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Abstract Reading channels where b-tuples of adjacent symbols are read at every step have
e.g. applications in storage. Corresponding bounds and constructions of codes for the b-
symbol metric, especially the pair-symbol metric where b = 2, were intensively studied
in the last fifteen years. Here we determine the optimal code parameters of linear codes
in the b-symbol metric assuming that the minimum distance is sufficiently large. We also
determine the optimal parameters of linear binary codes in the pair-symbol metric for small
dimensions.
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1 Introduction
In storage applications the reading device is sometimes insufficient to isolate adjacent
symbols, which makes it necessary to adjust the standard coding-theoretic error model.
Cassuto and Blaum studied a model where pairs of adjacent symbols are read in every step
and introduced the so-called symbol-pair metric for codes [3]. This notion was generalized
to the b-symbol metric where b-tuples of adjacent symbols are read at every step, see e.g.
[22]. While general codes where studied, see e.g. [5], for representation and decoding
purposes it is beneficial to assume more structured codes. A rather general and important
subclass of codes are linear codes i.e. subspaces of some vector space Fk

q over a finite field.
For small minimum distances a Singleton type bound, introduced by Chee et al. for the
symbol-pair metric [4], turned out to be very effective. Like for the Hamming metric codes
attaining this bound are called maximum distance separable (MDS) codes and quite some
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constructions were studied for the symbol-pair metric, see e.g. [6, 13, 14, 17, 18, 19, 20].
Here we are interested in optimal linear codes w.r.t. the b-symbol metric in those situations
where the minimum distance is large. For the Hamming metric Solomon and Stiffler [21]
showed that the so-called Griesmer bound [10] can always be attained with equality if the
minimum distance is sufficiently large. The main objective of this paper is to show the
analogous result for the b-symbol metric for the Griesmer type bound recently introduced
in [12, 16]. In order to get a more complete picture of the intermediate situation we
determine the parameters of optimal binary linear codes in the symbol-pair metric for
small dimensions.

The remaining part of the paper is structured as follows. In Section 2 we introduce
the necessary preliminaries. Our main result on the minimum length of a linear code in
the b-symbol metric for large minimum distances in stated in Theorem 3.16 in Section 3.
To complement this asymptotic result we determine the exact minimum lengths of binary
linear codes in the b-symbol metric for small dimensions in Section 4. The paper is closed
by a brief conclusion in Section 5.

2 Preliminaries
For some prime power q let Fq denote the finite field with q elements and Fn

q the n-
dimensional vector space over Fq. An [n, k]q code C is a k-dimensional linear subspace
of Fn

q . If C is given as the row span of a k × n matrix G, then G is called a gener-
ator matrix of C. A generator matrix G is called systematic if it starts with a k × k
identity matrix. The elements of an [n, k]q code C are called codewords. The Ham-
ming weight wtH(c) of a codeword c = (c0, · · · , cn−1) is the number of non-zero entries
|{ci : ci ̸= 0, 0 ≤ i ≤ n− 1}|. With this, the weight enumerator of C is the homogeneous
polynomial wH

C(x, y) :=
∑

c∈C xwtH(c)yn−wtH(c) and the Hamming distance between two
codewords c, c′ ∈ C is given by dH(c, c

′) := wtH(c− c′).
The Hamming distance is an appropriate measure for error detection and correction

in certain channels and is indeed a metric. In [3] the authors introduced another channel
where a different kind of metric is more suitable. Instead of single symbols one assumes
that neighboring pairs of symbols are read, which was subsequently generalized to neigh-
boring b-tuples of symbols for b ≥ 2, see e.g. [22] for details. To this end let

πb(c) :=
(
(c0, . . . , cb−1), (c1, . . . , cb), . . . , (cn−1, c0, . . . , cb−2)

)
(1)

be the b-symbol read vector of a codeword c = (c0, . . . , cn−1) ∈ C ⊆ Fn
q and

db(c, c
′) :=

∣∣{0 ≤ i ≤ n− 1 : (ci, ci+1, . . . , ci+b−1) ̸=
(
c′i, c

′
i+1, . . . , c

′
i+b−1

)}∣∣ (2)
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be the b-symbol distance between codewords c = (c0, . . . , cn−1) and c′ =
(
c′0, . . . , c

′
n−1

)
,

where the indices are read modulo n. Similar to the definition of wtH(c) we can define the
b-weight wtb(c) := db(c, 0) of a codeword c ∈ C and the corresponding weight enumerator
wb

C(x, y) :=
∑

c∈C xwtb(c)yn−wtb(c) of C (w.r.t. the b-symbol distance). We remark that d1

is equal to the Hamming distance and d2 denotes the pair-symbol distance.
The minimum Hamming distance dH(C) of an [n, k]q code C is defined as the minimum

Hamming distance between two different codewords, i.e.

dH(C) := min{dH(c, c
′) : c, c′ ∈ C, c ̸= c′} = min{wtH(c) : c ∈ C, c ̸= 0} . (3)

If d = dH(C) then we also speak of an [n, k, d]q code. Similarly,

db(C) := min{db(c, c
′) : c, c′ ∈ C, c ̸= c′} = min{wtb(c) : c ∈ C, c ̸= 0} (4)

and we speak of an [n, k, d]bq code if d = db(C). We call an [n, k, d]q code optimal (w.r.t.
the Hamming metric) if no [n − 1, k, d]q code exists. Similarly, we call an [n, k, d]bq code
optimal (w.r.t. the b-symbol metric) if no [n − 1, k, d]bq code exists. Note that there are
several notions of optimality for linear codes and here we choose length-optimality, i.e.
the smallest possible length for given parameters k, d, q, and b, which is justified by the
following observation.

Lemma 2.1 The existence of an [n, k, d]bq code implies the existence of an [n+ 1, k,≥ d]bq
code.

PROOF. If G is the generator matrix of an [n, k, d]bq code, then appending a zero vector to
G yields a generator matrix of an [n+ 1, k,≥ d]bq code. □

So, by nq(k, d) we denote the smallest integer n such that an [n, k, d]q code exists and
by nb

q(k, d) we denote the smallest integer n such that an [n, k, d]bq code exists. While
the determination of nq(k, d), for certain parameters, is a classical problem in coding the-
ory, besides some general upper and lower bounds for nb

q(k, d), not many exact values of
nb
q(k, d) are known. So, we aim to partially close this gap to determining n2

2(k, d) for small
values of the dimension k, see Section 4. For linear codes w.r.t. the Hamming metric e.g.
the so-called Griesmer bound [10]

n ≥
k−1∑
i=0

⌈
d

qi

⌉
=: gq(k, d) (5)

relates the parameters of an [n, k, d]q code. Interestingly enough, this bound can always be
attained with equality if the minimum distance d is sufficiently large and a nice geometric
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construction was given by Solomon and Stiffler [21].1 In other words, we have nq(k, d) =
gq(k, d) for all sufficiently large d given k and q. While this solves the asymptotic case, the
full determination of the function nq(k, ·) is still a rather challenging problem that is solved
in the binary case q = 2 for dimensions k ≤ 8 only [2]. It is known that nq(k, d) = gq(k, d)
for k ≤ 4 when q = 2 and for k ≤ 2 where q is an arbitrary prime power. In all other cases
we only know nq(k, d) ≥ gq(k, d) for all d ∈ N and that there exists at least one, but only
finitely many, d ∈ N such that nq(k, d) > gq(k, d).

From the many bounds for [n, k, d]bq codes from the literature we would like to single
out

qb − 1

q − 1
· n ≥ gq

(
k, qb−1 · d

)
, (6)

see [16, Theorem 1]. More precisely, starting from an [n, k]bq code C with minimum

distance d and a generator matrix G of a
[
qb−1
q−1

, b, qb−1
]
q

simplex code an
[
qb−1
q−1

· n, k
]
q

code C ′ is constructed as follows. For each codeword c ∈ C multiply G with all elements
of πb(c) and concatenate the results to a codeword c′ ∈ C, so that wtH(c

′) = wtb(c) · qb−1,
since all non-zero codewords of a b-dimensional simplex code over Fq have Hamming
weight qb−1. Applying the Griesmer bound to C ′ gives Inequality (6). Given an [n, k, d]bq
code C we call C ′ the associated Hamming code and will state some of its basic properties.
To this end let us call an [n, k]q code or an [n, k]bq code ∆-divisible if the weight of every
codeword c, i.e. wtH(c) or wtb(c), is divisible by ∆.

Lemma 2.2 Let C ′ be the Hamming code associated to an [n, k, d]bq code C. Then, C is a

qb−1-divisible
[
qb−1
q−1

· n, k, qb−1 · d
]
q

code with maximum weight at most qb−1 · n.

PROOF. Given the above reasoning it suffices to observe that the maximum weight of C is
at most n. □

Example 2.3 For n = 5, q = 2, and b = 2 let c1 = (10101), c2 = (11110), and c3 =
(11100) so that the read vectors are given by π2(c1) =

(
(1,0), (0,1), (1,0), (0,1), (1,1)

)
,

π2(c2) =
(
(1,1), (1,1), (1,1), (1,0), (0,1)

)
, and π2(c3) =

(
(1,1), (1,1), (1,0), (0,0), (0,1)

)
.

