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Summary

Vegetation is the biological foundation of terrestrial ecosystems. Plants provide
important ecosystem services such as absorbing anthropogenic CO2 emissions an-
nually, thereby mitigating global warming substantially. Despite the importance of
vegetation to the biosphere, ongoing climate change and elevated CO2 emissions
are impacting the functioning and structure of these ecosystems. Such impacts
are evident in shifts in vegetation phenology and shifts in biome distribution. Cli-
mate change and elevated CO2 are also anticipated to remain the major drivers
of changes in vegetation activity in the next decades, which might have important
atmospheric and ecological consequences.

However, assessing changes in vegetation activity and attributing such changes
to drivers such as elevated CO2 and climate change is one of the main challenges in
vegetation Ecology. The challenge stems from the fact that the change detection
and attribution processes are complex and multifaceted. This therefore limits our
understanding of how terrestrial vegetation is responding to changes in environ-
mental drivers, which is important for guiding management efforts in response to
current and future changes in vegetation activity.

The goal of this thesis is to develop a system that is useful for detecting and
attributing changes in vegetation activity to changes in environmental drivers. To
achieve this, I focus on changes in vegetation phenology (Chapter 2) and changes
in the Functional Biomes (FB) (Chapter 3) of southern Africa, a region widely re-
garded as a climate change hotspot, yet vegetation dynamics in this region remain
poorly understood. Chapter 4 moves beyond detection to attribution of ecosys-
tem changes to climatic factors. I focus on 100 study sites that are distributed
across the major ecosystems of the world to allow for regional conclusions of global
ecosystem response to climatic forcing.

We assessed patterns of vegetation phenological change in southern Africa be-
tween 2000-2019. The phenological change was assessed within regions with simi-
lar phenological properties (phenomes) to account for spatial heterogeneity across
ecosystems. We assessed changes in the Functional Biomes of southern Africa by
quantifying changes in vegetation units with shared productivity and phenology.
Globally, we used solar-induced chlorophyll fluorescence (SIF) and Enhanced Veg-
etation Index (EVI) data, and an ecophysiological plant growth model to detect
and attribute changes in vegetation activity to trends in climatic data at 100 study
sites.

The growing season was shortened in 4 phenological regions, primarily driven
by earlier initiation of the senescence phase metrics. In contrast, the growing sea-
son was extended in 3 phenological regions, mostly driven by delayed initiation of
the senescence phase metrics. Our study revealed that phenological metrics have
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changed by at least 1 standard deviation in each of the 21 metrics used to study
phenological activity, indicating that ecologically relevant changes in the function-
ing of ecosystems of southern Africa are ongoing. Our FB analyses showed that
3% to 15% of pixels shifted in FB state from 2000-2021 in southern Africa. The
most dominant FB transitions shifted to higher productive and non-seasonal states
or to solely high productive but moisture-limited states. SIF analyses dominantly
showed switches from decreased photosynthetic activity to increased photosyn-
thetic activity, while EVI dominantly showed switches from greening to browning
patterns. Attribution analyses showed that vegetation in cooler and moister re-
gions was sensitive to changes in temperature while ecosystems in warmer and drier
regions was sensitive to changes in moisture. Our analyses further showed weak
CO2 fertilization effects on the detected change in both datasets, thereby high-
lighting the dominant role of moisture and temperature constraints on changes in
vegetation activity.

The phenological change revealed here provides clear evidence of climate change
impacts on the vegetation of southern Africa. This study provides a baseline for
developing early warning systems to strengthen the capacity for adaptation and
mitigation of climate change in the region.

Current knowledge of biome dynamics is based on model predictions that sug-
gest that elevated CO2 and climate change will cause an increase in woody biomass
coupled with longer growing seasons. Our FB approach provides compelling ev-
idence that such anticipated biome trajectories are already ongoing, with con-
sequences to biodiversity and carbon sequestration. Our study highlights the
importance of understanding biome trajectories for evidence-based decisions in
conservation initiatives.

The attribution analyses confirm growing evidence that suggests that CO2 ef-
fects on vegetation activity may not be as pronounced as previously thought. The
contrasting forcing effects of moisture and temperature detected in different lat-
itudes suggest that regionally focused management strategies will be relevant to
promote appropriate response measures. Future studies could consider regional
attribution analyses due to differences in forcing effects between biomes. In con-
clusion, this thesis shows a strong climate change signal on vegetation activity
between 2000-2021. The change detection and attribution approaches we applied
opens new avenues for detecting and attributing change in ecosystems, allowing for
informed planning on adaptation and mitigation responses to changes in terrestrial
vegetation.
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Zusammenfassung

Die Vegetation ist die biologische Grundlage der terrestrischen Ökosysteme. Pflanzen
erbringen wichtige Ökosystemleistungen, wie z. B. die jährliche Absorption von an-
thropogenen CO2-Emissionen, wodurch die globale Erwärmung erheblich gemildert
wird. Trotz der Bedeutung der Vegetation für die Biosphäre beeinträchtigen der
fortschreitende Klimawandel und die erhöhten CO2-Emissionen die Funktionsweise
und Struktur dieser Ökosysteme. Diese Auswirkungen zeigen sich in Verschiebun-
gen in der Phänologie der Vegetation und in der Verteilung der Biome. Es wird
erwartet, dass der Klimawandel und die erhöhten CO2-Emissionen auch in den
nächsten Jahrzehnten die Haupttriebkräfte für Veränderungen der Vegetationsak-
tivität sein werden, was bedeutende atmosphärische und ökologische Folgen haben
könnte.

Die Bewertung von Veränderungen in der Vegetationsaktivität und die Zuord-
nung dieser Veränderungen zu Triebkräften wie erhöhtem CO2 und Klimawandel
ist jedoch eine der größten Herausforderungen in der Vegetationsökologie. Die
Herausforderung ergibt sich aus der Tatsache, dass die Prozesse zur Erkennung
und Zuordnung von Veränderungen komplex und vielschichtig sind. Dies schränkt
unser Verständnis dafür ein, wie die terrestrische Vegetation auf Veränderungen der
Umweltfaktoren reagiert, was für die Steuerung der Bewirtschaftungsmaßnahmen
als Reaktion auf aktuelle und zukünftige Veränderungen der Vegetationsaktivität
wichtig ist.

Ziel dieser Arbeit ist es, ein System zu entwickeln, mit dem sich Veränderungen
der Vegetationsaktivität erkennen und auf Veränderungen der Umweltfaktoren
zurückführen lassen. Um dies zu erreichen, konzentriere ich mich auf Veränderungen
in der Phänologie der Vegetation (Kapitel 2) und auf Veränderungen in den funk-
tionalen Biomen (FB) (Kapitel 3) des südlichen Afrikas, einer Region, die weithin
als ein Hotspot des Klimawandels angesehen wird, deren Vegetationsdynamik je-
doch nach wie vor kaum verstanden wird. In Kapitel 4 geht es nicht nur um den
Nachweis, sondern auch um die Zuordnung von Ökosystemveränderungen zu klima-
tischen Faktoren. Ich konzentriere mich auf 100 Untersuchungsstandorte, die über
die wichtigsten Ökosysteme der Welt verteilt sind, um regionale Rückschlüsse auf
die Reaktion der globalen Ökosysteme auf klimatische Einflüsse zu ermöglichen.

Wir haben die Muster der phänologischen Veränderungen der Vegetation im
südlichen Afrika zwischen 2000 und 2019 untersucht. Die phänologischen Veränderungen
wurden innerhalb von Regionen mit ähnlichen phänologischen Eigenschaften (Phänomenen)
bewertet, um die räumliche Heterogenität der Ökosysteme zu berücksichtigen.
Wir bewerteten die Veränderungen in den funktionalen Biomen des südlichen
Afrikas, indem wir die Veränderungen in Vegetationseinheiten mit gemeinsamer
Produktivität und Phänologie quantifizierten. Weltweit wurden Daten zur so-
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larinduzierten Chlorophyllfluoreszenz (SIF) und zum Enhanced Vegetation In-
dex (EVI) sowie ein ökophysiologisches Pflanzenwachstumsmodell verwendet, um
Veränderungen in der Vegetationsaktivität zu erkennen und sie den Trends in den
Klimadaten an 100 Untersuchungsstandorten zuzuordnen.

Die Vegetationsperiode wurde in vier phänologischen Regionen verkürzt, was in
erster Linie auf einen früheren Beginn der Seneszenzphase zurückzuführen ist. Im
Gegensatz dazu verlängerte sich die Vegetationsperiode in 3 phänologischen Regio-
nen, was vor allem auf einen verzögerten Beginn der Seneszenzphase zurückzuführen
ist. Unsere Studie ergab, dass sich die phänologischen Metriken um mindestens
eine Standardabweichung in jeder der 21 zur Untersuchung der phänologischen Ak-
tivität verwendeten Metriken verändert haben, was darauf hindeutet, dass ökologisch
relevante Veränderungen in der Funktionsweise der Ökosysteme des südlichen
Afrikas im Gange sind. Unsere FB-Analysen zeigten, dass sich der FB-Zustand von
3% bis 15% der Pixel im südlichen Afrika zwischen 2000 und 2021 veränderte. Die
vorherrschenden FB-Übergänge führten zu höher produktiven und nicht saisonalen
Zuständen oder zu ausschließlich hoch produktiven, aber feuchtigkeitsbegrenzten
Zuständen. SIF-Analysen ergaben überwiegend einen Wechsel von verminderter
photosynthetischer Aktivität zu erhöhter photosynthetischer Aktivität, während
EVI überwiegend einen Wechsel von Vergrünungs- zu Verbräunungsmustern zeigte.
Attributionsanalysen zeigten, dass die Vegetation in kühleren und feuchteren Re-
gionen empfindlich auf Temperaturveränderungen reagierte, während Ökosysteme
in wärmeren und trockeneren Regionen empfindlich auf Veränderungen der Feuchtigkeit
reagierten. Unsere Analysen ergaben außerdem schwache Auswirkungen der CO2-
Düngung auf die festgestellten Veränderungen in beiden Datensätzen, was die do-
minierende Rolle von Feuchtigkeits- und Temperaturbeschränkungen bei Veränderungen
der Vegetationsaktivität unterstreicht.

Die hier festgestellten phänologischen Veränderungen sind ein klarer Beweis
für die Auswirkungen des Klimawandels auf die Vegetation im südlichen Afrika.
Diese Studie liefert eine Grundlage für die Entwicklung von Frühwarnsystemen
zur Stärkung der Kapazitäten für die Anpassung an den Klimawandel und dessen
Eindämmung in der Region.

Das derzeitige Wissen über die Dynamik der Biome basiert auf Modellvorher-
sagen, die darauf hindeuten, dass ein erhöhter CO2-Gehalt und der Klimawandel
eine Zunahme der holzigen Biomasse in Verbindung mit längeren Wachstumspe-
rioden verursachen werden. Unser FB-Ansatz liefert überzeugende Beweise dafür,
dass die erwarteten Entwicklungen in den Biomen bereits im Gange sind, mit
entsprechenden Folgen für die biologische Vielfalt und die Kohlenstoffbindung.
Unsere Studie unterstreicht, wie wichtig das Verständnis von Biotopverläufen für
evidenzbasierte Entscheidungen bei Naturschutzinitiativen ist.

Die Zuordnungsanalysen bestätigen die zunehmenden Hinweise darauf, dass
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die Auswirkungen von CO2 auf die Vegetationsaktivität möglicherweise nicht so
ausgeprägt sind wie bisher angenommen. Die in verschiedenen Breitengraden fest-
gestellten gegensätzlichen Auswirkungen von Feuchtigkeit und Temperatur lassen
darauf schließen, dass regional ausgerichtete Bewirtschaftungsstrategien für die
Förderung geeigneter Reaktionsmaßnahmen von Bedeutung sind. Künftige Stu-
dien könnten regionale Attributionsanalysen in Betracht ziehen, die auf die Un-
terschiede in den Antriebswirkungen zwischen den Biomen zurückzuführen sind.
Zusammenfassend lässt sich sagen, dass diese Arbeit ein starkes Signal des Kli-
mawandels auf die Vegetationsaktivität im Zeitraum 2000-2021 zeigt. Die von
uns angewandten Ansätze zur Erkennung und Zuordnung von Veränderungen
eröffnen neue Wege für die Erkennung und Zuordnung von Veränderungen in
Ökosystemen und ermöglichen eine fundierte Planung von Anpassungs- und Ab-
schwächungsmaßnahmen in Bezug auf Veränderungen der Landvegetation.
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1 General Introduction Motivation

Chapter 1

1 General Introduction

1.1 Motivation: Why do we need a system for monitoring
and attributing changes in terrestrial vegetation?

Vegetation is the biological foundation of terrestrial ecosystems, constituting 82%
of the Earth’s terrestrial biomass (Bar-On et al., 2018). Vegetation absorbs about
30% of anthropogenic CO2 emissions annually (Terrer et al., 2021), thereby mit-
igating global warming substantially. Plants further support biodiversity by pro-
viding habitats and food to other organisms across trophic levels (Bascompte and
Jordano, 2007; Scherber et al., 2010). Despite the importance of vegetation to the
biosphere, environmental drivers such as land use change, elevated CO2 concentra-
tions and climate change are impacting changes in the functioning and structure
of these ecosystems (Settele et al., 2014; Parmesan et al., 2022). For example,
such impacts are evident in shifts in vegetation phenological activity (Buitenwerf
et al., 2015; Piao et al., 2015; Menzel et al., 2020) and shifts in biome distribution
(Higgins et al., 2016). These drivers are further anticipated to remain the major
factors of ecosystem change in the foreseeable future (IPBES, 2019; IPCC, 2019).
Therefore, a thorough understanding of changes in vegetation activity and the
underlying drivers of such change is urgently needed as it has consequent impli-
cations for ecosystem functioning, ecosystem services provision and overall global
sustainability.

An important part of Ecology is, and has always been, about detecting and
attributing changes in terrestrial ecosystems (Parmesan et al., 2013). Yet ecolo-
gists face challenges in detecting ecosystem change and attributing such change to
environmental drivers. Detection involve demonstrating that a system has statis-
tically undergone change without offering a specific reason of the observed change
(Parmesan et al., 2013; Cramer et al., 2014). However, this is difficult to achieve
because challenges such as randomness within ecosystems, observation errors in
the data and biases associated with short time series may interact to dilute the
detection process (Parmesan et al., 2013; Higgins et al., 2023a).

Attribution involves quantifying and determining the relative contribution of
environmental drivers to the detected ecosystem change (Parmesan et al., 2013;
Cramer et al., 2014). However, most studies fall short in attribution. They either
speculate that the observed system change is related to environmental drivers or do
not attempt to attribute the detected change at all (Hansen et al., 2016; Van de Pol
et al., 2017). This may be because vegetation response to the driving factors is non-
linear and this is further compounded by correlations between drivers (Parmesan
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1 General Introduction Motivation

et al., 2013, 2022; Higgins et al., 2023a). Such challenges have led to a limited
number of robust detection and attribution studies, thereby hindering adaptation
and mitigation efforts (Parmesan et al., 2013, 2022).

Measurements of changes in terrestrial vegetation involve assessing changes in
vegetation phenology and changes in biomes (Mucina, 2019; Piao et al., 2019). As-
sessing changes in the magnitude and timing of phenological activity (for instance,
shifts in the timing of flowering and greening events) provide early warning signals
of vegetation responses to changing climatic conditions. Analyses of changes in
vegetation classified by similarities in their functional attributes (i.e Functional
Biomes (FB)), can also reveal climate-driven impacts on ecosystem functioning.
For example, changes in moisture-limited biomes may suggest altered precipitation
patterns (Higgins et al., 2016). Therefore, assessing changes in vegetation phenol-
ogy and changes in biomes is important for improving our understanding of how
terrestrial vegetation respond to drivers such as elevated CO2, climate change and
land use change (Piao et al., 2019; Conradi et al., 2020; Parmesan et al., 2022).

Satellite remote sensing provide time-series data that enable monitoring of
shifts in vegetation phenological activity and biomes. For example, studies have
used remote sensing data to analyse changes in vegetation phenology (Zhang et al.,
2006; Jeong et al., 2011; Jones et al., 2011; Zhu et al., 2012; Gill et al., 2015; Buiten-
werf et al., 2015; Liu et al., 2016; Wang et al., 2016) and changes in vegetation
classified as biomes (Higgins et al., 2016; Seddon et al., 2016; Zhu et al., 2016; Song
et al., 2018). These studies have detected widespread changes in vegetation activ-
ity. However, these studies contain land use change effects that can mask climate
change impacts on vegetation activity or may act in synergy (Sirami et al., 2017),
making it difficult to accurately attribute each driver to the detected change. Most
studies have primarily focused on northern latitudes or globally, leading to recent
criticisms of geographic bias towards northern latitudes (Feeley et al., 2017). This
suggests that ignoring southern latitudes may overlook the diversity of species re-
sponse to climatic change. For example, ongoing climate change is anticipated to
trigger species migrations globally, but species in southern latitudes will struggle
to keep pace with climate change compared to species in northern latitudes (Fee-
ley et al., 2015; Perez et al., 2016). One of the regions in the southern latitudes
is southern Africa, which has been described as a climate change hotspot (Niang
et al., 2014; Trisos et al., 2022), and is projected to be severely impacted by future
climate change (Engelbrecht and Engelbrecht, 2016; Hoegh-Guldberg et al., 2018;
Trisos et al., 2022).

The challenges highlighted in the previous paragraphs mean that we still lack
a robust detection and attribution system. A robust detection and attribution
system should overcome problems associated with inherent randomness in natural
ecosystems, biases with short time series, observation errors, geographic biases,
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1 General Introduction Motivation

the non-linear response of ecosystems to climatic forcing, the confounding land use
change effects on vegetation change and co-limitation by climatic drivers. Such
an integrated system serve as a foundation for effective adaptation and mitigation
planning in response to current and future ecosystem change. This system has been
advocated for (Pettorelli et al., 2014; Feeley et al., 2017), but to my knowledge
it is yet to be developed. It is for this reason I synthesised and expanded on
established approaches (Buitenwerf et al., 2015; Higgins et al., 2016, 2023a), to
develop an integrated system for detecting and attributing changes in terrestrial
vegetation to climatic factors.

I did this by studying changes in vegetation phenology, changes in Functional
Biomes (hereafter FB) and attribution of changes in vegetation activity to cli-
matic drivers. These were explored in 3 separate studies constituting the three
main components of this thesis. Essentially, the first two studies are change detec-
tion approaches and focuses on the protected areas of southern Africa. The third
study goes beyond detection to attribution of change by focusing on 100 study
sites spanning the major ecosystems globally. I chose the protected areas of south-
ern Africa for the two detection approaches because our knowledge on changes
in terrestrial vegetation in this region remains relatively limited, yet changes in
these ecosystems can potentially have significant ecological and atmospheric con-
sequences (Buitenwerf et al., 2015). I chose the global 100 study sites because
they allow us to draw regional conclusions of global ecosystem response to cli-
matic forcing, thereby addressing recent criticism of geographic bias in detection
and attribution studies (Feeley et al., 2017).

To better understand how terrestrial ecosystems are responding to changes
in climatic factors and thereby formulate appropriate management responses, my
thesis addresses the following research questions (i) What are the patterns and
magnitude of vegetation phenological change in the ecosystems of southern Africa?
(ii)What are the Functional Biomes of southern Africa and how have they changed
over time? (iii) How do global trends in climatic factors influence vegetation
activity over time, and what is the relative importance of the climatic factors in
explaining changes in vegetation activity?

In line with the research questions of the thesis, I give a brief introduction to
the concepts of vegetation phenology, Functional Biomes and attribution in the
next section. I then present a concise literature review of studies that have assessed
changes in vegetation phenology, changes in Functional Biomes and attribution of
ecosystem change. I further point out knowledge gaps in these studies and then
introduce the aims of the study in more detail. Moreover, I will introduce the
study area and present the underlying objectives of this thesis. Box 1 describes
the key concepts and terms used in this thesis.
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1 General Introduction Motivation

Box 1: Definitions and descriptions of key concepts used in this
thesis.

Climate Change: Refers to the multi-decadal average change in Earth’s
local, regional or global climatic patterns. This includes changes in temper-
ature and precipitation over long periods (NASA, 2024).

Adaptation: The process of change by which ecosystems become better
suited to cope with new environmental conditions driven by a disturbance
such as climate change or land use change.

Mitigation: Mitigation refers to efforts aimed at reducing elevated green-
house gas emissions and increasing carbon sinks. Such actions are aimed
at combating the impact of climate change on terrestrial ecosystems (UN-
FCCC, 2024).

Remote Sensing: Remote Sensing is the scientific process of detecting and
monitoring the physical characteristics of the Earth by measuring reflected
or emitted energy at a distance. This technology uses sensors mounted on
platforms such as satellites and aircraft to collect data from Earth (USGS,
2024).

Normalised Difference Vegetation Index (NDVI): NDVI is a nor-
malised ratio between near-infrared light and red light commonly used to
quantify vegetation greenness (Didan, 2015).

Enhanced Vegetation Index (EVI): EVI is a normalised ratio between
near-infrared light, red light and the blue light used to quantify vegetation
greenness. EVI decouples atmospheric and soil contamination from the veg-
etation signal (Didan, 2015).

Solar-Induced Fluorescence (SIF): SIF is a light signal emitted by ex-
cited chlorophyll molecules during photosynthesis light reactions. SIF is a
proxy in studying the physiology of photosynthesis and the SIF signal can
be measured by remote sensing platforms (Frankenberg et al., 2011; Porcar-
Castell et al., 2014).

Terrestrial ecosystems: Terrestrial ecosystems are a community of biotic
and abiotic factors based on land and their interaction with each other in
space and time (NG, 2024).

Carbon dioxide (CO2): CO2 is a greenhouse gas responsible traping the
Earth System’s energy exchange and thus contributes to global warming.

Land use change: Refers to changes on Earth’s land cover driven by human
activities.

Protected areas: Protected areas are geographic boundaries designated to
conserve biodiversity while remaining free of land use effects (UNEP-WCMC
and IUCN, 2021). 9
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Vegetation phenology: Vegetation phenology is the study of the tim-
ing and duration of recurring annual life-cycle events in plants triggered by
seasonal and environmental changes (Lieth, 1974).

Phenomes: Vegetation zones with similar phenological signatures (Buiten-
werf et al., 2015).

Biomes: Biomes are large-scale vegetation zones characterized by similar
functional and structural attributes (Higgins et al., 2016; Moncrieff et al.,
2016).

Functional Biomes (FB): Functional Biomes classifies biomes as units
with shared productivity and phenology based on metrics monitored by re-
mote sensing satellites (Higgins et al., 2016).

Detection: Detection refers to a process of demonstrating that a system
has statistically undergone change without offering a specific reason of the
observed change (Parmesan et al., 2013).

Attribution: Attribution is the process of quantifying and determining the
relative contribution of climatic drivers to the observed biological change
(Parmesan et al., 2013).

State-space model: State-space model is a mathematical and statistical
framework used to study the behaviour of dynamic systems over time. It
usually consists of a state equation which describes how an underlying pro-
cess in the system influences state variables, and an observation equation
which links the observed data to the underlying process in the system.

Process-based models: Process-based models explicitly incorporate the
underlying ecological processes that drive species distribution. In these mod-
els, parameters have a clear ecological interpretation and are predefined.
This allows for a mechanistic understanding of how species interact with
their environment (Dormann et al., 2012).

Thornley Transport Resistance (TTR) model: This is a process-based
model which describes how abiotic factors influence plant growth, carbon
and nitrogen assimilation. The TTR model conceptually describes a plant’s
physiological niche (Thornley, 1998; Higgins et al., 2012).
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1.2 Overview on vegetation phenology, biomes and attri-
bution

Vegetation phenology refers to the timing and duration of repetitive annual life-
cycle events in plants triggered by seasonal and environmental changes (Lieth,
1974). The annual life-cycle events include the timing of the onset of the growing
season, timing of senescence and duration of the growing season, and how these
events relate to climatic and non-climatic factors. Plant phenology regulates water,
carbon and energy feedbacks between terrestrial ecosystems and the atmosphere.
In particular, the timing and length of a plant’s growing season influence energy
budgets and CO2 exchanges (Peñuelas and Filella, 2009). Therefore, phenological
cycles provide information on ecosystem functioning.

Vegetation phenology can be measured using field assessments and citizen sci-
ence knowledge (Wolfe et al., 2005; Dickinson et al., 2012; Ge et al., 2015; Hufkens
et al., 2019). Advances in satellite remote sensing have ensured that large-scale
vegetation phenological assessments are now possible (Zhang et al., 2003; Buiten-
werf et al., 2015; Piao et al., 2015; Menzel et al., 2020).

Factors like temperature, precipitation, nutrient availability and photoperiod
control variations and changes in vegetation phenology (Adole et al., 2019; Piao
et al., 2019). Globally, studies have shown that temperature and photoperiod are
the dominant drivers of vegetation phenology in mid and high latitudes (Jolly et al.,
2005; Piao et al., 2015), whereas precipitation is the primary driver of vegetation
phenology in the tropics (Jolly et al., 2005; Zhang et al., 2006; Verger et al., 2016).
These drivers interact with each other to influence the timing of phenological
activity (Jolly et al., 2005; Wang et al., 2020a). For example, interactions between
photoperiod effects and warmer spring temperatures in the northern hemisphere
initiate an earlier start and a delayed of the growing season, resulting in a longer
growing season and increased productivity (Jeong et al., 2011). Thus, long-term
observations of vegetation phenological activity is a reliable means of monitoring
ecosystem response to changes in climatic factors (Cleland et al., 2007; Piao et al.,
2019).

Biomes are large-scale vegetation zones characterized by similar functional and
structural attributes (Higgins et al., 2016; Moncrieff et al., 2016). Schimper (1903)
coined the modern biome concept, emphasising that plant formations are primarily
determined by climatic and edaphic factors. Whittaker (1975) further expanded on
Schimper (1903)’s emphasis on the dominant role of climate on plant distribution.
However, this climatic determinism is not absolute. This is because evidence sug-
gests that orographic factors and disturbances from fire and herbivores can override
climatic factors in shaping biome distribution (Walter, 1973; Bond, 2005). Despite
existing differences in biome concepts, the general consensus in Earth science is
that biomes are useful constructs for organising our knowledge of ecosystem func-
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tioning and how such ecosystems respond to drivers such as climate change and
land use change (Higgins et al., 2016; Moncrieff et al., 2016; Conradi et al., 2020).

Dynamic Global Vegetation Models (DGVMs) are commonly used tools to
predict biome response to climatic forcing. DGVMs mimic how ecophysiological
processes, for example, carbon assimilation, growth, competition and consump-
tion interact over large spatio-temporal scales and how biomes might respond to
changes in the climate system (Prentice et al., 2007). Model variables like Leaf
Area Index of various Plant Functional Types (PFTs) or their fractional cover are
utilised to categorize vegetation into biomes classes (Scheiter et al., 2013, 2020;
Martens et al., 2021). The simulated changes in model variables allow the detection
of biomes most vulnerable to future climatic forcing.

The phytoclime concept is another data-driven prediction tool of biome shifts
that has garnered recent focus (Conradi et al., 2020; Higgins et al., 2023b; Conradi
et al., 2024). Phytoclimes are climatic regions that support a particular combina-
tion of plant types. Specifically, the phytoclime concept uses range modelling of
plant species and climate data to identify geographic regions that are most con-
ducive to specific plant growth forms. The plant growth forms are closely related
to biomes. In fact, recent studies have suggested that phytoclimes can be used as
an alternative for assessing biome shifts (Conradi et al., 2020).

Earth observation satellites provide opportunities to develop monitoring tools
that can be used to assess historical shifts in Functional Biomes (FB). The FB
concept classifies biomes as units with similar productivity and phenology. FB is
by definition pragmatic, it is based on metrics that can be monitored by satellites
(Higgins et al., 2016). Like the phytoclimes concept, the FB emerge from the data,
thereby offering an objective approach on how the dominant life forms respond to
environmental drivers over time. The advantage of the FB approach is that it is
based on satellite data records, thereby directly providing empirical evidence of
changes in actual biomes, making it a useful monitoring tool.

Attribution involves quantifying the relative contributions of environmental
drivers to detected biological changes (Parmesan et al., 2013; Settele et al., 2014;
Parmesan et al., 2022). The first step in attribution is demonstrating that change
has occurred. The second step then assess the relative influence of drivers on
the detected change. Confidence in attribution studies increases when they are
supported by multiple lines of evidence, or when a deep understanding of the
mechanisms that underlie the detected ecological change is demonstrated (Parme-
san et al., 2013). Understanding how environmental drivers influence terrestrial
ecosystems is important for advancing ecological research and also serves as a
foundation for mitigation and adaptation responses (Parmesan et al., 2013; Feeley
et al., 2017; Parmesan et al., 2022).

