapp
xc [niσ, 0] =E

SIC
xc [{φiσ}]− Eapp

xc [n↑, n↓] +
∑

σ=↑,↓

Nσ∑

i=1

EH[niσ]

(B.27)

and substituting the result into Eq. (B.26) leads to

ESIC =
∑

σ=↑,↓

Nσ∑

i=1

λ′iiσ − EH[n]−
∑

σ=↑,↓

∫
vxc[n↑, n↓](r)nσ(r) d

3r + ESIC
xc [{φiσ}]

+ 2
∑

σ=↑,↓

Nσ∑

i=1

EH[niσ] +
∑

σ=↑,↓

Nσ∑

i=1

∫
vxc[niσ, 0](r)niσ(r) d

3r .

(B.28)

Similar to the case of the KS eigenvalues, the diagonal elements λ′iiσ here are typically
the main contributions to the energy function. Consequently, this observation further
suggests that, in the PZ-SIC framework, the local orbitals should be occupied in ascending
order of the λ′iiσ values, analogous to the Aufbau principle in the KS formalism.

B.5 Consistency of Single-Orbital Energies in PZ-SIC and
Kohn-Sham Theory

Within the PZ-SIC formalism the energy functional S of Eq. (6.8) consists of the energy
functional ESIC and the orthonormality constraint of the orbitals using a Lagrange
multiplier. However, as briefly discussed at the end of Section 6.6, one could also
consider defining a similar energy functional which consists of the unitary-invariant KS
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energy functional EKS instead of the SIC energy functional ESIC. This leads to the
functional

SKS[{φiσ}] = EKS[n]−
∑

σ=↑,↓

Nσ∑

i,j=1

λjiσ (⟨φiσ|φjσ⟩ − δij) . (B.29)

For a non-integer electron number, minimizing the energy functional SKS with respect
to the orbital φ∗

iσ leads

fiσĤKSσφiσ(r) =

Nσ∑

j=1

λjiσφjσ(r) and (B.30a)

λσ = λ†
σ , (B.30b)

with the KS Hamiltonian HKSσ (defined in Eq. (2.10)), and the Lagrange multiplier
λjiσ = ⟨φjσ|fiσĤKSσ|φiσ⟩. The orbitals {φiσ} form an orthonormal set but are not
eigenfunctions of the KS Hamiltonian.

It can be shown that the eigenvalues of the matrix λσ correspond exactly to the KS
eigenvalues {ϵKS

iσ } (explicitly denoted with “KS”). This can be demonstrated as follows:
the diagonalization of λσ can be expressed as

ϵKS
iσ δij =

(
W†

σλσWσ

)
ij

(B.31)

with the unitary matrix Wσ. The corresponding eigenfunctions, i. e. the KS orbitals,
are obtained via the transformation

φKS
iσ (r) =

Nσ∑

k=1

W ∗
kiσφkσ(r) (B.32)

and the inverse transformation is

φiσ(r) =

Nσ∑

k=1

Wikσφ
KS
kσ (r) . (B.33)

Substituting the inverse transformation from Eq. (B.33) into Eq. (B.30a) leads to

ĤKSσφ
KS
lσ (r) = ϵKS

lσ φ
KS
lσ (r) , (B.34)

thereby recovering the KS equations.
Considering the findings of Section 6.6, this result may seem counterintuitive: How

can the diagonal elements of the Lagrange multiplier λiiσ/fiσ have the physical inter-
pretation of orbital energies (see Section 6.6) if the eigenvalues of λσ correspond to the
KS eigenvalues ϵKS

iσ ? This apparent contradiction can be resolved by considering the
hermiticity condition of the Lagrange multiplier, which imposes specific constraints on
its structure:

In the KS framework, where the Hamiltonian is orbital-independent, the hermiticity
condition can be explicitly written as

λjiσ − λ∗ijσ = 0 ⇔ (fiσ − fjσ)⟨φjσ|ĤKSσ|φiσ⟩ = 0 . (B.35)

For i, j ∈ {1, . . . ,HOMO− 1}, this equation is automatically satisfied, as the orbitals
below the HOMO are fully occupied. That is, for i = HOMO and j ≠ HOMO, the
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equation simplifies to

(fHOMO − fjσ)⟨φjσ|ĤKSσ|φHOMO⟩ = 0 . (B.36)

Since the HOMO is the only fractionally occupied state, the hermiticity condition ensures
that all off-diagonal elements involving the HOMO vanish. As a result, λσ takes the
form




λ11 λ12 · · · λ1(HOMO−1) 0

λ21 λ22 · · · λ2(HOMO−1) 0
...

...
. . .

...
...

λ(HOMO−1)1 λ(HOMO−1)2 · · · λ(HOMO−1)(HOMO−1) 0

0 0 · · · 0 λHOMOHOMO



. (B.37)

Thus, the highest occupied diagonal element of λσ is equal to its highest eigenvalue,
which corresponds to the KS eigenvalue ϵHOMO, resolving the apparent contradiction.

B.6 Alternative Definition of the Unitary Transformation
with Fractional Occupation Numbers

To transform the occupation numbers together with the orbitals under a unitary trans-
formation, one might consider the alternative definition

√
f ′iσφ

′
iσ(r) =

Nσ∑

j=1

Uijσ

√
fjσφjσ(r)⇔ φ̃′

iσ =

Nσ∑

j=1

Uijσφ̃jσ, (B.38)

where φ̃iσ :=
√
fiσφiσ. Using this definition, it is easy to show that the density is

preserved since

n′(r) =
∑

σ=↑,↓

Nσ∑

i=1

f ′iσ|φ′
iσ(r)|2

=
∑

σ=↑,↓

Nσ∑

i=1

(
Nσ∑

k=1

U∗
ikσ

√
fkσφ

∗
kσ(r)

)(
Nσ∑

l=1

Uilσ

√
flσφlσ(r)

)

=
∑

σ=↑,↓

Nσ∑

k,l=1

Nσ∑

i=1

U∗
ikσUilσ

︸ ︷︷ ︸
=δlk

√
fkσ
√
flσφ

∗
kσ(r)φlσ(r)

=
∑

σ=↑,↓

Nσ∑

k=1

fkσ|φkσ(r)|2 = n(r) . (B.39)

However, the orthonormality constraint of the SIC energy functional, which depends on
{φ̃iσ}, must be rewritten as

S[{φ̃iσ}] = ESIC[{φ̃iσ}]−
∑

σ=↑,↓

Nσ∑

i,j=1

λjiσ (⟨φ̃iσ|φ̃jσ⟩ − fiσδij) , (B.40)
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where ESIC is evaluated with the density n =
∑

σ=↑,↓
∑Nσ

i=1 |φ̃iσ|2 and the orbital density
niσ = |φ̃iσ|2.