Using the generator matrix ( 1 1 0
0 1 1 ) for the [3, 2, 2]2 simplex code, c1 is mapped to c′1 =

(110 011 110 011 101), c2 is mapped to c′2 = (101 101 101 110 011), and c3 is mapped to
c′3 = (101 101 110 000 011). Setting C1 := ⟨c1⟩, C2 := ⟨c2⟩, and C3 := ⟨c3⟩ we have that
the Ci are [5, 1]2 codes with weight enumerators y5x0+x3y2, y5x0+x4y1, and y5x0+x3y2,
respectively. Moreover, we have d2(C1) = wtH(c

′
1)/2 = 5, d2(C2) = wtH(c

′
2)/2 = 5, and

d2(C3) = wtH(c
′
3)/2 = 4.

1More precisely, the cited papers show the statements for field size q = 2, while they were generalized
by other authors slightly later.
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Clearly the minimum b-symbol distance db(C) of an [n, k]q code C can be bounded by
its minimum Hamming distance as follows:

min{dH(C) + b− 1, n} ≤ db(C) ≤ min{b · dH(C), n}. (7)

For linear cyclic codes and b = 2 the lower bound was improved to d2(C) ≥
⌈
3·dH(C)

2

⌉
[22, Lemma 2].

Remark 2.4 Given an [n, k, d]bq code C we can construct a
[
qb−1
q−1

· n, k, qb−1 · d
]
q

code

C ′. The other direction is not always possible. As an example consider the generator
matrix 

101 000 101 011 110
011 000 011 110 101
000 101 101 101 101
000 011 011 011 011


that generates a [15, 4, 8]2 code C ′. Here we have grouped the columns in pairs of three,
which geometrically corresponds to a so called line spread of PG(3, 2). Indeed we can
compute corresponding 2-symbol read vectors from the four generating codewords

10 00 10 01 11
01 00 01 11 10
00 10 10 10 10
00 01 01 01 01

.

However, in none of the rows we can find an element c ∈ F5
2 such that π2(c) would equal the

corresponding row. While we have some freedom in permuting the columns of a generator
matrix of a linear code without changing its weight enumerator w.r.t. the Hamming metric
we cannot end up with a [5, 4, 4]22 code since such a code does not exist. To this end we
note that computing the reduced echelon form of the generator matrix of a code does not
change the code and that the possible generator matrices in reduced form echelon are
given by (

1000∗
0100∗
0010∗
0001∗

)
,

(
100∗0
010∗0
001∗0
00001

)
,

(
10∗00
01∗00
00010
00001

)
,

(
1∗000
00100
00010
00001

)
,

(
01000
00100
00010
00001

)
.

Since the fourth row always starts with at least three consecutive zeroes the minimum
symbol-pair distance is at most 5− 2 = 3 and not 4.

It is well known that linear codes correspond to multisets of points in projective ge-
ometries [8]. The set of all subspaces of Fr

q , ordered by the incidence relation ⊆, is called
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(r − 1)-dimensional projective geometry over Fq and denoted by PG(r − 1, q). Employ-
ing this algebraic notion of dimension instead of the geometric one, we will use the term
i-space to denote an i-dimensional subspace of Fr

q. To highlight the important geometric
interpretation of subspaces we will call 1-, 2−, and (r−1)-spaces points, lines, and hyper-
planes, respectively. For two subspaces S and S ′ we write S ≤ S ′ if S is contained in S ′.
Moreover, we say that S and S ′ are incident iff S ≤ S ′ or S ≥ S ′. Let [i]q := qi−1

q−1
denote

the number of points of an arbitrary i-space in PG(r−1, q) where r ≥ i. Here we describe
a multiset of points by a mapping M from the set of points of PG(k − 1, q) to N and call
M(P ) the multiplicity of point P . The cardinality of M is given by #M =

∑
P M(P ).

For some subspace S we define the multiplicity of S by M(S) =
∑

P≤S M(P ) and let
χS denote the characteristic function of S, i.e., χS(P ) = 1 if P ≤ S and χS(P ) = 0 other-
wise. A multiset of points is called spanning if the set of points with positive multiplicity
span the entire space. With this, we can state more precisely that each [n, k, d]q code with
dual minimum distance at least two, i.e. for each coordinate there exists a codeword with
non-zero entry at this position, is in one-to-one correspondence to a spanning multiset M
in PG(k − 1, q) with cardinality n and M(H) ≤ n − d for every hyperplane H , where
equality occurs at least once.

Multisets of points can be generalized as follows, see [1, Definition 4] and [15, Defi-
nition 1].

Definition 2.5 A projective h− (n, r, s)q system is a multiset S of n subspaces of PG(r−
1, q) of dimension at most h such that each hyperplane contains at most s elements of
S and some hyperplane contains exactly s elements of S. We say that S is faithful if
all of its elements have dimension h. A projective h − (n, r, s)q system S is a projective
h − (n, r, s, µ)q system if each point is contained in at most µ elements from S and there
is some point that is contained in exactly µ elements from S.

Allowing 0-spaces, corresponding to zero-columns in the generator matrix of a linear
code, one can say that [n, k, d]q codes are in one-to-one correspondence to projective 1 −
(n, k, n − d)q systems. In general, projective h − (n, r, s)q systems (with s < n) are in
one-to-one correspondence to additive codes, see [1] or [15] for details. Here, we call a
subset of Fn

q an additive code iff the sum of any two codewords is also a codeword, i.e.
additive codes are a super class of linear codes.

Lemma 2.6 To each [n, k, d]bq code C, where k ≥ b, we can associate a projective b −
(n, k, n− d)q system S = {S0, . . . , Sn−1}. Moreover, we have

dim(Si ∩ Si+1) ≥ max{dim(Si), dim(Si+1)} − 1 (8)

for each index 0 ≤ i ≤ n− 1, where the indices are read modulo n.
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PROOF. Let G be a generator matrix of C and let g0, . . . , gn−1 denote the ordered list
of columns of G. For each index 0 ≤ n − 1 let Si denote the subspace spanned by
gi, gi+1, . . . , gi+b−1, where the indices are read modulo n. With this we let S consist of
the Si, which have dimension at most b and are contained in PG(k − 1, q). Consider an
arbitrary non-zero codeword c = (c0, . . . , cn−1) ∈ C. There exists a unique row vector
h ∈ Fk

q\{0} such that c = hG. To h we can assign the set of all points P such that hP = 0,
which is a hyperplane H that is equal for all non-zero multiples of h. Note that we have
(ci, ci+1, . . . , ci+b−1) = 0 iff Si ≤ H , where the indices are read modulo n. Thus, every
hyperplane H in PG(k−1, q) contains at most n−d elements from S and equality indeed
occurs. Thus, S is a a projective b− (n, k, n− d)q system. Inequality (8) directly follows
from the construction since Si ∩ Si+1 is generated by gi+1, gi+2, . . . , gi+b−1. □

Example 2.7 In PG(2, 2) consider the ordered list of subspaces

S0 =
〈(

1
1
1

)
,
(

1
0
0

)〉
, S1 =

〈(
1
0
0

)
,
(

0
0
1

)〉
, S2 =

〈(
0
0
1

)
,
(

1
0
1

)〉
, S3 =

〈(
1
0
1

)
,
(

1
1
1

)〉
, S4 =

〈(
1
1
1

)〉
In PG(2, 2) the [3]2 = 7 hyperplanes are indeed lines. Since the point S4 is contained in
the three hyperplanes S0, S3,

〈
(1, 1, 1)⊤, (0, 0, 1)⊤

〉
and S1 = S2 there are exactly three

hyperplanes that contain two elements from the multiset S := {S0, . . . , S4}, one hyper-
plane that contains one element from S, and three hyperplanes that contain no element
from S. So, S is a projective 2 − (5, 3, 2)2 system. Noting that Inequality (8) is satisfied
let us try to reverse Lemma 2.6 and build up a generator matrix G with columns g0, . . . , g4
as in the corresponding proof. Except for S1 ∩ S2, the intersections Si ∩ Si+1 determines
a unique point, which leaves the three choices

G1 =

11111
00011
00111

, G2 =

11111
00011
01111

, G3 =

10111
00011
01111


having weight enumerators x0y5+x2y3+2x3y2+2x4y1+2x5y0, x0y5+x2y3+2x3y2+
2x4y1+2x5y0, and x0y5+3x3y2+x4y1+3x5y0, respectively. Here, applying Lemma 2.6
to Gi only gives S for i = 3.

Now let S ′ arise from S via replacing S4 by
〈
(1, 1, 1)⊤, (0, 1, 0)⊤

〉
. If we could find a

generator matrix G′ such that the application of the construction in the proof of Lemma 2.6
gives S ′, then G′ would generate a [5, 3, 2]22 code with weight enumerator x0y5 + x3y2 +
3x4y1 + 3x5y0. However, such a generator matrix does not exist.