Various methods are used in attribution studies, which include statistical in-
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ferences, experimental manipulation, correlative studies, historical comparisons,
model simulations and expert judgment (Parmesan et al., 2013; Settele et al.,
2014; Parmesan et al., 2022). Such approaches have identified drivers such as
elevated CO2, climate change, land use change and nitrogen deposition as the un-
derlying drivers of the detected ecosystem change (Zhu et al., 2016; Piao et al.,
2020; Higgins et al., 2023a).

The increasing availability of remotely sensed datasets means that large-scale
change detection in natural ecosystems is now possible. Scientists have combined
remote sensing data and ecophysiological models to detect and attribute changes in
terrestrial ecosystems to changes in environmental drivers (Higgins et al., 2023a).
Such analyses in natural systems to environmental drivers greatly improve our
ability to predict and mitigate consequent changes in ecosystem functioning (Feeley
et al., 2017; Higgins et al., 2023a).
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1.3 Vegetation Phenology, Functional Biomes and Attri-
bution - state of the art

Environmental drivers such as climate change, elevated CO2 and land use change
are impacting the functioning of terrestrial vegetation, with consequences for global
biodiversity (Settele et al., 2014; Parmesan et al., 2022). It is therefore important
we detect ongoing change and attribute such change to environmental drivers,
thereby enabling informed management responses.

Although our capacity to quantify changes in terrestrial vegetation and at-
tribute the quantified change to environmental drivers is still limited (Parmesan
et al., 2022; Higgins et al., 2023a), some insights have accumulated in recent pe-
riods. I will present a concise review of studies that have focused on detecting
changes in vegetation phenology, changes in Functional Biomes and attribution of
ecosystem change.

1.3.1 Changes in Vegetation phenology

A study by Archibald and Scholes (2007) combined NDVI and meteorological
data to detect tree and grass green-up dates and determined the drivers for such
green-up dates in the Kruger National Park, South Africa. The findings showed
that day length was the most important factor for tree green-up, while soil mois-
ture and relative humidity were most important for grass green-up. The study
provides insights into the environmental cues for tree and grass green-up in the
savanna biome, with implications for understanding the ecological dynamics of
savanna ecosystems. This study’s sole focus on the green-up phase provides an
incomplete picture of the dynamics of vegetation phenology in savanna ecosys-
tems. A complete picture of phenological activity should study dynamics across
the entire phenological cycle, including phases such as peak phase (day of highest
vegetation activity) and senescence phases (yellowing). The study does not also
address whether the timing of the green-up phase has changed. Such an aspect
is important under ongoing global change. Another study by Cho et al. (2017)
used time series of Leaf Area Index (LAI) to investigate the influence of tree cover
on land surface phenology of South Africa. Phenological metrics were extracted
from LAI data using a Gaussian model approach and then assessed the impact of
rainfall on the metrics. They found that tree cover had a significant influence on
the senescence period metrics (t-test, p < 0.05), but not on the green-up period
metrics. They also found that rainfall influenced the green-up metrics but not
the senescence metrics. The study highlights the potential of senescence period
metrics to assess spatial variability of fire spread in savanna ecosystems. However,
this study does not provide evidence on temporal changes in the extracted metrics
or their variability relative to rainfall patterns or tree cover.
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A study by Dubovyk et al. (2015) is one of the limited stz that have directly
assessed changes in vegetation phenology in southern Africa. Dubovyk et al. (2015)
used harmonic regression models and trend analysis to derive phenological metrics
from MODIS EVI data between 2000-2013. They found qualitative changes in
timing of metrics such as Peak greenness and Overall greenness. The changes
in the Overall greenness metric was attributed to land use effects. This study
demonstrates how the EVI signal can be confounded by land use effects, as most
detected phenological changes were dominantly attributed to land use change than
climate change. Another regional study by Ryan et al. (2017) also used MODIS
EVI data to study the relationship between the pre-rain phenological phase and
climate. They found that in 70% of the region, the green-up phase preceded rain
onset by at least 20 days. The findings suggest that vegetation may show resistance
to the delay in rain onset predicted under climate change. This study solely focuses
on the green-up phase of the phenological cycle, ignoring other equally important
phases of the growing season.

Work by Whitecross et al. (2017) assessed the drivers and frequency of early
green-up phase across a latitudinal gradient in Zambia and South Africa. They
found that early-greening was more prevalent in the northern sites (Zambia) than
in southern sites (South Africa), with temperature and precipitation being the
primary drivers of green-up dates. The findings suggest that climate change may
be impacting the timing of the greening of savanna trees, with consequences for
ecosystem function and services provision. Similar to Ryan et al. (2017), the sole
focus of this study on changes in the green-up phase means that dynamics across
other phenological phases remain relatively unknown.

The study by Adole et al. (2018a) combined MODIS EVI, regression models
and existing land cover maps, to estimate trends in Land Surface Phenology (LSP)
between 2001-2015 in several regions of Africa. They found that the length of
the growing season was extended, driven by delayed end-of-the-season metrics.
The study differentiated LSP trends not driven by land cover change from trends
driven by land cover change, thereby directly implicating climatic forces. The
study highlights the need for future studies to consider how climatic and non-
climatic factors influence vegetation phenology in Africa. However, existing land
cover maps have been criticized for their subjective approach and poor accuracy
(Congalton et al., 2014; Higgins et al., 2016). Therefore, biases may be inherent
in this study’s detected land cover change.

Overall, a limited number of studies have assessed patterns of phenological
change in southern Africa. Upon reviewing such existing studies, our knowledge
remains incomplete. Most of these studies have solely focused on the green-up
phase of the phenological cycle and completely ignored other equally important
phases. Yet, it has been shown that vegetation phenology is a multi-dimensional
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phenomenon, a multi-metric approach has therefore been advocated (Buitenwerf
et al., 2015). Despite most studies focusing on the green-up phase, only a few
studies have directly assessed changes in the green-up phase metrics. This makes it
difficult to infer how widespread such changes are and where they are most severe.
Most studies have ignored the confounding effects of land use change and climate
change on the changes in vegetation phenology, except for Adole et al. (2018).
Most studies have also relied on NDVI to assess vegetation phenology. However,
NDVI tend to saturate in regions with dense vegetation and is susceptible to soil
and atmospheric effects (Didan, 2015). These challenges limit our understanding
of how vegetation phenology responds to climate change in the region and its
potential to either accelerate or dampen climate change rates by altering energy
exchange in the biosphere (Bonan, 2008).

1.3.2 Changes in Functional Biomes

Several studies have used DGVMs (Dynamic Global Vegetation Model) and aDGVMs
(adaptive Dynamic Global Vegetation Model) to assess the potential response of
biomes to future climatic forcing (Bond et al., 2003; Scheiter and Higgins, 2009;
Higgins and Scheiter, 2012; Martens et al., 2021). These studies predict that cli-
mate change, elevated CO2 and changes in fire regimes will cause an increase in
woody biomass by the end of the 21st century. Bond et al. (2003) identifies elevated
CO2 as the primary driver of this trend. Higgins and Scheiter (2012) support this
notion, indicating that the combined effects of CO2 fertilization and reduced light
competition would contribute to the trend. Although Bond et al. (2003) showed
that fire can facilitate the spread of vegetation to humid regions, Scheiter and
Higgins (2009) suggest that fire suppression, warming temperatures and elevated
CO2 could lead to tree-dominated biomes with extended growing seasons. Despite
consistencies in predictions of increased woody biomass in the region, studies ac-
knowledge large uncertainties in such predictions (Martens et al., 2021). Martens
et al. (2021) suggests that it is important to consider such uncertainties, as changes
in fire management practices and variations in future climate change scenarios can
influence patterns of future biome shifts.

Species distribution models have also been used to predict future biome shifts
in southern Africa. Rutherford et al. (1999) used a species distribution model to
make spatially explicit predictions of South African biomes in response to future
climate change. The findings show significant changes in biome distribution driven
by climate change. Higgins et al. (2023b) uses the phytoclime concept to predict
how the vegetation of southern Africa may respond to future climate change by the
end of the 21st century. The study uses an ecophysiological model fitted for over
5000 plant species data to predict widespread changes in phytoclime state. The
study also finds differences in the timing of the change within the region, with the
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central interior predicted to change earlier compared to the western and southern
parts of the region. The differences in the timing of change were primarily driven
by contrasting esponses of C3 and C4 grasses, trees and succulents to the global
circulation models (GCMs) forecasts. While phytoclimes provide valuable infor-
mation on how vegetation might respond to climatic forcing, ecological processes
such as species competition, recruitment, dispersal, disturbance (e.g., fire and her-
bivory) interact over time to ensure that phytoclimes are rarely realized as biome
formations (Higgins et al., 2023b).

Another commonly used biome map is that of Mucina and Rutherford (2006).
Mucina and Rutherford (2006) combine a data-driven approach with expert knowl-
edge to delimit the biomes of southern Africa through a bottom-up approach. They
recognized 9 major biomes of southern Africa, each with its own distinct vegetation
and climate. This map is useful because it shows vegetation that actually grows in
southern Africa. However, the static nature of the map makes it less informative
for monitoring biome changes.

A thorough literature search I performed revealed that studies assessing changes
in the Functional Biomes of southern Africa do not exist. While a global study
exists (Higgins et al., 2016), there is a lack of regionally-focused research in this
area. This limits our understanding of changes in Functional Biomes within the
region.

Overall, our knowledge is massively skewed toward predictions of future biome
changes in southern Africa, while ongoing biome changes have surprisingly been
ignored and therefore remain unnoticed. The high variability of climate change,
land use changes and ecological processes such as competition and disturbance
(herbivory and fire) may interact over time to ensure that predicted biome changes
may never be realised (Higgins et al., 2023b). Assessing ongoing changes using the
Functional Biomes approach has several advantages. First, it uses Earth obser-
vation data to provide empirical evidence of actual biome changes in the region.
Second, the data on changes in FB state can be used to validate biophysical models
used in current predictions of future biome shifts. Third, the FB data can also be
used to inform the development of more robust biome prediction tools. Therefore,
the FB approach serves as a useful bridge between observed biomes changes and
modelled biome changes, thereby improving our ability to understand, validate
and predict vegetation dynamics in an era of widespread ecosystem change.

1.3.3 Attribution

Robust detection and attribution studies are limited despite extensive research in
Earth science (Higgins et al., 2023a). Parmesan et al. (2013) and Settele et al.
(2014) outline criteria studies should satisfy to be regarded as robust (or con-
vincing) in detecting and attributing changes in terrestrial vegetation to changes
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in climatic factors: First, the observation windows should be long (i.e decades),
thereby allowing for trends in vegetation activity to be statistically linked to trends
in climatic factors; Second, assessing large geographic areas such that it diminishes
local confounding factors; Third, a mechanistic link between climatic factors and
ecosystem responses is supported by empirical evidence; Fourth, data and model
uncertainty are minimized; and Fifth, climate change fingerprints are uniquely
implicated as the primary driver of ecosystem change, while at the same time,
confounding factors are accounted for or are of limited influence on the detected
change. These criteria constitute multiple lines of converging evidence that iden-
tify climate change, for example, as the underlying driver of ecosystem change
(Parmesan et al., 2013; Settele et al., 2014). However, the complexity of ecosys-
tem response to change and the correlation and co-limitation among drivers means
that such criteria are difficult to fulfil. I provide a brief review of studies that have
detected and attributed changes in vegetation activity.

A prominent study by Zhu et al. (2016) detected and attributed changes in leaf
area to environmental drivers between 1982-2009, globally. The study showed that
global leaf area increased up to 50%. The underlying drivers of this greening trend
were CO2 fertilization (about 70%), enriched soil nitrogen (about 9%), climatic
shifts (about 8%) and alterations in land cover (about 4%). Furthermore, CO2

fertilization effects were more pronounced in the tropics while climate change was
dominant in northern latitudes. This suggests that the effects of these drivers
on vegetation productivity are region-specific. This study implicitly considers the
confounding effects of land use change and other drivers by identifying land use
effects as one of the drivers. However, the land use change data used in this study
is a simulated product (Hurtt et al., 2011). Modelled products, unlike empirical
data, may be limited by uncertainties and assumptions.

Smith et al. (2016) characterized the role of global terrestrial CO2 fertilization
effects on global vegetation productivity between 1982-2011. The findings show
a significant increase in global NPP driven by elevated CO2. Yet, comparisons
between Ecosystem System Models (ESM) NPP and satellite-derived NPP reveal
significant differences with satellite-derived NPP increases less than half of ESM-
derived increases within the same study period. This suggests that EMS models
may overestimate the effects of elevated CO2 on global vegetation productivity,
thereby highlighting observation errors in the detection and attribution process.

Chen et al. (2019) assesses the drivers of the global greening between 2000-2017
using MODIS LAI data. The results show that one-third of the global vegetated
area exhibited greening patterns, with the most prominent greening trends ob-
served in China and India. The study attributed land-use practices such as multi-
ple cropping, irrigation and afforestation as the underlying drivers of the greening
pattern. The study suggests that biophysical models need to realistically represent
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land-use effects to better understand greening effects and its potential impacts to
ecosystem services. Although this study improves our understanding on how hu-
man activities are modifying terrestrial vegetation, it provides limited information
on ecosystems’ natural response to drivers such as climate change. Understanding
ecosystems’ natural response is important for predicting future vegetation patterns
under ongoing change.

A study by Song et al. (2018) quantified global land cover changes between
1982-2016 using satellite data. They further use non-parametric trend analysis
and a global probability samples to attribute observed changes to land use change
and climate change. The findings show that global tree cover increased by 7%, rela-
tive to 1982. The overall net gain in tree cover offset tree cover losses in the tropics
which were outweighed by net gains in the extratropics. Most of these changes were
attributed to human activities (60%) while climate change contributed 40% of the
change. The mapped land cover changes reflect a human-dominated Earth system.
Overall, this study disentangles the relative contribution of land use change and
climatic factors on the detected pattern. However, it is not clear where and how
these drivers were most dominant. For example, of the 40% attributed to climate
change, its not clear how much of the greening was attributed temperature and
moisture, or the geographic region where either of these drivers were most dom-
inant. The study did not also consider other drivers such as solar radiation and
CO2 fertilization that have been known to influence vegetation activity (Nemani
et al., 2003; Zhu et al., 2016).

Another study by Bjorkman et al. (2018) assessed the relationship between
temperature, moisture and 7 important functional traits over 3 decades at 117 tun-
dra sites. They found that spatial temperature–trait relationships were generally
strong, but soil moisture influenced the strength and direction of these relation-
ships. The study also found that the increase in community height was driven by
warming temperatures, while other traits showed changes that were slower com-
pared to the predicted rates of change. This study is one of the most convincing
attribution studies because it assesses multiple study sites at large temporal scales
with limited confounding effects of land use change on the detected trends. Since it
uses ground-based observations, it is unclear how drivers such as CO2 fertilisation
and solar radiation contributed to the detected change.

Reich (2014) assessed the effects of elevated CO2 fertilization on vegetation
activity under varying levels of nitrogen and moisture availability. The findings
showed that elevated CO2 increased plant biomass by 33% when summer rainfall
and nitrogen supply were at higher levels but found weak CO2 fertilization effects
on plant biomass when rainfall and nitrogen supply were at lower levels. This
suggests that CO2 fertilization effects are dependent on nitrogen and moisture
availability. This also suggests that the role of CO2 fertilization is not ubiquitous
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given the limitations of nitrogen and moisture availability. The short temporal
scale of 5 years limits our understanding of the long-term changes and driver
dynamics over time.

Winkler et al. (2021) uses global leaf area data and a process-based model to
investigate the drivers of changes in the activity of natural vegetation between
1981-2017. They find a dominant signal of climate change on many biomes, with
greening in the northern latitudes driven by warming temperatures and moisture
constraints driving browning patterns in the southern latitudes. They also find
minimal CO2 fertilization effects, thereby challenging a widely held narrative of
the dominance of global-scale CO2 effects. Overall, the study shows a weakening
of greening patterns and strengthening of browning patterns in terrestrial ecosys-
tems. The study suggests that most ecosystem models underestimate the emerging
browning patterns. Although this study is informative, it contains the pervasive
land use change effects on the detected change.

Higgins et al. (2023a) used NDVI and EVI data, and a plant growth model
to detect and attribute changes in terrestrial ecosystems to climatic variables be-
tween 1981 to 2019. The findings showed that in most ecosystems, greening trends
have transitioned to browning trends, indicating a decrease in vegetation biomass
and potentially less carbon assimilation. Such transitions were dominantly driven
by warming temperatures in northern latitudes and moisture constraints in the
southern latitudes, suggesting geographic coherence in the detected response. CO2

effects on vegetation activity were found to be surprisingly weak. This study is ro-
bust because it addresses most detection and attribution challenges highlighted by
Parmesan et al. (2013) and Settele et al. (2014). However, this study relied on veg-
etation indices to infer carbon assimilation. Vegetation indices provide an implicit
picture of carbon assimilation in plants (Frankenberg et al., 2011; Porcar-Castell
et al., 2014). Vegetation indices are also not sensitive to changes in LUE, which
increases with elevated CO2 (Ainsworth and Long, 2005). Therefore, vegetation
indices are not a direct proxy for GPP. This suggests that additional datasets are
required to study trends in carbon assimilation.

Zhao et al. (2011) assessed the effects of climate change on global NPP trends
using data records of FPAR, LAI and climate records between 2000-2009. The
global MODIS algorithm was used to assess spatially explicit changes in the study
period, while the Palmer Drought Severity Index (PDSI) (Palmer, 1965) was used
to measure water environmental stress. They found a decrease in global NPP
by 0.55 petagrams of carbon driven by large-scale droughts in southern latitudes,
counteracting increased NPP in northern latitudes. The findings suggest a weak-
ening terrestrial carbon sink is ongoing. Although the study assessed how climate
change may be impacting global NPP trends, it did not directly evaluate CO2 fer-
tilisation effects on NPP. CO2 has been regarded as an important driver of changes
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in vegetation activity (Zhu et al., 2016). Furthermore, the study does not consider
land use change effects on the detected NPP trends.

Overall, although these studies are useful in synthesising our knowledge of how
terrestrial vegetation respond to environmental drivers, these studies also high-
light challenges associated with detection and attribution of changes in vegetation
activity (Parmesan et al., 2013; Settele et al., 2014). Most studies fall short on
meeting the fourth and fifth criteria outlined by Parmesan et al. (2013) and Settele
et al. (2014). That is, minimizing data and model uncertainty, as well as directly
implicating climate change while accounting for other confounding factors have
proven difficult. This is particularly true for studies that have not considered the
confounding effects of land use change and climatic factors on ecosystem dynam-
ics. This is surprising because about 60% of changes in vegetation are driven by
human activity (Song et al., 2018). One would therefore expect most studies to
consider land use effects when studying climate change impacts on vegetation ac-
tivity. My assessment of these studies suggests that the Bjorkman et al. (2018) and
Higgins et al. (2023a) approaches appear to be the most convincing attribution
studies as they satisfy the above-mentioned criteria. This clearly suggests that
high-confidence attribution studies remain limited.
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1.3.4 Study area

In this section, I present a description of the two study areas. The first study area
is the major protected areas of southern Africa (Figure 1). Protected areas are
geographic boundaries designated to conserve biodiversity while remaining free of
land use effects (UNEP-WCMC and IUCN, 2021). Such boundaries encompass
forest reserves, nature reserves, national parks and game parks. The second study
area are the 100 global sites of the major ecosystems of the world (Figure 2). I then
briefly describe the methods I applied in this thesis. All analyses were performed
in the R programming language (R Core Team, 2021, 2022, 2023).

In the context of this thesis, southern Africa comprises Zimbabwe, Botswana,
South Africa, Eswatini, Lesotho and Namibia. Southern Africa is one of the most
ecologically heterogeneous regions in Africa, consisting of ecosystems such as the
desert, grassland, savanna and Mediterranean ecosystems. The region has a rich
floristic diversity and high levels of endemism (Cowling et al., 2004). Furthermore,
18% of international biodiversity hot-spots are found in southern Africa (Davis-
Reddy and Vincent, 2017), making it a region of global significance.

Summer begins from December to February, autumn is from March to May,
winter is from June to August, and spring is from September to November. The
region has a warm climate, with most parts experiencing mean annual tempera-
tures above 17 ◦C (Davis-Reddy and Vincent, 2017). Summer temperatures can
exceed 40 ◦C in the deserts of Namibia and Botswana (Davis-Reddy and Vincent,
2017). Temperatures in the region are anticipated to rise by 4 ◦C to 6 ◦C in the
next decades, which is more than double rate of global warming (Engelbrecht et al.,
2015).

Rainfall patterns vary spatially within the region, driven by ocean currents
and prevailing winds (Davis-Reddy and Vincent, 2017). Mean annual rainfall can
vary from less than 100 mm in western Namibia to above 1500 mm in eastern
Zimbabwe (Davis-Reddy and Vincent, 2017). Most of the rainfall occur in the
summer months, with an exception of the Mediterranean ecosystems that receive
winter rainfall driven by mid-latitude cyclones (Hobbs et al., 1998). Precipita-
tion patterns are characterised by strong inter-annual and inter-decadal variability
(Davis-Reddy and Vincent, 2017).

The 100 global study sites were previously identified by Higgins et al. (2023a).
These sites are wilderness landscapes representing the diversity of global terrestrial
ecosystems stratified by biome type: savanna, grassland, shrubland, temperate
evergreen and temperate deciduous forest, boreal forest, tropical evergreen for-
est, Mediterranean-type ecosystems and tundra (Figure 2). Higgins et al. (2023a)
selected the sites using the following criteria: (1) A selected site should be domi-
nated by homogenous vegetation. Minimal heterogeneity (for instance, peatlands,
drainage lines, catenas) was permitted provided that these features were frequently
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Figure 1: Study area: The major protected areas of southern Africa identified
using the UNEP-WCMC and IUCN (2021)’s classification scheme. The study
area map is adapted from Higgins et al. (2024).

observed on a site over the study period (2) A site should have no evidence of land
use effects (for instance, no evidence of tree harvesting, crop farming, or paved
surfaces). Small agricultural or pastoral fields were allowed as long they remained
constant in size over time (3) Sites should not contain large water bodies, but
small water bodies were permitted if they did not violate criteria (1). (4) Sites
should not be adjacent to each other (i.e. neighboring pixels were not considered).
To verify that all criteria were fulfilled, Google Earth Pro’s Time Tool, which of-
fers high resolution time series Earth observation imagery from 1984, was used
(Higgins et al., 2023a).
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SA
GR
SH
RF
MT
TF
TU
BF

Figure 2: Geographic distribution of the study sites adapted from Higgins et al.
(2023a). The 100 sites represent the diversity of terrestrial ecosystems globally.
Letters in the map legend indicate the biome type: SA= savanna, GR= grassland,
SH= shrubland, RF= tropical evergreen forest, MT= Mediterranean type ecosys-
tems, TF= temperate forest, TU= tundra, BF= boreal forest.

1.4 Objectives and elements of this thesis

The goal of this thesis is to develop a system that is useful for detecting and
attributing changes in vegetation activity to changes in climatic factors. To achieve
this, I focus on changes in vegetation phenology and changes in Functional Biomes.
This is because the two aspects serve as sensitive indicators of ecosystem response
to environmental drivers (Parmesan et al., 2022).

This thesis has three main objectives: (i) to assess patterns and magnitude
of vegetation phenological change in the ecosystems of southern Africa (ii) to de-
fine and assess changes in the Functional Biomes of southern Africa, and (iii) to
detect and attribute changes in vegetation activity to changes in climatic factors
globally. Investigating these objectives deepens our knowledge of how ecosystems
are responding to climatic factors, thereby allow us to identify and monitor ar-
eas vulnerable to change. Such knowledge may be used to formulate informed
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policy decisions for sustainable management of ecosystems. Furthermore, address-
ing these objectives might be useful in validating biogeophysical models that are
commonly used to predict future change.

This thesis comprises three key elements that focuses on improving our un-
derstanding of terrestrial vegetation response to environmental change: Changes
vegetation phenology, changes in Functional Biomes, and attribution of changes
in vegetation activity. These investigations are presented in three corresponding
themes:

Chapter 2: Shifts in vegetation phenology. I assessed changes in vegeta-
tion phenology using time series of EVI data. I estimated ecologically interpretable
metrics representative of a plant’s phenological cycle from the data. I then mea-
sured phenological change within phenologically similar zones to account for spatial
heterogeneity between ecosystems.

Chapter 3: Shifts in Functional Biomes. I defined Functional Biomes
(FB) as vegetation units with similar productivity and phenological properties
estimated from time series reanalysis climate data and EVI data. An essential
component of this approach is that the FB emerge from the data, it therefore
allowed me to objectively investigate their distribution. I then assessed whether
time has played a statistically significant role in the changes in FB state.

Chapter 4: Attributing shifts in vegetation activity. While Chapter 2
and Chapter 3 focus on detecting changes in terrestrial vegetation, Chapter 4
delves beyond detection to attributing the detected change in terrestrial vegetation
to trends in climatic factors. I investigated whether trends in carbon uptake and
biomass assimilation are decreasing or increasing and then assessed the underlying
drivers behind these trends. Such effects were displayed geographically to reveal
regional differences in vegetation responses to climatic factors.

Overall, this thesis demonstrates that detecting and attributing changes in veg-
etation activity is important for understanding the trajectory of change ecosystems
are on, as well as the underlying drivers of such trajectories. Such knowledge is
needed for predicting future change in vegetation activity. Current knowledge on
detection and attribution of changes in terrestrial vegetation is dominantly based
on studies that do not consider the confounding effects of human activities and
climatic factors on vegetation activity. The findings of this thesis will provide
novel insights into the dynamics of vegetation activity when minimising such con-
founding factors. Existing knowledge suggests that CO2 fertilisation is a dominant
driver of changes in vegetation activity. This thesis shows, by revealing the rela-
tive importance of drivers of changes in vegetation activity, that temperature and
moisture are the dominant drivers of changes in vegetation activity and thereby
challenges the notion of the dominance of CO2 effects. Therefore, this thesis
contributes to the mechanistic understanding of changes in terrestrial ecosystems
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and their underlying drivers, with implications for policy makers and conservation
managers.
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Chapter 2

2 Patterns of vegetation phenological change in

the ecosystems of southern Africa

2.1 Summary

Plant phenology plays an important role in regulating moisture, carbon and en-
ergy feedbacks between the atmosphere and terrestrial ecosystems. In addition,
vegetation phenological shifts are a sensitive indicator of climate change. Despite
being highly vulnerable to climate change, how southern Africa’s vegetation phe-
nology is changing is poorly understood. Using the Enhanced Vegetation Index
(EVI) as an indicator of vegetation activity, we applied a systematic change detec-
tion analysis to assess patterns of vegetation phenological change in the protected
areas of southern Africa between 2000-2019. We focused on protected areas to
avoid the potentially confounding factors related to land use change. We used an
unsupervised clustering of the 21 phenological metrics to group the study area into
7 regions with similar phenological properties. We found that the growing season
was shortened in 4 phenological regions, primarily driven by earlier initiation of
the senescence phase metrics. In contrast, the growing season was extended in 3
phenological regions, mostly driven by delayed initiation of the senescence phase
metrics. Our study reveals that phenological metrics have changed by at least 1
SD over the 19-year study period, indicating that ecologically relevant changes in
the functioning of ecosystems of southern Africa are ongoing. The magnitude and
spatial extent of change revealed here provide clear evidence of contrasting vegeta-
tion responses to climatic shifts in southern Africa. This study provides a baseline
for developing early warning systems to strengthen the capacity for adaptation
and mitigation of climate change in the region.
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2.2 Introduction

An overwhelming body of evidence suggests that terrestrial ecosystems are re-
sponding to changes in climatic factors (Parmesan and Yohe, 2003; Zhu et al.,
2016; Bonan and Doney, 2018; Song et al., 2018; Higgins et al., 2023a). Such
responses are evident in shifts in species distribution (Parmesan and Yohe, 2003;
Chen et al., 2011), shifts in biome distribution (Higgins et al., 2016) and shifts
in leaf phenology (Buitenwerf et al., 2015; Piao et al., 2015; Menzel et al., 2020).
Changes in vegetation phenology have led to mismatches between trophic levels
(Tylianakis et al., 2008; Thackeray et al., 2016; Renner and Zohner, 2018). Such
desynchronized phenological cycles may have profound effects on ecosystem func-
tioning and structure. As a sensitive indicator of changes in the climate system,
plant phenology plays an important role in regulating moisture, carbon and en-
ergy feedbacks between the atmosphere and terrestrial ecosystems. In particular,
the timing and length of a plant’s growing season influence energy budgets and
CO2 exchanges (Peñuelas and Filella, 2009). Therefore, deepening our knowledge
of changes in vegetation phenology, the underlying drivers of such changes and
their effects on ecosystem functioning, is useful for understanding and predicting
ecosystem dynamics in response to ongoing climate change (Piao et al., 2019).