This approach, however, presents significant conceptual downsides: (1) The orbitals
after the unitary transformation are no longer necessarily orthogonal in the spin channel
with the fractionally occupied HOMO as shown in Eq. (6.32) in Section 6.7. (2) Using
the definition in Eq. (B.38) to transform the occupation numbers would result in the
fractional occupation of multiple orbitals. However, this contradicts the principle that
only the HOMO should be fractionally occupied in order to minimize the total energy, as
discussed in Section 6.6. (3) Minimizing the energy functional defined in Eq. (B.40) with
respect to φ̃∗

iσ is inherently challenging, as the functional derivative of the orthonormality
constraint involves the term δfiσ/δφ̃iσ, which cannot be computed straightforwardly.

B.7 Maximum Estimated Eigenvalue on the Real-Space
Grid

We estimate the maximum eigenvalue ϵmax that can be represented on our real-space
grid for the error criterion within our PZ-SIC ground-state algorithm. The wave function
φmax, which generates the maximum kinetic energy and hence the maximum eigenvalue,
is given by

φmax = ±f , (B.41)

where the sign alternates between consecutive grid points, and f ∈ R. The value of f
can be determined using the normalization condition of the wave function φmax:

∫
|φmax|2 d3r =

∫
f2 d3r =

Ng∑

i=1

f2∆x = Ngf
2∆x

!
= 1 ⇔ f =

1√
Ng∆x

, (B.42)

where Ng is the number of grid points and ∆x is the grid spacing. We use 6th-order
finite differences, denoted as ∇6, to calculate derivatives on our real-space grid within
the BTDFT program code. Thus, applying the kinetic energy operator to the orbital φmax

yields

− ℏ2

2m
∇2

6φmax =

− ℏ2

2m

(
2φmax(x− 3∆x)− 27φmax(x− 2∆x) + 270φmax(x−∆x)

180(∆x)2
− 490φmax(x)

180(∆x)2

+
270φmax(x+∆x)− 27φmax(x+ 2∆x) + 2φmax(x+ 3∆x)

180(∆x)2

)
. (B.43)

Using φmax(x) = f , φmax(x±∆x) = −f , φmax(x±2∆x) = f , and φmax(x+3∆x) = −f ,
we find

− ℏ2

2m
φmax(x)∇2

6φmax(x) =
ℏ2

2m

272f2

45(∆x)2
. (B.44)
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When integrating this result over the grid, the estimated value for ϵmax is given by

ϵmax =
ℏ2

2m

∫
272f2

45(∆x)2
d3r =

ℏ2

2m

Ng∑

i=1

272f2

45(∆x)2
∆x =

ℏ2

2m
Ng

272f2

45(∆x)2
∆x

=
ℏ2

2m

272

45(∆x)2
,

(B.45)

where the expression for f in Eq. (B.42) has been used in the final step.

B.8 Löwdin Orthogonalization

The Löwdin orthogonalization [Löw50] is a symmetric orthogonalization method for
a set of N orbitals {φi} (the spin index σ is omitted here to simplify notation). The
orthogonalization scheme starts by calculating the overlap matrix

Sij = ⟨φi|φj⟩ . (B.46)

Next, the matrix S is diagonalized as follows:

Sdiag = U†SU , (B.47)

where U is a unitary matrix. The inverse square root of Sdiag is then calculated by
inverting its diagonal elements and taking their square roots, yielding the matrix S

−1/2
diag .

Transforming this matrix back to the original basis yields

S−1/2 = US
−1/2
diag U† . (B.48)

Finally, the orthogonalized set of orbitals {φ′
i} is obtained by applying the transformation:

φ′
i(r) =

N∑

j=1

S
−1/2
ij φj(r) (B.49)

Using this orthogonalization scheme can be beneficial since it can be shown that the
resulting orthogonalized orbitals are the closest to the original non-orthogonal functions
in the least-squares sense [CK57; May02].

B.9 Numerical Details of the PZ-SIC Calculations

For the PZ-SIC calculations in Chapter 7, we employed our grid-based real-time code
BTDFT [SK18] with a grid spacing of 0.2 a0. The grid was enclosed within atom-centered
spheres with radii of (9.45, 7.82, 8.67, 8.52) a0 for the elements C, O, H, and N, respectively.
These radii were determined based on the point where the atomic electron density, taken
from the PPs, dropped below a threshold of 10−7 a0

−3.
The Hartree potential was computed by solving the Poisson equation on an extended

ellipsoidal grid with half-axes of (25, 25, 25) a0, using a 9th-order multipole expansion to
establish the boundary conditions.

To model the atomic cores and core electrons, we utilized norm-conserving Troullier-
Martins PPs [TM91] with the following cutoff radii: C 1.09 a0 (s and p), O 1.10 a0 (s
and p), H 1.39 a0 (s), and N 0.99 a0 (s and p). In the Kleinman-Bylander transformation
[KB82], the local component was p for oxygen and s for all other elements.
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The convergence criterion for all calculations was set to ∆errorσ = 10−6. For the
outer loop algorithm, the initial value of d was 0.5, with bounds set between 0.5 and 2.0.
The parameter e was taken as the lowest value of the local part of the potential (i. e.,
the KS potential). For our inner loop algorithm, the trial step length was ltrial = 0.1,
and the convergence criterion for max(Gσ) was set to 10−6Ry.

B.10 Oscillatory Features in vloc for the TASKx-SIC Calcu-
lation of CO

As described in Section 7.2.1, we encountered numerical difficulties when calculating the
PZ-SIC ground state for the CO molecule using the TASKx and r2SCANx meta-GGA
functionals. These difficulties manifest as oscillations in the error criterion during the
damped gradient iterations of our PZ-SIC ground-state algorithm, as shown in Fig. 7.4.

To identify the origin of these oscillations, we analyzed the components of the PZ-SIC
potentials within the orbital-dependent Hamiltonian Ĥτ

iσ (defined in Eq. (6.17)) during
the outer loop iteration steps where the orbitals where restricted to the real space. This
analysis revealed spurious oscillatory features in the local potential vloc[siσ, α = 0] of
the PZ-SIC term. For illustration, Fig. B.1 shows the local potential of the TASKx
meta-GGA, evaluated with the orbital density of the lowest-energy local orbital φ1 of CO
at iteration step k = 100. In Fig. B.1, the local potential is plotted in the yz-plane (with

−4
0

4
y (a0)−4 −2 0 2 4

z (a0)

−100

0

100

200

300

vloc (eV)

TASKx vloc[s2
1↑, α = 0], k = 100

Figure B.1: Local part of the TASKx meta-GGA potential vloc[s21, α = 0]
displayed in the yz-plane at x = 0 after 100 damped gradient
iteration steps for a TASKx-SIC calculation for CO. The red
arrow indicates the oscillatory features in the local potential.

x = 0), where the bond axis of the CO molecule aligns with the z-direction. Notably,
oscillatory features in the potential are visible in the spatial region indicated by the red
arrow.