So, by Lemma 2.6 upper bounds for the cardinality n of projective b − (n, k, n − d)q
systems or the corresponding additive codes, see e.g. [15] and the references therein, imply
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lower bounds for nb
q(k, d). It is interesting to note that additive codes also have to satisfy a

Griesmer type inequality like Inequality (6), which can always be attained with equality for
sufficiently larger minimum distance d, see [15] for details. In our situation we additionally
need to ensure that the projective system b−(n, k, n−d)q system can be written as a list of
subspaces satisfying Inequality (8), which is even not sufficient as shown in Exercise 2.7.
For parameters k, d, q, and b we call

n ≥

⌈
gq
(
k, qb−1 · d

)
[b]q

⌉
(9)

the Griesmer bound for an [n, k, d]bq code, c.f. [16, Theorem 1]. The aim of the subsequent
Section 3 is to show that the Griesmer bound can always be attained with equality if the
minimum distance d is assumed to be sufficiently large.

Lemma 2.8 (C.f. [12, Theorem 3]) We have⌈
gq
(
k, qb−1 · d

)
[b]q

⌉
= d+

⌈
gq(k − b+ 1, d)− d

[b]q

⌉
. (10)

PROOF.

⌈
gq
(
k, qb−1 · d

)
[b]q

⌉
=


k−1∑
i=0

⌈
d·qb−1

qi

⌉
[b]q

 =


b−1∑
i=0

⌈
d · qb−i−1

⌉
+

k−1∑
i=b

⌈
d · qb−i−1

⌉
[b]q


=


d ·

b−1∑
i=0

qi +
k−b∑
i=1

⌈
d
qi

⌉
[b]q

 =


d[b]q − d +

k−b∑
i=0

⌈
d
qi

⌉
[b]q

 = d+

⌈
gq(k − b+ 1, d)− d

[b]q

⌉

□

Using a specific parameterization of the minimum distance d of a linear code in the
Hamming metric, the corresponding Griesmer bound in Inequality (5) can be written more
explicitly:

Lemma 2.9 Let k and d be positive integers. Write d as

d = σqk−1 −
k−1∑
i=1

εiq
i−1, (11)
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where σ ∈ N0 and the 0 ≤ εi < q are integers for all 1 ≤ i ≤ k − 1. Then, Inequality (5)
is satisfied with equality iff

n = σ[k]q −
k−1∑
i=1

εi[i]q, (12)

which is equivalent to

n− d = σ[k − 1]q −
k−1∑
i=1

εi[i− 1]q. (13)

Remark 2.10 Given k and d Equation (11) always determines σ and the εi uniquely. This
is different for Equation (13) given k and n− d = s. Here it may happen that no solution
with 0 ≤ εi ≤ q − 1 exists. By relaxing to 0 ≤ εi ≤ q we can ensure existence and
uniqueness is enforced by additionally requiring εj = 0 for all j < i where εi = q for
some i. The same is true for Equation (12) given k and n. For more details we refer to [9,
Chapter 2] which also gives pointers to Hamada’s work on minihypers.

Lemma 2.11

(a) gq
(
k, λ · qk−1

)
= λ[k]q for each λ ∈ N.

(b)
⌈

gq(k,qb−1·d)
[b]q

⌉
= [k]q for d = qk−b · [b]q.

(c) For each λ, d′ ∈ N we have⌈
gq
(
k, qb−1 ·

(
λ · qk−b · [b]q + d′

))
[b]q

⌉
= λ · [k]q +

⌈
gq
(
k, qb−1 · d′

)
[b]q

⌉
. (14)

PROOF. Parts (a), (b) directly follow from Lemma 2.9, which then imply (c). □

3 Linear codes attaining the Griesmer bound
In this section we want to construct optimal [n, k, d]bq codes. One possible construction is
to start with a cyclic group G in GL(k, q) generated by some element g ∈ G. Denoting the
action of g on a point P by P g, we can partition the set of points of PG(k−1, q) into orbits
of the form P, P g, P g2 , P g3 , . . . , P gl−1 , where the length l of the orbit can be different for
different starting points P . We consider the sequence of points P, P g, P g2 , P g3 , . . . , P gl−1

as a generator matrix of an [l, k′, d]bq code C with k′ ≤ k. In some cases we have k′ = k
and d is suitably large w.r.t. the other parameters.

9



Example 3.1 In GL(5, 2) there exist six cyclic groups of order 25 − 1 = 31. Choosing
a generator matrix arising from the orbit of all points with respect to a generator of the
cyclic group yields a [31, 5, 24]22 code in all cases.

•

(
01000
00100
00010
00001
10111

)
:

(
0110010011111011100010101101000
0011001001111101110001010110100
0111110111000101011010000110010
0101101000011001001111101110001
1100100111110111000101011010000

)
,

•

(
01000
00100
00010
00001
11110

)
:

(
0101101010001110111110010011000
0111011111001001100001011010100
0110000101101010001110111110010
0110101000111011111001001100001
1011010100011101111100100110000

)
,

•

(
01000
00100
00010
00001
11101

)
:

(
0111001101111101000100101011000
0100101011000011100110111110100
0101011000011100110111110100010
0010101100001110011011111010001
1110011011111010001001010110000

)
,

•

(
01000
00100
00010
00001
11011

)
:

(
0110101001000101111101100111000
0101111101100111000011010100100
0010111110110011100001101010010
0111110110011100001101010010001
1101010010001011111011001110000

)
,

•

(
01000
00100
00010
00001
10010

)
:

(
0101011101100011111001101001000
0010101110110001111100110100100
0001010111011000111110011010010
0101110110001111100110100100001
1010111011000111110011010010000

)
,

•

(
01000
00100
00010
00001
10100

)
:

(
0100101100111110001101110101000
0010010110011111000110111010100
0101100111110001101110101000010
0010110011111000110111010100001
1001011001111100011011101010000

)
.

Interestingly enough, deleting one arbitrary column from the generator matrices yields an
[30, 5, 22]22 code in all cases, i.e. the minimum symbol pair distance is decreased by two
while the length is just increased by one.

In GL(k, q) the maximum order of a cyclic group is [k]q and it acts transitively on the
set of points in PG(k − 1, q). Those groups exist for all parameters and are called Singer
groups, see e.g. [11].

Proposition 3.2 For k ≥ b ≥ 2 there exists an [n, k, d]bq code C with n = [k]q and
d = [b]q · qk−b.

PROOF. Let M ∈ GL(k, q) be a k×k matrix over Fq that generates a cyclic group of order
n = [k]q, i.e. a Singer cycle. Denoting the first unit vector by e1 we construct a generator
matrix G for C by choosing the sequence of columns M0e1,M

1e1, . . . ,M
n−1e1. Note

that M acts transitively on the set of n points of PG(k − 1, q). Set

Si :=
〈
M ie1,M

i+1e1, . . . ,M
i+b−1e1

〉
(15)
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for all 0 ≤ i ≤ n − 1, where the indices are read modulo n. Let P := M ie1 and suppose
that there exist λ0, . . . , λb−2 ∈ Fq such that M b−1P =

∑b−2
i=0 M

iP . Then, M0P,M1P, . . .
is contained in

〈
M0P,M1P, . . . ,M b−2P

〉
, which is impossible since M acts transitively

on the set of points and k ≥ b. Thus, we have dim(Si) = b for all 0 ≤ i ≤ n− 1.
Let M :=

∑n−1
i=0 χSi

, so that #M = n[b]q = [k]q[b]q. Note that each point P in Si

can be written as
〈∑b−1

j=0 λjM
i+je1

〉
= M i ·

〈∑b−1
j=0 λjM

je1

〉
, where (λ0, . . . , λb−1) ∈

Fb
q\{0} is uniquely determined. Thus, the transitivity of M on the set of points implies

M(P ) = M(P ′) for all pairs of points P, P ′. Counting points then yields M(P ) = [b]q
for every point P . Since each of the b-spaces Si intersects a given hyperplane H in either
[b]q or [b− 1]q points and [b]q = qb−1 + [b− 1]q we have

[k − 1]q[b]q = M(H) = [k]q[b− 1]q + s · qb−1, (16)

where s denotes the number of indices 0 ≤ i ≤ n− 1 with Si ≤ H . Since

[k − 1]q[b]q − [k]q[b− 1]q =

(
qk−1 − 1

)
·
(
qb − 1

)
−
(
qk − 1

)
·
(
qb−1 − 1

)
(q − 1)2

=
qk + qb−1 − qk−1 − qb

(q − 1)2
=

qk−1 − qb−1

q − 1
= qb−1 · [k − b]q,

we conclude s = [k − b]q. Since

n− s = [k]q − [k − b]q =
qk − qk−b

q − 1
= qk−b · q

b − 1

q − 1
= qk−b · [b]q,

the constructed code has minimum distance db(C) = [b]q · qk−b. □

In the Hamming metric the constructed code C is just a simplex code. The minimum
distance of those codes w.r.t. the b-symbol metric was studied in [18] for the special case
b ≤ q − 1. Due to Lemma 2.11.(b) the codes from Proposition 3.2 attain the Griesmer
bound of Inequality (9). Appending λ copies of the corresponding generator matrix yields
[n, k, d]bq codes with n = λ · [k]q and d = λ · [b]q · qk−b, so that Lemma 2.11.(c) gives

lim
d→∞

nb
q(k, d)/

⌈
gq
(
k, qb−1 · d

)
[b]q

⌉
= 1. (17)

Lemma 3.3 Let G1 be a generator matrix of an [n1, k, d1]
b
q code and G2 be a generator

matrix of an [n2, k, d2]
b
q code. If the first b − 1 columns of G1 and G2 coincide, then

appending G2 to G1 is the generator matrix of an [n1 + n2, k, d1 + d2]
b
q code.
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Definition 3.4 We call an [n, k]bq code C faithful if the restriction of the codewords to
the coordinates i, i + 1, . . . i + b − 1 (read modulo n) form an [b, b]bq code for each index
0 ≤ i ≤ n− 1.