Recent advances in Earth observation satellites coupled with improved computer-
based analyses of spatial data provide opportunities for extensive monitoring of
vegetation phenology. Several studies have shown that the start and end of the
growing season have changed globally (Zhang et al., 2006; Jones et al., 2011;
Buitenwerf et al., 2015), thus illustrating that vegetation is responding to climate
change. Similarly, studies conducted in the northern hemisphere have reported an
extended growing season primarily due to an earlier green-up initiation phase and
delayed senescence phase (Jeong et al., 2011; Zhu et al., 2012; Gill et al., 2015;
Liu et al., 2016; Wang et al., 2016). Such studies demonstrate that vegetation
phenology is a meaningful fingerprint of changes in vegetation activity and the
severity of change.

Although global and northern hemisphere vegetation phenological shifts are
well studied (Zhang et al., 2006; Jeong et al., 2011; Jones et al., 2011; Zhu et al.,
2012; Gill et al., 2015; Buitenwerf et al., 2015; Liu et al., 2016; Wang et al., 2016),
the southern hemisphere, southern Africa in particular, remains understudied with
only a few existing regional studies (Dubovyk et al., 2015; Whitecross et al., 2017;
Adole et al., 2018b). As such, decadal changes in vegetation phenology in the
region and its potential impact on the feedbacks in the biosphere are poorly un-
derstood. The region has a pronounced level of climatic seasonality in the Mediter-
ranean, grassland and savanna ecosystems. This suggests that the seasonal pattern
of leaf deployment and leaf senescence may be critical adaptation strategies of veg-
etation to climate. Given its status as highly vulnerable to climate change (Niang
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et al., 2014; Davis-Reddy and Vincent, 2017; Trisos et al., 2022), southern Africa
is projected to be severely impacted by future climate change (Engelbrecht and
Engelbrecht, 2016; Hoegh-Guldberg et al., 2018; Trisos et al., 2022). Furthermore,
18% of international biodiversity hot-spots are found in southern Africa (Davis-
Reddy and Vincent, 2017), making it a region of global significance.

Previous regional studies in southern Africa have quantified changes in vegeta-
tion phenology using different approaches (Dubovyk et al., 2015; Whitecross et al.,
2017; Adole et al., 2018b). Although these studies provide useful insights regarding
the dynamics of plant phenology, assessing the severity and nature of these changes
has proven difficult. This is because these studies do not provide a clear picture
of how widespread the changes are or where in the region the changes are most
pronounced. Such an implicit picture of phenological changes limits our ability to
identify areas that are at risk of phenological mismatches. Moreover, single-date
phenological metrics such as ‘start of season’ and ‘end of season’ have been ap-
plied to represent the beginning and end of the growing season, respectively (Adole
et al., 2018b). However, vegetation phenology is a multi-dimensional phenomena
that is difficult to describe using single-date metrics. A multi-metric approach has
therefore been advocated (Buitenwerf et al., 2015). Existing studies do not also
consider the confounding effects of land use change on vegetation activity. This is
because land use change can override climate change effects on vegetation activity
(Sirami et al., 2017). Therefore, ignoring land use effects on changes in vegetation
phenology may misinterpret the detected phenological patterns (Piao et al., 2019).
This suggests that focusing on geographic regions, such as protected areas, would
minimise the confounding effects of land use effects on vegetation phenology and
thereby provide a clearer picture of climate-driven phenological changes.

Here we present a regional assessment of changes in vegetation phenology using
the Enhanced Vegetation Index (EVI) from Moderate Resolution Imaging Spectro-
radiometer (MODIS). EVI is a proxy for chlorophyll content in vegetation biomass
and is therefore a sensitive indicator of vegetation activity. The importance of veg-
etation indices such as the EVI and the Normalised Difference Vegetation Index
(NDVI) for Earth system science is highlighted by their usage to calculate global
Leaf Area Index (LAI), GPP and NPP estimates (Running and Zhao, 2019). Our
approach builds on a global study (Buitenwerf et al., 2015) and we improve on
this study in two ways. First, we restrict our study area to the protected areas of
southern Africa (Figure 3) to eliminate land use effects, which may contaminate
the EVI signal and confound our interpretation of the analysis. In this context,
we refer to protected areas as geographic regions designated for biodiversity con-
servation purposes without land use effects as defined by the world database on
protected areas (UNEP-WCMC and IUCN, 2021). Such designated areas include
forest reserves, nature reserves, game parks and national parks. Second, Buiten-
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werf et al. (2015) used 9 km NDVI data to assess global phenological change. We
use 1 km EVI data which has advantages over NDVI such as superior sensitivity
in dense vegetation and less sensitivity to soil and atmospheric contamination (Di-
dan, 2015). However, the disadvantage of using MODIS is that the MODIS record
starts in the year 2000 whereas the Advanced Very High Resolution Radiometer
(AVHRR) record used by Buitenwerf et al. (2015) starts in 1981.
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2.3 Materials and Methods

2.3.1 Extracting multi-dimensional phenological metrics

The EVI MOD13A2 product was used for this analysis. The MODIS compositing
algorithm that generates the MOD13A2 product selects the least biased estimate
of the EVI of each pixel within a 16-day period using criteria such as lowest
cloud cover, lowest aerosol content, lowest view angle. The resulting EVI product
is thereby an atmospherically corrected surface reflectance data set consisting of
16-day image composites with high-quality observations (Didan, 2015). These
observations are provided with data quality scores. EVI products dating from
2000 to 2019 (downloaded from https://lpdaac.usgs.gov/products/mod13a2v006/)
represented the range of our time series.
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Figure 3: Study area: We exclusively focus on the major protected areas of south-
ern Africa.

We fitted a cubic spline (using R (R Core Team, 2022) command stats::smooth.spline)
to smooth the EVI time series of each pixel. The smoothed time series was used to
estimate 21 phenological metrics (Figure 4). For each pixel, we defined the start
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and end of the time series as follows. First, the 19-year mean ’peak day’ and 19-
year mean ’trough day’, which are the mean day of the year of maximum EVI and
the mean day of the year of minimum EVI, respectively, were estimated using the
fitted spline. This enabled us to define 180-day windows (90 days on both sides)
that includes the trough and peak of the annual cycle. Second, we then used the
180-day window to calculate the exact trough day and its associated EVI value
for each phenological year (Buitenwerf et al., 2015). The number of days between
two successive trough days defines a phenological year.
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Figure 4: A schematic representation of vegetation phenological activity for an EVI
pixel. Labeled points represent 2-dimensional metrics within a phenological year
such that each metric consists of an EVI intensity value and a date. The sequence
of days (x-axis) is arranged to begin from the start to the end of a phenological
year. The EVI integral over a phenological year is calculated as the area under
the curve between trough days. gsl: growing season length

We followed an approach outlined by Buitenwerf et al. (2015) to derive met-
rics representing the start and end of a plant’s phenological cycle. These metrics,
namely Start-green, Start-grow, and Start-peak represented the start of the grow-
ing season, while End-peak, End-grow and End-green represented the end of the
growing season (Figure 4). To calculate these metrics, we used the continuous
first and second derivatives of the cubic spline function. Specifically, we identi-
fied the day of the year at which the sum of the derivatives was at its maximum
(Start-green) or minimum (End-peak). The maximum and minimum values of the
first derivative were used to estimate Start-grow and End-grow, respectively. We
determined Start-peak and End-green by identifying the day of the year at which
the difference between the derivatives was at its maximum (Start-peak) or mini-
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mum (End-green). Therefore, metrics representing the start of the growing season
were calculated by selecting the day of the year at which the maximum of the first
derivative is closer to the maximum of the second derivative in the first half of a
phenological year. Similarly, metrics representing the end of the growing season
were calculated by selecting the day of the year at which the minimum of the first
derivative is closer to the minimum of the second derivative in the second half of a
phenological year. These procedures produced multi-dimensional start and end of
the growing season metrics measured in day of the year and EVI intensity values.

The start of the growing season metrics represent the rate of increase in photo-
synthetic activity, with Start-green representing the beginning of increase, Start-
grow represents the quickest increase and Start-peak represents the end of the
increase and beginning of peak photosynthetic activity. That is, the start of the
growing season metrics may be construed to refer to date of leaf emergence, quick-
est rate of leaf expansion and end of leaf expansion (Buitenwerf et al., 2015). The
three end of the growing season metrics represent analogous metrics that describe
the rate of decrease in photosynthetic activity. The number of days between the
Start/End dates define three additional metrics used to denote the growing season
length (gsl), namely; Green-gsl, Grow-gsl, and Peak-gsl. The metric EVI inte-
gral, which is the area under the EVI curve, was calculated by summing the EVI
value on each day of a phenological year. Amplitude was estimated by calculat-
ing the difference between the highest EVI value (Peak) and the lowest EVI value
(Trough) for each phenological year. These steps produced 21 phenological metrics
for 345,718 pixels over a 19-year time series.

2.3.2 Clustering pixels into phenomes to detect change

The phenological characteristics of vegetation in southern Africa vary by ecosys-
tem type. Such phenological variation is primarily driven by multiple factors such
as climate, disturbance regimes and species composition. For example, forest,
grassland and Mediterranean ecosystems have different phenological signatures
mostly driven by climatic factors which also vary geographically (Davis-Reddy
and Vincent, 2017). Therefore, the magnitude and nature of change in phenologi-
cal behaviour also vary by ecosystem type. To effectively assess these changes and
facilitate spatial comparability, we clustered pixels with similar phenological sig-
natures into phenological groups (phenomes hereafter) and compared the change
of each pixel by phenome. This approach unmasks divergent phenological signals
of change while ensuring consistency in evaluating the magnitude and nature of
such change across phenomes.

Prior to the clustering analysis, we performed several preprocessing steps on
the data to ensure its compatibility and scaling. We first calculated the 19-year
average for each of the 21 phenological metrics per pixel. The eight time variables
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(i.e circular variables measured in day of the year, for example, Start-green) were
first transformed to angles and then cartesian coordinates before calculating the
19-year average per pixel. These steps produced a matrix with 10 (EVI variables)
+ 3 (growing season length variables measured in days) + 8 (sine of day of the year
variables) = 21 columns and 345,718 rows. We further reduced the dimensionality
of the data using the R command stats::prcomp, by applying a principal component
analysis to centred and scaled values (mean of 0 and standard deviation of 1). The
first 4 principal components explained 92% of the variation in the data and were
thus used in subsequent analysis steps. This resulted in a matrix with 4 columns
and 345,718 rows subsequently used for clustering.

Phenomes were determined by performing an unsupervised model-based cluster
analysis of the data using the R command mclust::Mclust (Scrucca et al., 2016).
We first estimated the optimal number of clusters using the Bayesian Information
Criterion (BIC) on a random 10% subset of the data (34,572 pixels). This step also
identified the best Gaussian mixture model required to fit the data (unconstrained
covariances, ellipsoidal, varying volume, shape and orientation model ‘VVV’). The
identified Gaussian model was then applied to the full data set to classify the
phenological data.

We applied a systematic change detection analysis by calculating the differences
in the mean of each metric in the first part of the time series (2000-2009) and the
second part of the time series (2011-2019) per pixel. Assessing changes in the means
of two periods enabled us to reduce the influence of inter-annual variations from
masking long-term trends in vegetation phenology. The mean change per pixel
was normalised (mean of 0 and standard deviation of 1) by the variance of change
within its assigned phenome. We report the magnitude of change in standard
deviations (SD). Changed values in SD indicate the extent to which variations
deviate from the mean phenological signal. A summary of the methodological
workflow is illustrated in Figure 5.
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Figure 5: An illustrative workflow indicating the methods applied in this study.
These methods were adapted from Buitenwerf et al. (2015).
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2.4 Results

2.4.1 Changes in vegetation phenology

We found that for each pixel in our study area, at least one of the 21 examined
phenological metrics changed by more than 1 SD (Figure 6). The total change in
phenological metrics (Figure 6a) shows that it was primarily driven by changes in
vegetation vigour (metrics in EVI units) (Figure 6b) and less driven by changes in
the timing of the phenological cycle (metrics in time units) (Figure 6c). The most
pronounced changes occurred in Namibia, Botswana, and Zimbabwe, indicating a
widespread and homogeneous pattern.
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Figure 6: Magnitude of change in vegetation phenology between 2000-2019 ex-
pressed in standard deviations (SD). (a), Summed change in 21 phenological met-
rics. (b), Summed changes in 10 metrics assessing EVI intensity, indicating changes
in vegetation vigour. (c), Summed changes in 11 metrics reflecting the timing of
the phenological cycle. These metrics were assessed in day of the year (DoY) or
days.
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Plotting changes in each of the 21 phenological metrics revealed widespread
decreases and increases up to 1 SD (Figure 7). For instance, the integral of the
annual EVI values decreased in northwest and southwest Namibia, the Drakens-
berg mountain range bordering South Africa and Lesotho and northern Zimbabwe.
Conversely, the integral of the annual EVI values increased in northwestern and
southwestern Botswana.
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Figure 7: Change in vegetation phenology between 2000-2019 in each of the in-
dividual 21 metrics expressed in standard deviations (SD). Some metrics had 2
dimensions (EVI units and time units) while others had 1 dimension (either EVI
units or time units). Metrics are defined as in Figure 4.
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We also found that the growing season shortened strongly in north-central
Botswana, southern Zimbabwe and northeastern South Africa, while it was ex-
tended in northern Namibia, northeastern and western South Africa as shown by
the Green-gsl, Grow-gsl and Peak-gsl metrics (Figure 7). Changes in the length
of the growing season suggest changes in the start and end of the growing season
phases in these regions. Most of the changed values were distributed between -1
SD to 1 SD, implying that changes within these range of values was the most
common in the study period (Figure 8).
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Figure 8: Frequency distribution of changes in vegetation phenological activity
between 2000-2019 for each of the 21 metrics, expressed in standard deviations
(SD). Some metrics had 2 dimensions (EVI units and time units) while others had
1 dimension (either EVI units or time units). Metrics are defined as in Figure 4.
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2.4.2 Phenological change by phenome

A BIC versus cluster number plot revealed that the optimal number of clusters
necessary to describe the data was 38. However, we found little variation in BIC
values between 7 and 38 clusters (Figure 12). To facilitate interpretation, we
therefore used 7 clusters to plot the phenome map (Figure 9). Although our
phenome map shows concordance with existing biome maps (Figure 10), it should
not be considered a traditional biome map but rather a grouping of EVI and timing
metrics. The phenomes were further plotted in a temperature and precipitation
space (Figure 13) which is superimposed on Whittaker (1975)’s biome scheme.
Our phenomes fall under the ‘Temperategrassland/desert, ‘Woodland/shrubland’
and ‘Tropical seasonal forest/savanna’ classes along a broad climate range.
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Phenomes

1
2
3
4
5
6
7

Figure 9: Phenomes of the protected areas of southern Africa. The phenomes were
produced by performing an unsupervised clustering of the data. The 7 regions
represent zones with similar phenological behaviour. Locations of the protected
areas mentioned in the text are labeled with numbers on the map in Figure 14.
The geographic coordinates corresponding to each numbered area are detailed in
Table VI.
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(a)

Forest transitions & mosaics

Woodland
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Bushland & thicket
Transitional scrubland

Cape shrubland (Fynbos)

Semi−desert vegetation

Grassy shrubland

Grassland
Altimontane vegetation

Deserts
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Phenome 3

Phenome 4

Phenome 5
Phenome 6
Phenome 7

(b)
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Cwb
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Phenome 2

Phenome 3

Phenome 4

Phenome 5

Phenome 6

Phenome 7

Figure 10: Concordance of our phenomes with (a) White (1983)’s biomes and Beck
et al. (2018)’s biomes (b). The biome class names in Beck et al. (2018) are adapted
from Peel et al. (2007).

For each phenome shown in Figure 9, we plot the mean phenological signature
in the first (2000-2009) and second (2011-2019) parts of the time series in Figure
11. We further plot vectors of change in EVI and time dimensions between the
first and second parts of the time series.
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Figure 11: Phenological change by phenome. For each phenome in Figure 9, we
plot the mean EVI signal of a phenological year in the first (2000-2009) and second
(2011-2019) parts of the time series. We also show vector of change plots for each
metric by phenome. The angular vectors represent 2-dimensional metrics (EVI
units and time units measured in day of the year) in SD. Vectors parallel to the
axes represent 1-dimensional metrics estimated in EVI units or time units (days).
The circle under phenome 5 shows change in the metric Start-grow, that is, the
timing of the Start-grow metric occurred earlier with an increased EVI value.
Metrics are defined as in Figure 4.
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Phenome 1 covered a diverse range of Cowling et al. (2004)’s phytogeographical
regions. It included elements of the Zambezian region, the Kalahari-Highveld Tran-
sition Zone, the Tongaland-Pondoland Region, Afromontane Region and the Cape
Region (Figure 15). It spread from the Moremi in northwest Botswana through
the Songimvelo in the northeast to the Maloti-Drakensberg in the southeast of
South Africa (Figure 14 and Table VI). In this phenome, the dominant trend was
an earlier end to the phenological cycle, primarily driven by the earlier end of the
growing season metrics. For example, while the Start-green and the Peak day both
occurred 2 days later, the End-green occurred 4 days earlier (Table V). The larger
shift in the End-green metric ensured that the growing season length (Green-gsl)
was shortened by 6 days. Furthermore, the Start-grow, Start-peak, End-grow and
End-peak metrics and their associated gsl metrics behaved in a qualitatively simi-
lar manner. Consistent with the shortened growing season length, the overall EVI
integral decreased, and this trend was enhanced by the lower Green, Grow and
Peak EVI metrics, which more than offset the slightly higher trough EVI.

Phenome 2 was primarily distributed in the xeric Karoo-Namib and the Cape
regions, spreading southwards from the Skeleton Coast in northwestern Namibia
towards the Anysberg in South Africa. Similar to Phenome 1, this phenome was
characterized by a shift towards a later start and an earlier end in the phenological
cycle. Specifically, the Start-green and Peak day metrics both occurred 1 day later,
while the End-green occurred 3 days earlier (Table V). The larger shift in the End-
green metric ensured that the growing season length (Green-gsl) was shortened by
4 days. Furthermore, similar qualitative patterns were observed in the metrics
Start-grow, Start-peak, End-grow and End-peak, along with their corresponding
gsl metrics. Total vegetation activity decreased in this phenome as depicted by
declines in the EVI integral and Amplitude metrics, while the Trough day occurred
2 days later with a lower EVI value.

Phenome 3 was mainly distributed in the Zambezian phytogeographical region,
spreading from the Bwabwata in northeast Namibia through the Chobe in northern
Botswana to the Hwange in northwest Zimbabwe. Further in Zimbabwe, it was
distributed in the Charara in the north as well as the Gonarezhou in the south. The
dominant trend in this phenome was a later start and later end in the phenological
cycle. The Start-green and the End-green metrics both occurred 2 days later,
resulting in no change in the Green-gsl metric (Table V). The Start-grow and
End-grow metrics also behaved in a qualitatively similar manner. The Peak-gsl
was extended by 6 days, primarily driven by an earlier Start-peak metric with
4 days and a later End-peak metric with 2 days. Additionally, the EVI integral
and Amplitude increased in this region, consistent with higher Start-peak, Peak,
End-peak, End-grow and Trough EVI metrics.

Phenome 4 was mainly distributed in the Zambezian and the Kalahari-Highveld
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Transition Zone phytogeographical regions. This phenome stretched from the
Moremi in northern Botswana through the Chewore in northern Zimbabwe to the
northern parts of Kruger in northeastern South Africa. The phenological cycle in
this region was characterized by an earlier start and a later end to the growing sea-
son. For instance, the Start-green metric occurred 1 day earlier and the End-green
metric occurred 5 days later, resulting in the extension of the Green-gsl metric by
6 days. Furthermore, the Start-grow, Start-peak, End-peak and End-grow metrics
and their associated gsl metrics demonstrated similar qualitative behaviours (Ta-
ble V). These shifts in phenological activity align with observed increases in EVI
integral, Amplitude and Trough EVI, providing further evidence of the phenome’s
dynamics.

Phenome 5 occurred mainly in the Zambezian and the Kalahari-Highveld Tran-
sition Zone phytogeographical regions, spreading from eastern Etosha in northern
Namibia towards the Kalahari in central Botswana to the eastern parts of Kruger
in northeast South Africa and the Tsehlanyane in eastern Lesotho. This phenome
showed an overall trend of a later start and an earlier end to the growing season.
The Start-grow and End-green metrics which deviated from this trend. Specifi-
cally, while the Start-green and Start-peak occurred 3 days later and 1 day later,
respectively, the Start-grow occurred 2 days earlier. Similarly, the End-peak oc-
curred 2 days earlier, the End-grow occurred 3 days earlier, and the End-green
occurred 1 day later. A later Start-green and a later End-green ensured that the
Green-gsl metric was shortened by 2 days. We also observed decreases in EVI
integral, Amplitude, and Peak EVI, providing additional evidence of the decline
in vegetation productivity in this phenome.

Phenome 6 was primarily distributed in the Zambezian and the Kalahari-
Highveld Transition Zone phytogeographical regions, spreading from the Khaudum
in northeast Namibia through the Kalahari in central Botswana and extending to
the western parts of Kruger in South Africa and the eastern parts of Tsehlanyane
in Lesotho. Like Phenome 5, the main trend in the phenological cycle was char-
acterized by a later start and an earlier end to the growing season. The notable
exception was the End-green which occurred 2 days later. Furthermore, a later
Start-green of 2 days and the later End-green resulted in no change in the Green-
gsl metric. However, the Grow-gsl shortened by 12 days, driven by a later shift
in the Start-grow by 5 days and an earlier shift in the End-grow by 7 days. The
Start-peak and End-peak and their associated gsl metric also behaved similarly.
Moreover, the overall EVI integral, Amplitude and Peak EVI decreased in this
region, consistent with the overall decline in vegetation productivity.

Phenome 7 was primarily distributed in the Kalahari-Highveld Transition Zone
phytogeographical region, extending from western Etosha in northern Namibia
through the Kgalagadi in southwestern Botswana to Camdeboo in southern South
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Africa. The dominant trend in the phenological cycle was an earlier start and
a later end to the growing season. Such phenological activity led to the overall
extension of the growing season. In particular, the Start-green occurred 3 days
earlier while the End-green occurred 6 days later leading to an extension of the
Green-gsl metric by 9 days. The Start-grow, Start-peak, End-grow, End-peak and
their corresponding gsl metrics behaved qualitatively similarly. Total vegetation
activity increased in this region as shown by increased EVI integral, Amplitude
and Peak EVI.

Overall, the phenological patterns detected suggest that the end-of-growing
season metrics played a dominant role compared to the start of the growing season
metrics.
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2.5 Discussion

We assess multi-dimensional changes in the phenological behaviour of vegetation
across ecosystems of southern Africa. Our approach has two advantages. First,
we focus on natural ecosystems which allows us to minimise land use effects from
confounding the detected change. Second, we categorise the study area into re-
gions with similar phenological signatures (phenomes) to account for differences in
information content between ecosystems (Buitenwerf et al., 2015). This approach
reveals qualitatively different phenological signals that would otherwise be diluted
by averaging across pixels and thereby remain unnoticed. We detected substantial
changes (at least 1 SD) in each of the 21 metrics used to assess the phenologi-
cal behaviour of the vegetation of southern Africa. Our findings show that these
changes are widespread and qualitatively different. Given that these protected ar-
eas do not have land use change effects, we can deduce that the observed changes
are primarily driven by climatic forcing.

Our findings support ground-based phenological studies in southern Africa.
For example, Masia et al. (2018) reported early leaf drop dates among species
grouped in 4 phenological functional groups in northeastern South Africa. This
study region in Masia et al. (2018) corresponds to phenomes 1 and 6 in our study.
In both phenomes, we found that the end of the growing season metrics (End
metrics) occurred earlier in this region. Furthermore, our study also confirms
early leaf drop dates observed in Acacia karroo species in the Free State province
of South Africa (Janecke and Smit, 2011). Their study region falls in phenome
6 in our study. This suggests consistency in phenological patterns between field
observations and satellite-based observations.

The findings of this study are also consistent with previous remote sensing-
based phenological studies in the region. Our findings agree with the early green-
ing patterns reported by Whitecross et al. (2017) who used MODIS NDVI data
to detect early green-up dates along a latitudinal gradient from Zambia to South
Africa. Phenome 4 covers portions of their study region and shows an earlier start
to the growing season. We detected a decrease in the metric EVI integral in phe-
nome 1 and 6, consistent with Dubovyk et al. (2015), who used MODIS EVI data
to attribute the overall decline in vegetation productivity to anthropogenic effects
in southern Africa. Therefore, such consistencies with previous studies suggest
that our approach is robust in detecting changes in the phenological patterns of
the ecosystems of southern Africa.

The extended growing season and increased overall vegetation activity detected
in phenomes 3, 4 and 7 suggests an increase in vegetation biomass, which is con-
sistent with increases in vegetation cover reported in these regions (Skowno et al.,
2017; Stevens et al., 2017; Venter et al., 2018). In these regions, it has been shown
that the start of the growing season metrics are primarily driven by precipitation
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and day length (Archibald and Scholes, 2007; Cho et al., 2017; Whitecross et al.,
2017). This suggests that early onset of the rainfall season coupled with longer
days may trigger plant growth, leading to early initiation of the start of the grow-
ing season metrics. Our results also show that the late occurence of the end of the
growing season metrics played a dominant role in these phenomes. The delayed
end of the growing season metrics suggest CO2 effects. Elevated CO2 enhances
carbon uptake and plant growth rates, which also improves water use efficiency.
This relieves moisture constraints on plant productivity, resulting in an extended
growing season (Peñuelas and Filella, 2009; Higgins and Scheiter, 2012; Martens
et al., 2021). However, the CO2 fertilisation phenomena may be co-limited by
moisture, temperature and nutrient constraints (Peñuelas et al., 2017), suggesting
that CO2 effects on plant growth are not ubiquitous and may vary depending on
climatic and soil conditions.

The late initiation of the green up metrics detected in phenomes 1, 2, 5 and 6
coincide with evidence in these regions that have reported delayed onset, shortened
duration of the rainfall season and frequent dry spells(Kniveton et al., 2009; Davis-
Reddy and Vincent, 2017; Trisos et al., 2022)). In these regions, plant growth is
strongly related to moisture availability (Higgins et al., 2023a; Wigley et al., 2024).
This suggests that soil moisture constraints may hinder the triggering of green up
cues of vegetation in these regions. The early initiation of the end of the grow-
ing season metrics in these phenomes are consistent with studies that suggest that
senescence metrics may be driven by temperature (Cho et al., 2017). Indeed, these
phenomes represent regions where temperatures have risen by at least twice the
rate of global warming (Engelbrecht et al., 2015), with such warming rates asso-
ciated with frequent heatwaves (Trisos et al., 2022). This suggests that prolonged
and frequent dry spells are further compounded by warming temperatures and
higher evapotranspiration rates (Konapala et al., 2020), leading to an earlier end
of the growing season. This is because plants may adapt to the changing climatic
conditions by closing their stomata or reduce photosynthetic activity to conserve
moisture. These phenomes also coincide with regions where disturbances from fire
and herbivory have led to losses of woody cover and large trees (Eckhardt et al.,
2000; Asner et al., 2009). Disturbances from fire and herbivory can structurally
fragment landscapes, thereby exposing the remaining vegetation cover to drought
and heat stress.

The increased vegetation activity in phenome 3, 4, and 7, which suggests a
greening effect, has implications for biodiversity. Increased biomass in these regions
implies that these regions are a carbon sink, and our data might be useful in Net
Primary Productivity (NPP) estimates. However, increases in vegetation biomass
can also decrease populations of mammal, bird and reptile species that require
grassy habitats (Péron and Altwegg, 2015; McCleery et al., 2018). Increased
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vegetation cover also promotes invasive species which can alter plant communities
and may disrupt ecosystem services (Pejchar and Mooney, 2009). This is true
for protected areas as they are susceptible to invasive species compared to non-
protected areas (Hiley et al., 2013). Therefore, there may be trade-offs between
carbon sequestration and biodiversity loss because of increased vegetation biomass.
This study might be useful in guiding management efforts in identifying hotspots
of phenological change, where phenological mismatches are likely to be higher
(Renner and Zohner, 2018). Management interventions would include removal of
invasive species, implementing heterogenous fire management regimes (Fuhlendorf
et al., 2009) and increasing populations of browsers to diversify herbivore functional
guilds (Hempson et al., 2015). Such restoration efforts would promote ecosystem
resilience.

The decreased vegetation biomass detected in phenomes 1, 2, 5, 6 coincide
with regions where warming and drying climates have led to long-term declines
in plant and bird biodiversity (Slingsby et al., 2017; McKechnie et al., 2021).
This has also led to species migrations (Foden et al., 2007). Where restoration
and resilience interventions are not feasible, conservation managers could embrace
and facilitate the change. For example, Using field data assessments, conservation
managers could identify vulnerable species to drier and warmer climates. Corridors
of suitable habitats could then be established to connect current and potential
future migrations of vulnerable species. Managers could also promote drought and
heat tolerant species (Ouédraogo et al., 2013; Abraham et al., 2019) or increase
artificial water sources to safeguard biodiversity.