As evident in Fig. B.2, the spatial region where the oscillatory features in the potential
appear corresponds to the nodal plane of the orbital density used to evaluate the TASKx
meta-GGA. This spatial region is analogously indicated by a red arrow in Fig. B.2.
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−4
0

4
y (a0)−4 −2 0 2 4

z (a0)

−0.04

−0.02

0.00

ϕ1↑

ϕ1↑, k = 100

Figure B.2: Local orbital φ1 displayed in the yz-plane at x = 0 after 100
damped gradient iterations for a TASKx-SIC calculation for
CO. The red arrow indicates the position of the nodal plane.

B.11 Functional Derivatives of the TASK and r2SCAN
Meta-GGAs

The following sections provide the enhancement factors and their derivatives with respect
to s2 and α for the TASK [AK19; Asc19] and r2SCAN [Fur+20a; Fur+20b] exchange
meta-GGAs. It is also explicitly shown that ∂Fx/∂s

2|α=0 yields the same expression for
both TASK and r2SCAN.

Enhancement Factor for TASK Exchange

The enhancement factor for TASK is [AK19; Asc19]

FTASK
x (s, α) = h0xgx(s) + [1− fx(α)]

[
h1x(s)− h0x

]
[gx(s)]

d (B.50)

with the constants h0x = 1.174 and d = 10 and the functions

gx(s) =1− exp
(
−cs−1/2

)
, (B.51)

h1x(s) =
2∑

ν=0

aνRν(s
2) , (B.52)

fx(α) =

4∑

ν=0

bνRν(α) , (B.53)

where c = 4.9479 and Rν(x) are the rational Chebyshev functions of degree ν. The
Chebyshev functions are

R0(x) =1 , (B.54)

R1(x) =
x− 1

x+ 1
, (B.55)

R2(x) =
x2 − 6x+ 1

(x+ 1)2
, (B.56)
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R3(x) =
x3 − 15x2 + 15x− 1

(x+ 1)3
, (B.57)

R4(x) =
x4 − 28x3 + 70x2 − 28x+ 1

(x+ 1)4
. (B.58)

The coefficients are

a0 = 0.938719 , a1 = −0.076371 , a2 = −0.0150899 ,
b0 = −0.628591 , b1 = −2.10315 , b2 = −0.5 ,
b3 = 0.103153 , b4 = 0.128591 . (B.59)

The derivative with respect to s2 is

∂FTASK
x

∂s2

∣∣∣∣
α

=
{
h0x + d [1− fx(α)]

[
h1x(s)− h0x

]
[gx(s)]

d−1
} ∂gx(s)

∂s2

+ [1− fx(α)] [gx(s)]d
∂h1x(s)

∂s2

(B.60)

with

∂gx(s)

∂s2
=− c

4s5/2
exp

(
−cs−1/2

)
and (B.61)

∂h1x(s)

∂s2
=

2∑

ν=1

aν
∂Rν(s

2)

∂s2
. (B.62)

And the derivative with respect to α is

∂FTASK
x

∂α

∣∣∣∣
s2

= −
[
h1x(s)− h0x

]
[gx(s)]

d ∂fx(α)

∂α
(B.63)

with
∂fx(α)

∂α
=

4∑

ν=1

bν
∂Rν(α)

∂α
. (B.64)

The derivatives evaluated at α = 0 for the iso-orbital case (for the correction term
within the PZ-SIC) are

∂FTASK
x

∂s2

∣∣∣∣
α=0

= h0x
∂gx(s)

∂s2
(B.65)

and
∂FTASK

x

∂α

∣∣∣∣
α=0

= −
[
h1x(s)− h0x

]
[gx(s)]

d ∂fx(α)

∂α

∣∣∣∣
α=0

(B.66)

with ∂fx(α)/∂α|α=0 = 2b1 − 8b2 + 18b3 − 32b4.

Enhancement Factor for r2SCAN Exchange

The enhancement factor for the r2SCAN meta-GGA is

F r2SCAN
x (s, ᾱ) =

{
h1x(s) + fx(ᾱ)

[
h0x − h1x(s)

]}
gx(s) (B.67)

with h0x = 1.174,
ᾱ(s, α) =

α

1 + η 5
3s

2
, (B.68)
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with η = 0.001 and the functions

h1x(s) =1 + k1 −
k1

1 + x(s)
k1

, (B.69)

gx(s) =1− exp

(
−a

SCAN
1

s1/2

)
, (B.70)

fx(ᾱ) =





exp
[
− cSCAN

1x ᾱ
1−ᾱ

]
for ᾱ < 0

∑7
i=0 cxiᾱ

i for 0 ≤ ᾱ ≤ 2.5

−dSCAN
x exp

[
cSCAN
2x
1−ᾱ

]
for ᾱ ≥ 2.5

(B.71)

with

x(s) =

[
cηc2 exp

(
− s4

d4p2

)
+ µ

]
s2 . (B.72)

The constants are

k1 = 0.065 , cη =

[
20

27
+ η

5

3

]
, c2 = −

7∑

i=7

icxi[1− h0x] ≈ −0.162742 ,

dp2 = 0.361 , aSCAN
1 = 4.9479 , cSCAN

1x = 0.667 ,

cSCAN
2x = 0.8 , dSCAN

x = 1.24 , (B.73)

and

cx0...7 =(1,−0.667,−0.4445555,−0.663086601049,
1.451297044490,−0.887998041597,
0.234528941479,−0.023185843322) .

(B.74)

The derivative with respect to s2 is

∂F r2SCAN
x

∂s2

∣∣∣∣∣
α

=
{
h1x(s) + fx(ᾱ)

[
h0x − h1x(s)

]} ∂gx(s)
∂s2

+ (1− fx(ᾱ))
∂h1x(s)

∂s2
gx(s

2)

+
∂fx(ᾱ)

∂ᾱ

∂ᾱ

∂s2

∣∣∣∣
α

[
h0x − h1x(s)

]
gx(s)

(B.75)

with

∂gx(s)

∂s2
=− aSCAN

1

4s5/2
exp

(
−aSCAN

1 s−1/2
)
, (B.76)

∂h1x(s)

∂s2
=

1
(
1 + x(s)

k1

)2
∂x(s)

∂s2
, (B.77)

∂x(s)

∂s2
=

(
1− 2s4

d4p2

)
cηc2 exp

(
− s4

d4p2

)
+ µ . (B.78)

and
∂ᾱ

∂s2

∣∣∣∣
α

= −
5
3ηα(

1 + η 5
3s

2
)2 . (B.79)
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And the derivative with respect to α is

∂F r2SCAN
x

∂α

∣∣∣∣∣
s2

=
∂fx(ᾱ)