In other words, an [n, k, d]bq code is faithful iff the projective b− (n, k, n− d)q system
is faithful, where the generator matrix can be chosen arbitrarily. If S is an arbitrary h −
(n, k, s)q system, then we can obtain a faithful h − (n, k,≤ s)q system S ′ by replacing
each element S ∈ S with dim(S) < h by a b-space S ′ with S ≤ S ′. A similar results also
holds for [n, k]bq codes.

Lemma 3.5 Let C be an [n, k, d]bq code with k ≥ b. Then, there exists a faithful [n, k,≥ d]bq
code C ′.

PROOF. We iteratively construct a generator matrix Gi of an [n, k,≥ d]bq code such that
i subsequent columns span an i-space for all 0 ≤ i ≤ b, where the column indices are
read modulo n. Going from Gi to Gi+1 we modify just one column, so that the length
remain n during our entire construction. The improvement property we maintain during
the construction is the following. On the way from Gi to Gi+1 we assume that we have
already constructed a generator matrix U of an an [n, k,≥ d]bq code such that i subsequent
columns span an i-space. In the next step we construct a generator matrix U ′ of an an
[n, k,≥ d]bq code such that i subsequent columns span an i-space, ⟨uj, uj+1, . . . , uj+i⟩ ≤〈
u′
j, u

′
j+1, . . . , u

′
j+i

〉
for all 0 ≤ j ≤ n− 1 and that the dimension increases at least once,

where u0, . . . , un−1 are the columns of U , u′
0, . . . , u

′
n−1 are the columns of U ′, and the

indices are read modulo n. Let us denote the index where we change a column by h, i.e.,
we have uj = u′

j for all 0 ≤ j ≤ n − 1 with j ̸= h. Let us first observe that U ′ generates
an [n, k]bq code if U does. To this end we consider

⟨u′
0, u

′
1, . . . , u

′
n−1⟩

=
〈
⟨u′

h, u
′
h+1, . . . u

′
h+i, ⟩, ⟨u′

j|0 ≤ j ≤ n− 1, j /∈ [h, h+ i], j /∈ [h− n, h+ i− n]⟩
〉

=
〈
⟨u′

h, u
′
h+1, . . . u

′
h+i, ⟩, ⟨uj|0 ≤ j ≤ n− 1, j /∈ [h, h+ i], j /∈ [h− n, h+ i− n]⟩

〉
≥

〈
⟨uh, uh+1, . . . uh+i, ⟩, ⟨uj|0 ≤ j ≤ n− 1, j /∈ [h, h+ i], j /∈ [h− n, h+ i− n]⟩

〉
= ⟨u0, u1, . . . , un−1⟩.

We can perform the same computation for the span of b subsequent columns of U and U ′

to conclude that the minimum b-symbol distance does not decrease.

As G0 we can take an arbitrary generator matrix G of C. For the construction of G1

we iteratively replace each occurring zero vector by an arbitrary non-zero vector. Clearly,
we have ⟨uj⟩ ≤

〈
u′
j

〉
for all 0 ≤ j ≤ n − 1 since uj = u′

j if j ̸= h and u′
h is the zero

12



vector. Moreover, we have dim(⟨u′
h⟩) = 1 > 0 = dim(⟨uh⟩). Here we assume that we

directly set Gi+1 = Gi, if Gi already has the desired property of Gi+1, and do not consider
modifications from U to U ′.

Now we assume that we have a generator matrix U such that all i subsequent columns
span an i-space and that there exists a index 0 ≤ j ≤ n − 1 such that the columns
uj, . . . , uj+i also span an i-space and indeed not span an (i + 1)-span. So, we have
⟨uj, . . . , uj+i−1⟩ = ⟨uj+1, . . . , uj+i⟩. Since the span of all n columns has dimension k,
we can assume ⟨uj+1, . . . , uj+i⟩ ≠ ⟨uj+2, . . . , uj+i+1⟩ for i < b ≤ k by possibly increas-
ing the initial index j. With this we choose h = j + i (modulo n) and set u′

h = uh + uh+1.
For brevity we set Sl := ⟨ul, . . . , ul+i−1⟩, S ′

l := ⟨u′
l, . . . , u

′
l+i−1⟩, Tl := ⟨ul, . . . , ul+i⟩, and

T ′
l := ⟨u′

l, . . . , u
′
l+i⟩ for all 0 ≤ l ≤ n−1, so that e.g. Sj = Sj+1 ̸= Sj+2 and dim(Tj) = i.

Since ⟨uh, uh+1⟩ = ⟨u′
h, u

′
h+1⟩ we have Sl = S ′

l for l /∈ {j + 1, j + 1 − n} and Tl = T ′
l

l /∈ {j, j − n}. Since Sj+1 ̸= Sj+2 we have T ′
j > Tj , dim(S ′

j+1) = i, S ′
j ̸= S ′

j+1, and
S ′
j+1 ̸= S ′

j+2. Thus, U ′ satisfies the required property. □

We remark that the code constructed in Proposition 3.2 is faithful.

Lemma 3.6
nb
q(k, d1 + d2) ≤ nb

q(k, d1) + nb
q(k, d2)

PROOF. Let Ci be faithful [ni, k, di]
b
q codes with ni = nb

q(k, di) and Gi be corresponding
generator matrices for i ∈ {1, 2}, see Lemma 3.5. Multiplying Gi by a suitable matrix in
GL(k, q) we obtain a generator matrix G′

i of a faithful [ni, k, di]
b
q code starting with a k×k

unit matrix Ik, where i ∈ {1, 2}. Applying Lemma 3.3 to G′
1 and G′

2 yields a generator
matrix of an [n1 + n2, k, d1 + d2]

b
q code. □

For the 2-symbol metric we can directly state the resulting minimum distance for the
concatenation of two arbitrary generator matrices. For simplicity we state the observation
in terms of codewords.

Lemma 3.7 Let a ∈ Fn1
q and b ∈ Fn2

q , where n1, n2 ≥ 2, such that wt2(a) = d1 and
wt2(b) = d2. Construct c ∈ Fn1+n2

q as the concatenation of a and b – written c = a|b.
Writing ⋆ for an arbitrary element in Fq\{0} we have the following four cases for a:

(a) a = (0, a1, . . . , an−2, 0);

(b) a = (0, a1, . . . , an−2, ⋆);

(c) a = (⋆, a1, . . . , an−2, 0);

(d) a = (⋆, a1, . . . , an−2, ⋆).
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Similar for b:

(i) b = (0, b1, . . . , bn−2, 0);

(ii) b = (0, b1, . . . , bn−2, ⋆);

(iii) b = (⋆, b1, . . . , bn−2, 0);

(iv) b = (⋆, b1, . . . , bn−2, ⋆).

With this, we have wt2(c) = wt2(a) + wt2(b)− 1 if we are in case (b).(iii) or case (c).(ii)
and wt2(c) = wt2(a) + wt2(b) in all other cases.

Corollary 3.8 Let n ≥ 2, k ≥ 2, and t ≥ 1 be integers. For each c ∈ Fn
q with n ≥

2 we have wt2(

t times︷ ︸︸ ︷
c| · · · |c) = t · wt2(c). For each full rank matrix G ∈ Fk×n

q we have

d2

(
rowspan

( t times︷ ︸︸ ︷
G| . . . |G

))
= t · d2

(
rowspan

(
G
))

.

Our next aim is to show

lim
d→∞

nb
q(k, d)−

⌈
gq
(
k, qb−1 · d

)
[b]q

⌉
= 0. (18)

Lemma 3.9 Let Gi be generator matrices of faithful [ni, k, di]
b
q codes for 0 ≤ i < l such

that the last b − 1 columns of Gi coincide with the first b − 1 columns of Gi+1 for all
0 ≤ i < l, where the indices are read modulo l. Then, the concatenation of the matrices

G0, G1, . . . , Gl−1 is the generator matrix of a faithful
[∑l−1

i=0 ni, k,
∑l−1

i=0 di

]b
q

code.

Example 3.10 The matrix

M =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 1 1

 ∈ GL(5, 2)
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generates the orbit of points

G =


1000011001001111101110001010110
0000110010011111011100010101101
0001100100111110111000101011010
0011001001111101110001010110100
0110010011111011100010101101000


when starting from the first unit vector. We write vj for the vector vj ∈ F5

2\{0} which
coincides with the binary expansion of j ≤ i ≤ 31. So for the subspaces Si according to
Lemma 2.6 we e.g. have S0 = ⟨v16, v1, v3⟩, S29 = ⟨v20, v8, v16⟩, and S30 = ⟨v8, v16, v1⟩.
More precisely, the first two columns of G equal v16, v1 and the last column of G equals
v8. Setting S ′

29 = ⟨v20, v8, v16 + v20⟩, S ′
30 = ⟨v8, v16 + v20, v1⟩, S ′′

29 = ⟨v20, v8, v16⟩, and
S ′′
30 = ⟨v8, v16, v1 + v20⟩, we note S29 = S ′

29 = S ′′
29 and S30 = S ′

30 = S ′′
30. So, we may

either append the vectors v16, v1 to G or the vectors v16+v20, v1 or the vectors v16, v1+v20
so that the first 31 planes coincide.