Remote sensing-based phenological estimates can be influenced by spatial res-
olution, with phenological metrics extracted at finer scales associated with lower
conditional bias (Adole et al., 2018a). We used a coarse 1 km MODIS EVI product
if compared to existing alternatives such as the 30 m Landsat series which also has
a longer record. It is therefore possible that micro scale changes in phenological
activity might go undetected in our analysis. We used the MODIS EVI record
because the data has undergone consistent and robust calibration steps (Didan,
2015), which is useful in large scale time series analyses. Our findings are also
consistent with both in situ and satellite-based phenological studies as previously
highlighted.

There is a lack of ground monitoring phenological networks in Africa compared
to other continents (Adole 2016). This limits ground verification of satellite-based
phenological estimates. Future studies could incorporate field phenological as-
sessments in satellite-based phenological estimates. For example, citizen science
of phenological observations could be incorporated into early warning monitoring
systems to validate satellite-based phenological estimates. Restricting our study
area to protected areas allows us to exclude land use change as a causal factor,
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leaving climate change, nitrogen deposition, CO2, herbivory and fire, as potential
drivers of the detected phenological changes. Future research could use biophysical
models to identify and attribute the most important regional drivers that underlie
the detected changes. Such analyses will be useful for deepening our knowledge of
ecosystem dynamics in the region.

Overall, we reveal widespread changes in the phenological cycle of the vege-
tation of southern Africa, dominantly driven by the end of the growing season
phenological metrics. We detected qualitatively different changes in phenological
groups (phenomes). Some phenomes exhibited an extended growing season, sug-
gesting increased vegetation biomass. While other phenomes exhibited a shortened
growing season, which suggests reduced vegetation biomass. The magnitude and
spatial extent of change revealed here provide clear evidence of contrasting re-
sponse of vegetation to climate change in the region. The findings of this study
may assist conservation managers in identifying hotspots of phenological change,
thereby developing monitoring systems to strengthen the capacity for adaptation
and mitigation of ongoing ecosystem changes. Future studies could attribute the
detected change to environmental drivers, thus improving our understanding of the
relative contributions of the forcing factors on changes in vegetation phenology.
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2.6 Supplementary Information
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Figure 12: The Bayesian Information Criterion (BIC) was used to determine the
optimal number of clusters and the Gaussian mixture model for unsupervised
model-based clustering.
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Figure 13: Our phenomes in a climate space. The phenomes were superimposed
on Whittaker (1975)’s biome classification scheme and climate space.
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TABLE I: A cross-classification between our phenomes vs White (1983)’s biomes.

Phenome
1

Phenome
2

Phenome
3

Phenome
4

Phenome
5

Phenome
6

Phenome
7

Forest transitions
& mosaics

23 17 142 235 3 12 13

Woodland 7 23 203 420 2 1 0
Woodland mosaics
& transitions

0 0 108 149 1 0 0

Bushland & thicket 4 1 67 87 2 4 3
Transitional
scrubland

0 0 2 1 0 0 0

Cape shrubland
(Fynbos)

21 23 117 75 14 7 39

Semi-desert
vegetation

14 68 144 197 20 28 20

Grassy shrubland 11 3 50 45 13 24 12
Grassland 5 4 17 15 2 0 1
Altimontane
vegetation

3 7 27 44 5 0 0

Deserts 46 50 186 353 3 8 0
Azonal 1 2 66 99 3 0 0

TABLE II: A cross-classification between our phenomes vs Beck et al. (2018)’s
biomes. The Beck et al. (2018) biome names are adapted from Peel et al. (2007).

Phenome 1 Phenome 2 Phenome 3 Phenome 4 Phenome 5 Phenome 6 Phenome 7

Aw 0 0 62 386 5 9 5
BWh 274 16084 0 352 8197 170 9897
BWk 180 10014 0 0 0 0 581
BSh 4112 246 11669 16421 9105 6015 1421
BSk 195 106 7 1 36 226 216
Csb 12 152 0 0 0 0 0
Cwa 554 0 1441 1989 0 40 0
Cwb 841 0 330 108 312 1000 0
Cfa 452 0 37 0 0 13 0
Cfb 339 129 0 0 0 0 0
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TABLE III: Average of EVI variables measured over 19 years (2000-2019).

Phenomes Start-green Start-grow Start-peak Peak End-peak End-grow End-green Trough Amplitude EVI integral

1 0.20 0.26 0.34 0.34 0.27 0.21 0.37 0.17 0.19 13.82
2 0.07 0.07 0.08 0.09 0.08 0.08 0.07 0.07 0.02 3.90
3 0.21 0.31 0.42 0.44 0.41 0.32 0.26 0.19 0.25 15.59
4 0.19 0.28 0.41 0.43 0.38 0.29 0.24 0.17 0.26 13.83
5 0.16 0.21 0.30 0.32 0.28 0.22 0.18 0.14 0.18 10.54
6 0.17 0.23 0.31 0.33 0.30 0.24 0.19 0.15 0.19 11.65
7 0.12 0.14 0.19 0.20 0.18 0.14 0.13 0.11 0.08 7.16

TABLE IV: Average of temporal variables measured over 19 years (2000-2019).
The values are presented in day of the year for metrics that represent the start
and end of growing season, while values are presented in days for metrics that
represent the length of the growing season.

Phenomes Start-green Start-grow Start-peak Peak End-peak End-grow End-green Trough Green-gsl Grow-gsl Peak-gsl

1 271 294 237 77 86 124 164 225 252 117 102
2 122 124 132 195 245 264 266 148 217 170 133
3 296 318 163 45 76 117 157 244 224 152 75
4 300 305 109 45 72 109 138 247 193 134 61
5 279 255 116 66 84 118 145 248 191 137 68
6 283 285 165 58 82 120 153 240 216 152 79
7 204 152 99 86 107 138 164 266 179 130 70
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TABLE V: Average change in temporal variables in the first (2000-2009) and
second (2011-2019) parts of the time series. The values are presented in days.

Phenome Start green Start-grow Start-peak Peak day End-peak End-grow End-green Trough Green-gsl Grow-gsl Peak-gsl

1 2 3 2 2 -4 -5 -4 -1 -6 -8 -6
2 1 2 4 1 -6 -3 -3 2 -4 -5 -10
3 2 3 -4 1 2 3 2 2 0 0 6
4 -1 -3 -5 -3 6 6 5 4 6 9 11
5 3 -2 1 2 -2 -3 1 3 -2 -1 -3
6 2 5 7 3 -3 -7 2 1 0 -12 -10
7 -3 -3 -2 -3 10 7 6 -4 9 10 12

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

South Africa

Namibia

Botswana

Zimbabwe

Lesotho

Eswatini

9
8

7

6

5

4

3

2
1

18

17
16

15

14

13

12

11

10

Legend
!( Protected area code in Table S6

Study area
Country border

Figure 14: Locations of protected areas discussed in the text, numbered according
to the codes in Table (VI).
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TABLE VI: Locations of protected areas discussed in the text. The protected area
code corresponds to the numbered points in Figure 14.

Protected area name IUCN classification Country Lat Long Code

Chobe National Park Botswana -18.421015 24.421832 1
Moremi Game Reserve Botswana -19.310700 23.159593 2
Central Kalahari Game Reserve Botswana -22.409874 23.894009 3
Kgalagadi National Park Botswana -25.313036 21.095487 4
Tsehlanyane National Park Lesotho -29.323878 28.116879 5
Etosha National Park Namibia -18.881923 16.043102 6
Skeleton Coast National Park Namibia -19.987356 13.269609 7
Bwabwata National Park Namibia -18.011045 21.865686 8
Khaudum National Park Namibia -18.837279 20.705816 9
Maloti-Drakensberg National Park South Africa -29.357456 29.567174 10
Songimvelo Nature Reserve South Africa -25.939326 30.996112 11
Kruger National Park South Africa -24.249213 31.622663 12
Anysberg Nature Reserve South Africa -33.463485 20.589365 13
Camdeboo National Park South Africa -32.224315 24.504368 14
Hwange National Park Zimbabwe -19.013810 26.734951 15
Charara Safari Zimbabwe -16.520278 29.161508 16
Chewore Safari Zimbabwe -15.829794 30.102935 17
Gonarezhou National Park Zimbabwe -21.731903 31.814015 18
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Figure 15: To illustrate the spatial distribution of the phytogeographical regions
delineated by Cowling et al. (2004) and discussed in this study, we recreated the
boundaries of these regions using a Geographic Information System (GIS).
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Chapter 3

3 Assessing changes in the Functional Biomes of

southern Africa

3.1 Summary

Biomes are large-scale vegetation zones characterized by similar functional and
structural attributes. Biomes are useful in summarizing biogeochemical rates of
similar ecosystems, thus improving our understanding of ecosystem function, re-
silience and how such ecosystems respond to environmental forcing. While global
and continental analyses of biome change have been undertaken, less is known
about changes in biomes at the regional scale of southern Africa. Here, we classify
and assess changes in vegetation units with similar phenology and productivity,
defined as Functional Biomes (FB). Our findings indicate that the FB map is ho-
mogeneous and that 3% to 15% of pixels shifted in FB state from 2000 to 2021.
The FB shifts were qualitatively different. For instance, FB with medium pro-
ductivity and plant growth limited by both moisture and temperature shifted to
higher productive and less seasonal states, while highly productive biomes shifted
to less seasonal versions of the same biome or to solely moisture-limited states. Our
regional approach provides compelling evidence that suggests that anticipated FB
trajectories are already ongoing in southern Africa, with diverging potential con-
sequences for biodiversity and carbon sequestration. This study highlights the im-
portance of understanding biome trajectories for evidence-based decision-making
in conservation and management initiatives in response to future changes.
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3.2 Introduction

Biomes are large-scale vegetation zones characterized by similar functional and
structural attributes (Higgins et al., 2016; Moncrieff et al., 2016). Biomes serve
as important constructs that synthesize our knowledge of how vegetation respond
to drivers such as climate change and land use change (Conradi et al., 2020).
Although there is no universal definition of the biome concept, Schimper’s work
(Schimper, 1903) laid the foundation in developing the modern biome concept.
Schimper emphasized that the physiological characteristics of vegetation should
align in response to climatic and edaphic factors, resulting in recognizable vege-
tation zones we refer to as biomes. Other work (Walter, 1973; Whittaker, 1975)
further expanded on Schimper’s view on the role of climate in shaping biome dis-
tribution. Despite the dominant role of climate in shaping terrestrial vegetation
(Schimper, 1903; Walter, 1973; Whittaker, 1975), quantifying changes in terrestrial
vegetation driven by climate change is a problem facing biogeographical research
(Mucina, 2019; Martens et al., 2021). The difficulties in quantifying vegetation
change may limit our capacity to develop targeted management responses. There-
fore, deepening our knowledge of biome dynamics is important for quantifying
and managing changes in ecosystem functioning, as biomes provide a foundational
framework for studying vegetation responses to environmental drivers (Mucina,
2019).

Dynamic Global Vegetation Models (DGVMs) are commonly used tools to
predict biome response to climatic forcing. DGVMs simulate how ecophysiological
processes, such as photosynthesis, growth, competition and consumption interact
over large spatio-temporal scales and thereby indicate how biomes might respond
to climate change (Prentice et al., 2007). To group vegetation into biome types,
DGVMs used model variables like Leaf Area Index of various Plant Functional
Types (PFTs) or their fractional cover (Scheiter et al., 2013; Martens et al., 2021).
Simulated changes in model variables allow the detection of biomes most vulnerable
to future climatic forcing. Despite their utility, it has been recently suggested that
DGVMS may misrepresent co-limitation effects of climate, atmospheric CO2 and
nutrient availability on vegetation activity (Smith et al., 2016; Wang et al., 2020b).
This may potentially lead to large uncertainties in predicted biome responses to
climatic forcing (Martens et al., 2021).

The phytoclime concept is another prediction tool of biome shifts that has
gained recent focus (Conradi et al., 2020; Higgins et al., 2023b; Conradi et al.,
2024). Phytoclimes are climatic regions that support a particular combination of
plant types. Specifically, the phytoclimes concept uses range modelling of plant
species and climate data to reveal spatial attractors for different growth-form com-
binations that are closely related to biomes (Conradi et al., 2020). This suggests
that phytoclimes can be used as an alternative for assessing biome shifts. The
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advantage of the phytoclime concept is that it is a data-driven approach for defin-
ing environmental preferences of the growth forms and for delimiting land surface
units that have internally similar basins of attraction. This approach overcomes
the limitations of expert-based biome concepts by providing a flexible, transpar-
ent and repeatable method for constructing fit-for-purpose biome maps (Conradi
et al., 2020). However, phytoclimes do not represent actual biomes observed in a
region. This is because ecological processes such as species competition, recruit-
ment, dispersal, disturbance (e.g., fire and herbivory) interact over time to ensure
that phytoclimes are rarely realized as biome formations (Higgins et al., 2023b).

Earth observation satellites provide opportunities to develop monitoring tools
that can be used to assess historical shifts in biomes. The Functional Biomes
concept (hereafter FB) classifies biomes as units with shared productivity and
phenology (see Higgins et al., 2016). FB is by definition pragmatic, selecting met-
rics that can be monitored by satellites. Like the phytoclimes concept, the FB
emerge from the data, thereby offering an objective approach on how the domi-
nant life forms respond to environmental drivers over time. The advantage of the
FB approach is that it is based on satellite data records, thus directly provide em-
pirical evidence of changes in actual biomes in a region. Despite their importance,
assessments of FB have been limited to global scales (Higgins et al., 2016). This
is despite studies documenting that the response of vegetation to environmental
drivers varies regionally (Zhu et al., 2016; Venter et al., 2018; Trisos et al., 2022).
Furthermore, global analyses may be contaminated by the confounding effects of
climatic forcing and land use change. In some cases, land use change often over-
ride climate change effects on vegetation activity (Sirami et al., 2017; Venter et al.,
2018), making difficult to infer whether the observed shifts in vegetation activity
are driven by climatic forcing or land use change.

Protected areas may provide a solution in separating climate change and land
use change signals on FB dynamics. Protected areas are geographic boundaries
designated to conserve biodiversity while remaining free of land use effects (UNEP-
WCMC and IUCN, 2021). Such boundaries include forest reserves, nature reserves,
game parks and national parks. One of these protected areas is the protected areas
of southern Africa, which has a rich floristic diversity and high levels of endemism
(Cowling et al., 2004). Despite its importance to global biodiversity, the region of
southern Africa has been identified to be a hotspot of climate change effects on
vegetation activity (Engelbrecht and Engelbrecht, 2016; Davis-Reddy and Vincent,
2017; Niang et al., 2014; Trisos et al., 2022; Parmesan et al., 2022). Yet how the
vegetation of southern Africa is changing in response to climate change remains
poorly understood.

To assess how the vegetation of southern Africa may respond to climatic forc-
ing, previous work have used species distribution models (SDMs) to predict fu-
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ture biome shifts (Rutherford et al., 1999; Higgins et al., 2023b). For example,
Rutherford et al. (1999) used a species distribution model to predict widespread
distribution of the biomes of South Africa and selected key plant species driven by
climatic forcing. Higgins et al. (2023b) used a physiological plant growth model
fitted for over 5000 vascular plant species data to predict widespread changes in
phytoclime state. The study also finds differences in the timing of the change
within the region, with the central interior forecast to change earlier than the arid
west and southern parts of the region. The differences in the timing of change were
primarily driven by differences in the response of responses of trees, succulents,
C3 and C4 grasses to the global circulation models (GCMs) forecasts.

However, when used as predictive tools, SDMs do not provide empirical evi-
dence on how biomes in a region are actually responding to drivers such as climate
change. SDMs rather forecast potential biome shifts based on model assumptions
about species-environment interactions and future climate scenarios, potentially
introducing uncertainties. Therefore, they may not provide direct measurement of
changes in vegetation activity, which is necessary for evidence-based management
responses.

Another commonly used biome map is the Mucina and Rutherford (2006)
map. Mucina and Rutherford (2006) combines a data-driven approach with expert
knowledge to define biomes. Biomes are aligned precisely with floristically deter-
mined boundaries through a bottom-up approach. This map shows actual biomes
that exist in the region. Although this map is useful, its static nature makes it less
appropriate for tracking biome changes. Therefore, we still lack a comprehensive
understanding of the distribution of the FB of southern Africa, their shifts over
time, which may inform their potential shifts in the future.

The goal of this study is to map the FB of the major protected of south-
ern Africa (Figure 3) and then track shifts in FB state over a 21-year period. To
achieve this, we applied a data-driven approach, such that the biomes emerge from
the data rather than being subjectively defined. We built on the monitoring tool
developed by Higgins et al. (2016) and used two attributes to classify FB. The first
attribute is the vegetation productivity index (VPI), and the second attribute is
based on growth limitation indices. Higgins et al. (2016) additionally used vege-
tation height to classify FB, but we do not use height in this study since products
describing vegetation height do not exist at the temporal resolution needed for
this analysis. The VPI mimics how the transformation of the Fraction of Photo-
synthetic Active Radiation (FPAR) into carbon assimilation is further co-limited
by environmental forcing factors. The growth limitation indices indicate whether
vegetation growth is limited by moisture or temperature or both moisture and
temperature or non-seasonal. In ecosystems such as Savanna, winter conditions
are associated with dryness and coldness, yet warm enough to support vegetation
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activity. Therefore, attributing limitations solely to one climatic factor could be
misleading when the interactions between the climatic factors are complex. We
thus cautiously use the term ‘limited’ as a hypothesis, acknowledging the potential
correlation between moisture and temperature and their dual influence on plant
growth. The attributes used to classify FB are derived from the time series of
the Enhanced Vegetation Index (EVI) and climate reanalysis data. These regional
insights complement existing global knowledge, thereby offering a nuanced under-
standing of biome dynamics in southern Africa.
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3.3 Materials and Methods

We used the EVI MOD13A2 product from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) program(downloaded from https://lpdaac.usgs.gov/

products/mod13a2v006/). The compositing algorithm for the MOD13A2 product
selects the most unbiased estimate of the EVI of each pixel within a 16-day win-
dow. The selection is based on criteria such as lowest cloud cover, lowest aerosol
content, lowest angle view (Didan, 2015). The resulting 1 km EVI product is an
atmospherically corrected dataset (Didan, 2015). Each observation is provided
with a data quality score (labelled Q = 0, 1, 2, 3 where = 0 is good and 3 is poor
due to cloud cover). EVI data ranging from 2000 to 2021 constituted our time
series.

Despite the robustness of the MODIS compositing algorithm, time series EVI
data can contain missing values caused by cloud cover, sensor malfunction and
orbital drifts of satellites. To account for the missing data, we used a two-step
approach. First, the missing data of each pixel was linearly interpolated (us-
ing R (R Core Team, 2022) command stats::approx ). Second, the interpolated
data was further linearly filtered (command stats::filter). We then fitted a cubic
spline to smooth the linearly filtered data (command stats::smooth.spline), and
the smoothed spline was used to extract phenological metrics that represent a
plant’s growing season (Buitenwerf et al., 2015). Defining the start of the time
series for each pixel required a two-step approach. First, the trough day, defined
as the mean day of the year of the annual minimum EVI value, was estimated for
the time series. This 21-year average provides a rough estimate of the trough day.
Second, the exact trough day for each phenological year was calculated within a
180-day window around the 21-year mean trough day. The number of days be-
tween two successive trough days represents a phenological year. The amplitude
of EVI was estimated by calculating the difference between the highest EVI value
(peak day EVI) and the lowest EVI value (trough day EVI) for each phenological
year. These steps produced a 21-year time series of EVI, annual trough days of
EVI, annual amplitude of EVI and annual peak days of EVI for 345,718 pixels.

3.3.1 Functional Biomes classification scheme

We used two attributes to define and map the Functional Biomes of southern
Africa. The first attribute is the vegetation productivity index (V PI). The second
attribute is the growth limitation index. Both were based on metrics provided
by Higgins et al. (2016), although we adapt them for this study as explained in
the next sections. To calculate the V PI, we assume that EVI can be used as a
proxy for the fraction of photosynthetically active radiation (FPAR) absorbed by
leaves (Running and Zhao, 2015). While Higgins et al. (2016) used the Normalised
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Difference Vegetation Index (NDVI) as a proxy for FPAR, we chose EVI because
of its superior sensitivity in dense vegetation and reduced sensitivity to soil and
atmospheric contamination (Didan, 2015). We further consider how environmental
factors soil moisture (M), temperature (T ) and solar radiation (S) co-limit the
conversion of FPAR into assimilated carbon. Therefore, V PI is denoted by

V PI = EV If(M)g(T )S. (1)

The function f(M) is denoted by

f(M) = max

(
0,min

(
1,

M −WP

FC −WP

))
, (2)

where FC and WP are the field capacity and wilting point, respectively.
Soil moisture (M) is the ERA5-Land reanalysis (European Centre for Medium-
Range Weather Forecasts Reanalysis version 5; ERA5, hereafter) time series prod-
uct of monthly volumetric water in soil layer 1 (0 - 7 cm) (downloaded from
https://doi.org/10.24381/cds.68d2bb30, variable name ’swvl1’, units m3 m-3,
spatial resolution 11 km but resampled to 1 km using the command terra::resample,
method bilinear). We used a smoothed cubic spline to interpolate values of M for
each study pixel. For FC and WP , we use 1 km raster datasets (Dai et al., 2019)
(downloaded from http://globalchange.bnu.edu.cn/research/soil5.jsp).

The polynomial function g(T ) mimics how C3 photosynthesis responds to nor-
malized temperature changes (Yamori et al., 2014),

g(T) = max
(
0,−2.42 + 0.0937T − 0.00177T 2

)
. (3)

.
Temperature (T ) is the ERA5 monthly time series product of average air tem-

perature at 2 m above the land surface (downloaded from https://doi.org/10.

24381/cds.68d2bb30, variable name ‘t2m’, units ◦C, spatial resolution 11 km but
resampled to 1 km using the command terra::resample, method bilinear). We
used a smoothed cubic spline to interpolate values of T for each study pixel. Solar
radiation (S) is the ERA5 time series product of monthly surface solar radiation
downwards (downloaded from https://doi.org/10.24381/cds.68d2bb30, vari-
able name ‘ssrd’, units W m-2, spatial resolution 11 km but resampled to 1 km
using the command terra::resample, method bilinear). We used a smoothed cubic
spline to interpolate values of S for each study pixel. We calculated the total V PI
for each phenological year and categorized the results into three groups (High V PI
(H) = ≥ 6500, Medium V PI (M) = > 2500 and < 6500, Low V PI (L) = < 2500)
for further analysis steps. The V PI values were calculated for each pixel.
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The second FB attribute provides insights into the relative limitations imposed
by soil moisture and temperature on plant growth (Higgins et al., 2016). We use
the moisture index (d) to define moisture limitation effects such that

d =
(1− qtd(M))Na

Npd

. (4)

where qtd(M) is a quantile that represents the relative position of the moisture
level on the trough day compared to the distribution of all moisture values in a
phenological year. That is, qtd(M) is a quantile that quantitatively informs how
dry the trough day is compared to other days of the year. Figure 16 represents this
relationship graphically. M is defined as in equation 2 while the components Na

and Npd are the annual amplitude of EVI and annual peak day EVI, respectively.
The ratio between Na and Npd is a measure of seasonality. A higher ratio sug-
gests greater seasonality, indicating more pronounced fluctuations in vegetation
greenness within a phenological year relative to the peak day EVI. The values of
d range between 0 and 1. A larger value of (d) indicates greater limitation due
to soil moisture availability while a smaller value indicates lesser limitation. The
values of d were calculated for each pixel.
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Figure 16: Graphical representation of the relationship between the trough day
moisture quantile qtd(M) and EVI, a proxy for vegetation activity. (a) Scenario
1: When the driest day does not coincide with the trough day (high qtd(M), value
of 0.2 in this example), this suggests that factors other than moisture constrained
plant growth on the trough day. (b) Scenario 2: When the driest day coincides
with the trough day (low qtd(M), close to 0 in this example), this suggests that
the decline in EVI was likely due to drought. The temperature index (c) uses the
same logic as the moisture index (d), with qtd(T ) acting as the analogous quantile
for temperature.

We use the temperature index to (c) to define temperature limitation effects
such that

c =
(1− qtd(T ))Na

Npd

. (5)

where qtd(T ) is a quantile that represents the relative position of the tempera-
ture level on the trough day compared to the distribution of all temperature values
in a phenological year. That is, qtd(T ) is a quantile that quantitatively informs
how cold the trough day is compared to other days of the year. T is defined as in
equation 3. Similar to d, the values of c range between 0 and 1. A larger value
indicates greater limitation due to temperature conditions while a smaller value
indicates lesser limitation. The values of c were calculated for each pixel.

We defined vegetation as moisture-limited (M) if d > 0.15 and c ≤ 0.2, cold-
limited (C) if d ≤ 0.15 and c > 0.2, limited by both moisture and cold (B) if d >
0.15 and c > 0.2, and non-seasonal (N) if d ≤ 0.2 and c ≤ 0.15. We then used
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the three V PI categories and the four growth limitation categories to group pixels
into zones we call Functional Biomes (FB).

We tested for significant (P < 0.05) temporal trends to assess whether the
categorized biomes are inherent to the data rather than an artefact of the subjective
threshold selections. We applied simple linear regression models to the index values
(V PI, d and c ) of each pixel as a function of time (R command stats::lm). The
regression analyses allow us to detect changes in V PI, d and c independent of
where the cut-offs are placed, which would confirm the appropriateness of our
threshold selections.

Annual maps for the 21-year time series of FB, V PI, d, and c are available in
the Zenodo repository (Muhoko and Higgins, 2024).

3.3.2 Functional Biomes change analysis

The FB classification scheme used in this study offers the capability of monitor-
ing biome shifts over time. Using multinomial logistic regression (R command
nnet::multinom (Venables and Ripley, 2002)), we examined the 21-year time series
of each pixel to determine if time had a statistically significant effect on FB states.
We used the modal FB state of each pixel for the initial 10 years of the time series
to define our reference state for the multinomial logistic regression analysis. FB
transitions were only recognized when time significantly influenced the likelihood
of observing a change in FB state (Z-test, P < 0.05). In situations where multiple
significant transitions were observed for a pixel, we chose the transition with the
highest Z-statistic as it provided the most robust statistical support. For example,
if a pixel was detected as transitioning from MB (medium VPI, both moisture
and temperature-limited) to MD (medium VPI, moisture-limited) (Z-score = 2.5)
and also from MB to HN (high VPI, non-seasonal) (Z-score = 3.2), we would only
report the MB to HN transition in the results since it showed stronger statisti-
cal evidence (higher Z-score) for a shift between those biome states over the time
series.
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3.4 Results

3.4.1 Functional Biomes of southern Africa

The biome classification was conducted annually for the entire time series, gener-
ating the plotted FB map (Figure 17). The FB map shows that the classes form
contiguous zones. We use a two-letter convention to name the biomes: the first
letter represents the vegetation productivity index (VPI) and can either be low
(L), medium (M), or high (H), while the second letter indicates whether the trough
of EVI is either dry-limited (D), cold-limited (C), both dry and cold-limited (B)
or non-seasonal (N). The most common biome classes were MB (medium VPI and
both dry and cold-limited), HB (high VPI and both dry and cold-limited) and LN
(low VPI and non-seasonal), while HN (high VPI and non-seasonal), LB (low VPI
and both dry and cold-limited) and HD (high VPI and dry-limited) were the least
common.

70



3 Shifts in functional biomes Results

HB

LB

MB

HD

LD

MD

HN

LN

MN

Frequency of each biome class

Figure 17: Functional Biomes (FB) of the major protected areas of southern Africa
categorized using the vegetation productivity index (VPI), the dry limitation index
and the cold limitation index. Plotted here are the most common (modal) FB
assignments made for each pixel over the 21-year time series. The locations of the
protected areas mentioned in the text are indicated by numbers in Figure 23 and
their corresponding geographic coordinates are provided in Table VIII. The FB
names are derived from two letters, the first letter is either L, M or H and indicates
low, medium and high vegetation productivity index (VPI) and the second letter
is either D, C, B or N and indicates whether the growth limitation index is either
dry, cold, both dry and cold or non-seasonal.

Our FB spanned a wide variety of Cowling et al. (2004)’s phytogeographical
regions (Figure 24). The biome type HB covered components of the Zambezian Re-
gion and Tongaland-Pondoland Region. It spread from the Caprivi in northeastern
Namibia and the Chobe in northern Botswana towards the Hwange in northwest-
ern Zimbabwe. Still in northern Zimbabwe, it further covered the Charara, the
Mana Pools and Chewore Safari towards the Nyanga in the east. In South Africa,
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this biome spread from the Songimvelo to the iSimangaliso in the east. This biome
was characterized by high vegetation productivity with plant growth limited by
both moisture and temperature. The biome LB mostly covered the Karoo-Namib
Region. It spread from the Gondwana in southern Namibia to the Steenbokkie in
southern South Africa. This biome was characterized by low vegetation produc-
tivity with plant growth limited by both moisture and temperature.