∂ᾱ

∂ᾱ

∂α

∣∣∣∣
s2

[
h0x − h1x(s)

]
gx(s) (B.80)

with

∂fx(ᾱ)

∂ᾱ
=





− cSCAN
1x

(1−ᾱ)2
exp

(
− cSCAN

1x ᾱ
1−ᾱ

)
for ᾱ < 0

∑7
i=1 cxiᾱ

i−1 for 0 ≤ ᾱ ≤ 2.5

−dSCAN
x exp

(
cSCAN
2x
1−ᾱ

)
cSCAN
2x

(1−ᾱ)2
for ᾱ ≥ 2.5

(B.81)

and
∂ᾱ

∂α

∣∣∣∣
s2

=
1

1 + η 5
3s

2
. (B.82)

The derivatives evaluated at α = 0 for the iso-orbital case are

∂F r2SCAN
x

∂s2

∣∣∣∣∣
α=0

= h0x
∂gx(s)

∂s2
(B.83)

and
∂F r2SCAN

x

∂α

∣∣∣∣∣
α=0

= − cSCAN
1x

1 + η 5
3s

2

[
h0x − h1x(s)

]
gx(s) . (B.84)

Since aSCAN
1 ≡ c in the definitions of gx(s) for TASK and r2SCAN, as shown in

Eq. (B.51) and Eq. (B.70), it is clear that the derivatives of the enhancement factors of
TASK and r2SCAN with respect to s2, evaluated at α = 0, are identical. This identity
has been used to locate the origin of the numerical challenges encountered during the
PZ-SIC ground-state calculations with TASK and r2SCAN exchange (see Section 7.2.1).

B.12 Enhancement Factor for α0TASK

The α0TASK meta-GGA modifies the TASK meta-GGA such that the construction
principle defined in Eq. (7.11) is fulfilled. This new meta-GGA functional has the same
form as the TASK meta-GGA:

Fα0TASK
x (s, α) = h0xgx(s) +

[
1− fα0TASK

x

] [
h1x(s)− h0x

]
[gx(s)]

d (B.85)

The construction principle of Eq. (7.11) is fulfilled by satisfying

∂fα0TASK
x

∂α

∣∣∣∣
α=0

= 0 . (B.86)

This is achieved by modifying the function fx(α) from TASK to

fα0TASK
x (α) =

5∑

ν=0

bα0TASK
ν Rν(α) (B.87)

with the additional Chebyshev function

R5(x) = 16

(
x− 1

x+ 1

)5

− 20

(
x− 1

x+ 1

)3

+ 5
x− 1

x+ 1
(B.88)
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and

bα0TASK
0...5 = (−0.628591,−2.18017,−0.5, 0.141661, 0.128591, 0.0385072) . (B.89)

The modified function fα0TASK
x , along with the original function fx from TASK, is

shown in panel (a) of Fig. B.3. Panel (b) of Fig. B.3 displays the corresponding
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Figure B.3: fx(α) and ∂fx(α)/∂α for TASK and α0TASK.

derivatives of fα0TASK
x and fx with respect to α. In this figure, the designed properties

of fα0TASK
x (α) become evident: While fx(α) for the TASK functional exhibits a strong

derivative at α = 0, fα0TASK
x (α) flattens out at 1 as α approaches 0, resulting in

∂fα0TASK
x /∂α|α=0 = 0.
Table B.1 illustrates the HOMO and LUMO eigenvalues for TASK-GKS and α0TASK-

GKS calculations. For all model systems, the HOMO eigenvalue shifts slightly to lower

Table B.1: HOMO and LUMO eigenvalues for the CO, H2O, and N2

molecules using TASK-GKS and α0TASK-GKS (with LSDA
correlation).

TASK-GKS α0TASK-GKS
ϵHOMO ϵLUMO ϵHOMO ϵLUMO

CO −9.86 −1.42 −10.01 −1.31
H2O −7.88 −0.89 −7.93 −1.00
N2 −11.05 −1.51 −11.22 −1.36

energies from TASK to α0TASK by approximately 0.1 to 0.2 eV. No general trend is
observed for the LUMO eigenvalue, with a shift of 0.1 to 0.15 eV from TASK to α0TASK.

Looking at the energy curves in Fig. B.4 for our test set consisting of CO, H2O, and
N2 for TASK and α0TASK (with LSDA correlation), only minimal differences between
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the two meta-GGAs are visible. The curvature of the E(N) curves and the energy values
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Figure B.4: Total energy difference to the neutral CO (panel (a)), H2O
(panel (b)), and N2 (panel (c)) molecule as a function of
the electron number change ∆N calculated with TASK and
α0TASK τ .

are only slightly affected by the transition from TASK to α0TASK. This suggests that
the changes introduced in α0TASK have a minimal impact on the physical properties
predicted for our test set.

B.13 Results for α0TASK-SIC with Current-Density Cor-
rection

As outlined in the main text, PZ-SIC calculations require using complex orbitals for
energy minimization. However, since complex orbitals can carry a current density, it
may be necessary to incorporate the current-density correction to the kinetic energy
density, as defined in Eq. (6.19). Figure B.5 shows the energy curves calculated using
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α0TASK (with LSDA correlation) applying the PZ-SIC, both with and without the
current-density correction, labeled as α0TASK-SIC τ̂ and α0TASK-SIC τ , respectively.
This figure illustrates that the differences between calculations with and without the
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Figure B.5: Total energy difference to the neutral CO (panel (a)), H2O
(panel (b)), and N2 (panel (c)) molecule as a function of
the electron number change ∆N calculated with α0TASK τ
(without current-density correction) and with α0TASK τ̂
(with current-density correction).

current-density correction are negligible for all model systems: CO, H2O, and N2, shown
in panels (a), (b), and (c), respectively. Consequently, incorporating the current-density
correction is not required to compute the energy curves of the test set.

Table B.2 additionally compares the ∆SCF values and the HOMO energies (cor-
responding to the highest occupied diagonal element of the Lagrange multiplier, i. e.,
λHOMOHOMO). Nearly identical results are observed for both calculations, with a maxi-
mum deviation of 0.03 eV in the ∆SCF value for N2, confirming our previous finding
that the current-density correction has a negligible impact on our outcomes.
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Table B.2: Comparison of calculated IPs for CO, H2O, and N2 as
∆SCF = E(N0 − 1) − E(N0) and HOMO eigenvalues of
the neutral molecule (in eV) for α0TASK τ without and
α0TASK-SIC τ̂ with current-density correction (with LSDA
correlation).