Definition 3.11 A b-chain of length n over Fk
q is a list of vectors v0, . . . , vn+b−2 ∈ Fk

q . The
sublist v0, v1, . . . , vb−2 is called the start and the sublist vn, vn+1, . . . , vn+b−2 is called the
end. The associated projective b−(n, k, s)q system M consists of the spaces ⟨vi, . . . vi+b−1⟩
for 0 ≤ i ≤ n− 1 and s is the maximum number of those subspaces that are contained in
some hyperplane of PG(k − 1, q). Two b-chains of length n over Fk

q are called equivalent
if their associated projective b− (n, k, s)q systems coincide.

Directly from the definition we verify:

Lemma 3.12 Let v0, . . . , vn+b−2 ∈ Fk
q be a b-chain of length n with associated projective

n−(n, k, s)q system M and v′0, . . . , v
′
n′+b−2 ∈ Fk

q be a b-chain of length n′ with associated
projective n− (n′, k, s′)q system M′. If vn, . . . vn+b−2 = v′0, . . . , v

′
b−2, i.e. if the end of the

first chain equals the end of the second chain, then v0, . . . , vn−1, v
′
0, . . . , vn′+b−2 is a b-

chain of length n+ n′ with associated projective b− (n+ n′, k, s+ s′)q system M+M′.

Lemma 3.13 Let v0, . . . , vb−2 ∈ Fk
q span a (b−1)-space, h ∈ {0, . . . , b−2}, v′0, . . . , v

′
b−2 ∈

Fk
q with v′i = vi for i ̸= h, dim(⟨v′0, . . . , v′b−2⟩) = b−1, and ⟨v0, . . . , vb−2⟩ ≠ ⟨v′0, . . . , vb−2⟩.

Then, there exist a b-chain of length [k]q with start v0, . . . , vb−2, end v′0, . . . , v
′
b−2, and as-

sociated projective b− ([k]q, k, [k − b]q)q system.

PROOF. First we note dim(⟨v0, . . . , vb−2, v
′
h⟩) = b. From Proposition 3.2 we conclude the

existence of a faithful
(
[k]q, k, [b]q · qk−b

)b
q

code C. Let G denote a generator matrix of G
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and g0, . . . , gn−1 be its columns, where n := [k]q. Noting that dim(⟨g0, . . . , gb−2, gn−1⟩) =
b and dim(⟨v0, . . . , vb−2, vh + v′h⟩) = b we conclude the existence of a matrix M ∈
GL(k, q) that maps gi to vi for 0 ≤ i ≤ b− 2 and gn−1 to vh + v′h. With this, G′ = M ·G
starts with v0, . . . , vb−2, ends with vh + v′h, and generates a faithful

(
[k]q, k, [b]q · qk−b

)b
q

code. From this we obtain a b-chain with length n over Fk
q with start v0, . . . , vb−2, end

v0, . . . , vb−2, and associated projective b− (n, k, s)q system, where s = [k]q − [b]q · qk−b =
[k − b]q. Since vn−1 = vh + v′h this chain is equivalent to a b-chain with length n over Fk

q

with start v0, . . . , vb−2, end v′0, . . . , v
′
b−2, and associated projective b − (n, k, s)q system,

where s = [k − b]q. □

Lemma 3.14 Let v0, . . . , vb−2 ∈ Fk
q and v′0, . . . , v

′
b−2 ∈ Fk

q both span a (b − 1)-space.
Then, there exists a b-chain of length λ · [k]q with start v0, . . . , vb−2, end v′0, . . . , v

′
b−2, and

associated projective b− (λ · [k]q, k, λ · [k − b]q)q system for some positive integer λ.

PROOF. If v′0 /∈ ⟨v0, . . . , vb−2⟩ (or v0 = v′0), then Lemma 3.13 yields a b-chain with length
[k]q over Fk

q that has start v0, . . . , vb−2, end v′0, v1, . . . , vb−2, and an associated projective b−
([k]q, k, [k − b]q)q system. Now assume v′0 ∈ ⟨v0, . . . , vb−2⟩ and choose an index 0 ≤ i ≤
b−2 such that v′0 /∈ ⟨v0, . . . , vi−1, vi+1, . . . , vb−2⟩ as well as a vector x ∈ Fq\{0} that is not
contained in ⟨v0, . . . , vi−1, vi+1, . . . , vb−2, v

′
0⟩. By Lemma 3.13 there exists a b-chain C1

with length [k]q over Fk
q that has start v0, . . . , vb−2, end v0, . . . , vi−1, x, vi+1, . . . , vb−2, and

an associated projective b − ([k]q, k, [k − b]q)q system. Now let C2 be a b-chain of length
[k]q over Fk

q with start v0, . . . , vi−1, x, vi+1, . . . , vb−2, end v′0, v1, . . . , vi−1, x, vi+1, . . . , vb−2,
and an associated projective b − ([k]q, k, [k − b]q)q system. Applying Lemma 3.12 to the
chains C1 and C2 gives a b-chain with length 2 · [k]q over Fk

q that has start v0, . . . , vb−2, end
v′0, v1 . . . , vi−1, x, vi+1, . . . , vb−2, and an associated projective b− (2 · [k]q, k, 2 · [k − b]q)q
system.

Suppose we have already constructed a b-chain C1 with length λ′ · [k]q over Fk
q that

has start v0, . . . , vb−2, end v′0, . . . , v
′
i, ui+1, . . . , ub−2, where ui+1 ̸= v′i+1, and an associ-

ated projective b − (λ′ · [k]q, k, λ′ · [k − b]q)q system for some positive integer λ′. If v′i /∈
⟨v′0, . . . , v′i, ui+1, . . . , ub−2⟩, then Lemma 3.13 yields a b-chain C2 with length [k]q over Fk

q

that has start v′0, . . . , v
′
i, ui+1, . . . , ub−2, end v′0, . . . , v

′
i+1, ui+2, . . . , ub−2, and an associated

projective b − ([k]q, k, [k − b]q)q system. Applying Lemma 3.12 to the chains C1 and C2

gives a b-chain with length (λ′ +1) · [k]q and the same properties as the initial chain while
the value of i is increased. Now assume v′i+1 ∈ ⟨v′0, . . . , v′i, ui+1, . . . , ub−2⟩ and choose an
index 0 ≤ j ≤ b−2 such that v′i+1 /∈ ⟨v′0, . . . , vi, ui+1, . . . , uj−1, uj+1, . . . , ub−2⟩ as well as
a vector x ∈ Fq\{0} that is not contained in

〈
v′0, . . . , v

′
i+1, ui+1, . . . , uj−1, uj+1, . . . , ub−2

〉
.

Using Lemma 3.13 we can construct a b-chain C ′
2 with length [k]q over Fk

q that has start
v′0, . . . , v

′
i, ui+1, . . . , ub−2, end v′0, . . . , v

′
i, ui+1, . . . , uj−1, x, uj+1, . . . , ub−2, and an associ-

ated projective b − ([k]q, k, [k − b]q)q system. Using Lemma 3.13 we construct a b-chain
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C ′
3 with length [k]q over Fk

q that has start v′0, . . . , v
′
i, ui+1, . . . , uj−1, x, uj+1, . . . , ub−2, end

v′0, . . . , v
′
i+1, ui+2, . . . , uj−1, x, uj+1, . . . , ub−2, and associated proj. b − ([k]q, k, [k − b]q)q

system. Applying Lemma 3.12 to the chains C1 and C ′
2 and then applying Lemma 3.12

another time to the previous result and C ′
3 gives a b-chain with length (λ′ + 2) · [k]q and

the same properties as the initial chain while the value of i is increased. After an iterative
application of this construction we end up with i = b − 2 and have obtained the final
desired chain. □

Example 3.15 We continue Example 3.10. Using the introduced notation and v20+ v16 =
v4 we start from a 3-chain C1 of length 31 with start v16, v1, end v4, v1, and associated
projective 3 − (31, 5, 3)2 system M1. From Lemma 3.13 we can obtain a 3-chain C2

with length 31 having start v4, v1, end v4, v16, and associated projective 3 − (31, 5, 3)2
system M2. Applying Lemma 3.12 to C1 and C2 gives a 3-chain C of length 62 with
start v16, v1, end v4, v16, and associated projective 3 − (62, 5, 6)2 system M. Note that
Lemma 3.14 guarantees the existence of a 3-chain of length 31λ with start v16, v1, end
v4, v16, and associated projective 3 − (31λ, 5, 3λ)2 system for some positive integer λ.
Now let S = ⟨v4, v16, v1⟩ be a 3-space. Reordering the stated basis of S we can interprete
S as a 3-chain of length 1 with start v4, v16, v16, v1,, and associated 3 − (1, 5, 1)2 system.
Appending these two chains yields a 3-chain with length 63 over F5

2 with equal start and
end, so that it can be interpreted as an [63, 5]32 code.