The MB biome type covered the Zambezian Region and the Kalahari-Highveld
Transition Zone. It spread from east of Etosha in north-central Namibia through
north-central Botswana in the Moremi and the Kalahari towards the Hwange and
Gonarezhou in northwestern and southern parts of Zimbabwe, respectively. In
South Africa, this biome covered the Kruger in the northeast to the Marakele in
the north towards the Tsehlanyane in Lesotho. This biome was characterized by
medium vegetation productivity with plant growth limited by both moisture and
temperature.

Dry-limited biomes were more restricted. The HD biome mostly occurred in
the Zambezian Region of the Mzarabani in northern Zimbabwe. It was charac-
terized by high vegetation productivity with plant growth solely limited by mois-
ture. Furthermore, the LD biome covered the Kalahari-Highveld Transition Zone,
spreading from the Torra in northwestern Namibia, the Gemsbok in southwestern
Botswana to the Camdeboo in southern South Africa. Furthermore, this biome
was characterized by low vegetation productivity with plant growth solely limited
by moisture. The MD biome mainly covered the Zambezian Region and Kalahari-
Highveld Transition Zone, it spread from Etosha in northwestern Namibia, the
Gemsbok in southwestern Botswana and to the Asanta Sana in southern South
Africa. This FB was characterized by medium vegetation productivity with plant
growth solely limited by moisture.

The HN biome (high VPI, non-seasonal) was restricted to the Cape Region
and mostly occurred in the Garden Route. The LN (low VPI, non-seasonal) biome
mostly covered the Karoo-Namib Region. This biome spread southward, from the
Skeleton Coast in northwestern Namibia to the Anysberg in western South Africa.
In addition, the MN (medium VPI, non-seasonal) biome occurred in the Cape
Region, spreading from the Grootwinterhoek to the Garden Route of southern
South Africa.

The distribution of this study’s FB closely align with Mucina and Rutherford
(2006)’s biomes. For example, the MB and MD align with the Savanna, the HB
and HD with the miombo woodlands, biome type LN with the Namib desert and
the Succulent-Karoo biomes, while the HN and MN align with the Fynbos.

The matrix-classification of the FB map (Figure 17) with White (1983)’s map
showed both similarities and differences (Table VII). For instance, the MN (medium
VPI, non-seasonal) corresponds to Cape shrubland (Fynbos) in the White (1983)
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map, while the LN (low VPI, non-seasonal) corresponds to Deserts. The MB
(medium VPI, both moisture and cold limited) biome mostly align with the Wood-
land, Woodland mosaics & transitions, and Bushland & thicket biome. Notable
groups that did not correspond to the White (1983) map were also observed. For
example, the Forest transitions & mosaics comprised two of our biomes (MB and
HB), while Woodland comprised three of our biomes (MD, MB and HB).

We plot the FB’s in the temperature and precipitation biplot used by Whit-
taker (1975). (Figure 18) shows that our FB’s are reasonably segregated by cli-
mate. Unsurprisingly, most of our biomes were located in warmer parts of the
Whittaker biplot associated with low precipitation in classes such as Temperate
grassland/desert, Subtropical desert, Woodland/shrubland, and Tropical seasonal
forest/savanna. Moreover, the biome sites limited by both moisture and temper-
ature (ending in B) were located at a wide temperature gradient, while biomes
limited by moisture or non-seasonal (ending in D or N) were located at a narrow
temperature gradient. The consistency of the FB map with the region’s estab-
lished biome maps suggests that our functional approach offers a nuanced yet
robust method for biome classification.
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Figure 18: This study’s FB’s plotted in Whittaker (1975)’s bioclimatic space.
Plotted here are the most common FB types over the 21-year study period. The FB
names are derived from two letters, the first letter is either L, M or H and indicates
low, medium and high vegetation productivity index (VPI) and the second letter
is either D, C, B or N and indicates whether the growth limitation index is either
dry, cold, both dry and cold or non-seasonal.

Plotting the seasonal EVI signature of each biome revealed that moisture-
limited biomes (ending in D) and biomes limited by both moisture and tempera-
ture (ending in B), had larger amplitudes compared to non-seasonal biomes (end-
ing in N) (Figure 19). Furthermore, non-seasonal biomes had longer growing
seasons compared to moisture-limited biomes (ending in D) or both moisture and
temperature-limited biomes (ending in B). However, a level of seasonality in the
phenological characteristics of non-seasonal biomes can still be observed.
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Figure 19: Average seasonal phenological signatures of the Functional Biomes
(FB) shown in Figure 17. The data points illustrate mean values of phenological
metrics extracted from the Enhanced Vegetation Index (EVI) specific to each FB.
The points are ordered to begin from the trough of EVI (when EVI is at its lowest)
to the end of a plant’s phenological cycle. The sequence of days on the x-axis are
organized to represent a phenological year but does not show differences between
the start of the growing season across FBs. Average phenological cycles of (a)
moisture-limited FBs, (b) both moisture and temperature-limited FBs and (c)
non-seasonal FBs. The FB names are derived from two letters, the first letter
is either L, M or H and indicates low, medium and high vegetation productivity
index (VPI) and the second letter is either D, C, B or N and indicates whether
the growth limitation index is either dry, cold, both dry and cold or non-seasonal.

3.4.2 Observed trends in biome shifts

We found that 3% to 15% of pixels shifted in FB state between 2000 to 2021 when
using the 2000-2010 period as the reference state (Figure 20). FBs classified as
MD (medium VPI, moisture-limited) shifted mostly to MN (medium VPI, non-
seasonal), suggesting no changes in productivity but decreased moisture limitation
effects. Low VPI and moisture-limited biomes (LD) shifted to a higher productive
and non-seasonal state (MN) and to a low productive, non-seasonal state (LN). The
HD (high VPI, moisture-limited) biome shifted to a non-seasonal version of this
biome type (HN). Most biomes classified as MB (medium VPI, both moisture and
temperature-limited) shifted to biomes of the same productivity but with moisture
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as the primary limiting factor. Furthermore, the MB biome also transitioned to
biomes with higher productivity biome states (that is to HN, HD, or HB). Some
of the HB biome (high VPI, both moisture and temperature-limited) transitioned
to similar productive states but became non-seasonal (HN) or to moisture-limited
biomes (HD).

Plotting the biome shifts in a geographic space uncovered distinct spatial
patterns (Figure 21). In the Etosha of northern Namibia, biomes states such
as medium VPI, moisture-limited (MD) and medium VPI, both moisture and
temperature-limited (MB) shifted to medium VPI, non-seasonal states (MN) (i.e.,
from MD and MB to MN). This suggests that these biomes transitioned to a
biome state with a longer growing season. Similarly, in the Bwabwata of north-
eastern Namibia, the high VPI, both moisture and temperature-limited states
(HB) shifted to a non-seasonal but high productive category (HN), indicating a
transition to decreased moisture and temperature limitation in this region. How-
ever, some biomes in Namibia shifted to less productive states. For example, low
VPI, moisture-limited states (LD) shifted to low VPI, non-seasonal states (LN) in
the Namib-Naukluft.

In Botswana, medium VPI, both moisture and temperature-limited states (MB)
shifted to medium VPI, moisture-limited states (MD) in the Moremi in the north-
west and the Central Kalahari, suggesting that moisture limitation effects increased
in these regions. Moreover, a cluster of medium VPI, moisture-limited states (MB)
shifted to medium VPI, non-seasonal states (MN) in the Kgalagadi in southwestern
Botswana, indicating that moisture limitation effects decreased in this region.

Our analysis further revealed that FB shifts in Zimbabwe were predominantly
characterized by transitions from high VPI, both moisture and temperature-limited
states (HB) to high VPI, non-seasonal states (HN). This pattern was ubiquitous,
as it spread from the Chewore in the north through the Hwange in the north-
east to the Gonarezhou in the south. Similarly, in the Kruger of northeastern
South Africa, medium VPI, both moisture and temperature-limited (MB) states
shifted to high VPI, non-seasonal states (HN), indicating a transition to a higher
productive version and non-seasonal state. Furthermore, shifts from medium VPI,
both moisture and temperature-limited states (MB) to high VPI, moisture-limited
states (HD) were also detected in southern Kruger. This suggests a transition to
a higher productive but moisture-limited state. Patches of high VPI, both mois-
ture and temperature-limited sites (HB) shifted to high VPI, non-seasonal states
(HN) in the Ithala of eastern South Africa. We also detected shifts from medium
VPI, moisture-limited state (MD) to medium VPI, non-seasonal state (MN) in the
Camdeboo of southern South Africa, suggesting that moisture limitation decreased
in this region. Furthermore, we also detected shifts from medium VPI, both mois-
ture and temperature-limited states (MB) to high VPI, non-seasonal states (HN)
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in the Witdraai of southwestern South Africa, indicating that these biomes have
shifted to more productive states with reduced moisture and temperature limita-
tion effects.

HB
LB
MB

HD

LD

MD

HN

LN

MN

HB (3%)

MB (4%)

HD (3%)

LD (15%)

MD (8%)

Figure 20: Shifts in Functional Biomes (FB) detected at the start and end of the
21-year period. These shifts were identified by applying multinomial regression
analysis to FB state data. Shown here are FB transitions where time had a sta-
tistically significant effect (Z-test, P < 0.05) on FB states over the 21-year time
series of each pixel. The left panel shows the initial FB state while the right panel
shows the final FB state. The heights of the elements in the panels indicate the
proportion of the biome states that have shifted (for example, MD (8%) indicates
that 8% of pixels of the MD biome transitioned to other states. The FB names
are derived from two letters, the first letter is either L, M or H and indicates low,
medium and high vegetation productivity index (VPI) and the second letter is
either D, C, B or N and indicates whether the growth limitation index is either
dry, cold, both dry and cold or non-seasonal.
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(a)
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HD
LD
MD
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(b)

Figure 21: Biome shifts plotted geographically. These shifts were identified by
applying multinomial regression analysis to FB state data. Shown here are FB
transitions where time had a statistically significant effect (Z-test, P < 0.05)
on FB states over the 21-year study period of each pixel. (a) shows the initial
biome state (b) shows the final biome state. Grey colours represent the study area
boundary. The FB names are derived from two letters, the first letter is either L,
M or H and indicates low, medium and high vegetation productivity index (VPI)
and the second letter is either D, C, B or N and indicates whether the growth
limitation index is either dry, cold, both dry and cold or non-seasonal.

Plotting slopes of simple linear regression showed that time had a statistically
significant effect (P < 0.05) on VPI, moisture and temperature limitation indices
(Figure 22).This suggests temporal changes in these variables. The y-axes of the
histogram in Figure 22 show that the VPI had the least changes while the temper-
ature limitation index had the most changes. Furthermore, the VPI slopes were
mostly positive, suggesting an overall increase in vegetation productivity over time.
In contrast, the dominant negative slopes observed for both moisture and temper-
ature limitation indices suggests that the trough of EVI was not clearly associated
with the coldest or driest period of the year.
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Figure 22: Slopes of a simple linear regression model fitted to the vegetation
productivity index (VPI) and growth limitation indices as a function of time (a)
simple linear regression slopes fitted to the VPI (b) simple linear regression slopes
fitted to the moisture limitation index and (c) simple linear regression slopes fitted
to the cold limitation index. Shown here are slopes where time had a statistically
significant effect (P < 0.05) on the indices over the 21-year study period of each
pixel. Only significant slopes (P < 0.05) are plotted on the histograms, while
non-significant slopes (P > 0.05) on the map were set to 0.
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3.5 Discussion

In this study, we examine changes in the Functional Biomes (FB) of southern
Africa, a region regarded as a hotspot of climate change (Niang et al., 2014; Trisos
et al., 2022). In this context, a FB refers to vegetation units that have similar func-
tional metrics (see Higgins et al. 2016). The first metric we use is the Vegetation
Productivity Index (VPI), based on the assumption that the EVI is a proxy for
vegetation productivity and is further co-limited by climatic variables. The sec-
ond metric is the growth limitation index, which indicates whether plant growth
is limited by soil moisture or temperature. We tentatively use the term ’limited’
to acknowledge the fact that in ecosystems such as savanna, dryness and coldness
are correlated in winter, yet in an absolute sense it is often warm enough to sup-
port vegetation activity. By using this FB scheme, we found that 3% to 15% of
pixels shifted in FB states, with notable patterns being transitions from low pro-
ductive states to high productive, non-seasonal states as well as transitions from
both moisture and temperature-limited states to solely moisture-limited states.
Our findings demonstrate widespread changes in the functioning of ecosystems of
southern Africa and may be useful in supporting conservation and management
initiatives.

The shift from high VPI, both moisture and temperature-limited states (HB)
to a less seasonal version of this biome (to HN) in the Hwange, Chewore, and the
Gonarezhou of Zimbabwe, is consistent with regions where significant increases in
aboveground carbon density have been reported (Baccini et al., 2017). In Kruger of
northeastern South Africa, we found that most medium VPI, both moisture and
temperature-limited states (MB) transitioned to more productive, non-seasonal
states (HN) in the north, and to more productive, moisture-limited states (HD)
in the south. This finding suggests increased productivity, agrees with studies
reporting an increase in woody plant cover (Buitenwerf et al., 2012; Zhou et al.,
2021).

We detected shifts from medium VPI, moisture-limited state (MD) to the non-
seasonal version of this state (MN) in the Camdeboo of southern South Africa.
This finding agrees with Masubelele et al. (2013), who used fixed-point pho-
tographs and step-point vegetation surveys to demonstrate increases in azonal
vegetation. We also found that in the Fynbos of South Africa, medium VPI, non-
seasonal states (MN) shifted to more productive states (HN), which supports net
greening trends reported by multi-decadal studies that have used Landsat EVI
time series (Venter et al., 2020) or repeat photography (Cowling and Hoffman,
2021).

The biome shifts from medium VPI, both moisture and temperature-limited
states (MB), to a moisture-limited version of this biome type (MD) in the Cen-
tral Kalahari of Botswana agrees with Byakatonda et al. (2020), who used the
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Standardized Precipitation Evaporation Index (SPEI) to char-acterize this region
as vulnerable to severe drought. In contrast, the shifts from states such as LD,
MD, and MB to MN in the Kgalagadi of southwestern Botswana is consistent with
Herrero et al. (2020), who reported increases in mean NDVI between 2000-2016.
We also found that low VPI, moisture-limited (LD) states of the Skeleton Coast
and Namib-Naukluft of western Namibia shifted to low VPI, non-seasonal state
(LN). This finding is consistent with studies that have used high-resolution climate
models to project the expansion of the Namib, driven by future warming (Engel-
brecht and Engelbrecht, 2016). In addition, the shifts from MD and MB to MN in
the Etosha of northern Namibia agree with studies that have correlated net gains
in fractional woody cover with increases in average precipitation (Wessels et al.,
2019).

The most common biome transitions observed in our study were shifts to more
productive and non-seasonal states (to MN and HN biomes), which suggests that
favourable conditions for plant growth and productivity are being sustained for
longer periods of the growing season. This phenomenon is suggestive of CO2 fertil-
ization effects. Rising CO2 directly increases light-use efficiency (LUE) and water-
use efficiency (WUE) by enhancing carbon assimilation and reducing transpiration
in plants, which consequently extends a plant’s growing season legnth (Peñuelas
and Filella, 2009; Higgins and Scheiter, 2012). Indeed, Higgins and Scheiter (2012)
showed that rising CO2 can shift vegetation to more productive states across
Africa. Recent model projections suggest that African biomes are likely to shift
to more productive and non-seasonal states (Martens et al., 2021). This may be
because CO2 effects coupled with light competition, and fire suppression may in-
fluence trends towards woody biomass by altering the competitive balance favoring
trees, thereby creating positive feedback that suppresses grasses but promote tree
growth (Bond and Midgley, 2012). Therefore, increased woody biomass or trees
would suggest less seasonality compared to grass-dominated ecosystems.

Another mechanistic explanation for shifts to non-seasonal states may involve
complex relationships between global warming and soil moisture-atmosphere feed-
backs. Specifically, when soil moisture declines, evapotranspiration also decreases,
leading to changes in atmospheric circulation to intensify moisture convergence,
which raises surface water availability (i.e., precipitation minus evapotranspiration,
P-E) in the dry season but not the wet season (Zhou et al., 2022a). Therefore, the
diminishing limiting effects of temperature and moisture on plant growth (Figure
22), coupled with elevated CO2, may lead to an extended growing season resulting
in increased productivity.

Biome transitions from both moisture and temperature-limited states (from
MB and HB) to solely moisture-limited states (to MD and HD) suggest increased
warming. Southern Africa has experienced increased mean temperatures (Engel-

81



3 Shifts in functional biomes Discussion

brecht and Engelbrecht, 2016; Trisos et al., 2022), which may have diminished
the role of cold temperatures in limiting physiological processes such as photo-
synthesis and transpiration. This suggests that moisture availability has become
the primary constraint on vegetation activity in these biomes. Shifts to more pro-
ductive versions of these biome types (for example, from MD to HD) also suggest
that plants in these ecosystems have enhanced their WUE to maintain growth
and productivity into the dry season. However, the expansion of low productive
moisture-limited biomes shifts to even lower productive non-seasonal states (i.e.,
from LD to LN which is a transition to desert environments) suggests increasing
limiting effects of moisture availability. Coupled with warming temperatures, the
net effect is a decrease in productivity and shifts towards arid conditions.

Our exclusive focus on protected areas allows us to eliminate the possibility
that the changes we detected are due to land use change. The interactions between
climate and vegetation are highly non-linear. Therefore, the detected FB trajecto-
ries could either accelerate or reach an asymptote. Continuous monitoring of these
FB will reveal which of these possibilities is realized. It should be noted that the
high VPI values (≥ 6500) used in this study should be considered relatively high
within the context of the study region, and do not represent universally high veg-
etation productivity across all global biomes. Increases in vegetation productivity
(for example, from MB to HN biomes) suggest increased carbon sequestration in
these biomes, thus acting as carbon sinks to combat climate change. However, in-
creased vegetation productivity can also negatively impact biodiversity. For exam-
ple, increased vegetation cover can lead to increased competition between species,
ultimately favouring invasive species over native species (van Wilgen et al., 2022).
Such effects could alter species composition and diversity. Furthermore, it has
been shown that woody encroachment decreased populations of bird and mammal
species in savanna ecosystems (Péron and Altwegg, 2015; McCleery et al., 2018).
Therefore, the consequences of these biome shifts to biodiversity may vary locally.

A limitation of our analyses is that although our biomes emerge from the data,
we subjectively categorized the VPI and growth limitation attributes, which may
have been categorized differently by different authors. To improve the objectiv-
ity of future studies, it may be necessary to develop a standardized method for
categorizing these attributes. It is obvious that if one uses more classes, more
transitions will be detected; that is, the fact that we report that 3% to 15% of
pixels transitioned in this study is difficult to compare with the findings of a global
study that used more classes (Higgins et al., 2016) and reported that 13% to 14%
of pixels transitioned from their initial FB state.

The spatial resolution of the climatic forcing data was lower than that of the
EVI data. This suggests that more fine-scaled variation in soil moisture and tem-
perature may not propagate into our metrics. We anticipate that higher-resolution
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reanalysis data might be available in the future, which could potentially capture
such fine-scale variations in the climatic forcing data. The overall consistency of
our findings with previous studies suggests that the classification scheme is robust
and applicable to diverse regions.

Although the observed biome shifts are most likely to be driven by climate
change and increasing CO2, changes in local disturbance regimes such as fire and
herbivores may have contributed to the detected shifts. Fire suppression and her-
bivore absence reduce mortality in woody plants leading to increased woody re-
cruitment (O’connor et al., 2014; Stevens et al., 2017). To provide a comprehensive
identification of the underlying drivers of functional biome shifts, future studies
should consider integrating disturbance regimes in their classification schemes. In
addition, studies should also consider topographical effects in biome classification,
like elevation and slope. Differences in topography can cause variations in solar
radiation, moisture, and temperature, which consequently affects the EVI signal.
Furthermore, future studies should also incorporate ground truth data to calibrate
and validate the mapping of functional biomes. Such an approach will improve
the accuracy and reliability of FB assessments.

3.5.1 Management implications

Our study reveals previously undetected changes in the FB of southern Africa,
thereby provide a data foundation for validating existing biophysical models used
to predict future biome change. Although continental studies anticipate that
Africa’s biomes will shift to more productive and non-seasonal states (Higgins and
Scheiter, 2012; Martens et al., 2021), our regional approach provides compelling
evidence that such anticipated biome trajectories are already ongoing. There-
fore, we emphasize that it is important to understand the trajectories of change
ecosystems are on, which would inform conservation management strategies.

Transitions towards higher productive and non-seasonal states may cuase changes
in species composition, impacting ecological processes such as competition, pre-
dation or promote the emergence of invasive species (Niang et al., 2014; Slingsby
et al., 2017; Péron and Altwegg, 2015; McCleery et al., 2018). In particular, pro-
tected areas are more vulnerable to colonisation by range-shifting species than
non-protected areas, suggesting that protected areas provide a more suitable habi-
tat for colonising species (Hiley et al., 2013). Management responses in these
regions may include conducting ground surveys to assess changes in species diver-
sity and abundance, followed by applying targeted actions like removing invasive
species and restoring degraded habitats. Furthermore, altering fire and herbivory
regimes to maintain ecosystems in their natural state may safeguard biodiversity
(Midgley and Bond, 2015).

Shifts to mositure-limited states could impact plant communities. For exam-
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ple, increased drought frequency could lead to increased plant mortality (Niang
et al., 2014), thus hindering natural plant succession. Furthermore, droughts could
impact the availability of natural water sources obtained from fruits and flowers
by wildlife. For example, it has been shown that decreased fruit production at-
tributed to drier and warmer climate caused an 11% drop in the body condition of
elephants that rely on fruit (Bush et al., 2020). Our results suggest that embracing
the observed changes in dry-limited ecosystems will become increasingly necessary.
Conservation responses may include promoting arid-adapted species and increasing
artificial water sources to support plant succession and access to water by wildlife,
respectively. Moreover, enhancing connectivity between protected areas and im-
plementing targeted intensive management for vulnerable species may safeguard
refugial areas where local populations can persist (Lee et al., 2023).

The changes in FB detected here emphasizes the need for establishing a ro-
bust biodiversity monitoring system for the region. To our knowledge, such a
monitoring system does not exist. We propose a multifaceted approach that com-
bines Earth observation data and citizen science knowledge to track the extent
and magnitude of climate change impacts on the ecosystems of southern Africa.
Earth observation provides advantages of obtaining increasingly available spatio-
temporal data at no cost, while citizen science can be used to identify indicator
species that serve as flagship warnings of ecosystem change (Siddig et al., 2016).
This early detection system would enable the timely implementation of adaptation
and mitigation measures. Furthermore, incorporating long-term permanent moni-
toring sites into the system would provide insights on the magnitude, severity and
rates of ecosystem change, thus aiding the assessment of future biodiversity shifts.

In conclusion, this study set out to assess changes in the functioning of the
vegetation of southern Africa. This aim along with the data availability defined
our usage and interpretation of the Functional Biome (FB) concept. Here, we
detected that most FB in southern Africa are on a trajectory from low productive
states to high productive, non-seasonal states as well as from both moisture and
temperature-limited states to solely moisture-limited states. Taken together, these
findings suggest that ecosystems in southern Africa may become more productive
and more vulnerable to moisture availability than previously. The empirical assess-
ments measured here may serve as a foundation in developing monitoring systems
of ecosystem change as well as guiding management responses.

84



3 Shifts in functional biomes Supplementary Information

3.6 Supplementary Information

TABLE VII: Cross-classification of our FB vs the Beck et al. (2018) biomes. The
Beck et al. (2018) biome class names are adapted from Peel et al. (2007). The FB
names are derived from two letters, the first letter is either L, M or H and indicates
low, medium and high vegetation productivity index (VPI) and the second letter
is either D, C, B or N and indicates whether the growth limitation index is either
dry, cold, both dry and cold or non-seasonal

HB LB MB HD LD MD HN LN MN

Aw 20 0 101 0 9 30 0 60 0
BWh 7 0 50 0 0 15 3 21 34
BSh 407 12 739 22 79 190 20 646 447
Cwa 313 0 656 4 28 90 0 168 0
Cwb 29 0 20 0 7 0 7 11 12
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TABLE VIII: Locations of protected areas discussed in the text. The protected
area code corresponds to the numbered points in Figure 23.

Protected area name IUCN classification Country Lat Long Code

Chobe National Park Botswana -18.421015 24.421832 2
Moremi Game Reserve Botswana -19.310700 23.159593 13
Central Kalahari Game Reserve Botswana -22.409874 23.894009 14
Kgalagadi National Park Botswana -25.313036 21.095487 21
Tsehlanyane National Park Lesotho -29.323878 28.116879 18
Caprivi State Forest Namibia -17.591556 23.934189 1
Gondwana Nature Park Namibia -27.580981 17.925474 10
Etosha National Park Namibia -18.881923 16.043102 12
Torra Nature Reserve Namibia -20.485909 13.964450 20
Skeleton Coast National Park Namibia -19.987356 13.269609 24
Bwabwata National Park Namibia -18.011045 21.865686 27
Namib-Naukluft National Park Namibia -23.140611 15.159970 28
Songimvelo Nature Reserve South Africa -25.939326 30.996112 8
iSimangaliso Wetland Park South Africa -27.636241 32.582187 9
Steenbokkie Nature Reserve South Africa -32.340342 22.657873 11
Kruger National Park South Africa -24.249213 31.622663 16
Marakele National Park South Africa -24.421302 27.603774 17
Asanta Sana Game Reserve South Africa -32.293119 24.985733 22
Garden Route National Park South Africa -33.837206 23.450093 23
Anysberg Nature Reserve South Africa -33.463485 20.589365 25
Grootwinterhoek Nature Reserve South Africa -33.199008 19.068176 26
Ithala Game Reserve South Africa -27.545586 31.313910 29
Camdeboo National Park South Africa -32.224315 24.504368 30
Hwange National Park Zimbabwe -19.013810 26.734951 3
Charara Safari Zimbabwe -16.520278 29.161508 4
Mana Pools National Park Zimbabwe -15.941704 29.483376 5
Chewore Safari Zimbabwe -15.829794 30.102935 6
Nyanga National Park Zimbabwe -18.295038 32.725018 7
Gonarezhou National Park Zimbabwe -21.731903 31.814015 15
Mzarabani Wilderness Area Zimbabwe -16.477231 30.877782 19
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Figure 23: Locations of protected areas discussed in the text, numbered according
to the codes in Table VIII.
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Figure 24: Geographic distribution of the phytogeographical regions defined by
Cowling et al. (2004) and referred to in the text. These phytogeographical regions
were recreated in a Geographic Information System.
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Chapter 4

4 Detecting and attributing changes in vegeta-

tion activity to climatic forcing

4.1 Summary

Climate change and elevated CO2 are altering dynamics of vegetation activity
globally, with consequences for Earth system functioning and ecosystem service
provision. Yet how terrestrial vegetation is responding to these changes and the
underlying drivers of such change has emerged as a major research challenge. Here,
we use solar-induced chlorophyll fluorescence (SIF) and enhanced vegetation index
(EVI) data, and an ecophysiological plant growth model to detect and attribute
changes in vegetation activity to trends in climatic data at 100 study sites. We
found distinct response types in the anomaly of trends in SIF and EVI datasets.
SIF dominantly show cup-shaped trends indicating switches from decreased photo-
synthetic activity to increased photosynthetic activity, while EVI dominantly show
hat-shaped trends suggesting switches from greening to browning patterns. In both
datasets, attribution analyses show that vegetation in cooler and moister regions
are primarily sensitive to changes in temperature while ecosystems in warmer and
drier regions are sensitive to changes in moisture. Our analysis further show weak
CO2 fertilization effects on the detected change, thereby highlighting the dominant
role of moisture and temperature constraints on changes in vegetation activity.
Our study opens new avenues for detecting and attributing change in ecosystems,
allowing for informed planning on adaptation and mitigation responses to changes
in terrestrial vegetation.