α0TASK-SIC τ α0TASK-SIC τ̂
∆SCF ϵHOMO ∆SCF ϵHOMO

CO 13.91 −16.51 13.91 −16.51
H2O 12.06 −18.13 12.07 −18.14
N2 15.79 −18.01 15.76 −18.01

B.14 HOMO Energy Curves for CO, H2O, and N2 with and
without Using the PZ-SIC

Figure B.6 shows the HOMO energy curves for the CO molecule using different
(semi-)local xc approximations, with and without using the PZ-SIC. For the uncor-
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Figure B.6: HOMO energy curves for the CO molecule obtained using
LSDA, PBE, and α0TASK: panel (a) shows results without
using the PZ-SIC, and panel (b) displays the results using
the PZ-SIC. The dashed gray horizontal lines indicate the
negative experimental IP.

134



B.14. HOMO Energy Curves for CO, H2O, and N2 with and without Using the PZ-SIC

rected functionals, the HOMO energy corresponds to the KS eigenvalue, whereas for the
corrected functionals it is given by λ′HOMOHOMO = ⟨φHOMO|ĤHOMO|φHOMO⟩, where
ĤHOMO denotes the HOMO-dependent Hamiltonian.

Analogously to the energy curves presented in the main text, ∆N = 0 in Fig. B.6
corresponds to the neutral CO molecule with N0 electrons. The dashed gray horizontal
line indicates the negative experimental IP. According to Janak’s theorem and the
straight-line condition for the total energy curve, the exact xc functional would yield a
constant HOMO energy forN0−1 < N ≤ N0. Since this does not apply to ϵHOMO(N0−1),
which deviates significantly from the values in the range ]N0 − 1, N0], it is omitted from
the graphs of the HOMO energy curves.

The curves for the CO molecule in Fig. B.6 exhibit the expected behavior for
∆N > −0.8: while using (semi-)local functionals results in an increasing HOMO energy
curve, the curves obtained using the PZ-SIC decrease. Generally, the increase in ϵHOMO

for the uncorrected functionals is more pronounced than the decrease observed for
the functionals employing the PZ-SIC, indicating a stronger deviation from the exact
straight-line condition.

However, for ∆N < −0.8, the HOMO energy curves exhibit a different behavior for
some functionals. In particular, the curves for α0TASK and PBE display a negative slope
in this range, in contrast to the previously discussed range of ∆N > −0.8, where the
slope was strongly positive. A similar change in slope is also observed for the LSDA-SIC
and PBE-SIC results: while the HOMO energy generally decreases with ∆N for these
self-interaction corrected functionals, the slope becomes slightly positive for ∆N < −0.8.

The results for the H2O molecule are illustrated in Fig. B.7. For the uncorrected
functionals in panel (a), the HOMO energy increases with a pronounced slope, deviating
significantly from the horizontal line of the negative experimental IP. In contrast to the
CO molecule, the slope for the curve obtained with the α0TASK functional remains
nearly unchanged near N0−1. While generally closer to the experimental IP, the PZ-SIC
results in panel (b) exhibit a noticeable slope change at approximately ∆N = −0.6
for all three functionals considered. Furthermore, near the neutral H2O molecule, the
HOMO energy curves display a strongly negative slope.

Finally, the results for the N2 molecule are shown in Fig. B.8. The HOMO energy
curves for the (semi-)local functionals without using the PZ-SIC exhibit an almost linear
behavior with a pronounced positive slope, leading to a significant deviation from the
negative experimental IP. This is consistent with previous findings that the curvature of
the corresponding energy curves in Fig. 7.3 for LSDA and PBE, as well as in Fig. 7.8 for
α0TASK, remains nearly unchanged.

In contrast, the HOMO energy curves obtained with the PZ-SIC are considerably
closer to a horizontal line. Nevertheless, for all functionals considered, the absolute
values of the HOMO energies systematically overestimate the experimental IP. Moreover,
similar to the observations for H2O, the PZ-SIC results exhibit a pronounced drop near
∆N = 0.
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Figure B.7: HOMO energy curves for the H2O molecule obtained using
LSDA, PBE, and α0TASK: panel (a) shows results without
using the PZ-SIC, and panel (b) displays the results using
the PZ-SIC. The dashed gray horizontal lines indicate the
negative experimental IP.
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Figure B.8: HOMO energy curves for the N2 molecule obtained using
LSDA, PBE, and α0TASK: panel (a) shows results without
using the PZ-SIC, and panel (b) displays the results using
the PZ-SIC. The dashed gray horizontal lines indicate the
negative experimental IP.
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B.15 Influence of Boundary Condition for Solving the
Screened Poisson Equation

To assess the impact of the boundary condition used for solving the screened Poisson
equation (see Eq. (8.13)), we compare calculations performed with and without using
the monopole moment of v(γ)Yukawa as the boundary condition. For this comparison,
we compute the electronic ground state of the CO molecule (with a bond length of
2.132 a0) using the uncorrected LDA. All numerical parameters are chosen as described
in Section B.9, and the tolerance for solving both the Poisson and screened Poisson
equations is set to 10−10 (see Ref. [Sch17] for details). Panel (a) of Fig. B.9 shows
the difference between the Hartree potential (computed using a 9th-order multipole
expansion boundary condition) and the Yukawa potential (with screening parameter
γ = 0, so that it equals the Hartree potential) calculated with a zero-boundary condition.
The results are plotted in the yz plane (with x = 0), parallel to the CO molecule’s bond
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Figure B.9: Difference between the Hartree potential (computed using
a 9th-order multipole expansion boundary condition) and
the Yukawa potential (with screening parameter γ = 0)
calculated using a zero-boundary condition in panel (a) and
a monopole boundary condition in panel (b). Both potentials
are evaluated on the HOMO ground-state density |φHOMO|2
of the CO molecule, obtained with the LDA functional.

axis. Panel (b) shows the same difference but with the Yukawa potential calculated using
the monopole moment as the boundary condition. A comparison of the two panels reveals
that using the monopole moment as the boundary condition significantly reduces the
error, lowering the maximum deviation from approximately 1.15 eV to about 0.001 eV.
This is further confirmed by the corresponding energy values: EH[|φHOMO|2] = 7.904 eV,
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Ezero
Yukawa[|φHOMO|2] = 7.359 eV, and Emono

Yukawa[|φHOMO|2] = 7.904 eV. While the difference
between using the 9th-order multipole expansion and the monopole moment as the
boundary condition is negligible, employing a zero-boundary condition introduces a
deviation of 0.545 eV.

These results indicate that the monopole boundary condition is crucial for accurately
calculating the Yukawa potential. Given that the Yukawa potential decays most slowly
for γ = 0 and that the monopole boundary condition yields results comparable to those
obtained using the 9th-order multipole expansion for the Hartree potential, we expect
that using the monopole boundary condition with a real-space spherical grid of radius
25 a0 is sufficient for accurately computing the Yukawa potential.

B.16 Derivation of the Long-Range LSDA Expression

The derivation of the long-range LDA exchange energy expression is based on Chapter 6
of Ref. [Par20] and Ref. [Rob+62]. For simplicity, the spin index σ is omitted throughout
this section. The corresponding spin-dependent expressions can be obtained by applying
the spin-scaling relations described in Section 3.6.3.