Now we are ready to prove that the Griesmer bound can be attained for [n, k, d]bq codes
if the minimum distance d is sufficiently large. The main idea is to start with a matching
additive code that attains the Griesmer bound and to consider its corresponding projective
system of b-spaces. Those b-spaces then are linked to together with suitable chains, con-
structed in Lemma 3.14, to a large chain having the same start and end that can then be
interpreted as [n, k, d]bq code. On the technical side we have to deal with the analysis of the
minimum distance and the periodicity pattern of the Griesmer bound, see Lemma 2.11(c).

Theorem 3.16 Given parameters k, q, and b we have

nb
q(k, d) =

⌈
gq
(
k, qb−1 · d

)
[b]q

⌉
(19)

for all sufficiently large d.

PROOF. Consider 1 ≤ d′ ≤ qk−b · [b]q separately. From [15, Theorem 4] we conclude he
existence of a constant λ ∈ N such that there exists a faithful projective h−(nλ, k, nλ−dλ)q
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system Sλ with dλ = λ·qk−b ·[b]q+d′ and nλ =

⌈
gq(k,qb−1·dλ)

[b]q

⌉
. Now we interprete the nλ b-

spaces of Sλ as b-chains of length 1 over Fk
q and link them via the chains from Lemma 3.14

to a b-chain with length nλ + λ′ · [k]q having the same start and end and being associated
with a faithful projective b −

(
nλ + λ′ · [k]q, k, (nλ − dλ) + λ′ · [k − b]q

)
q

system that

corresponds to a
(
nλ + λ′ · [k]q, k, d′ + (λ+ λ′) · qk−b · [b]q

)b
q

code. Using Lemma 2.11
we conclude that the Griesmer bound is attained, i.e. the validity of the stated equation,
for d = d′ + (λ+ λ′) · qk−b · [b]q. From Proposition 3.2, Lemma 3.6, and Lemma 2.11 we
then conclude that the Griesmer bound is attained for all d = d′ + λ′′ · qk−b · [b]q where
λ′′ ≥ λ+ λ′. □

Instead of decomposing Sλ into chains of length 1 we can also used decompositions into
larger chains, that usually exist if the cardinality of Sλ is not too small. We remark that the
periodicity property of the Griesmer bound stated in Lemma 2.11 is accompanied by the
upper bound

n ≤ [k]q · s
[k − b]q

(20)

for a projective b − (n, k, s)q system, that has an easy counting explanation, see e.g. [15,
Lemma 15]. We remark that the Griesmer bound is always at least as good as this bound
and attained with equality for the construction in Proposition 3.2.

The proof of Theorem 3.16 in general gives constructions for rather large values of the
minimum distance d only. So, in order to find [n, k, d]bq codes we can utilize ILP (integer
linear programming) formulations. To this end let P denote the set of points and H denote
the set of hyperplanes in PG(k−1, q). With this, let T (b−1) be the elements in Pb−1 that
span a (b− 1)-space and T (b) be the elements in Pb that span a b-space.We use indicator
variables xi

S ∈ {0, 1} for all S ∈ T (b) and all 0 ≤ i ≤ n − 1. The interpretation is that
xi
(P0,...,Pb−1)

= 1 iff the (i+ j)th column of a generator matrix G contains a representant of
Pj for all 0 ≤ j ≤ b− 1. In order to ensure a unique choice we require∑

S∈T (b)

xi
S = 1 ∀0 ≤ i ≤ n− 1. (21)

The chain property is ensured via∑
P0∈P : (P0,...,Pb−1)∈T (b)

xi
(P0,...,Pb−1)

=
∑

Pb∈P : (P1,...,Pb)∈T (b)

xi+1
(P1,...,Pb)

∀ (P1, . . . , Pb−1) ∈ T (b− 1)∀0 ≤ i ≤ n− 2 (22)
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and ∑
P0∈P : (P0,...,Pb−1)∈T (b)

xn−1
(P0,...,Pb−1)

=
∑

Pb∈P : (P1,...,Pb)∈T (b)

x0
(P1,...,Pb)

∀ (P1, . . . , Pb−1) ∈ T (b− 1). (23)

In order to count the maximum number of b-spaces per hyperplane we use
n−1∑
i=0

∑
(P0,...,Pb−1)∈T (b) : ⟨P0,...,Pb−1⟩≤H

xi
(P0,...,Pb−1)

≤ s ∀H ∈ H. (24)

With this we either minimize s and compute d = n − s or we directly set s = n −
d and search for a feasible solution. We can add additional constraints mimicking our
knowledge on the multiset of points covered by the b-spaces. I.e. we may e.g. prescribe
precise point multiplicities or upper bounds. We may also assume that the generator matrix
G starts with an identity matrix.2 We may also prescribe some automorphism g and assume
xi
(P0,...,Pb−1)

= xi+1

(P g
0 ,...,P

g
b−1)

for all (P0, . . . , Pb−1) ∈ T (b) and all 0 ≤ i ≤ n− 1.

Remark 3.17 Interpreting the sequence of columns of a generator matrix as a tour al-
lows alternative formulations or relaxations. I.e. we may just use counting variables
z(P0,...,Pb−1) :=

∑n−1
i=0 xi

(P0,...,Pb−1)
∈ N instead of the xi

(P0,...,Pb−1)
∈ {0, 1}. Clearly we

need ∑
P0∈P : (P0,...,Pb−1)∈T (b)

z(P0,...,Pb−1) =
∑

Pb∈P : (P1,...,Pb)∈T (b)

z(P1,...,Pb)

for all (P1, . . . , Pb−1) ∈ T (b − 1). However, this formulation does note exclude the pos-
sibility that the desired tour is composed of several subtours. So, we can use subtour
elimination constraints as done by Dantzig, Fulkerson, and Johnson for the traveling
salesperson problem. In the context of the latter optimization problem our formulation
is similar to the idea used by Miller, Tucker, and Zemlin.

4 The functions n2
2(k, ·) for k ≤ 5

The aim of this section is to completely determine the function n2
2(k, ·) for the minimum

possible length of an [n, k, d]22 code for small dimensions k. Many of the presented meth-
ods are in principle also applicable for [n, k, d]bq codes. However, our asymptotic result

2By our definition of T (b) and T (b − 1) we search for faithful codes only. Of course we can replace
T (b−1) by Pb−1 and T (b) by Pb for the more general situation. Note that we can assume that G is obtained
after an application of the Gauss-Jordan elimination algorithm, i.e., that G is in reduced row echelon form.
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in Theorem 3.16 usually applies for rather large values of d only, so that many values of
nb
q(k, d) would need to be determined to fully determine the function nb

q(k, ·) for other
parameters.

For each c ∈ Fn
q we obviously have 0 ≤ wt2(c) ≤ n and wt2(c) ∈ N. For small

minimum distances d the Singleton-type bound db(C) ≤ n+ b− k [7] is rather effective.
More generally, the Griesmer-type bound, see Inequality (6), can often by improved for
small d by applying Lemma 2.2, which is the source for many improved lower bounds
for additive codes, see e.g. [15]. Even for q = b = 2 and k ≤ 5 there exist minimum
distances d where additive codes or the corresponding projective systems exist for some
length n, but codes in the b-symbol metric require larger lengths, see e.g. Lemma 4.8 and
Lemma 4.9. For constructive upper bounds we mostly utilize the ILP formulation from
the end of Section 3.

For dimensions k ≤ 2 the determination of nb
q(k, ·) can still be solved completely:

Theorem 4.1 For each integer d ≥ 2 we have n2
q(1, d) = n2

q(2, d) = d.

PROOF. Clearly we have n2
q(k, d) ≥ d for all positive integers k and d. For dimension

k = 1 we can consider a codeword c ∈ Fd
q consisting of d ones and check wt2(λ · c) = d

for all λ ∈ Fq\{0}, so that n2
q(1, d) ≤ d for all d ≥ 2. For dimension k = 2 we consider

A =

(
a1
a2

)
=

(
1 0
0 1

)
∈ F2×2

q and B =

(
b1
b2

)
=

(
1 1 0
0 1 1

)
∈ F2×3

q .