89



4 Attributing shifts in vegetation activity Introduction

4.2 Introduction

Climate change and elevated CO2 are altering the dynamics of vegetation activity
globally (Zhu et al., 2016; Bonan and Doney, 2018; Nolan et al., 2018; Parmesan
et al., 2022; Higgins et al., 2023a), thereby impacting ecosystem functioning and
services (Settele et al., 2014; IPBES, 2019; IPCC, 2019; Parmesan et al., 2022). For
example, climate change has abruptly pushed ecosystems beyond irreversible tip-
ping points (Harris et al., 2018; Berdugo et al., 2020; Bergstrom et al., 2021), while
global analyses of tree rings have shown that rising CO2 accelerates tree growth
but decreases overall lifespan (Brienen et al., 2020). Climate change and elevated
CO2 are further anticipated to remain the major drivers of ecosystem change in
the near future (Settele et al., 2014; IPBES, 2019; IPCC, 2019). The prominent
effects of these drivers on Earth system functioning have led to a growing interest
in detecting and attributing ecosystem response to climatic drivers. Despite this
growing interest, studies have questioned whether the detection and attribution
process itself is possible, given the associated challenges (Parmesan et al., 2013;
Stone et al., 2013).

The detection process should demonstrate that a system has statistically under-
gone change without offering a specific reason of the observed change (Parmesan
et al., 2013; Settele et al., 2014), while the attribution process involves quantifying
and determining the relative contribution of climatic drivers to the observed sys-
tem change (Parmesan et al., 2013; Settele et al., 2014). Most studies do not meet
these criteria, they either speculate that the observed system change is related to
climatic drivers or do not attempt to attribute the detected change to climatic
drivers (Van de Pol et al., 2017; Hansen et al., 2016). This suggests that robust
detection and attribution approaches remain limited. Robust detection and at-
tribution approaches are necessary to reliably link observed ecosystem changes to
changes in climatic drivers, which underpins adaptation and mitigation interven-
tions (Parmesan et al., 2022).

High-confidence detection and attribution studies use experimental analyses,
correlational approaches, statistical inferences and meta-analyses (Parmesan et al.,
2013, 2022). Such approaches are supported by multiple lines of converging evi-
dence that identify climate change, for example, as the leading cause of ecosystem
change. Despite this, robust attribution studies are mostly regional and have fo-
cused on northern latitudes (Feeley et al., 2017; Higgins et al., 2023a). In these
regions, compelling evidence has shown that changes in plant structure and func-
tioning are driven by rising temperatures (Settele et al., 2014; Bjorkman et al.,
2018). However, such regional analyses have been criticised for their geographic
bias towards northern latitudes (Feeley et al., 2017), as this may overlook the di-
versity of global species response to changes in the climate system. For example,
climate change is expected to trigger species migrations but tropical species will
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be less likely to keep pace with climate change compared to temperate species
(Feeley et al., 2015; Perez et al., 2016). Therefore, global attribution analyses of
regional ecosystem responses to climatic forcing are necessary to draw informed
conclusions about the overall impacts of climatic drivers on terrestrial ecosystems.

Recent advances in satellite remote sensing allow constant monitoring of changes
in vegetation activity at varying spatial and temporal scales. For example, global
studies have applied remote sensing techniques to assess shifts in terrestrial veg-
etation and implicated climate change and elevated CO2 as the primary drivers
(Zhu et al., 2016; Seddon et al., 2016; Smith et al., 2016; Song et al., 2018; Wang
et al., 2020b). However, such studies contain land use change effects that can
mask climate change impacts on vegetation activity or may act in synergy (Sir-
ami et al., 2017), making it challenging to accurately attribute each driver to
the detected change. For example, the pronounced greening trends observed over
USA, India and China are due to afforestation initiatives and intensive agricultural
activity (Zhu et al., 2016; Piao et al., 2020) and not driven by ecosystems’ natu-
ral responses to climatic forcing. Therefore, understanding the effects of climatic
forcing on natural systems is important for predicting the consequent changes in
ecosystem functioning (Feeley et al., 2017).

A new approach for detecting and attributing changes in vegetation activity
has recently been proposed (Higgins et al., 2023a). This new method uses an
ecophysiological plant growth model to attribute shifts in vegetation activity to
trends in climatic forcing. The Higgins et al. (2023a) approach addresses chal-
lenges such as the confounding effects of land-use change and climate change on
vegetation activity, biases related to short time series and small spatial scales and
constraints inherent in correlative modelling approaches. This study found a domi-
nant fingerprint of climate change across biome types. This study also surprisingly
found weak CO2 fertilization effects on changes in vegetation activity. However,
the normalized difference vegetation index (NDVI) and the enhanced vegetation
index (EVI) used by Higgins et al. (2023a) are not sensitive to how efficiently
the fraction of photosynthetically active radiation (FAPAR) is used for carbon
assimilation (light use efficiency (LUE)) (Grace et al., 2007; Smith et al., 2020).
Although these ’greeness-based’ vegetation indices (VIs) are useful indicators of
chlorophyll content and plant biomass, VIs may miss changes in LUE which in-
creases with elevated CO2 (Ainsworth and Long, 2005). This implicit picture of
carbon dynamics by VIs indicates that they are not direct proxies of photosynthe-
sis or GPP (Zhang et al., 2016). This also suggests that alternative data sources
should be considered when studying the effects of climatic factors on carbon as-
similation dynamics, which could potentially unmask CO2 fertilisation effects on
carbon uptake.

Satellite-based observations of solar-induced chlorophyll fluorescence (SIF) pro-
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vide new avenues for assessing photosynthetic activity (Joiner et al., 2011; Franken-
berg et al., 2011; Guanter et al., 2012). Plants emit the SIF signal that is sensitive
to LUE during photosynthesis light reactions (Porcar-Castell et al., 2014). This
light signal is emitted by excited chlorophyll molecules at longer wavelengths cov-
ering two peaks in the red and far-red range between 650-850 nm of the electromag-
netic spectrum. The SIF signal stems from the cores of a plant’s photosynthetic
machinery and quickly responds to disturbances in environmental factors like light
and moisture constraints (Guanter et al., 2015). Field and theoretical modelling
studies have shown a positive correlation of CO2 assimilation and stomatal con-
ductance with SIF, this is because increases in heat dissipation driven by high light
conditions can cause a concurrent reduction in both SIF and photosynthesis yield
(Frankenberg et al., 2011). Satellite remote sensing studies have also shown that
the seasonal cycles of SIF and GPP estimates agree well across biomes. (Joiner
et al., 2014; Damm et al., 2015; Yang et al., 2017; Li et al., 2018). Therefore, this
suggests that SIF is a reliable indicator of photosynthetic activity (Frankenberg
et al., 2011; Porcar-Castell et al., 2014).

However, the short SIF record has limited its usage in long-term studies. This
limitation has led researchers to use machine learning algorithms to reconstruct SIF
datasets (Zhang et al., 2018; Li and Xiao, 2019; Chen et al., 2022b). To reconstruct
the SIF data, the short record of the dataset is used to train a machine learning
algorithm. This algorithm is then used to generate missing data retrospectively,
thereby filling gaps in the historical record. This allows for continuous analyses
over longer periods.

Here, we assess changes in the vegetation activity of terrestrial ecosystems and
attribute these shifts to changes in climatic forcing between 2001 to 2020. To do
this, we use data records of SIF and EVI, and a mechanistic plant growth model
simulated using climate reanalysis datasets. We improve on the state-space model
developed by Higgins et al. (2023a) by simultaneously modelling two response vari-
ables; we use the reconstructed SIF dataset (Chen et al., 2022b) to model carbon
uptake, hence GPP, we further use EVI to model plant biomass. Such modifica-
tions constrains the parameters of the model and explicitly attribute changes in
carbon and biomass assimilation to trends in climatic forcing. That is, we use the
modelling results to quantify the contributions of the trends in moisture, temper-
ature, CO2, and solar radiation to the trends in carbon and biomass assimilation.
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4.3 Materials and Methods

4.3.1 Data and site selection

To model carbon uptake, we use a reconstructed solar-induced chlorophyll flores-
cence (SIF) dataset (Chen et al., 2022b). Chen et al. (2022b) reconstructed the
TROPOMI SIF dataset using the XGBoost machine learning algorithm, which is
known for handling large datasets efficiently (Tan et al., 2021). Specifically, the al-
gorithm used several input variables such as Caltech TROPOMI SIF data (Köhler
et al., 2018), land surface temperature, land cover, Photosynthetically Active Ra-
diation and surface albedo. While the Caltech TROPOMI SIF data had a time
window of 2018-2020, other input datasets ranged from 2001-2020. All the input
data was then split into training (80%) and testing (20%). The hyperparame-
ters of the model were optimized using a grid search with 10-fold cross-validation.
This approach finds the best parameter combination based on the Root Mean
Square Error (RMSE). Model performance was evaluated by comparing the ob-
served Caltech TROPOMI SIF data with the reconstructed TROPOMI SIF data.
The R2 value between the observed and reconstructed SIF values was 0.92 during
model training and 0.91 during testing, while the regression slope was 1.00 for
both training and testing. The high R2 and regression slope values suggest that
the XGBoost model performed well in reproducing the Caltech TROPOMI SIF
data. To assess the reconstructed SIF product’s ability to capture seasonal and
interannual changes in SIF, the data was further validated against tower-based
SIF, GOME-2 SIF, OCO-2 SIF and FLUXNET GPP, achieving high accuracy in
all cases (Chen et al., 2022b). The data record spans a period of 2001-2020 un-
der clear sky conditions with a grid size of 0.05 degrees and temporal resolution
of 8 days. The data-driven approach used to reconstruct the SIF dataset, ro-
bust model performance and high accuracy against various independent validation
datasets motivated our usage of this product.

To model biomass assimilation, we use the EVI MOD13A2 product from the
MODIS programme’s Terra satellite. The algorithm for the MOD13A2 product
uses a compositing method based on criteria such as lowest cloud cover, low-
est aerosol content, lowest angle view and highest EVI value to select the best
pixel value (Didan, 2015). Furthermore, the 1 km product is an atmospherically
corrected dataset consisting of 16-day image composites with high-quality obser-
vations (Didan, 2015). The data we used spans 2001-2020.

The environmental forcing data we used are the ERA5-Land products (Hers-
bach et al., 2020; Muñoz-Sabater et al., 2021) (European Centre for Medium-
Range Weather Forecasts Reanalysis v.5; ERA5 henceforth). The ERA5 products
are monthly reanalysis estimates of atmospheric variables at 0.1◦ grid size. The
variables we used were volumetric soil water (0-7 cm soil depth), soil temperature
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(0-7 cm soil depth), air temperature (2 m surface air temperature) and surface so-
lar radiation. We obtained annual historical atmospheric CO2 data from ISIMIP
(https://esg.pik-potsdam.de/projects/isimip/).

We used 100 study sites (Figure 25) with a grid size of 9 km as identified by
Higgins et al. (2023a). Large pixels sizes average out small-scale heterogeneity
within landscapes. These sites are wilderness landscapes of the world’s major
terrestrial ecosystems that were stratified by biome type: savanna (SA), grassland
(GR), shrubland (SH), temperate evergreen and temperate deciduous forest (TF),
boreal forest (BF), tropical evergreen forest (RF), Mediterranean-type ecosystems
(MT) and tundra (TU). The criteria used by Higgins et al. (2023a) for selecting
these pixels were as follows: (1) Pixels should have homogenous vegetation. Small-
scale heterogeneity (for instance, peatlands, drainage lines, catenas) was permitted
as long as they were frequently observed on the pixel over time (2) Pixels should
have no evidence of land use effects (for instance, no evidence of tree harvesting,
crop farming, or paved surfaces). Small agricultural or pastoral fields were allowed
as long they remained constant in size over time (3) Pixels with large water bodies
were excluded, but small water bodies were permitted if they did not violate criteria
(1). (4) Pixels should not be adjacent to each other (i.e. neighboring pixels were
not considered). Higgins et al. (2023a) used Google Earth Pro’s Time tool, which
offers high resolution time series Earth observation imagery from 1984, to verify
that all the 4 criteria were met.

The EVI, SIF and ERA5 forcing data were resampled to 9 km (using R (R
Core Team, 2023), command terra::resample, method bilinear). The data was
then linearly interpolated to provide weekly estimates for each variable (using R
command stats::approx ). This step determined the time interval of the time series
analyses.

4.3.2 The TTR model excluding environmental forcing data

The description of the Thornely transport resistance (TTR) model without en-
vironmental forcing is modified from Higgins et al. (2023a)’s description of the
model. We summarise the model description and do not claim any intellectual
property associated with this model or how it is described.

The TTR model without environmental forcing is based on Thornley (1998)’s
original model. Table IX provides a summary of the model parameters. The shoot
and root mass (MS and MR, in kg) vary based on growth and loss dynamics
(equations 6 and 7), while litter (kL) and maintenance respiration (r) loss rates
(in kg.kg−1.day−1) remain constants. The parameter KM (in kg) indicates how
loss depends on the mass pools (MS or MR). Plant growth (Gs and Gr, in
kg.day−1) vary according to carbon and nitrogen concentrations (equations 8 and
9). CS, CR, NS and NR are carbon and nitrogen concentrations (in kg) in the
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TU
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Figure 25: Geographic distribution of 100 study sites grouped by biome type. The
sites represent the diversity of the major terrestrial ecosystems of the world as
identified by Higgins et al. (2023a). Letters in the map legend indicate the biome
type: SA= savanna, GR= grassland, SH= shrubland, RF= tropical evergreen
forest, MT= Mediterranean type ecosystems, TF= temperate forest, TU= tundra,
BF= boreal forest.

shoots and roots. The shoot and root dry matter are therefore represented such
that,

MS[t+ 1] = MS[t] +GS[t]−
(kL + r)MS[t]

1 + KM

MS[t]

, (6)

MR[t+ 1] = MR[t] +GR[t]−
(kL + r)MR[t]

1 + KM

MR[t]

, (7)

where GS and GR are
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GS = g
CS NS

MS
, (8)

GR = g
CR NR

MR
, (9)

g denote the growth coefficient (in kg.kg−1.day−1).
The shoot mass and net photosynthetic rate (a, kg.kg−1.day−1 ) are used to

calculate carbon uptake UC (equation 10). The root mass and the nitrogen uptake
rate (b, in kg.kg−1.day−1) are used to calculate the nitrogen uptake UN (equation
11). The parameter KA (in kg) ensures that carbon uptake and nitrogen uptake
are asymptotic relative to mass. The inhibition of carbon and nitrogen uptake are
represented by parameters JC and JN (in kg.kg−1) in equations 10 and 11, respec-
tively. Specifically, these parameters simulate how source activity is inhibited at
high substrate concentrations,

UC =
aMS

(1 + MS
KA

)(1 + CS
MS JC

)
, (10)

UN =
bMR

(1 + MR
KA

)(1 + NR
MR JN

)
. (11)

The movement of C and N substrates (τC and τN , in kg.day−1) varies as a
function of concentration gradients between roots and shoots and the associated
resistances. Although Thornley (1998)’s model defined the resistances flexibly, we
assume that resistances scale linearly with biomass,

τC =
MS MR

MS +MR

(
CS

MS
− CR

MR

)
(12)

τN =
MS MR

MS +MR

(
NR

MR
− NS

MS

)
(13)

Changes in carbon and nitrogen mass in the roots and shoots are denoted by
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CS[t+ 1] = CS[t] + UC [t]− fCGs[t]− τC [t] (14)

CR[t+ 1] = CR[t] + τC [t]− fCGr[t] (15)

NS[t+ 1] = NS[t] + τN [t]− fNGs[t] (16)

NR[t+ 1] = NR[t] + UN [t]− fNGr[t]− τN [t] (17)

fC and fN (in kg.kg−1) mimic the fractions of structural carbon and nitrogen.

4.3.3 The TTR model with environmental forcing data

The description of the TTR model with environmental forcing is modified from
Higgins et al. (2023a)’s description of the model. We summarise the model de-
scription and do not claim any intellectual property associated with this model or
how it is described.

Here, we illustrate how environmental forcing factors constrain the net photo-
synthetic rate (a), the nitrogen uptake (b), the growth rate (g) and the respiration
rate (r). Equations (18)-(22) describe these environmental forcing effects. All
remaining parameters are assumed to be constant. As in previous studies that
have added environmental forcing to the TTR model (Higgins et al., 2012, 2023a),
the model assumes that that environmental factors co-limit parameters a, b and
g in a manner similar to the principles of Liebig’s law of the minimum. In this
study, the TTR model we use closely follows that of Higgins et al. (2023a), which
uses the Farquhar model of photosynthesis (Farquhar et al., 1980; von Caem-
merer, 2000) to mimic how air temperature, solar radiation and atmospheric CO2

constrain photosynthesis (Conradi et al., 2020). We also assume that the pa-
rameters of the Farquhar model are considered universal and that plants use ei-
ther C3 or C4 photosynthetic pathway. The photosynthetic rates of the Farquhar
model are adjusted to [0,amax] to produce afqr. The influence of soil moisture
(Msoil) on the photosynthetic rate is described by an increasing step function

S(M,β1, β2) = max
{
min

(
M−β1

β2−β1
, 1
)
, 0
}
. Therefore, a is redefined as,

a = afqr S(M,β1, β2) (18)
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Factors influencing nitrogen availability are intricate while plant nitrogen data
are marked by uncertainty (Higgins et al., 2023a). Based on this, we assume that
the nitrogen uptake rate (b) will vary as a function of soil temperature and soil
moisture. Specifically, we assume that the nitrogen uptake rate has a maximum
rate (bmax) constrained by both soil temperature (Tsoil) and soil moisture (Msoil)
such that,

b = bmax S(Tsoil, β3, β4) Z(M,β5, β6, β7, β8) (19)

We assume that the nitrogen uptake rate (b) first increases and then saturates
with rising temperature (equation 19). Furthermore, we assume that the rela-
tionship between the nitrogen uptake rate and soil moisture follows a trapezoidal
pattern, with low rates in dry conditions, higher rates at moderate moisture lev-
els, and reduced rates in flooded soils. This trapezoidal function is represented by

Z(M,β5, β6, β7, β8) = max
{
min

(
M−β5

β6−β5
, 1, β8−Tmax

β8−β7

)
, 0
}
.

We have described how environmental forcing factors constrain carbon and
nitrogen assimilation in plants, which as a result influence plant growth as shown in
equations (8) and (9). We further considered how the growth rate (g) is constrained
by soil temperature (Tsoil) and soil moisture (Msoil) so that,

g = gmax Z(Tsoil, β9, β10, β11, β12) S(Msoil, β13, β14) (20)

We use Tsoil rather than air temperature (Tair) because vegetation activity is
strongly influenced by soil temperature which also changes at slower rates com-
pared to air temperature (Higgins et al., 2023a). In equations (6) and (7), the
respiration rate (r) increases as air temperature (Tair) increases before reaching a
peak value rmax such that,

r = rmaxS(Tair, β15, β16). (21)

The parameter r is the maintenance respiration. We do not explicitly consider
growth respiration. We assume that the growth respiration is inherently included
in the growth rate (g, equation 20) and that any temperature-related variations in
growth respiration are already reflected in equation (20).

The effect of fire on the shoot mass (MS) is described as,

MS[t+ 1] = MS[t](1− S(F, β17, β18)) (22)

where F represents the fire severity indicator at time t (for instance burned
area at t) and the function S(F, β17, β18) ensures that MS decreases when F is
large. Previous work showed that data on fire effects was insufficient for esti-
mating β17 and β18 (Higgins et al., 2023a); we therefore excluded fire effects in
subsequent analyses. We also estimate the parameters βa and βb to allow each site
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to have distinct maximum photosynthetic and nitrogen uptake rates, respectively.
Subsequently, a is redefined as a′ = βa afqr and b is redefined as b′ = βb b.

4.3.4 The TTR as a state-space model

We adopted a Bayesian state-space framework (Higgins et al., 2023a) to concep-
tually structure the analysis such that,

M [t] = f(M [t− 1],β,θt−1, ϵt−1 (23)

V I[t] = m M [t] + η. (24)

where M [t] is the predicted biomass (where biomass M = MS + MR) at time
step t, ϵt−1 is the process error of each state variable (MS, MR, CS, CR, NS and
NR). The function f(M [t − 1],β,θt−1, ϵt−1 mimics how the state variables MS,
MR, CS, CR, NS, NR, β parameters and environmental forcing θt−1 influence
the predicted biomass (M). Equation 24 is the observation equation that links
the vegetation index (EVI) observations to the predicted M using the parameter
m. Equation 24 assumes that the relationship between predicted biomass (M)
and the VI is linear (Wessels et al., 2006; Zhu and Liu, 2015). We use the quality
scores of the EVI product (labeled Q = 0, 1, 2, where 0 is good and 2 is poor; see
Table X), to structure each observation error η in equation 24. These steps allow
the observation error to grow larger as the quality score increases. Therefore, η is
defined as η = e0 + e1Q.

We formulated the model using the R package LaplacesDemon (Statisticat,
LLC, 2021). We assigned non-informative uniform priors to all β parameters. A
non-informative normal prior was given to the parameter m, constrained to be
greater than 0. Gaussian distributions were used to model the process error terms
while their corresponding variances were given half-Cauchy priors. We assigned
non-informative normal priors to the parameters ex, while a non-informative uni-
form prior was assigned to the initial biomass M [0]. To determine the posterior
distributions of our model’s parameters, we appllied the twalk Markov chain Monte
Carlo (MCMC) method using its default settings. We additionally used the ge-
netic DEoptim algorithm (Storn and Price, 1997; Mullen et al., 2011) to fit the
model and assess the MCMC algorithm’s robustness in exploring the entire pa-
rameter space. We used DEoptim because the algorithm has been shown to be
stable when handling complex multi-modal and high-dimensional challenges (Ar-
dia et al., 2011). The log root-mean-square error of the models estimated with
MCMC was significantly lower than those estimated using DEoptim (paired t-test
SIF analysis: t = -3.2946, d.f = 99, P = 1.1108 x 10e-5; paired t-test EVI analysis:
t = -4.4073, d.f = 99, P = 1.1925 x 10e-5), suggesting overall good performance
of the MCMC algorithm compared to DEoptim.
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4.3.5 Extracting anomalies and estimating trends

The ’seasonal and trend decomposition using Loess’ (STL) (Cleveland et al., 1990)
approach was applied to the data (using R command stats::stl). STL uses Loess
smoothing to extract the seasonally-driven element s from within a time series.
After extracting the seasonal element, the remainder r (or the anomaly) represents
the combined effect of an existing long-term trend and random variations. This
trend is estimated using two techniques. In the first approach, we fit a quadratic
polynomial (r = a + bx + cx2) to the remainder (r)(here x denote time while
a, b and c are coefficients of the regression model). Using polynomials allowed
us to determine if a trend is present, and if so, we then characterized the existing
trend as either cup-shaped (i.e initial decrease in vegetation activity followed by an
increase in vegetation activity) or hat-shaped (i.e an initial increase in vegetation
activity followed by a decrease in vegetation activity) or linear (i.e no reversal in
the trend direction). Second, we fit a bent-cable regression model to the remainder
(r), to estimate the trend in the data. Bent-cable regression is a type of piece-wise
linear regression that identifies the point of change where one linear phase shifts
to another phase within a time series (Chiu et al., 2006; Khan and Kar, 2018).
The model is of the form r = b0 + b1x+ b2 q(x, τ, γ) (Khan and Kar, 2018), where
x denote time, b0 represents the intercept, b1 is the rate of change (or slope) in the
first phase, b2− b1 is the slope in the second phase while the function q defines the

point of change such that: q(x, τ, γ) = (x−τ+γ)2

4γ
I(τ−γ < τ+γ)+(x−τ)I(x > τ+γ);

τ represents the point of change, γ determines how sharp or smooth r changes
between the two linear phases at the point τ ; when A is true, the indicator function
I(A) returns 1; otherwise it returns 0. The bent-cable regression allowed us to
determine if a trend is present, and if so, we then characterized the existing trend as
either cup-shaped (i.e initial decrease in vegetation activity followed by an increase
in vegetation activity) or hat-shaped (i.e an initial increase in vegetation activity
followed by a decrease in vegetation activity) or linear (i.e no reversal in the trend
direction), and whether the pattern is showing an overall increase or a decrease. We
estimated the polynomial and bent-cable models using the Adaptive Metropolis
MCMC algorithm as implemented in Laplaces Demon (Statisticat, LLC, 2021),
and non-informative priors. We limited the values of τ to lie within the middle
70% range of the time series and restricted γ to a maximum of 2 years.

Extracting the seasonal components in the soil moisture, soil temperature, air
temperature and solar radiation allowed us to model detrended time series (d)
of the environmental forcing factors. We did not detect seasonality in the atmo-
spheric CO2 data. The model is of the form d = ȳ + s + N(µ, σ) where N(µ, σ)
is a random variable with a normal distribution with mean µ and standard devia-
tion σ estimated from the remainder r (we validated that the normal distribution
provided a good description of r.), ȳ represents the average of the time series
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while s represents the seasonal component estimated using STL. We calculated
the average CO2 over the time series to represent the CO2 detrended time series.

Overall, the full workflow described in this section is visually summarised in
Figure 26 and Figure 27.

Confirm attribution if 
slope of regression 

with full data is 
positive and higher 

than slope of 
regression with 
detrended data 

(Figure 27c)

Apply time series 
decomposition to 

identify anomalies in 
SIF and EVI 
(Figure 27b)

Generate detrended 
time series forcing 

data

Use model to predict 
anomalies in SIF and 

EVI using full and 
detrended forcing data

(Figure 27c)

Determine model 
parameters for SIF 
and EVI time series 
using state space 

approach
(Figure 27a)

Use change in 
regression slope to 

assess relative 
importance of trends 

in the forcing 
variables in explaining 
observed anomalies

(Figure 27d)

Figure 26: A schematic workflow summarising the steps in this study’s analyses.
These steps were adapted from Higgins et al. (2023a).

101



4 Attributing shifts in vegetation activity Materials and Methods

0
0.

2
0.

4
0.

6
0.

8
1

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

S
IF

Year

Data
Model

a SA−BFA−BNP
−

0.
25

−
0.

05
0.

05
0.

15
0.

25

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021

S
IF

S
IF

 a
no

m
al

y

Year

b

−0.003 −0.002 −0.001 0.000 0.001 0.002 0.003

−
0.

00
3

−
0.

00
1

0.
00

1
0.

00
3

Model SIF anomaly

D
at

a 
S

IF
 a

no
m

al
y

full model
detrended model

c

anomaly prediction

0.0 0.2 0.4 0.6

0
5

10
15

20

D
en

si
ty

−tair
−tsoil
−moist
−srad
−CO2

Change in slope

d

Figure 27: An analysis of SIF time series for a savanna biome in the Burkina Faso
National Park, one of the 100 sites of this study. (a) The state-space model’s pre-
dictions of SIF vegetation activity data over a 2-decade period. The 95% credible
intervals of the model’s predictions, shown by the light blue polygon, include uncer-
tainties from processes in the system, observations and parameters. (b) Detected
SIF data anomalies (visualised as blue bars) and a bent-cable regression model fit-
ted to such anomalies. The shaded polygons (light blue) indicate the 95% credible
intervals of the regression model’s predictions. (c) The model’s prediction of the
anomalies in the SIF data using full and detrended environmental forcing factors
as shown by the zero intercept regression. Prediction uncertainties are visualized
as polygons (blue and red) representing 95% credible intervals. (d) The posterior
density shows the sensitivity of the full model’s regression slope when removing
trends in the forcing data. The example used here shows that at this study site,
vegetation activity in the SIF data was dominantly sensitive to changes in mois-
ture. Figure 32 shows a similar plot using EVI data. tair = air temperature,
tsoil = soil temperature, moist = soil moisture, srad = solar radiation, CO2 =
atmospheric CO2.
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4.4 Results

4.4.1 Detected trends in vegetation activity

We found qualitatively different response types in the anomaly trends between SIF
and EVI datasets using bent-cable piecewise linear regressions and quadratic poly-
nomials. Most sites in the SIF analyses exhibited a cup-shaped trend (increased
photosynthetic efficiency), while hat-shaped (decreased photosynthetic efficiency)
trends were the second most common and linear trends the least (Figure 28 and
33). In contrast, most sites in the EVI analyses revealed that hat-shaped (brown-
ing) trends were the most dominant, followed by cup-shaped patterns (greening)
while linear trends were the least common (Figure 34 and 35). Both datasets
revealed non-linearity as the dominant pattern, with overall increasing trends be-
ing more prevalent than decreasing trends. Notably, these increasing trends were
particularly pronounced in the hat-shaped patterns of both datasets.

4.4.2 Attribution of shifts in vegetation activity

We found that in 87 sites of SIF data and 79 sites of EVI data, the TTR model was
able to predict observed anomalies in the datasets (SIF and EVI) and attribute
them to the anomalies in the climatic forcing variables (Figure 29 and Figure
36). This suggests a detectable imprint of climatic variables on the functioning
of terrestrial ecosystems. Classifying sites according to the relative importance
of climatic variables in driving the detected vegetation anomalies revealed two
qualitative similar groups in both the SIF and EVI datasets (Figure 30 and Figure
37). The first group was dominated by moisture as the driving factor in explaining
anomalies in both datasets. This group was comprised of savanna, shrubland and
grassland sites. The second group was dominated by temperature as the driving
factor in explaining anomalies in both datasets. This group was comprised of
temperate forest, boreal forest and tundra sites. The most striking result to emerge
from both the SIF and EVI analyses is that atmospheric CO2 and solar radiation
had a weak effect on the model’s prediction of the observed anomalies in the data
(Figure 30 and Figure 37).