We begin by defining the (spin-independent) one-particle density matrix:

ρ(r1, r2) = 2

N/2∑

i=1

φi(r1)φ
∗
i (r2) . (B.90)

Using this definition, the exact exchange energy using the long-range screening function

µlr(γ)(|r1 − r2|) = 1− e−γ|r1−r2| (B.91)

can be written as

Elr-exact(γ)
x = −e

2

4

∫∫
µlr(γ)(|r1 − r2|)

|ρ(r1, r2)|2
|r1 − r2|

d3r1 d
3r2 . (B.92)

For the uniform electron gas with particle-in-a-box boundary conditions, the wave
function satisfies ψ(x = 0) = ψ(x = L) = 0, where L is the box length. Consequently, it
can be written as

ψ(kx, ky, kz) =
1√
L3
ei(kxx+kyy+kzz) =

1√
V
eik·r (B.93)

with L3 = V and

k =
2π

L
n with n =



nx
ny
nz


 (B.94)

where ni ∈ Z. Inserting this into Eq. (B.90) leads to

ρ(r1, r2) =
2

V

∑

k∈ occ.

eik·(r1−r2) d3k . (B.95)

For many occupied states, the sum can be replaced by an integral and V = (2π)3

ρ(r1, r2) =
1

4π3

∫
eik·(r1−r2) d3k =

1

4π3

∫ kF

0
k2
∫ π

0

∫ 2π

0
eik·(r1−r2) sinϑdk dϑ dϕ .

(B.96)
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The Fermi wavevector kF can be obtained by ρ(r, r) = n(r) and therefore

n(r) =
k3F(r)

3π2
⇔ kF(r) =

[
3π2n(r)

]1/3
. (B.97)

The density n(r) and the Fermi wave vector kF are constant for homogeneous systems.
For slightly inhomogeneous systems, one may approximate the local value of kF at a
point r by evaluating it at the midpoint between two spatial points, i. e., r = (r1 + r2)/2.
Therefore, we use the coordinates

r =
1

2
(r1 + r2), s = r1 − r2 (B.98)

for rewriting Eq. (B.96). Without loss of generality, we choose s to be parallel to the kz
axis. Then, the density matrix from Eq. (B.96) can be written in terms of r and s = |s|
as

ρ(r, s) =
1

4π3

∫ kF

0

∫ π

0
k2 sinϑ eiks cosϑ dϑ dk

∫ 2π

0
dϕ

=3n(r)

[
sin (t(r))− t(r) cos (t(r))

t3(r)

] (B.99)

with t = kF s. Inserting this into Eq. (B.92) leads to

Elr-LDA(γ)
x =− πe2

∫ ∞

0
s(1− e−γs)

∫
ρ2(r, s) d3r ds

=− 9πe2
∫ ∞

0

∫
1

k2F
(1− e−γs)

(sin t− t cos t)2
t6

9n2(r) d3r ds .

(B.100)

This can be further rewritten using s = t/kF and ds = dt/kF with kF from Eq. (B.97) to

Elr-LDA(γ)
x =−3

4

(
3

π

)1/3

︸ ︷︷ ︸
=Ax

e2
∫ ∞

0

∫
n4/3(r)

(
1− e−γ t

kF

) 4(sin t− t cos t)2
t5

d3r dt

=Ax

∫
n4/3(r)4

∫ ∞

0

(
1− e−γ t

kF

) (sin t− t cos t)2
t5

dt d3r ,

(B.101)

with e2 = 1 for Hartree atomic units. The enhancement factor that modifies the LDA
exchange energy to yield Elr-LDA

x is thus defined as

F lr-LDA(γ)
x =4

∫ ∞

0

(
1− e−γ t

kF

) (sin t− t cos t)2
t5

dt

=
γ
[
4k2F

(
γ + 8kF arctan

(
2kF
γ

))
− γ

(
12k2F + γ2

)
ln
(
1 +

4k2F
γ2

)]

24k4F
.

(B.102)

The integral in Eq. (B.102) can be evaluated using the computer algebra system
Mathematica [WR] and closely resembles the expression derived in Ref. [Rob+62].

140



B.17. Numerical Details of lrSIC Calculations

In the main text, the enhancement factor is expressed in terms of the Wigner-Seitz
radius using

kF(r) =

(
9π

4

)1/3

︸ ︷︷ ︸
=:cx

1

rs
(B.103)

which yields

F lr-LDA(γ)
x =

γ
{
4 c2x
r2s

[
γ + 8 cx

rs
arctan

(
2cx
γrs

)]
− γ

(
12 c2x

r2s
+ γ2

)
ln
(
1 + 4c2x

r2s γ
2

)}

24 c4x
r4s

. (B.104)

B.17 Numerical Details of lrSIC Calculations

The grid parameters (size of the main and Hartree grid), as well as the PP parameters
for CO, H2O, and N2, are adapted from our full PZ-SIC calculations, as described in
Section B.9. For the calculation in Section 8.4, the convergence criteria for the outer loop
was ∆errorσ = 1.0× 10−6 and the convergence threshold for the inner loop algorithms
was max(Gσ) = 5.0× 10−8Ry.

Similarly to the LSDA-lrSIC calculation for the CO molecule described in Sec-
tion 8.4.3, where two nearly degenerate ground states exhibited a strong deviation in
their HOMO energies, we also observe this behavior for the H2O molecule in calculations
with screening parameters of γ = 0.45 a−1

0 and 0.5 a−1
0 . Specifically, starting our LSDA-

lrSIC calculation with γ = 0.45 a−1
0 either from an uncorrected LSDA ground-state

calculation or from an LSDA-lrSIC calculation with γ = 0.4 a−1
0 results in an energy

difference of only 0.04 eV. In contrast, the HOMO energies differ significantly by 2.62 eV,
with values of −12.38 eV (starting from LSDA ground-state) and −15.00 eV (starting
from LSDA-lrSIC ground-state). For the LSDA-lrSIC calculation with γ = 0.5 a−1

0 , we
find a HOMO energy of −12.67 eV when starting from an uncorrected LSDA ground-state
calculation, whereas starting from an LSDA-lrSIC calculation with γ = 0.55 a−1

0 yields a
HOMO energy of −15.40 eV. However, the difference in ground-state energy remains
minimal at just 0.05 eV. In Section 8.4, the HOMO energies are generally presented for
the calculations yielding the lower ground-state energies.

B.18 Attempts for Mitigating the Numerical Difficulties
within the Screened LDA Potential

To mitigate numerical instabilities associated with the enhancement factor of the screened
LSDA functional (see Section 8.4.3) and its derivative in the low-density limit, i.e., n→ 0
or rs →∞, we considered several approaches.