We easily check d2(rowspan(A)) = 2 and d2(rowspan(B)) = 3, so that Corollary 3.8

implies d2(rowspan(

t times︷ ︸︸ ︷
A| . . . |A)) = 2t for all integers t ≥ 1. In order to check

d2(rowspan(B|
t times︷ ︸︸ ︷

A| . . . |A)) = d2(rowspan(

t times︷ ︸︸ ︷
A| . . . |A|B)) = 2t+ 3

we apply Lemma 3.7 and Corollary 3.8. More precisely, for some fixed integer t ≥ 1 let

c1 = (

t times︷ ︸︸ ︷
a1| . . . |a1) and c2 = (

t times︷ ︸︸ ︷
a2| . . . |a2). For each λ ∈ Fq\{0} both (λ · b1|λ · c1) and

(λ ·c1|λ ·b1) are of type (c).(iii) while (λ ·b2|λ ·c2) and (λ ·c2|λ ·b2) are of type (b).(ii). For
λ1, λ2 ∈ Fq\{0} we have that both (λ1b1+λ2b2|λ1c1+λ2c2) and (λ1c1+λ2c2|λ1b1+λ2b2)
are of type (d).(iv). Thus we have constructed examples showing n2

q(2, d) ≤ d for all
integers d ≥ 2. □

Theorem 4.2 For all integers t ≥ 0 and 1 ≤ i ≤ 6 with 6t+ i ≥ 2 we have n2
2(3, 6t+ i) =

7t+ i+ 1.
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PROOF. We choose

G3 =

1 0 0
0 1 0
0 0 1

, G4 =

1 0 0 1
0 1 0 1
0 0 1 1

, G5 =

1 0 0 1 1
0 1 0 1 0
0 0 1 1 1

,

G6 =

1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

, G7 =

1 0 0 1 1 1 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1


and verify d2(rowspan(Gi)) = i − 1 for all 3 ≤ i ≤ 7 by exhaustively considering all
corresponding seven non-zero codewords and computing the weights w.r.t. the symbol-pair
metric. From Lemma 3.6 we conclude n2

2(3, 6) ≤ n2
2(3, 3) + n2

2(3, 3) ≤ 8 and n2
2(3, 7) ≤

n2
2(3, 4) + n2

2(3, 3) ≤ 9. For brevity, we denote corresponding generator matrices by G8

and G9, respectively. Using Proposition 3.2, or Corollary 3.8 applied to G7. we conclude
the existence of [7t, 3, 6t]22 codes for all positive integers t. Combining these with the codes
generated by G3, . . . , G9 via Lemma 3.6 yields the proposed lower bounds. For the other
direction we apply the Griesmer bound in Inequality (6) and compute

i g2(3, 12t+ 2i) ⌈g2(3, 12t+ 2i)/3⌉
1 21t+ 4 7t+ 2
2 21t+ 7 7t+ 3
3 21t+ 11 7t+ 4
4 21t+ 14 7t+ 5
5 21t+ 18 7t+ 6
6 21t+ 21 7t+ 7

□

We remark that examples of [6, 3, 5]22 and [7, 3, 6]22 codes can also be found in [4, Table
I], cf. [7, Table 1]. Up to isomorphism there exists a unique [n, 3, n − 1]22 code for all
n ∈ {3, . . . , 7} while there exist 248 non-isomorphic [8, 3, 6]22 codes.

Corollary 4.3 We have n2
2(3, d) =

⌈
g2(3,2d)

3

⌉
for all d ≥ 2.

Theorem 4.4 For all integers t ≥ 0 and 1 ≤ i ≤ 4 with 4t+ i ≥ 5 we have n2
2(4, 4t+ i) =

5t+ i+ 1. Moreover, we have n2
2(4, 2) = 4, n2

2(4, 3) = 5, and n2
2(4, 4) = 6.

PROOF. Examples of [4, 4, 2]22, [5, 4, 3]
2
2, [6, 4, 4]22, [7, 4, 5]

2
2, [8, 4, 6]

2
2, [9, 4, 7]

2
2, [10, 4, 8]22,

[12, 4, 9]22, [13, 4, 10]
2
2, [14, 4, 11]22, and [15, 4, 12]22 codes are given by the generator matri-

ces(
1000
0100
0010
0001

)
,

(
10001
01001
00101
00011

)
,

(
100010
010001
001010
000101

)
,

(
1000110
0100011
0010111
0001101

)
,

(
10001110
01001011
00100111
00011101

)
,

(
100011111
010001011
001011010
000101101

)
,

(
1000111111
0100101010
0010011011
0001101101

)
,
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(
101001111111
011001010101
000101101001
000010110111

)
,

(
1010011111111
0110001101010
0001010110011
0000111101101

)
,

(
10100111111000
01100101001111
00010111010110
00001011101101

)
,

(
101000110011110
011000011110101
000101011101110
000011101011101

)
.

By recursively applying Lemma 3.6 we conclude n2
2(4, i+8t) ≤ i+2+10t for 5 ≤ i ≤ 8

as well as n2
2(4, i + 8t) ≤ i + 3 + 10t for 9 ≤ i ≤ 12, where t ∈ N is arbitrary. Thus we

have n2
2(4, 4t+ i) ≤ 5t+ i+ 1 for all integers t ≥ 0 and 1 ≤ i ≤ 4 with 4t+ i ≥ 5.

For the other direction we apply the Griesmer bound from Inequality (6) and compute

i g2(4, 8t+ 2i) ⌈g2(8, 8t+ 2i)/3⌉
1 15t+ 5 5t+ 2
2 15t+ 8 5t+ 3
3 15t+ 12 5t+ 4
4 15t+ 15 5t+ 5

The improved lower bounds n2
2(4, 2) ≥ 4, n2

2(4, 3) ≤ 5, and n2
2(4, 4) ≤ 6 are given by the

Singleton-type bound d ≤ n+ b− k [7]. □

Corollary 4.5 We have n2
2(4, d) =

⌈
g2(4,2d)

3

⌉
for all d ≥ 5.

d 2 3 4 5 6 7 8 9 10 11 12
n2
2(4, d) 4 5 6 7 8 9 10 12 13 14 15

# 1 1 4 1 4 1 1 21030 13772 755 33

Table 1: Number of non-isomorphic optimal [n2
2(4, d), 4, d]

2
2 codes

Theorem 4.6 We have n2
2(5, d) =

⌈
g2(5,2d)

3

⌉
for all d ≥ 9. Moreover, we have n2

2(5, d) =

d+ 3 for d ∈ {2, 3, 4, 6, 7}, n2
2(5, 5) = 9, and n2

2(5, 8) = 12.

PROOF. Examples of [5, 5, 2]22, [6, 5, 3]
2
2, [7, 5, 4]22, [9, 5, 5]

2
2, [9, 5, 6]22, [10, 5, 7]

2
2, [12, 5, 8]

2
2,

[13, 5, 9]22, [14, 5, 10]
2
2, [15, 5, 11]22, [16, 5, 12]

2
2, [18, 5, 13]

2
2, [19, 5, 14]22, [20, 5, 15]

2
2, [21, 5, 16]

2
2,

[23, 5, 17]22, [24, 5, 18]
2
2, [25, 5, 19]22, [26, 5, 20]

2
2, [28, 5, 21]

2
2, [29, 5, 22]22, [30, 5, 23]

2
2, [31, 5, 24]

2
2,

[33, 5, 25]22, [34, 5, 26]
2
2, [36, 5, 27]22, [37, 5, 28]

2
2, [38, 5, 29]22, [39, 5, 30]

2
2, [41, 5, 31]

2
2, and

[42, 5, 32]22 codes are given by the generator matrices(
10000
01000
00100
00010
00001

)
,

(
100001
010001
001001
000101
000011

)
,

(
1000010
0100011
0010001
0001011
0000101

)
,

(
110000111
001000110
000100111
000010101
000001011

)
,

(
100001111
010001001
001001010
000101101
000011011

)
,

(
1000011110
0100001011
0010011001
0001010111
0000101101

)
,

(
110000111110
001000011101
000100101010
000010111001
000001101111

)
,
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(
1001001111111
0101001010101
0011000110011
0000101101101
0000011011011

)
,

(
10010011111111
01010010100001
00110001001011
00001011011001
00000110101111

)
,

(
111000011011110
111011100001011
111100110110001
110001101110010
011001000110111

)
,

(
0101010101101101
0000010110111011
0000101001010101
0011001100011111
1001001000101010

)
,

(
000101101010110101
001000011011011111
010000100101101101
000010001101111011
100001010111110001

)
,(

0000110111011011011
0011010001101101101
0001111010000101111
1100000111100111101
0100101110010100001

)
,

(
00000110111011010101
00011011011101100110
01100001001101011011
00101010100010011010
10000010010111101011

)
,

(
000001101011101101101
000110001101110110110
001010110010111000101
110000010101011100111
010010101101000011001

)
,

(
00000011101110110111011
00001100110111011001101
00110101111011000011010
01010000011110011101010
10010001101101100001101

)
,(

101000101000101101111011
011000011011011000100111
000100100101010111001011
000010111010100110110001
000001110101101011100110

)
,

(
0111110110101000011011000
0101111001001110100110100
0011111010110111110000010
0100111111110100001110001
1110101010011011001100000

)
,

(
01101111111010100110001000
01001101000101110010110100
01011110101100000101010010
00111100111000111011110001
11111001001111011110010000

)
,(

0111101101101010100100001000
0101111011000011100011110100
0000011101010010111110110010
0110101000100101111111100001
1000100111111100101101110000

)
,

(
01111100001110111101010011000
01010011010110010101111100100
01001001111111001011101010010
00010100111011101001110100001
10111010110100101111001000000

)
,

(
011100100110010110110010111000
010001110111101011010100100100
010111100010011101001101010010
001111001011110010110101000001
111101011100101010001011010000

)
,(

0110010011111011100010101101000
0011001001111101110001010110100
0111110111000101011010000110010
0101101000011001001111101110001
1100100111110111000101011010000

)
,

(
100001110010110101100011001111001
010001011110101100010010100010011
001001010111110001011001101011100
000100110111011101111100010010001
000010100011001011010001010111111

)
,(

1000010010101100111101110010101110
0100001111010101001100101011000110
0010000011100001010110111010111011
0001011000010111110010101101110010
0000100100101010110111101001000101

)
,

(
100001100000110101010101101101110001
010000111011101101111001000101101000
001001110001101110001111101001001011
000100100100011110111100011100101111
000011011111001111100011100010101101

)
,(

1000010011111011010101010010011110000
0100011001001010000001110101101011011
0010010110111100101000010111001010010
0001011100100111001100011101100010101
0000111001110101111010100100011010100

)
,

(
10000100110111101111001100111000011011
01000100111010010000111011111101101110
00100101011111110101100001011111111001
00010111001010011111010010001111010011
00001010101110110100110101110010000011

)
,(

100000100100100010101111011011110010110
010001010100010111101101101110001100100
001001111111000000100100101111110111101
000100011001111101101111001101010100001
000010110011111110010001111011101101101

)
,

(
10000100100011111000010101011110101100101
01000111101110010100000101001001011011110
00100010011001010011001001010010111101010
00010100001100011011101010010100101011111
00001001001000001110110101101010111110111

)
,(

100000000101110110101011000100101111010110
010001001110010010000111010111011110101100
001001000101011011101001100001111010100011
000101101010011100010010101010101010110000
000010110101010010110000110110010011111001

)
.