The driving factors that had a strong influence on the observed data anoma-
lies were well-defined in a climate and geographic space. A discriminant analysis
showed that the primary groups in Figure 30 and Figure 37 can be effectively
distinguished using mean annual soil moisture and annual temperature (Figure 31
and Figure 38). Sites indicating anomalies in SIF and EVI primarily influenced
by soil moisture anomalies were predominantly found in warm and dry environ-
ments. While sites indicating anomalies in SIF and EVI primarily influenced by
temperature anomalies were located in cooler and moister regions. Sites where
the state-space model could not attribute anomalies in the SIF and EVI data to
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the anomalies in the forcing variables were mostly located in warmer and moister
locations. These sites were primarily dominated by tropical rainforest sites, al-
though some of the tundra sites showed similar patterns. In essence, these results
adhere to fundamental ecological principles, suggesting that moisture limitation is
a characteristic of warm and dry ecosystems, whereas temperature constraints are
more prevalent in cooler ecosystems.

The response shapes of vegetation activity in the SIF and EVI datasets, in-
cluding whether such responses exhibited increasing or decreasing trends over the
study period, were not well segregated in climatic or geographic space (Figure
31 b, c, e, f and Figure 38 b, c, e, f). This suggests that changes in vegetation
activity can occur at different temporal and spatial scales (Higgins and Scheiter,
2012). This further suggests that the response shapes of vegetation activity may
differ even within the same time frame and geographic region (Pan et al., 2018;
Sulla-Menashe et al., 2018; Hubau et al., 2020).
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Figure 28: The frequency of SIF anomaly responses detected with bent-cable re-
gression models over time. Shown here are the number of sites that exhibited
cup-shaped trends (an initial decrease in photosynthetic activity followed by an
increase), hat-shaped trends (an initial increase in photosynthetic activity followed
by a decrease) and linear trends (no trend reversal in photosynthetic activity) in
the SIF data anomalies. Different colours indicate the number of detected anomaly
trends showing increases (INC) or decreases (DEC) over the time series. Increasing
or decreasing response types of less than 5% were categorized as small. We found
similar patterns when using a quadratic polynomial models (shown in Figure 33).
The results for EVI data are shown in Figure 34 and Figure 35.
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Figure 29: Predicted anomalies in
SIF using full and detrended forc-
ing data. Shown here are the
slopes of the zero intercept regres-
sion of the model’s ability to pre-
dict anomalies in photosynthetic
activity between the full vs de-
trended forcing data (as shown in
Figure 27c). The points indicate
the mean of the posterior estimates
of the slope, with the tick marks
spanning the 95 % credible inter-
vals of the estimates. Attribution
is confirmed if the slopes of the re-
gression model with full climatic
data is positive and higher (the
credible intervals do not overlap)
than slopes of the regression model
with detrended data climatic data.
Attribution was confirmed for 87 of
100 sites in the SIF data. Similar
analyses are shown in Figure 36 us-
ing EVI data.
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Figure 30: Sensitivity of SIF anomalies to anomalies in the forcing factors for all
sites. The sensitivity quantifies the relative contribution of the forcing variables (T
air = air temperature, T soil = soil temperature, M soil = soil moisture, S rad =
solar radiation and CO2 = atmospheric CO2) on the model’s regression slope. The
regression slope describes how effective the model can predict anomalies in the SIF
data over time (as shown in Figure 27). The red color ramp represents the slope of
the full model. The matrix shows that 87 of 100 (87%) sites where the model could
attribute anomalies in the SIF data to anomalies in the forcing variables. Colored
circles categorize the sites into response groups using an unsupervised classification
approach. The site names are represented by codes that indicate biome type
(SA=savanna, GR=grassland, SH=shrubland, TU=tundra, MT=Mediterranean
type ecosystems, TF=temperate forest, RF=tropical evergreen forest, BF=boreal
forest), country name based on the ISO 3166-1 alpha-3 codes and site name. Figure
37 shows a similar analysis using EVI data.
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Figure 31: The sensitivity of ecosystems groups in climatic and geographic space
analysed with SIF data. (a) The biclimatic distribution of attribution groups
shown in Figure 30. Points represent the distribution of this study’s 100 study sites
in a temperature and moisture space. Classes labelled 1 and 2 are the classified
groups in Figure 30 while the class labelled as 0 were groups not included in Figure
30 because the model could not attribute anomalies in the SIF data. Ellipses show
the class covariance estimates derived from discriminant analysis using Gaussian
finite mixture models. Panels (b, c) show the shape of the trend (b) and direction
of the trend (c) of the observed SIF anomaly (Figure 28) visualised in a biclimatic
space. The mean annual soil moisture and mean annual temperature for the time
series were calculated using the ERA5 climate reanalysis data. Panels d, e and f
are used to geographically plot the points in panels a, b and c. Figure 38 shows a
similar analysis using EVI data.
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4.5 Discussion

In this paper, we have presented an improved process-based model forced by weekly
climatic variables, to detect changes in vegetation activity and attribute such
changes to climatic drivers. The model uses SIF data as a novel proxy of car-
bon assimilation and uses EVI data as a proxy for biomass content. SIF offers the
advantage of providing a signal that stems from the cores of a plant’s photosyn-
thetic machinery (Porcar-Castell et al., 2014), thereby a better proxy for carbon
uptake unlike vegetation indices which provide no information on photosynthetic
activity (Zhang et al., 2016), yet are commonly used in studies that assess GPP
trends (Glenn et al., 2008; Zeng et al., 2022). Trend analyses showed that most
study sites in the SIF data exhibited increased photosynthetic activity, while most
study sites in the EVI data exhibited browning patterns. The model was able to
detect anomalies in the response variables (87% for SIF and 79% for EVI) and
attribute it to anomalies in the forcing data. Taken together, these findings sug-
gest a detectable climate change signal in the functioning of terrestrial vegetation
between 2001-2020.

The dominance of cup-shaped trends in SIF data suggest a switch from an
initial decrease to increasing shifts in carbon uptake, which supports recent studies
that have reported increasing global trends of SIF (Wang et al., 2022b; Zhou et al.,
2022b) and increasing NPP and GPP trends (Smith et al., 2016; Green et al.,
2019; Cai and Prentice, 2020; O’Sullivan et al., 2020; Zheng et al., 2020). The
dominance of hat-shaped trends in the EVI dataset suggest shifts from an initial
increase (greening) to a decrease (browning) is supported by studies that have
depicted an overall decrease in EVI and NDVI trends (Zhao and Running, 2011;
Higgins et al., 2023a).

The contrasting trends observed between SIF and EVI datasets may reflect
different aspects of vegetation dynamics. The sensitivity of SIF to photosynthetic
efficiency (LUE) may capture changes in carbon uptake driven by physiological
responses to environmental drivers such as moisture availability and temperature.
Since EVI is a greenness index that measures reflected light in the red, near-infrared
and blue bands, which correlates with chlorophyll content, it may not always
correlate with changes in photosynthetic efficiency (Huete et al., 2002). This may
be because vegetation indices do not directly measure photosynthesis or related
physiological processes as they constitute a mixed signal composed of chlorophyll
content in leaves, canopy density and structure (Zhang et al., 2016). Therefore, this
suggests that an increase in photosynthetic efficiency may not always guarantee
an equivalent rise in vegetation greenness. Indeed, it has been shown that SIF and
EVI exhibited contrasting responses to climatic variability, with SIF indicating
stronger correlations with climatic variability (Walther et al., 2016; Wang et al.,
2022a).
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Another mechanism that may underlie the contrasting responses of vegetation
in the SIF and EVI datasets may be related to how plants adapt to changing
environmental conditions. Plants may allocate resources to stress tolerance mech-
anisms, such as investing in root growth instead of aboveground growth (Reich,
2014). These mechanisms cannot be captured by EVI data.

However, despite cup-shape trends being dominant in SIF and hat-shape trends
in EVI, both datasets agree that increasing overall hat-shaped trends were more
pronounced than decreasing trends. This suggests that a growing number of
ecosystems may not sustain current productivity and greenness levels, potentially
sequestering less carbon in the future (Higgins et al., 2023a). Studies have shown
that future carbon sinks may slow down globally driven by nutrient constraints,
increasing warming and frequent droughts (Peñuelas et al., 2017). These factors
may have a negative effect on carbon sinks than the benefits gained from CO2

and nitrogen fertilization. However, it is possible that our short time series of 2
decades may have played an important role in us detecting the increasing overall
hat-shaped trends. But it is reassuring that our findings support that of Higgins
et al. (2023a), who used the GIMMS NDVI dataset with a longer record of 34
years.

Both SIF and EVI analyses indicate sensitivity to climate change, with mois-
ture primarily influencing southern latitudes and temperature affecting northern
latitudes. The dominance of climate drivers support studies that have used satel-
lite data to attribute shifts in vegetation activity to climate anomalies (Zhao and
Running, 2010; Jiao et al., 2021; Higgins et al., 2023a). Surprisingly, CO2 ex-
hibited weak effects in both datasets, contrary to expectations of stronger CO2

effects in SIF. The lack of CO2 fertilization effects in driving vegetation activity
contradicts studies reporting strong CO2 effects (Zhu et al., 2016; Gonsamo et al.,
2021), but our findings are supported by growing evidence that suggest that CO2

enrichment effects on vegetation activity may be weakening globally (Smith et al.,
2016; Peñuelas et al., 2017; Wang et al., 2020b; Higgins et al., 2023a; Chen et al.,
2024). Studies have demonstrated that the lack of CO2 fertilization effects on
vegetation activity positively correlates with co-limiting effects of warming tem-
peratures, moisture constraints and nutrient availability (Reich et al., 2014; Smith
et al., 2016; Green et al., 2019; Xu et al., 2019; Jiao et al., 2021; Chen et al.,
2024). This implies a potential saturation of CO2 enrichment effects on terres-
trial ecosystems, with a shift from CO2 fertilization-dominated trajectory to a
climate-dominated trajectory (Peñuelas et al., 2017).

We speculate that anomalies in the SIF and EVI data are driven by short-
term climatic trends rather than a long-term rise in CO2. That is, while elevated
CO2 may underlie long-term trends in vegetation activity, CO2 effects may not
explain inter-annual variations in vegetation activity. The CO2 effects signal is
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challenging because it is derived from direct and indirect factors (for example,
greening, changes in canopy structure, enhanced water use efficiency (WUE), direct
effect on RuBisCO, interactions with moisture and nutrient availability) (Walker
et al., 2021). Separating the CO2 signal from satellite remote sensing data is
further exacerbated by the fact that all these direct and indirect factors are at play
once (Wang et al., 2021). The proxies of GPP such as SIF, essentially measure
these integrated factors which underlie the dynamics of CO2 effects (Wang et al.,
2021). Therefore, vegetation response to drivers such as moisture availability are
more immediate and pronounced compared to the slow but cumulative effects of
elevated CO2.

Increasing warming and moisture constraints may override recent benefits gained
from CO2 fertilization effects on ecosystem carbon sequestration. This is because
enhanced vegetation productivity driven by elevated CO2 concentrations acts as
a negative feedback on climate warming (Wang et al., 2020b). Specifically, by
absorbing CO2, plants dampen the rate of temperature increase caused by the
greenhouse effect. Therefore, the weak CO2 enrichment effects detected in this
study suggest a declining negative feedback loop within the global climate system,
potentially leading to increased overall warming trends. This also implies that
weakening CO2 enrichment effects would lead to increased dependence on policy
makers and managers to create future strategies to mitigate increased warming
(Peñuelas et al., 2017). This highlights the importance of global initiatives such as
the Paris Agreement, which targets to limit global warming to well below 2 degrees
Celsius (Parmesan et al., 2022). Understanding how climate change and nutri-
ent constraints combine to override CO2 enrichment in plants may be a starting
point for adaptation and mitigation planning. The dominant effects of moisture
constraints in southern latitudes and that of temperature in northern latitudes
suggest that management efforts that adopt a one-size-fits all approach may be
inappropriate. We argue that targeted reponses should be tailored to regional cli-
matic conditions of ecosystems. Scientists could focus on process-oriented model
evaluation within climate models to better understand the complex relationships
between climate change, elevated CO2, and nutrient availability (Peñuelas et al.,
2017). For example, conducting manipulative experiments such as FACE, warm-
ing experiments, altered rainfall experiments and nutrient fertilization experiments
tailored to the environmental conditions of each region. This understanding could
inform climate change policies and sustainable management responses.

Conservation responses should take into account the shifting dynamics of ecosys-
tems. This may involve practices such as combating land degradation, preventing
deforestation and reducing exploitation of natural resources, which are essential in
maintaining ecosystem services such as carbon storage, carbon sequestration ca-
pacity and moisture availability of ecosystems (Dinerstein et al., 2020; Pörtner and
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et al., 2021). Furthermore, to enhance the resilience of ecosystems, management
efforts may prioritize reducing landscape fragmentation and providing larger habi-
tat patches for species. This is because evidence suggests that inhabiting larger
patches increases species’ resilience to extreme climatic events such as droughts
and warming (Oliver et al., 2015).

Although the machine learning models used to reconstruct the SIF dataset
show overall good performance (Chen et al., 2022b), potential biases could be
present in the SIF data. Specifically, the XGboost model used by Chen et al.
(2022b) showed low accuracy in capturing the seasonal and interannual variations
between predicted and observed SIF in biomes like savannas and grasslands. This
bias could have propagated into our analyses. However, we do not expect this to
be a long-term problem as satellite-based SIF products such as GOSAT, OCO-2
and TROPOMI SIF will expand in space and time (Köhler et al., 2018; Doughty
et al., 2021).

We ignored the effects of fire on vegetation anomalies because existing global
fire datasets do not provide sufficient information to estimate parameters of the
TTR plant growth model (Higgins et al., 2023a). This may be because global fire
datasets are highly uncertain (Chen et al., 2022a). Therefore, future studies could
focus on regional attribution analyses that use localised fire datasets. Future
studies could also expand on our analyses by focusing on biomes such savanna
and grassland, that are historically prone to disturbance regimes (for example,
herbivory and fire). This is because disturbances from fire and herbivory can
override climatic forcing and may impact vegetation structure and functioning
(Bond, 2005). Expanding the state-space model to include these effects would
provide a comprehensive understanding of the drivers that underlie vegetation
activity and their interactions over time.

In conclusion, we show that shifts in the activity of terrestrial vegetation are
attributable to climatic forcing, thereby revealing a climate change signal on veg-
etation dynamics (Higgins et al., 2023a). We find that soil moisture is the major
driver of changes of ecosystems in the southern latitudes while temperature is the
main constraint in northern latitudes. We further show that weak CO2 fertilisation
effects are evident in carbon and biomass assimilation trends, suggesting that on-
going warming and moisture constraints may override previous CO2 fertilisation
benefits on vegetation activity. The contrasting forcing effects of moisture and
temperature detected in different latitudes suggests that management interven-
tions that may apply a one-size-fits-all approach may be inadequate. Therefore,
regionally focused management strategies will be relevant to promote adaptation
and mitigation of ongoing climate change. Future studies could consider regional
attribution analyses due to differences in forcing effects between biomes.
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Figure 32: An analysis of EVI time series for a savanna biome in the Burkina
Faso National Park, one of the 100 sites of this study. (a) The state-space model’s
predictions of EVI vegetation activity data over a 2-decade period. The 95% cred-
ible intervals of the model’s predictions, shown by the light blue polygon, include
uncertainties from processes in the system, observations and parameters. (b) De-
tected EVI data anomalies (visualised as blue bars) and a bent-cable regression
model fitted to such anomalies. The shaded polygons (light blue) indicate the 95%
credible intervals of the regression model’s predictions. (c) The model’s prediction
of the anomalies in the EVI data using full and detrended environmental forcing
factors as shown by the zero intercept regression. Prediction uncertainties are vi-
sualized as polygons (blue and red) representing 95% credible intervals. (d) The
posterior density shows the sensitivity of the full model’s regression slope when
removing trends in the forcing data. At this study site, vegetation activity in
the EVI data was dominantly sensitive to changes in moisture. Figure 27 shows
a similar plot using SIF data. tair = air temperature, tsoil = soil temperature,
moist = soil moisture, srad = solar radiation, CO2 = atmospheric CO2.
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Figure 33: The frequency of SIF anomaly responses detected with quadratic poly-
nomial regression models over time. Shown here are the number of sites that ex-
hibited cup-shaped trends (an initial decrease in photosynthetic activity followed
by an increase), hat-shaped trends (an initial increase in photosynthetic activity
followed by a decrease) and linear trends (no trend reversal in photosynthetic ac-
tivity) in the SIF data anomalies. Different colours indicate the number of detected
anomaly trends showing increases (INC) or decreases (DEC) over the time series.
Increasing or decreasing response types of less than 5% were categorized as small.
We found similar patterns when using a bent-cable regression models (shown in
Figure 28). The results for EVI data are shown in Figure 34 and Figure 35.
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Figure 34: The frequency of EVI anomaly responses detected with bent-cable re-
gression models over time. Shown here are the number of sites that exhibited
cup-shaped trends (an initial decrease in vegetation activity followed by an in-
crease), hat-shaped trends (an initial increase in vegetation activity followed by a
decrease) and linear trends (no trend reversal in vegetation activity) in the EVI
data anomalies. Different colours indicate the number of detected anomaly trends
showing increases (INC) or decreases (DEC) over the time series. Increasing or
decreasing response types of less than 5% were categorized as small. Results for
EVI anomaly responses using polynomial regression models are shown in Figure
35. The results for SIF data are shown in Figure 28 and Figure 33.
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Figure 35: The frequency of EVI anomaly responses detected with quadratic poly-
nomial regression models over time. Shown here are the number of sites that
exhibited cup-shaped trends (an initial decrease in vegetation activity followed by
an increase), hat-shaped trends (an initial increase in vegetation activity followed
by a decrease) and linear trends (no trend reversal in vegetation activity) in the
EVI data anomalies. Different colours indicate the number of detected anomaly
trends showing increases (INC) or decreases (DEC) over the time series. Increas-
ing or decreasing response types of less than 5% were categorized as small. The
results for SIF data are shown in Figure 28 and Figure 33.
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Figure 36: Predicted anomalies in
EVI data using full and detrended
forcing data. Shown here are the
slopes of the zero intercept regres-
sion of the model’s ability to pre-
dict anomalies in biomass assimila-
tion between the full vs detrended
forcing data (as shown in Figure
32c). The points indicate the mean
of the posterior estimates of the
slope, with the tick marks span-
ning the 95 % credible intervals of
the estimates. Attribution is con-
firmed if the slopes of the regres-
sion model with full climatic data
is positive and clearly higher (the
credible intervals do not overlap)
than slopes of the regression model
with detrended data climatic data.
Attribution was confirmed for 79 of
100 sites in the EVI data.
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Figure 37: Sensitivity of EVI anomalies to anomalies in the forcing factors for all
sites. The sensitivity quantifies the relative contribution of the forcing variables (T
air = air temperature, T soil = soil temperature, M soil = soil moisture, S rad =
solar radiation and CO2 = atmospheric CO2) on the model’s regression slope. The
regression slope describes how effective the model can predict anomalies in the EVI
data over time (as shown in Figure 32). The red color ramp represents the slope of
the full model. The matrix shows that 79 of 100 (79%) sites where the model could
attribute anomalies in the EVI data to anomalies in the forcing variables. Colored
circles categorize the sites into response groups using an unsupervised classification
approach. The site names are represented by codes that indicate biome type
(SA=savanna, GR=grassland, SH=shrubland, TU=tundra, MT=Mediterranean
type ecosystems, TF=temperate forest, RF=tropical evergreen forest, BF=boreal
forest), country name based on the ISO 3166-1 alpha-3 codes and site name.
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Figure 38: The sensitivity of ecosystems groups in climatic and geographic space
analysed with EVI data. (a) The biclimatic distribution of attribution groups
shown in Figure 37. Points represent the distribution of this study’s 100 study sites
in a temperature and moisture space. Classes labelled 1 and 2 are the classified
groups in Figure 37 while the class labelled as 0 were groups not included in Figure
37 because the model could not attribute anomalies in the EVI data. Ellipses show
the class covariance estimates derived from discriminant analysis using Gaussian
finite mixture models. Panels (b, c) show the shape of the trend (b) and direction
of the trend (c) of the observed EVI anomaly (Figure 34) visualised in a biclimatic
space. The mean annual soil moisture and mean annual temperature for the time
series were calculated using the ERA5 climate reanalysis data. Panels d, e and f
are used to geographically plot the points in panels a, b and c.
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Summary of the TTR state space model parameters

TABLE IX: The TTR model parameters used in the state space model. The state
space model uses the forcing data, constants and the β parameters to simulate the
development of the state variables and link them to the SIF or EVI time series
data. The β parameters described in the Methods are fitted to the time series for
each site.

Symbol Name Value Units
State variables

MS Mass shoot - kg biomass
MR Mass root - kg biomass
CS Carbon in shoot - kg C
CR Carbon in root - kg C
CS Nitrogen in shoot - kg N
CR Nitrogen in root - kg N

Constants
KL Litter loss rate 0.05 kg.kg−1.day−1

rmax Respiration loss rate 0.05 kg.kg−1.day−1

KM Size dependency of loss rate 0.5 kg
g Growth rate 200 kg.kg−1.day−1

a Carbon assimilation rate 0.2 kg.kg−1.day−1

b Nitrogen assimilation rate 0.02 kg.kg−1.day−1

KA Size dependency of assimilation 1 kg
JC CS inhibition of C assimilation 0.5 kg.kg−1

JN NR inhibition of N assimilation 0.025 kg.kg−1

Forcing data
R Photosynthetically active radiation - µmol.m2.s−1

CO2 Atmospheric CO2 concentration - Pa
Tair Air temperature - oC
Tsoil Soil temperature - oC
M Soil moisture content - kg.kg−1

120



4 Attributing shifts in vegetation activity Discussion

TABLE X: Simplied EVI and SIF quality scores used to parameterise observation
uncertainty in the state space model.

Original score Issue Description Simplified score

Quality

0 Good data Use with confidence 0
1 Marginal data Useful, but look at other QA information 1
2 Snow/ice Target covered with snow/ice 2
3 Cloudy Target not visible, covered with cloud 2
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The Farquhar photosynthesis model

The following model description is modified from Higgins et al. (2023a)’s descrip-
tion of von Caemmerer (2000)’s implementation of the Farquhar model. This
description is provided as a summary of the model we used and not to claim any
intellectual property associated with this model or how it is described.

The Farquhar C3 photosynthesis model is commonly used by ecophysiologists
to simulate how temperature, solar radiation and atmospheric CO2 concentration
influence photosynthesis. We use the Farquhar model as implemented by von
Caemmerer (2000) to simulate carbon assimilation in the state space model. The
equations below explicitly show which of the model variants discussed by von
Caemmerer (2000) we used (Table XI provides a summary of the parameters).
The model assumes that the photosynthetic rate is either enzyme (biochemically)
limited or electron transport limited. The Rubisco enzyme limited rate of CO2

assimilation is,

Ac =
(Cc − Γ∗)Vcmax

Cc +Kc(1 +Oc/Ko)
−Rd. (25)

Cc and Oc are the chloroplastic CO2 and O2 partial pressures and Γ∗ is the CO2

compensation point. Vcmax is the maximum rate of Rubisco activity. Kc andKo are
the Michaelis constants of Rubisco for CO2 and O2. Rd is the leaf mitochondrial
respiration.

The electron transport rate of transpiration is defined as

Aj =
(Cc − Γ∗)Jt
4Cc + 8Γ∗

−Rd. (26)

The chloroplastic CO2 partial pressure is given as

Cc = Ci − A/gm (27)

where A is the overall assimilation rate, Ci is the internal CO2 partial pressure.
The equations are used to derive two quadratic expressions for Ac and Aj,

allowing the photosynthetic rate to be expressed as,

A = min(Ac, Aj). (28)

Jt is calculated as a function of photosynthetically active radiation (PAR), using
a non-rectangular hyperbola,

Jt =
ΘPAR + Jmax −

√
(ΘPAR + Jmax)2 − 4ρΘPARJmax

2ρ
, (29)

where Jmax is the maximum rate of electron transport, ρ describes the curvature of
the hyperbola and Θ is the initial slope of Jt versus PAR, which can be interpreted
as the apparent quantum yield.
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Some of the parameters in the photosynthesis models are temperature-dependent.
For some parameters we use a Arrhenius function of the form

Y = Y25 exp

(
EY (Ti − TR

RTiTR

)
(30)

where Y25 is the parameter value at 25C and EY is the activation energy of the
parameter. Ti is the leaf temperature (in Kelvin) and TR is the reference tem-
perature (298 K). R is the universal gas constant (8.214 Jmol−1K−1). For the
remaining parameters we used a peaked Arrhenius function,

Y = Y25 exp

(
EY (Ti − TR

RTiTR

) 1 + exp
(

TRSY −HY

RTR

)
1 + exp

(
TiSY −HY

RTi

) (31)

here EY is the activation energy, HY is the deactivation energy describing the rate
of decrease for temperatures above the optimum temperature and SY is an entropy
factor.

Applying the photosynthesis equations requires calculating the internal CO2

concentration. We achieved this by linking a diffusion equation of photosynthesis
with the biochemical equations described above using a regression model that
relates stomatal conductance to photosynthesis (Ball et al., 1987). The regression
equation Ball et al. (1987) is of the form gs = mTh/Cs + b, where m and b are
regression coefficients, T is the temperature, h is the relative humidity and Cs is
the CO2 concentration at the leaf surface. The diffusion equation is described as,

Ad =
Cs − Cm

1/gs + 1/gm
(32)
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TABLE XI: Summary of the photosynthesis model parameters used in this study,
adopted from Higgins et al. (2023a).