As described in Section 8.4.3, the individual terms F1 and F2 of the enhancement
factor F lr-LDA(γ)

x diverge in the low-density limit. However, the sum of F1 and F2

converges to a constant as rs →∞. To improve the numerical accuracy of the cancellation
of these terms in the low-density limit, we reformulate the enhancement factor such that
the cancellation of the individually diverging terms occurs at the lowest possible orders
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in rs and γ. This approach leads to

F lr-LDA(γ)
x (rs) =

4

3

γrs
cx

arctan

(
2cx
γrs

)

︸ ︷︷ ︸
=F2

−1

2

γ2r2s
c2x

ln

[
1 +

4c2x
r2s γ

2

]

︸ ︷︷ ︸
=F3

+
1

6

γ2r2s
c2x

(
1− 1

4

γ2r2s
c2x

ln

[
1 +

4c2x
r2s γ

2

])

︸ ︷︷ ︸
=F1+F4

,

(B.105)

and analogously for the derivative

∂F
lr-LDA(γ)
x

∂rs
=

4

3

γ

cx
arctan

(
2cx
γrs

)

︸ ︷︷ ︸
=∂rsF2

−γ
2rs
c2x

ln

[
1 +

4c2x
r2s γ

2

]

︸ ︷︷ ︸
=∂rsF3

+
1

3

γ2rs
c2x

(
2− 1

2

γ2r2s
c2x

ln

[
1 +

4c2x
r2s γ

2

])

︸ ︷︷ ︸
=∂rsF1+∂rsF4

,

(B.106)

with the constant cx = (9π/4)1/3. However, this rearrangement of the individual terms
of the enhancement factor does not resolve the numerical instabilities.

An alternatively tested approach to improve the numerical accuracy for small densities
involves using the series expansion

ln(1 + x) =

∞∑

k=1

(−1)k+1x
k

k
with x :=

4c2x
γ2r2s

, (B.107)

which is valid for |x| ≤ 1. Applying Eq. (B.107), the sum F1 + F4 can be written as

F1 + F4 =
1

3︸︷︷︸
=limrs→∞(F1+F4)

+
2

3

∞∑

k=1

(−1)k 22k

k + 2

(
cx
rsγ

)2k

for
∣∣∣∣
cx
γrs

∣∣∣∣ ≤
1

2
. (B.108)

where the divergent terms of F1 and F4 vanish. Similarly, this approach can be applied
to the derivative, resulting in

∂rsF1 + ∂rsF4 =
4

3

1

rs

[
1 + 2

∞∑

k=1

(−1)k 22k

k + 2

(
cx
γrs

)2k
]

for
∣∣∣∣
cx
γrs

∣∣∣∣ ≤
1

2
. (B.109)

However, implementing this approach for calculating F
lr-LDA(γ)
x and ∂F

lr-LDA(γ)
x /∂rs

and evaluating the first 50 terms of the series for |cx/(γrs)| ≤ 1/2 did not improve the
numerical stability of our lrSIC ground-state calculations.

B.19 HOMO Energy Curves for CO, H2O, and N2 Using
LSDA-lrSIC

This section shows the HOMO energy curves for our test set consisting of CO, H2O,
and N2 employing the LSDA-lrSIC functional. The figures in this section illustrate
the curves for the γ values that correspond to those used in the total energy curves
presented in Section 8.4.1. Since the HOMO energy exhibits a discontinuous jump at
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B.19. HOMO Energy Curves for CO, H2O, and N2 Using LSDA-lrSIC

∆N = −1.0, which is not relevant for assessing the piecewise linearity of the energy
curve, the displayed range is limited to ∆N = −0.9 to 0.0.

Figure B.10 illustrates the results for the CO molecule. The gray horizontal dashed
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Figure B.10: HOMO energy curves for CO using sr-LSDA-lrSIC with
different screening parameters: γ = 0.3 (panel (a)), 0.6
(panel (b)), 0.9 (panel (c)), and 1.2 a−1

0 (panel (d)). The
gray horizontal lines indicate the negative experimental IP.

lines indicate the negative value of the experimental IP. In order to improve the resolution
of the HOMO energy variations near the neutral molecule at N0, additional energy points
are calculated beyond the interval of 0.1, specifically at ∆N = −0.075,−0.05,−0.025,
and −0.01. For the results of our LSDA-lrSIC calculation for the CO molecule with
a screening parameter of γ = 0.3 a−1

0 , shown in panel (a) of Fig. B.10, pronounced
oscillations of the HOMO energy value near the neutral molecule (∆N = 0) are visible.
These spurious oscillations appear due to numerical challenges in finding the energy-
minimizing unitary transformation for small values of γ. This issue becomes particularly
pronounced for particle numbers close to the neutral molecule, as discussed in detail in
Section 8.4.3.

The HOMO energy curves for the other screening parameters shown in panels (b), (c),
and (d) exhibit a change in slope. This behavior is consistent with the S-shaped energy
curves presented in Section 8.4, as the HOMO energy corresponds to the derivative of
the total energy with respect to the number of particles. The straight-line condition
for the energy curve implies that the exact HOMO energy curve should be a horizontal
line. This condition is most closely satisfied for γ = 0.9 a−1

0 . The deviation of the
HOMO energy from the ∆SCF value and/or the experimental IP at the neutral molecule
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(∆N = 0) for this γ arises due to the change in slope of the λ′HOMOHOMO(N) curve near
∆N = 0, as discussed in Section 8.7.

The results for the H2O molecule using the LSDA-lrSIC functional are shown in
Fig. B.11. Similar to the behavior observed for the CO molecule, numerical difficulties
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Figure B.11: HOMO energy curves for H2O using sr-LSDA-lrSIC with
different screening parameters: γ = 0.3 (panel (a)), 0.6
(panel (b)), 0.9 (panel (c)), and 1.2 a−1

0 (panel (d)). The
gray horizontal lines indicate the negative experimental IP.

arise for γ = 0.3 a−1
0 in panel (a), as the HOMO energy curve for H2O exhibits small

oscillations near ∆N = 0. These spurious oscillations disappear for larger values
of the screening parameter (see panels (b), (c), and (d)). As observed for CO, the
λ′HOMOHOMO(N) curves show a change in slope. However, for H2O, this change in
curvature – and the corresponding variation in the HOMO energy near ∆N = 0 – is
particularly pronounced, as the curve exhibits an abrupt drop in λ′HOMOHOMO near the
neutral molecule. While the values for γ = 0.9 a−1

0 remain nearly horizontal in the range
∆N = −0.1 to ∆N = −0.9, closely fulfilling the straight-line condition, they show a
drop near ∆N = 0. As a result, λ′HOMOHOMO(N0) deviates strongly from the other
HOMO energy values, as well as from the ∆SCF value and the negative experimental
IP. Consequently, the screening parameter that best satisfies the straight-line condition
and the IP theorem deviates more substantially for H2O than for the other molecules,
as discussed in Section 8.4.