(A [41, 5, 31]22 code can also be constructed from a [31, 5, 24]22 and a [10, 5, 7]22 code. For
a general construction of a [31, 5, 24]22 code we refer to Proposition 3.2.) Combining these
codes with a suitable number of [31, 5, 24]22 codes via Lemma 3.6 gives the proposed upper
bounds for n2

2(5, d) for all d ≥ 33.
The proposed lower bounds for n2

2(5, d) are given by the Griesmer bound from In-
equality (6) for all d ≥ 9 and by the Singleton-type bound d ≤ n + b − k [7] for all
d ∈ {2, 3, 4, 6, 7}. Using LinCode we have enumerated all 10358 even [24, 5, 10]2 codes.
While several of the corresponding multisets of points can be partitioned into lines, no
partition yields a [8, 5, 5]22 code, so that n2

2(5, 5) ≥ 9. Alternatively, we can directly use
Lemma 4.8. Using LinCode we have enumerated all 21 even [33, 5, 16]2 codes. While
several of the corresponding multisets of points can be partitioned into lines, no parti-
tion yields a [11, 5, 8]22 code, so that n2

2(5, 8) ≥ 12. Alternatively, we can directly use
Lemma 4.9. □
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We remark that in [4, Table I] generator matrices for [7, 4, 5]22, [8, 4, 6]
2
2, [9, 4, 7]22, and

[10, 4, 8]22 codes are stated. The length of the list of explicitly constructed generator matri-
ces is partially due to the fact that the existence of an [n, k, d]bq code does not necessarily
imply the existence of an [n− 1, k, d− 1]bq code, see Example 3.1.

Our next aim is to replace the computer enumerations for d ∈ {5, 8} in the proof of
Theorem 4.6 by theoretical arguments.

Lemma 4.7 Given an [n, k, d]2q code C with n = n2
q(k, d), there exists a spanning multiset

of points in PG(k − 1, q) of cardinality (q + 1)n that can be written as M =
∑n−1

i=0 χLi

for n lines L0, . . . , Ln−1 such that each hyperplane H contains at most (n−d) of the lines
and

∑
P≤H M(P ) ≤ q(q+1)− dq. If q = 2 there additionally exist n points P0, . . . Pn−1

such that M =
∑n−1

0 (2 · χPi
+ χQi

), where Qi = Pi + Pi+1 (reading indices modulo n).

PROOF. Due to Lemma 3.5 we can assume that C is faithful. Given a generator matrix G
of C we denote the spans of the columns of G by P0, . . . , Pn−1 and set Li := ⟨Pi, Pi+1⟩,
where the indices are read modulo n. Setting M :=

∑n−1
i=0 χLi

gives the multiset of points
associated to C. From Lemma 2.6 we conclude that at most n − d lines can be fully
contained in a hyperplane. Since each hyperplane either fully contains a line or intersects
it in a point we conclude the upper bound

∑
P≤H M(P ) ≤ q(q+1)−dq for all hyperplanes

H . For q = 2 we observe Li = {Pi, Qi, Pi+1} for all 0 ≤ i ≤ n− 1. □

Lemma 4.8 No [8, 5, 5]22 code exists.

PROOF. Assuming that such a code exist we use Lemma 4.7 to construct a multiset of
points M =

∑7
i=0 (2χPi

+ χQi
), where Qi = Pi + Pi+1 with indices read modulo 8,

that corresponds to a [24, 5, 10]2 code using Lemma 4.7. Since the points P0, . . . , P7 span
PG(4, 2) and each [8, 5, d]2 code satisfies d ≤ 2 we conclude the existence of a hyperplane
H that contains at least six of the points P0, . . . , P7. Thus, H contains at least four of the
points Q0, . . . , Q7, so that the multiplicity of H is at least 2 · 6 + 4 = 16. However, the
maximum possible multiplicity of a hyperplane in a multiset of points corresponding to a
[24, 5, 10]2 code is 24− 10 = 14 – contradiction. □

In order to show the non-existence of a [11, 5, 8]22 code we need to refine the argument
a bit. (We may deduce the existence of a hyperplane H that contains a least seven of the
eleven double points, say {P0, P1, P3, P4, P6, P7, P9} while the points in {P2, P5, P8, P10}
are not contained. In this example only three of the eleven points Qi are contained in H ,
which gives a multiplicity of 2 · 7 + 3 = 17 for H , which goes in line with a [33, 5, 16]2
code.)

Lemma 4.9 No [11, 5, 8]22 code exists.

24



PROOF. Assuming that such a code exist we construct a multiset of points M =
∑10

i=0 χLi

as in Lemma 4.7 corresponding to a [33, 5, 16]2 code, where the Li are lines. By construc-
tion we have M(Li) ≥ 2 · 2 + 1 = 5. Since no [27, 3, 16]2 code exists we have indeed
M(Li) = 5 for all 0 ≤ i ≤ 10. Projection through Li yields a multiset of points M′

that corresponds to a [28, 3, 16]2 code. Since we have M′(L′) ≤ 12 for every line L′ in
PG(4, 2)/Li

∼= PG(2, 2) we conclude M′(P ′) ≤ 4 for every point P ′ in the factor space.
Since there are only seven points and M′ has cardinality 28 we have M′(P ′) = 4 for all
points. Thus, we have M(H) = 5 + 3 · 4 = 17 for every hyperplane H ≥ Li. Counting
gives that those hyperplanes contain exactly three lines. Since we can choose 0 ≤ i ≤ 10
arbitrarily we can state that each hyperplane that contains at least one of the eleven lines
contains exactly three of them. Denoting the number of hyperplanes that contain at least
one line by x and double counting lines gives

3 · x+ 0 · (31− x) = 7 · 11,

which does not have an integral solution – contradiction. □

5 Conclusion
In Theorem 3.16 we have shown that the minimum possible length nb

q(k, d) of an [n, k, d]bq

code is attained by a Griesmer-type bound nb
q(k, d) ≥

⌈
gq(k,qb−1·d)

[b]q

⌉
if d is sufficiently

large. With this the problem of the determination of nb
q(k, ·) becomes a finite problem.

In Section 4 we have solved this problem for q = b = 2 and k ≤ 5. Besides the general
construction in Proposition 3.2 and Lemma 3.6 for the combination of codes, we only used
explicit codes found by ILP searches. In order to determine the functions nb

q(k, ·) for more
parameters, more general constructions are desired. Although we have described [n, k, d]bq
codes from the geometric point of view as projective b− (n, k, n−d)q systems we are still
very far from a one-to-one correspondence.
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constructions of linear codes in b-symbol metric. IEEE Transactions on Information
Theory, 70(11):7840–7847, 2024.

[17] G. Luo, M. F. Ezerman, S. Ling, and X. Pan. New families of MDS symbol-
pair codes from matrix-product codes. IEEE Transactions on Information Theory,
69(3):1567–1587, 2022.

[18] J. Ma and J. Luo. On symbol-pair weight distribution of MDS codes and simplex
codes over finite fields. Cryptography and Communications, 13:101–115, 2021.

[19] J. Ma and J. Luo. Constructions of MDS symbol-pair codes with minimum distance
seven or eight. Designs, Codes and Cryptography, 90(10):2337–2359, 2022.

[20] J. Ma and J. Luo. MDS symbol-pair codes from repeated-root cyclic codes. Designs,
Codes and Cryptography, pages 1–17, 2022.

[21] G. Solomon and J. J. Stiffler. Algebraically punctured cyclic codes. Information and
Control, 8(2):170–179, 1965.

[22] E. Yaakobi, J. Bruck, and P. H. Siegel. Constructions and decoding of cyclic
codes over b-symbol read channels. IEEE Transactions on Information Theory,
62(4):1541–1551, 2016.

27


	Introduction
	Preliminaries
	Linear codes attaining the Griesmer bound
	The functions n22(k,) for k5
	Conclusion