Symbol Name Value Units
Vcmax Maximum Rubisco carboxylation rate 80 µmol.m2.s−1

Jmax Maximum rate of electron transport Vcmax ∗ 1.8 µmol.m2.s−1

Rd Mitochondrial respiration in the light Vcmax ∗ 0.01 µmol.m2.s−1

Γ∗ CO2 compensation point 4.275 Pa
Kc Michaelis constant Rubisco for CO2 40.49 Pa
Ko Michaelis constant Rubisco for O2 27840 Pa
Oc Chloroplast partial pressure O2 21000 Pa
Θ Apparent quantum yield 0.85 µmol.µmol−1

ρ Curveture of light response 0.46 [-]
gm Mesophyll conductance for CO2 15 µmolm−2s−1Pa−1

m Ball-Berry slope 9 [-]
b Ball-Berry intercept 0.01 [-]
EV Activation energy Vcmax 58.55 kJ mol−1

SV Entropy factor Vcmax 0.62926 J mol−1 K−1

HV Deactivation factor Vcmax 200 kJ mol−1

EJ Activation energy Jmax 29.68 kJ mol−1

SJ Entropy factor Jmax 0.63188 J mol−1 K−1

HJ Deactivation factor Jmax 200 kJ mol−1

Egm Activation energy gm 49.6 kJ mol−1

ERd Activation energy Rd 46.4 kJ mol−1

EKc Activation energy Kc 79.43 kJ mol−1

EKo Activation energy Ko 36.38 kJ mol−1

EΓ∗ Activation energy Γ∗ 37.83 kJ mol−1
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TABLE XII: Locations of the 100 sites and their names adopted from Higgins
et al. (2023a). The first two letters of the site names represent the biome type:
SA=savanna, GR=grassland, SH=shrubland, TU=tundra, MT=Mediterranean
type ecosystems, TF=temperate forest, RF=tropical evergreen forest, BF=boreal
forest. The middle three are ISO 3166-1 alpha-3 country codes and the last three
letters were derived from place names near the site.

longitude latitude site name
-106.37 53.79 BF-CAN-BGR
-92.88 51.79 BF-CAN-PIP
-105.54 59.29 BF-CAN-STR
-129.46 59.96 BF-CAN-ULI
-89.96 50.96 BF-CAN-WAB
58.62 61.37 BF-RUS-KRS
100.46 60.04 BF-RUS-MIR
115.71 63.29 BF-RUS-OCH
129.63 59.12 BF-RUS-SCH
-153.87 66.37 BF-USA-ALS
-70.54 -51.54 GR-ARG-BEL
-66.37 -47.46 GR-ARG-CAM
-65.79 -44.13 GR-ARG-PAT
137.54 -19.38 GR-AUS-CAM
-55.79 -30.38 GR-BRA-ENV
74.38 50.62 GR-KAZ-TEN
28.79 -28.80 GR-LSO-LET
105.13 46.62 GR-MON-MON
15.38 -18.87 GR-NAM-ETO
169.79 -45.63 GR-NZL-LMM
-74.46 -14.13 GR-PER-PIU
91.96 31.62 GR-TIB-NAG
35.21 -2.79 GR-TZA-SER
-103.45 47.13 GR-USA-LIT
141.54 -35.71 MT-AUS-BIG
-70.71 -32.45 MT-CHL-ELT
-71.28 -31.45 MT-CHL-QUE
117.96 -34.38 MT-AUS-STI
24.21 -33.71 MT-ZAF-DEH
143.38 -13.79 RF-AUS-MIR
-49.71 -0.87 RF-BAR-ENV
Continued on next page
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long lat site name
-53.71 -12.79 RF-BRA-PAR
-70.13 -1.88 RF-BRA-RIO
10.46 4.38 RF-CMR-EBO
21.21 3.96 RF-COD-ABU
28.29 -3.71 RF-COD-ITO
28.62 2.37 RF-COD-OKA
20.13 -3.04 RF-COD-SAL
-73.46 2.71 RF-COL-SIE
-53.13 5.12 RF-GUF-GUY
115.79 1.87 RF-IDN-BOR
101.62 -2.71 RF-IDN-KER
136.46 -2.62 RF-IDN-UND
81.37 6.62 RF-LKA-THA
-71.79 -11.96 RF-PER-MAN
17.21 -10.63 SA-AGO-INT
20.88 -15.54 SA-AGO-MAV
147.96 -20.54 SA-AUS-COL
132.38 -13.12 SA-AUS-KAK
125.96 -15.05 SA-AUS-MIT
142.88 -13.62 SA-AUS-MUN
2.13 12.12 SA-BFA-BNP
-50.79 -12.21 SA-BRA-ARA
24.96 -18.04 SA-BWA-CHO
19.79 8.70 SA-CAF-MMM
34.79 -20.87 SA-MOZ-COU
39.13 -14.38 SA-MOZ-MEC
20.79 -19.04 SA-NAM-KHA
-13.62 14.79 SA-SEN-MAT
31.29 -23.54 SA-ZAF-MOP
32.38 -13.04 SA-ZMB-LUP
24.71 -12.21 SA-ZMB-MIO
30.21 -8.79 SA-ZMB-TON
-67.79 -32.62 SH-ARG-ELT
-61.62 -19.13 SH-BOL-CHA
-38.62 -9.21 SH-BRA-CAA
-41.29 -13.05 SH-BRA-CHA
-43.37 -8.96 SH-BRA-SCO
23.88 -22.21 SH-BWA-CEN
21.29 -25.96 SH-BWA-KAL
Continued on next page
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long lat site name
65.38 46.79 SH-KAZ-APP
-98.71 24.71 SH-MEX-DEL
-113.54 27.46 SH-MEX-POR
-107.96 26.04 SH-MEX-SAN
-97.21 18.04 SH-MEX-TEH
18.29 -20.71 SH-NAM-OZO
34.54 5.12 SH-SSD-LOE
-110.37 34.79 SH-USA-JUN
-115.29 34.13 SH-USA-LAR
148.54 -37.21 TF-AUS-DED
-127.54 50.21 TF-CAN-VAN
-73.96 -42.21 TF-CHL-CHI
24.46 41.42 TF-GRC-RHO
139.30 37.20 TF-JPN-ECH
139.78 38.31 TF-JPN-MIO
167.21 -46.13 TF-NZL-FJO
136.54 47.37 TF-RUS-SRE
54.37 57.21 TF-RUS-YUZ
-80.29 38.29 TF-USA-CRA
-83.62 35.62 TF-USA-GRE
-91.22 37.27 TF-USA-LOG
-90.21 64.87 TU-CAN-BAT
-72.46 60.54 TU-CAN-PIN
-82.79 54.12 TU-CAN-POL
-122.05 69.13 TU-CAN-TUK
-109.42 66.81 TU-CAN-UKK
24.54 69.71 TU-NOR-FNM
61.96 68.62 TU-RUS-KAR
88.13 71.47 TU-RUS-PUR
121.38 72.29 TU-RUS-SKI
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Chapter 5

5 General Discussion

5.1 Overview

All 21 metrics we used to study vegetation phenology in southern Africa showed
changes of at least 1 standard deviation for each pixel between 2000-2019. This is
the first study to show multi-dimensional changes in the phenological behaviour of
vegetation in the region and such changes could have consequences for ecosystem
functioning. Furthermore, the Functional Biomes (FB) of southern Africa changed
significantly between 2000-2021, with 3% to 15% of pixels shifting in biome state.
The empirical findings in this study provide a new understanding of FB dynamics
in southern Africa. Globally, we found that SIF data dominantly showed switches
from decreased photosynthetic activity to increased photosynthetic activity, while
EVI dominantly showed switches from greening to browning trends between 2001-
2020.

Attribution analyses in both datasets agree that vegetation in northern lati-
tudes was sensitive to changes in temperature while southern latitudes was sensi-
tive to changes in moisture. Furthermore, both datasets revealed weak CO2 effects
on the detected change. These findings extend the work of Higgins et al. (2023a) by
revealing that carbon and biomass assimilation trends are strongly influenced by
climatic factors, while CO2 fertilisation effects are less prominent than previously
thought. Taken together, this thesis demonstrates a convincing climate change
signal in the functioning of terrestrial ecosystems at the regional scale of southern
Africa or globally.

5.2 Dynamics of vegetation phenology

5.2.1 Potential mechanisms that underlie the detected phenological
patterns

Studies have shown that in regions typical of phenomes 3, 4 and 7, the start of
the growing season metrics are primarily driven by precipitation and day length
(Archibald and Scholes, 2007; Cho et al., 2017; Whitecross et al., 2017; Wigley
et al., 2024). This suggests that early onset of the rainfall season coupled with
longer summer days may trigger plant growth, leading to early initiation of the
start of the growing season metrics. Our results further show that the late oc-
currence of the end of the growing season metrics played a more important role
in shaping the observed phenological patterns in these phenomes. Delayed end of
the growing season metrics suggests CO2 effects. Elevated CO2 enhances carbon
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uptake and plant growth rates, which also improves water use efficiency. This re-
lieves moisture constraints on plant productivity, resulting in an extended growing
season and increased carbon assimilation (Peñuelas and Filella, 2009; Higgins and
Scheiter, 2012; Martens et al., 2021).

However, the CO2 fertilisation phenomena may be co-limited by moisture, tem-
perature and nutrient constraints (Peñuelas et al., 2017), suggesting that CO2 ef-
fects on plant growth are not ubiquitous and may vary depending on climatic and
soil conditions. The late initiation of the start of the growing season metrics in
phenomes 1, 2, 5 and 6 coincide with studies that have reported increased rainfall
variability in these regions (Davis-Reddy and Vincent, 2017; Trisos et al., 2022). In
these regions, rainfall variability is characterized by delayed onset and shortened
duration of the rainfall season, with frequent dry spells. Thus, moisture constraints
may hinder the triggering of green up cues of vegetation in these regions (Wigley
et al., 2024). The early initiation of the end of the growing season metrics in these
phenomes are also consistent with studies that suggest that senescence metrics
are driven by temperature (Cho et al., 2017). Indeed, these phenomes coincide
with regions where temperatures have risen by at least twice the rate of global
warming (Engelbrecht et al., 2015), with such warming rates associated with fre-
quent heatwaves (Trisos et al., 2022). Frequent heatwaves coupled with prolonged
droughts may result in higher evapotranspiration rates, leading to an earlier end
of the phenological cycle. This is because plants may close their stomata or reduce
photosynthetic activity to conserve moisture.

5.2.2 Ecological implications of phenological changes

The qualitatively different phenological responses of vegetation in our phenome
approach reflect differences in climatic forcing effects in southern Africa (Higgins
et al., 2023b, 2024). Phenomes with increased vegetation activity (i.e longer grow-
ing seasons in phenomes 3, 4 and 7) suggest a greening effect. Increased biomass
implies that these regions are a carbon sink, thus our dataset might be useful
in regional Net Primary Productivity (NPP) estimates. However, increases in
vegetation biomass can also decrease populations of species such as mammals,
birds and reptiles that prefer less dense vegetation (Péron and Altwegg, 2015;
McCleery et al., 2018). Increased vegetation cover also promotes invasive species
which can alter plant communities and disrupt ecosystem services (Pejchar and
Mooney, 2009). Therefore, there may be trade-offs between carbon sequestration
and biodiversity loss because of increased vegetation biomass. Restoration efforts
may include removal of invasive species, implementing heterogenous fire manage-
ment regimes (Fuhlendorf et al., 2009) and increasing populations of browsers to
diversify herbivore functional guilds (Hempson et al., 2015).

Long-term declines in plant and bird biodiversity driven by warming and dry-
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ing climate, have been reported in regions that coincide with phenomes 1, 2, 5, 6
(Slingsby et al., 2017; McKechnie et al., 2021). This has also led to species migra-
tions and extinctions (Foden et al., 2007). Where restoration and resilience inter-
ventions are not feasible, conservation managers could embrace and facilitate the
change. For example, using inventory assessments, conservation managers could
identify vulnerable species to drier and warmer climates, then facilitate their move-
ments in refugial areas. Managers could also promote drought and heat-tolerant
species (Ouédraogo et al., 2013; Abraham et al., 2019) or increase artificial water
sources within protected areas to safeguard biodiversity. This study might be use-
ful in guiding management efforts in identifying hotspots of phenological change,
where risks of phenological mismatches are likely to be high (Renner and Zohner,
2018).

5.2.3 Potential future research directions on vegetation phenology

Although our study support existing literature in the region, our analyses were
not validated with ground truth data. This is because there is a lack of ground
phenological data in southern Africa (Adole et al., 2016). Future studies could
build on our analyses by combining citizen science in phenological estimates to
improve the accuracy of phenological assessments. Future studies could also use
biophysical models to attribute the detected phenological changes to environmental
drivers, thereby providing a relative contribution of each forcing factor on the
detected change.

Emerging datasets such as Solar Induced Fluorescence (SIF), which directly
measures photosynthetic activity in plants (Frankenberg et al., 2011), have been
shown to provide a quicker response in tracking vegetation phenology compared to
EVI in regions such as Europe, China, Australia (Walther et al., 2016; Wang et al.,
2019, 2022a). However, such knowledge remains unknown in Africa. Therefore,
studies could assess the influence of climatic limitations on phenological differences
between SIF and EVI, NIRv (near-infrared reflectance of vegetation) in Africa.
Such an approach could be applied to compare phenological responses in non-
protected areas vs protected areas. These findings would deepen our knowledge of
vegetation phenology from the perspectives of photosynthesis and greenness.
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5.3 Changes in the Functional Biomes of southern Africa

5.3.1 Potential mechanisms that underlie the detected shifts in Func-
tional Biomes

Biome transitions to more productive and non-seasonal states (to MN and HN
states) were the most common, suggesting that favourable conditions for plant
growth are being sustained for longer periods of the growing season. This may
imply CO2 fertilization effects. Elevated CO2 increases light-use efficiency (LUE)
and water-use efficiency (WUE) by enhancing carbon assimilation and reducing
transpiration in plants, which consequently extends the length of the growing sea-
son (Peñuelas and Filella, 2009; Higgins and Scheiter, 2012). Indeed, Higgins and
Scheiter (2012) showed that rising CO2 can shift vegetation to more productive
states across Africa. Recent model projections also show that African biomes are
likely to shift to more productive and non-seasonal states (Martens et al., 2021).
This may be because CO2 fertilisation effects coupled with light competition and
fire suppression may influence trends towards woody biomass by altering the com-
petitive balance favoring trees, thereby creating positive feedback that suppresses
grasses but promote tree growth (Bond and Midgley, 2012). Therefore, increased
woody biomass or tree growth would suggest less seasonality compared to grass-
dominated ecosystems.

FB transitions from both moisture and temperature-limited states (from MB
and HB) to solely moisture-limited states (to MD and HD) suggest increased warm-
ing. Southern Africa has experienced increased mean surface temperatures (En-
gelbrecht and Engelbrecht, 2016; Trisos et al., 2022), which may have diminished
the role of cold temperatures in limiting physiological processes such as photosyn-
thesis and transpiration. This suggests that moisture availability has become the
primary constraint on vegetation activity. However, the expansion of low produc-
tive moisture-limited biomes shifts to even lower productive non-seasonal states
(i.e., from LD to LN which is a transition to desert environments) suggests increas-
ing limiting effects of moisture availability. Coupled with warming temperatures,
the net effect is a decrease in productivity and shifts towards arid conditions.

5.3.2 Ecological implications of shifts in Functional Biomes

We reveal previously undetected changes in the FB of southern Africa, thereby
provide a data foundation for validating existing biophysical models commonly
used to predict future biome change. Although continental studies anticipate that
Africa’s biomes will shift to more productive and non-seasonal states (Higgins and
Scheiter, 2012; Martens et al., 2021), our empirical assessments provides compelling
evidence that such anticipated biome trajectories are already ongoing. Transitions
towards higher productive and non-seasonal states may lead to changes in plant
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community composition, impacting ecological processes such as competition, pre-
dation or promote the emergence of invasive species (Niang et al., 2014; Slingsby
et al., 2017; Péron and Altwegg, 2015; McCleery et al., 2018). This is particularly
true for protected areas, as they are regarded to be vulnerable to colonisation
by range-shifting species because they provide a suitable habitat for such species
(Hiley et al., 2013). Conservation managers could conduct ground surveys to as-
sess changes in species diversity and abundance, followed by applying actions like
removing invasive species and restoring degraded habitats. Furthermore, alter-
ing fire and herbivory regimes to maintain ecosystems in their natural state may
safeguard biodiversity (Midgley and Bond, 2015). Shifts to moisture-limited states
which suggests increasing moisture constraints on plant growth, could impact plant
communities. For example, increased drought frequency could lead to increased
plant mortality (Niang et al., 2014), thus hindering natural plant succession. Fur-
thermore, drier ecosystems could impact the availability of natural water sources
obtained from fruits and flowers by wildlife. For example, it has been shown that
decreased fruit production attributed to drier and warmer climate consequently
reduced the body condition of fruit-reliant elephants by 11% (Bush et al., 2020).
Our results suggest that embracing shifts to dry-limited ecosystems will become in-
creasingly necessary. Conservation responses may include promoting arid-adapted
species and increasing artificial water sources to support plant succession and ac-
cess to water by wildlife, respectively. Moreover, promoting connectivity between
protected areas and intensively managing vulnerable species to drought may safe-
guard refugial areas where local populations can persist (Lee et al., 2023).

5.3.3 Potential future research directions

Although our FB emerge from the data, we subjectively categorized the VPI and
growth limitation attributes. To improve the objectivity of future studies, it may
be necessary to develop a standardized method for categorizing these attributes.
This is because if one uses more classes, more transitions will be detected. The
spatial resolution of the climatic forcing data we used was low compared to that
of the EVI data. It is therefore possible that fine-scaled variation in soil moisture
and temperature may not propagate into our metrics. We anticipate that higher-
resolution reanalysis data might be available in the future, which could potentially
capture such fine-scale variations in the climatic forcing data.

Although the observed biome shifts are most likely to be driven by climate
change and increasing CO2, changes in local disturbance regimes such as fire and
herbivores may have played an equally important role. Therefore, future studies
could consider integrating disturbance regimes in their classification schemes. In
addition, studies should also consider topographical effects in biome classification,
such as elevation and slope. Topography can cause variations in solar radiation,
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moisture, and temperature, which consequently affects the EVI signal.
Our exclusive focus on protected areas allow us to eliminate the possibility that

the changes we detected are due to land use change. The interactions between cli-
mate and vegetation are highly non-linear. Therefore, the detected FB trajectories
could either accelerate or reach an asymptote. Continuous monitoring of these FB
will reveal which of these possibilities is realized. The changes in FB states de-
tected here emphasizes the need for establishing a robust biodiversity monitoring
system for the region. We propose a multifaceted approach that combines Earth
observation data and citizen science knowledge to track the extent and magnitude
of climate change impacts on biodiversity of southern Africa. Earth observation
provides advantages of obtaining increasingly available spatio-temporal data at no
cost, while citizen science can be used to identify indicator species that serve as
flagship warnings of ecosystem change (Siddig et al., 2016). This early detection
system would enable the timely implementation of adaptation and mitigation mea-
sures. Furthermore, incorporating long-term permanent monitoring sites into the
system would provide insights on the magnitude, severity and rates of ecosystem
change, thus aiding the assessment of future changes in ecosystem functioning. To
my knowledge, such a monitoring system does not exist for southern Africa.
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5.4 Beyond detection to attribution

5.4.1 Potential mechanisms that underlie the attributed shifts in veg-
etation activity

The contrasting trends between SIF and EVI datasets reflect different aspects of
vegetation dynamics. The sensitivity of SIF to photosynthetic efficiency (LUE)
captures changes in carbon uptake driven by physiological responses to environ-
mental drivers. As a greenness index, EVI measures reflected light in the red,
near infrared and blue bands. Although this reflected light correlates with chloro-
phyll content, it may not always correlate with changes in photosynthetic efficiency
(Huete et al., 2002). This is because vegetation indices do not directly measure
photosynthesis or related physiological processes, they measure a mixed signal
composed of chlorophyll content in leaves, canopy density and structure (Zhang
et al., 2016). This suggests that an increase in photosynthetic efficiency may not
always guarantee an equivalent rise in vegetation greenness. Indeed, studies have
shown that SIF and EVI exhibited contrasting responses to climatic variability,
with SIF indicating stronger correlations with climatic variability (Walther et al.,
2016; Wang et al., 2022a). Another mechanism that may underlie the contrast-
ing responses of vegetation in the SIF and EVI datasets may be related to how
plants adapt to changing environmental conditions. Plants may allocate resources
to stress tolerance mechanisms, such as investing in root growth instead of above-
ground growth (Reich, 2014). These effects may not be captured by EVI.

However, despite qualitatively different trends in SIF and EVI datasets (i.e
dominance of hat-trends in SIF and cup-trends in EVI), both datasets agree that
increasing overall hat-shaped trends were more pronounced than decreasing trends.
This suggests that an increasing number of ecosystems may not sustain current
productivity and greenness levels, potentially sequestering less carbon in the future
(Higgins et al., 2023a). Studies have shown that weak CO2 fertilization effects
positively correlates with co-limiting effects of warming temperatures, moisture
constraints and nutrient availability (Reich et al., 2014; Smith et al., 2016; Green
et al., 2019; Xu et al., 2019; Jiao et al., 2021). It is also possible that our time
series of 2 decades may have played an important role in us detecting the increasing
overall hat-shaped trends. However, our findings support that of Higgins et al.
(2023a), who used the GIMMS NDVI dataset with a longer record of 34 years.

Another mechanistic explanation for the weak CO2 effects in the SIF and EVI
anomalies is that such anomalies may be driven by short-term climatic trends
rather than a long-term rise in CO2. That is, while elevated CO2 may underlie
long-term trends in vegetation activity, CO2 effects may not explain inter-annual
variations in vegetation activity. The CO2 effects signal is challenging to mea-
sure because it is derived from direct and indirect factors (for example, greening,
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changes in canopy structure, enhanced water use efficiency (WUE), its effect on the
RuBisCO enzyme, interactions with moisture and nutrient availability) (Walker
et al., 2021). Separating the CO2 signal from satellite remote sensing data is fur-
ther exacerbated by the fact that all these direct and indirect factors are at play
once (Wang et al., 2021). The proxies of GPP such as SIF, essentially measure
these integrated factors which underlie the dynamics of CO2 effects (Wang et al.,
2021). Therefore, vegetation response to drivers such as moisture availability and
warming temperatures are more immediate and pronounced compared to the slow
but cumulative effects of elevated CO2.

5.4.2 Ecological implications

Warming temperatures and moisture constraints may override recent benefits gained
from CO2 fertilization effects on ecosystem carbon sequestration. Enhanced vege-
tation productivity driven by elevated CO2 concentrations acts as a negative feed-
back on global warming (Wang et al., 2020b). By absorbing CO2, plants dampen
the rate of temperature increase driven by the greenhouse effect. Therefore, the
weak CO2 enrichment effects detected in this study suggest a diminishing abil-
ity of ecosystems to buffer against climate shifts, potentially leading to increased
warming. Weak CO2 enrichment effects would also lead to increased dependence
on policy makers and managers to create future strategies to mitigate increased
warming (Peñuelas et al., 2017). This highlights the importance of global initia-
tives such as the Paris Agreement, which targets to limit global warming to well
below 2 degrees Celsius (Parmesan et al., 2022). ability of ecosystems to buffer
against climate shifts. Conservation responses should consider the shifting dynam-
ics of ecosystems. This may involve practices such as combating land degradation,
preventing deforestation and reducing exploitation of natural resources, which are
essential in maintaining ecosystem services such as carbon storage, carbon se-
questration capacity and moisture availability of ecosystems (Dinerstein et al.,
2020; Pörtner and et al., 2021). To promote ecosystem resilience, management
efforts may prioritize reducing landscape fragmentation and providing larger habi-
tat patches for species. This is because evidence suggests that inhabiting larger
patches increases species’ resilience to extreme climatic events such as droughts
and warming (Oliver et al., 2015).

5.4.3 Potential future research directions

Understanding how climate change and nutrient constraints combine to override
CO2 enrichment in plants may be a starting point for adaptation and mitigation
strategists. The dominant effects of moisture constraints in southern latitudes
and that of temperature in northern latitudes imply that management efforts that
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adopt a one-size-fits all approach may be inappropriate. We argue that targeted
responses should be tailored to regional climatic conditions. Scientists could focus
on process-oriented model evaluation within climate models to better understand
the complex relationships between climate change, elevated CO2, and nutrient
availability (Peñuelas et al., 2017). For example, conducting manipulative ex-
periments such as FACE, warming experiments, altered rainfall experiments and
nutrient fertilization experiments tailored to the environmental conditions of each
region. This understanding could inform climate change policies and sustainable
management responses.

The XGboost model used by Chen et al. (2022b) to reconstruct the SIF dataset
we used in this study showed low accuracy in capturing the seasonal and interan-
nual variations between predicted and observed SIF in biomes like savannas and
grasslands. This bias could have propagated into our analyses. However, this is
likely to be a short term problem as satellite-based SIF products such as GOSAT,
OCO-2 and TROPOMI SIF will expand in space and time (Köhler et al., 2018;
Doughty et al., 2021). Uncertainties inherent in global fire datasets (Chen et al.,
2022a) meant that fire effects on vegetation anomalies were not considered in this
study. Future studies could expand on our analyses by using localised fire datasets
in fire prone biomes such as savannas and grasslands. This is because disturbances
such as fire and herbivory can override climatic forcing effects on vegetation activ-
ity, thus impacting vegetation structure and functioning (Bond, 2005).
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5.5 Conclusions

In this thesis, I have demonstrated an integrated approach for monitoring and
attributing changes in vegetation activity. This thesis showed that the pheno-
logical cycle of the vegetation of southern Africa changed by at least 1 standard
deviation for each metric we used to quantify change. To further dissect this
change, we grouped metrics that have similar phenological properties (phenomes).
We found that the phenological activity within phenomes is qualitatively different,
with some phenomes exhibiting a shortened growing season while others exhibiting
an extended growing season. This suggests that studies that do not assess multi-
dimensional changes in the seasonal pattern of vegetation activity may provide
an incomplete picture of how terrestrial ecosystems respond to climatic variables.
The magnitude and spatial extent of change revealed here provide convincing evi-
dence that the vegetation of southern Africa is responding to climate change. The
findings of this study may assist conservation managers in identifying hotspots
of phenological change, thereby developing monitoring systems to strengthen the
capacity for adaptation and mitigation of ongoing ecosystem changes.

We found that 3% to 15% of pixels shifted in biome state. These pixels repre-
sent vegetation units with similar phenology and productivity properties, which we
defined as Functional Biomes (FB). We detected that the FB of southern Africa
are on trajectory from low productive to high productive, non-seasonal states
as well as from both moisture and temperature limited states to solely moisture
limited states. While current knowledge suggests that the biomes of Africa are
anticipated to shift to non-seasonal and moisture limited states driven by climate
change and elevated CO2, the empirical analyses of this study provide compelling
evidence that suggests that such anticipated biome trajectories are already ongo-
ing in southern Africa. Thus, this study provides a data foundation for validating
existing biophysical models which can be used to predict future biome change.

At the global scale, we found that carbon assimilation trends at 100 study sites
have switched from an initial decrease in photosynthetic efficiency to an increase in
photosynthetic efficiency. In contrast, biomass trends have switched from an ini-
tial greening to browning. This suggests that plants may be adapting to changing
environmental conditions by allocating resources to stress tolerance mechanisms,
such as root growth, instead of above ground growth. We also found that changes
in vegetation activity in 87% of the sites in the SIF data and 79% of sites in the
EVI data can be attributed to changes in climatic factors and that CO2 effects
are weak. The attribution results challenge widely held narratives of strong CO2

effects on the functioning of terrestrial ecosystems. Our attribution results rather
show strong geographic coherence, with soil moisture the major driver of changes
of ecosystems in the southern latitudes while temperature is the main constraint
in northern latitudes. Overall, this study strengthens growing evidence that sug-
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gests that ecosystems may be shifting from a CO2 dominated world to a climate-
dominated world. Due to differences in forcing effects between regions, we argue
that management efforts need to account for the trajectories these ecosystems are
on, as a one-size-fits-all approach may be inappropriate.
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Sheil, D., Sonké, B., Sullivan, M. J. P., Sunderland, T. C. H., Taedoumg, H.,
Thomas, S. C., White, L. J. T., Abernethy, K. A., Adu-Bredu, S., Amani,
C. A., Baker, T. R., Banin, L. F., Baya, F., Begne, S. K., Bennett, A. C.,
Benedet, F., Bitariho, R., Bocko, Y. E., Boeckx, P., Boundja, P., Brienen, R.
J. W., Brncic, T., Chezeaux, E., Chuyong, G. B., Clark, C. J., Collins, M.,
Comiskey, J. A., Coomes, D. A., Dargie, G. C., de Haulleville, T., Kamdem,
M. N. D., Doucet, J.-L., Esquivel-Muelbert, A., Feldpausch, T. R., Fofanah,
A., Foli, E. G., Gilpin, M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., Hall,
J. S., Hamilton, A. C., Harris, D. J., Hart, T. B., Hockemba, M. B. N., Hladik,

147



5 References References

A., Ifo, S. A., Jeffery, K. J., Jucker, T., Yakusu, E. K., Kearsley, E., Kenfack,
D., Koch, A., Leal, M. E., Levesley, A., Lindsell, J. A., Lisingo, J., Lopez-
Gonzalez, G., Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Martin,
J., Martin, E. H., Mbayu, F. M., Medjibe, V. P., Mihindou, V., Mitchard, E.
T. A., Moore, S., Munishi, P. K. T., Bengone, N. N., Ojo, L., Ondo, F. E., Peh,
K. S.-H., Pickavance, G. C., Poulsen, A. D., Poulsen, J. R., Qie, L., Reitsma,
J., Rovero, F., Swaine, M. D., Talbot, J., Taplin, J., Taylor, D. M., Thomas,
D. W., Toirambe, B., Mukendi, J. T., Tuagben, D., Umunay, P. M., van der
Heijden, G. M. F., Verbeeck, H., Vleminckx, J., Willcock, S., Wöll, H., Woods,
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Dagmar Hanke, Michaela Neff, Joseph Benjamin, Fatih Fazlioglu and Burkhard
Stumpf. They all directly or indirectly contributed to my scientific growth and
also made me feel part of the Plant Ecology group.

I thank Prof. Dr. Cyrus Samimi for the long but insightful discussions we
used to have. I also thank Richard Careaga and Sam Bowers for their invaluable
support.

I am also grateful to Amy Schroeder, Shashank Ongole, Lakshmipriya Can-
nanbilla, Marius Dufner and Marius Klotz. The bonds we formed transcended
academia and I will always cherish the moments we shared. I wish each of them
all the best in their future endeavors and I am confident that our paths will cross
again.

I also extend my gratitude to the friends I made in Bayreuth, including Bathuel
Obwanah, Benjamin, Oliver, Ridwan Shittu, Bachir Ibrahim, Odessi Erick, Baraka
Mbise, Aziz ’Zweistein’ and everyone else I may have forgotten. Your companion-
ship enriched my experience in Bayreuth.

Lastly, I would like to thank my family and friends in Namibia for your un-
wavering mental, emotional and psychological support. I appreciate your under-
standing that I had to leave Namibia for Germany to fulfil a childhood dream. To
my girlfriend Dorcas Manuel, your patience and understanding mean the world to
me. To my son David Muhoko, your resilience in my absence fills me with pride. It
was hard to leave you all behind and go to Germany. I hope you both understand
the significance of this journey in fulfilling our aspirations.

Thank you all from the bottom of my heart.

Truly yours,

Edward Mukoya Muhoko

165
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(§ 9 Satz 2 Nr. 3 PromO BayNAT)

Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbstständig verfasst und
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Selbstkontrolle stattfinden können.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ort, Datum, Unterschrift

166