Finally, Fig. B.12 illustrates our results using the LSDA-lrSIC approach for the N2

molecule. For a screening parameter of 0.3 a−1
0 , the HOMO energy curve shows a sharp

drop near the neutral molecule, similar to the results for H2O. For larger values of γ in
panels (b), (c), and (d), this rapid decrease of λ′HOMOHOMO shifts towards the positively
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Figure B.12: HOMO energy curves for N2 using sr-LSDA-lrSIC with
different screening parameters: γ = 0.3 (panel (a)), 0.6
(panel (b)), 0.9 (panel (c)), and 1.2 a−1

0 (panel (d)). The
gray horizontal lines indicate the negative experimental IP.

charged molecule. This behavior is also evident in the total energy curves in Fig. 8.6,
where the change in curvature similarly moves in the direction of the cation. The small
oscillations near the neutral molecule for γ = 0.6 a−1

0 , as well as the abrupt drop in
HOMO energy observed for γ = 1.2 a−1

0 at ∆N = −0.2, are likely due to numerical
difficulties discussed in Section 8.4.3.

B.20 HOMO Energy Curves for CO, H2O, and N2 Using
sr-LSDA-lrHcSIC

This section presents the HOMO energy curves corresponding to the sr-LSDA-lrHcSIC
calculations discussed in Section 8.6. As the curves presented in this section, particularly
for the H2O molecule, exhibit a noticeable change in curvature near the neutral system,
we include, in addition to the particle number steps of 0.1, HOMO energy values at
∆N = 0.01, 0.025, 0.05, 0.075, where ∆N is the deviation in particle number from the
neutral system. Since the HOMO energy exhibits a discontinuous jump at ∆N = −1.0,
which is not relevant for assessing the piecewise linearity of the energy curve, the
displayed range is restricted to ∆N = −0.9 to 0.0.

The results for the CO molecule using the sr-LSDA-lrHcSIC functional with the
values of the range-separation parameter of γ = 0.3, 0.6, 0.9, and 1.2 a−1

0 are shown in
Fig. B.13. The dashed gray horizontal line indicates the negative experimental IP value.
The curve for γ = 0.3 a−1

0 in panel (a) exhibits a predominantly positive slope, with
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Figure B.13: HOMO energy curves for CO using LSDA-lrHcSIC with
different screening parameters: γ = 0.3 (panel (a)), 0.6
(panel (b)), 0.9 (panel (c)), and 1.2 a−1

0 (panel (d)). The
gray horizontal lines indicate the negative experimental IP.

slight changes in curvature near the neutral CO molecule and its cation. Notably, the
numerical difficulties observed for the LSDA-lrSIC functional near the neutral molecule,
shown in panel (a) of Fig. B.10, do not occur in this calculation. The remaining curves
in Fig. B.13 exhibit the expected trends: for γ = 0.6 a−1

0 in panel (b), which is close to
the optimal value of 0.7 a−1

0 for fulfilling the straight-line condition, the HOMO energy
remains nearly constant across the considered range of ∆N , lying slightly above the
negative value of the experimental IP. For the larger values of γ = 0.9 a−1

0 in panel (c)
and γ = 1.2 a−1

0 in panel (d), the HOMO energy curves exhibit a negative slope, which
corresponds to the concave shape of the total energy in Section 8.6.

The results for the H2O molecule using the sr-LSDA-lrHcSIC functional are shown
in Fig. B.14. Similarly to the results for CO, the λ′HOMOHOMO(N) curve increases
for smaller γ values in the range from ∆N = −0.9 to −0.1 (see panels (a) and (b)),
while for γ = 1.2 a−1

0 it exhibits a negative slope. However, all the curves shown in
Fig. B.14 exhibit a pronounced drop near the neutral system. This drop in the HOMO
energy, which also manifests as a change in curvature of the total energy curves discussed
in Section 8.6, can lead to considerable differences between the HOMO energies of
the neutral and positively charged molecule. As particularly evident in panel (c) for
γ = 0.9 a−1

0 , the HOMO energy remains nearly constant over the range ∆N = −0.9 to
−0.2, closely matching the negative of the experimental IP. For ∆N > −0.2, however, it
drops sharply, resulting in a substantial deviation from both the experimental IP and
the ∆SCF value at ∆N = 0.
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Figure B.14: HOMO energy curves for H2O using LSDA-lrHcSIC with
different screening parameters: γ = 0.3 (panel (a)), 0.6
(panel (b)), 0.9 (panel (c)), and 1.2 a−1

0 (panel (d)). The
gray horizontal lines indicate the negative experimental IP.

Finally, Fig. B.15 shows the curves for the N2 molecule using the sr-LSDA-lrHcSIC
functional. For γ = 0.3 a−1

0 in panel (a), a drop in the HOMO energy near the neutral
system is observed, similar to the behavior seen for the CO molecule. Additionally, the
S-shaped character of the total energy curves, discussed in Section 8.6, is also evident
in Fig. B.15. For instance, for γ = 0.6 a−1

0 in panel (b), the slope of the curve changes
abruptly from increasing to decreasing around ∆N = −0.5, before transitioning back to
an increasing trend. A similar behavior is apparent in the results shown in panels (c)
and (d), corresponding to larger values of γ. However, in these cases, the change in slope
occurs closer to the positively charged N2 molecule.
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Figure B.15: HOMO energy curves for N2 using LSDA-lrHcSIC with
different screening parameters: γ = 0.3 (panel (a)), 0.6
(panel (b)), 0.9 (panel (c)), and 1.2 a−1

0 (panel (d)). The
gray horizontal lines indicate the negative experimental IP.
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List of Abbreviations

ADSIC average density self-interaction correction
CT charge transfer
DFA density functional approximation
DFT density functional theory
EA electron affinity
FLO Fermi-Löwdin orbital
FLO-SIC Fermi-Löwdin orbital self-interaction correction
FOBO Foster-Boys
GKS generalized Kohn-Sham
HK Hohenberg-Kohn
HOMO highest occupied molecule orbital
IP ionization potential
KLI Approximation by Krieger, Li, and Iafrate
KS Kohn-Sham
LDA local density approximation
LSDA local spin-density approximation
LSIC local-scaling self-interaction correction
lrHcSIC long-range Hartree and correlation self-interaction correction
lrSIC long-range self-interaction correction
NLCC nonlinear core correction
OEP optimized effective potential
PP pseudopotential
PZ-SIC Perdew-Zunger self-interaction correction
SIC self-interaction correction
SIE self-interaction error
TDDFT time-dependent density functional theory
TDGKS time-dependent generalized Kohn-Sham
TDKS time-dependent Kohn-Sham
TDLDA time-dependent local density approximation
xc exchange-correlation
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